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Introduction

This paper is a doctor thesis of the author. In this paper, we study the moduli
spaces of finite flat models of 2-dimensional local Galois representations over finite
fields.

First, we explain the moduli space of finite flat models. Let K be a p-adic
field for p > 2. We consider a two-dimensional continuous representation VF of
the absolute Galois group GK over a finite field F of characteristic p. By a finite
flat model of VF, we mean a finite flat group scheme G over OK , equipped with an
action of F, and an isomorphism VF

∼−→ G(K) that respects the action of GK and
F. We assume that VF has at least one finite flat model. Then there exists a moduli
space of finite flat models of VF, which is projective scheme over F, and we denoted
it by G RVF,0.

In the section 1, we recall the moduli space of finite flat models, and explain
a relationship between a local deformation ring and the moduli space of finite flat
models. Then we explain a conjecture by Kisin on the connected component of the
moduli space of finite flat models.

In the section 2, we study the connected components of the moduli space of finite
flat models. The projective scheme G Rv

VF,0
over F is the moduli of finite flat models

of VF with some determinant condition. From the viewpoint of the application to
the modularity problem, we are interested in the connected components of G Rv

VF,0
.

In the subsention 1, we prove some preliminary lemmas. In the subsection 2,
we prove the Kisin conjecture. The statement is the following.

Theorem. Let F′ be a finite extension of F. Suppose x1, x2 ∈ G Rv
VF,0

(F′) corre-
spond to objects M1,F′ ,M2,F′ of (Mod/S)F′ respectively. If M1,F′ and M2,F′ are
both non-ordinary, then x1 and x2 lie on the same connected component of G Rv

VF,0
.

When K is totally ramified over Qp, this was proved in [Kis]. If the residue field
of K is bigger than Fp, the situation changes greatly because S⊗Zp F can be split
into a direct product. When K is a general p-adic field, the case of VF being the
trivial representation was treated in [Gee].

In the subsection 3, as an application to global Galois representations, we prove
a theorem on the modularity, which states that a deformation ring is isomorphic to
a Hecke ring up to p-power torsion kernel. This completes Kisin’s theory for GL2.
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In the section 2, we study the dimension of moduli space of finite flat models.
Let e be the ramification index of K over Qp, and k be the residue field of K.
We consider a two-dimensional continuous representation VF of the absolute Galois
group GK over a finite field F of characteristic p. We assume that VF has at least
one finite flat model. If e < p−1, the finite flat model of VF is unique by Raynaud’s
result [Ray, Theorem 3.3.3]. In general, there are finitely many finite flat models
of VF, and these appear as the F-rational points of G RVF,0. It is natural to ask
about the dimension of G RVF,0. In this section, we determine the type of the zeta
functions and the range of the dimensions of the moduli spaces. The main theorem
of this section is the following.

Theorem. Let dVF = dimG RVF,0, and Z(G RVF,0;T ) be the zeta function of G RVF,0.
We put n = [k : Fp]. Then followings are true.

1. After extending the field F sufficiently, we have

Z(G RVF,0;T ) =

dVF∏
i=0

(1− |F|iT )−mi

for some mi ∈ Z such that mdVF
> 0.

2. If n = 1, we have

0 ≤ dVF ≤
[
e+ 2

p+ 1

]
.

If n ≥ 2, we have

0 ≤ dVF ≤
[
n+ 1

2

][
e

p+ 1

]
+

[
n− 2

2

][
e+ 1

p+ 1

]
+

[
e+ 2

p+ 1

]
.

Here, [x] is the greatest integer less than or equal to x for x ∈ R.
Furthermore, each equality in the above inequalities can happen for any finite
extension K of Qp.

Raynaud’s result says that if e < p− 1 then G RVF,0 is one point, that is, zero-
dimensional and connected. If e < p − 1, the above theorem also implies that
G RVF,0 is zero-dimensional. So it gives a dimensional generalization of Raynaud’s
result for two-dimensional Galois representations. The connectedness of G RVF,0 is
completely false in general. For example, we can check that if K = Qp(ζp) and
VF is trivial representations then G RVF,0 consists of P1

F and two points (c.f. [Kis,
Proposition 2.5.15(2)]). Here P1

F denotes the 1-dimensional projective space over F.
In the subsection 1, we prove some Lemmas, and give an example for any K

where the moduli space of finite flat models is one point.
A proof of the main theorem separates into two cases, that is, the case where VF

is not absolutely irreducible and the case where VF is absolutely irreducible. In the
subsection 2, we treat the case where VF is not absolutely irreducible. In this case,
we decompose G RVF,0 into affine spaces in the level of rational points. Then we ex-
press the dimensions of these affine spaces explicitly and bound it by combinatorial
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arguments. In the subsection 3, we treat the case where VF is absolutely irreducible.
A proof is similar to the case where VF is not absolutely irreducible, but, in this
case, we have to decompose G RVF,0 into AdF and Ad−1

F ×Gm and Ad−2
F ×G2

m in the
level of rational points. Here AdF denotes the d-dimensional affine space over F, and
Gm is A1

F − {0}.
In the subsection 4, we state the main theorem and prove it by collecting the

results of former sections.
In the section 4, we study the rational points of moduli space of finite flat

models. In this section, we assume that K is totally ramified of degree e over Qp,
and VF is the two-dimensional trivial representation of GK over F .

We consider the constant group scheme CF over SpecK of the two-dimensional
vector space over F. Let M(CF,K) be the set of the isomorphism class of the finite
flat models of CF. If e < p− 1, then M(CF,K) is one-point set by [Ray, Theorem
3.3.3]. However, if the ramification is big, there are surprisingly many finite flat
models. In this section, we calculate the number of the isomorphism class of the
finite flat models of CF, that is, |M(CF,K)|. The main theorem of this section is
the following.

Theorem. Let q be the cardinality of F. Then we have

|M(CF,K)| =
∑
n≥0

(an + a′n)q
n.

Here an and a′n are defined as in the following.
We express e and n by

e = (p− 1)e0 + e1, n = (p− 1)n0 + n1 = (p− 1)n′0 + n′1 + e1

such that e0, n0, n
′
0 ∈ Z and 0 ≤ e1, n1, n

′
1 ≤ p− 2. Then

an =max
{
e0 − (p+ 1)n0 − n1 − 1, 0

}
if n1 ̸= 0, 1,

an =max
{
e0 − (p+ 1)n0 − n1 − 1, 0

}
+max

{
e0 − (p+ 1)n0 − n1 + 1, 0

}
if n1 = 0, 1,

and

a′n =max
{
e0 − e1 − (p+ 1)n′0 − n′1 − 2, 0

}
if n′1 ̸= 0, 1,

a′n =max
{
e0 − e1 − (p+ 1)n′0 − n′1 − 2, 0

}
+max

{
e0 − e1 − (p+ 1)n′0 − n′1, 0

}
if n′1 = 0, 1

except in the case where n = 0 and e1 = p− 2, in which case we put a′0 = e0.

In the above theorem, we can easily check that |M(CF,K)| = 1 if e < p− 1.
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Notation

Throughout this paper, we use the following notation. Let p > 2 be a prime number,
and k be the finite field of cardinality q = pn. For a positive number m, the finite
field of cardinality pm is denoted by Fpm . For a ring R, the ring of Witt vectors
over R with respect to p is denoted byW (R). Let K0 be the quotient field ofW (k),
and K be a totally ramified extension of K0 of degree e. The ring of integers of K
is denoted by OK , and the absolute Galois group of K is denoted by GK . Let IK
be the inertia group of the absolute Galois group GK , and Frq be the q-th power
Frobenius of the absolute Galois group Gk. Let F be a finite field of characteristic
p. For a ring A, the formal power series ring of u over A is denoted by A[[u]], and
we put A((u)) = A[[u]](1/u). For a field F , the algebraic closure of F is denoted
by F and the separable closure of F is denoted by F sep. Let vu be the valuation
of F((u)) normalized by vu(u) = 1, and we put vu(0) = ∞. For a local ring A,
the maximal ideal of A is denoted by mA. For a topological space X, the set of
connected components of X is denoted by π0(X). For x ∈ R, the greatest integer
less than or equal to x is denoted by [x]. For a positive integer d, the d-dimensional
affine space over F is denoted by AdF. Let Gm be A1

F − {0}.

1 Deformation ring and moduli space of finite flat
models

In this section, we explain the relationship between a deformation ring and a moduli
space of finite flat models.

First, we are going to introduce a deformation ring. Let VF be a two-dimensional
continuousGK-representation over F with a fixed ordered basis. AGK-representation
over a finite ring is said to be flat if and only if it is isomorphic to the generic fiber
of a finite flat group scheme over OK as a GK-module. We assume that VF is flat.
Let ARW (F) be the category of Artin local finite W (F)-algebra A whose residue
field is isomorphic to F as a W (F)-algebra. To define a deformation, we use a no-
tion of groupoids. For the notion of groupoids, please consult [Kis, Appendix on

groupoids]. The framed flat deformation Dfl,�
VF

of VF over ARW (F) is a groupoid

Dfl,�
VF

over ARW (F) determined as in the followings:

• For an object A in ARW (F), an object of Dfl,�
VF

(A) is a triple (VA, ψ, β), where
VA is a flat continuous GK-representation that is a free A-module of rank
2 with an ordered basis β over A, and ψ : VA ⊗A F ∼−→ VF is an F-linear
GK-isomorphism sending β to the fixed ordered basis of VF.

• A morphism (VA, ψ, β) → (VA′ , ψ′, β′) covering a given morphism A→ A′ in
ARW (F) is an equivalence class [α], where α : VA⊗AA′ ∼−→ VA′ is an A′-linear
GK-isomorphism that is compatible with the morphisms ψ, ψ′ and sending β
to β′, and two morphisms are equivalent if they differ by an element of A′×.

Then the framed flat deformation Dfl,�
VF

is pro-represented by a complete local

W (F)-algebra Rfl,�
VF

.
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We are going to define a deformation ring with the condition that the p-adic
Hodge type v = (1), which is denoted by Rfl,�,v

VF
. Let

(
Rfl,�
VF

[1/p]
)v

be the quotient

of Rfl,�
VF

[1/p] corresponding to the connected components of SpecRfl,�
VF

[1/p] whose
closed points ξ satisfy the following:

If Vξ is the deformation corresponding to ξ, then Fil0Dcrys

(
Vξ[1/p]

)
K

is free of rank 1 over k(ξ)⊗Qp K. Here, k(ξ) is the residue field of ξ.

We note that Vξ[1/p] is Barsotti-Tate representation, since we are considering a flat

deformation. Then we define Rfl,�,v
VF

by the image of Rfl,�
VF

in
(
Rfl,�
VF

[1/p]
)v
.

The information of the connected components of SpecRfl,�,v
VF

[1/p] is very im-
portant for an application to a theorem comparing a deformation ring and a Hecke
ring ([Kis, Theorem 3.4.11]). So we want to know π0(SpecR

fl,�,v
VF

[1/p]).
Next, we are going to explain the Kisin module and the moduli space of finite

flat models of VF. By a finite flat model of VF, we mean a finite flat group scheme
G over OK , equipped with an action of F, and an isomorphism VF

∼−→ G(K) that
respects the action of GK and F.

Let S = W (k)[[u]], and OE be the p-adic completion of S[1/u]. We consider
the action of ϕ on OE ⊗Zp F ∼

= k((u)) ⊗Fp F defined by p-th power on k((u)). Let
ΦMOE⊗ZpF be the category of finite (OE ⊗Zp F)-modules M with ϕ-semi-linear map
ϕ :M →M such that the induced linear map ϕ∗M →M is bijective.

We take and fix a uniformizer π ofOK . We choose a system (πm)m≥1 of elements
inK such that πp1 = π and πpm+1 = πm form ≥ 1, and putK∞ =

∪
m≥1K(πm). Let

RepF(GK∞) be the category of finite-dimensional continuous GK∞-representations
over F.

Then the functor

T : ΦMOE⊗ZpF → RepF(GK∞); M 7→
(
k((u))sep ⊗k((u)) M

)ϕ=1

is an equivalence of abelian categories. We take MF ∈ ΦMOE⊗ZpF such that T (MF)

is isomorphic to VF(−1)|GK∞
. Here (−1) denotes the inverse of the Tate twist.

Then MF is a free (OE ⊗Zp F)-module of rank 2.
We put SF = S⊗Zp F. Let (Mod /SF) be the category of finite free SF-modules

M with ϕ-semi-linear map ϕ : M → M such that the cokernel of the induced linear
map ϕ∗M → M is killed by ue. An object of (Mod /SF) is called a Kisin module
with coefficients in F. Let (F-Gr/OK) be the category of finite flat group schemes
over OK with a structure of an F-vector space.

Theorem 1.1. There exists an equivalence of categories

Gr : (Mod /SF) → (F-Gr/OK).

Proof. This follows from [Br, Théorèm 4.2.1.6] and [Kis, Lemma 1.2.5].

Proposition 1.2 ([Kis, Proposition 1.1.13]). For an object M of (Mod /SF), there
exists a canonical isomorphism

T (OE ⊗S M)(1)
∼−→ Gr(M)(K)|GK∞

as GK∞-representations. Here (1) denotes the Tate twist.
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By this proposition, we see that a Kisin module which is a sublattice of MF
corresponds to a finite flat model of VF. Here and in the sequel, a sublattices means
a finite free SF-submodule of MF that spans MF over OE ⊗Zp

F. In the above, we
have defined a Kisin module with coefficients in F. More generally, we can define a
Kisin module with coefficients in a Zp-algebra (cf. [Kis, (1.2)]). Using this general
Kisin module, we can construct a moduli space of Kisin modules, which is denoted
by G RVF and projective over SpecRfl,�

VF
(cf. [Kis, (2.1)]). The closed fiber of G RVF

over SpecRfl,�
VF

is denoted by G RVF,0. The scheme G RVF,0 is a moduli space of
finite flat models of VF in the sense of the following proposition.

Proposition 1.3 ([Kis, Corollary 2.1.13]). For any finite extension F′ of F, there
is a natural bijection between the set of isomorphism classes of finite flat models of
VF′ = VF ⊗F F′ and G RVF,0(F′).

A closed subscheme G Rv
VF

⊂ G RVF is defined by the condition that p-adic

Hodge type v = (1) as in [Kis, (2.4.2)]. The closed fiber of G Rv
VF

over SpecRfl,�
VF

is
denoted by G Rv

VF,0
.

Then there is the following relation between the deformation ring Rfl,�,v
VF

and
the moduli space G Rv

VF,0
.

Proposition 1.4. There exists a natural bijection

π0(SpecR
fl,�,v
VF

[1/p])
∼
= π0(G Rv

VF,0
).

Proof. This follows from [Kis, Corollary 2.4.10], since G Rv,loc
VF,0

= G Rv
VF,0

by [Kis,
Proposition 2.4.6] if the p-adic Hodge type v = (1).

So the problem has been reduced to study π0(G Rv
VF,0

). The connected com-

ponents G Rv,ord
VF,0

⊂ G Rv
VF,0

is defined by the points corresponding to the ordinary

finite flat group schemes. We can easily determine the set π0(G Rv,ord
VF,0

) as in the
following:

Proposition 1.5 ([Kis, Proposition 2.5.15]). If G Rv,ord
VF,0

is non-empty, then it

consist of a single point, unless VF ∼
(
χ1 0
0 χ2

)
where χ1 and χ2 are unramified

characters of GK . In the latter case, we have the followings:

1. If χ1 ̸= χ2, then G Rv,ord
VF,0

consists of two points.

2. If χ1 = χ2, then G Rv,ord
VF,0

∼
= P1

F.

Next, we consider the non-ordinary part. We put

G Rv,non-ord
VF,0

= G Rv
VF,0

\ G Rv,ord
VF,0

.

Then Kisin conjectured that G Rv,non-ord
VF,0

is connected.
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2 Connected components

2.1 Preliminaries

We assume SpecRfl,�
VF

̸= ∅, and this assumption assures that the action of IK on
detVF is the reduction mod p of the cyclotomic character.

The fundamental character of level m is given by

ωm : IK → k
×
; g 7→ g( pm−1

√
π)

pm−1
√
π

mod mOK
.

HeremOK
is the maximal ideal of OK . IfK ′/K is a finite unramified extension that

contains the (pm − 1)-st roots of unity, then the same formula as above defines a
character of GK′ , which is again denoted by ωm. Note that this extension depends
on the choice of the uniformizer π.

Lemma 2.1. If VF is absolutely irreducible and Fq2 ⊂ F, then

VF|IK ∼ ωs2n ⊕ ωqs2n

for a positive integer s such that (q + 1) - s.

Proof. Let IP ⊂ IK be the wild inertia group. Then V IPF ̸= 0 and V IPF is GK-stable,

so V IPF = VF. As the action of IK on VF factors through the tame inertia group,
we get VF|IK ∼ ωs1m1

⊕ ωs2m2
for some non-negative integers s1, s2 and some positive

integers m1, m2. Now we fix a lifting F̃rq ∈ GK of the q-th Frobenius Frq. For

every σ ∈ IK and every positive integerm, we have ωm
(
F̃rq ◦σ◦(F̃rq)−1

)
= ωm(σ)q.

Changing the above basis by the action of (F̃rq)
−1, we obtain VF|IK ∼ ωqs1m1

⊕ ωqs2m2
.

If ωs1m1
= ωs2m2

, we get ωs1m1
= ωqs1m1

. So we may assume m1 = n. As ωn
is defined over GK , we can consider the representation VF ⊗ ω−s1

n of GK . Then
this representation is absolutely irreducible and factors through Gk. This is a
contradiction.

So we may assume ωs1m1
̸= ωs2m2

. As VF is an irreducible representation, ωs1m1
=

ωqs2m2
and ωs2m2

= ωqs1m1
. Hence ωs1m1

= ωq
2s1
m1

and we may assume m1 = 2n. Thus we
get VF|IK ∼ ωs2n ⊕ ωqs2n.

If (q + 1) | s, then VF|IK ∼ ωs
′

n ⊕ ωs
′

n where s′ = s/(q + 1). This contradicts the
absolutely irreducibility of VF by considering VF ⊗ ω−s′

n . So we get (q + 1) - s.

From now on, in this section, we assume Fq2 ⊂ F and fix an embedding k ↪→ F.
This assumption does not matter, because we may extend F to prove the Kisin
conjecture. We consider the isomorphism

OE ⊗Zp F ∼= k((u))⊗Fp F ∼→
∏

σ∈Gal(k/Fp)

F((u)) ;
(∑

aiu
i
)
⊗ b 7→

(∑
σ(ai)bu

i
)
σ

and let ϵσ ∈ k((u)) ⊗Fp F be the primitive idempotent corresponding to σ. Take
σ1, · · · , σn ∈ Gal(k/Fp) such that σi+1 = σi ◦ ϕ−1. Here we regard ϕ as the p-th
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power Frobenius, and use the convention that σn+i = σi. In the following, we often
use such conventions. Then we have ϕ(ϵσi) = ϵσi+1 , and ϕ : MF → MF determines

ϕ : ϵσi
MF → ϵσi+1

MF. For (Ai)1≤i≤n ∈ GL2

(
F((u))

)n
, we write

MF ∼ (A1, A2, . . . , An) = (Ai)i

if there is a basis {ei1, ei2} of ϵσiMF over F((u)) such that ϕ

(
ei1
ei2

)
= Ai

(
ei+1
1

ei+1
2

)
.

We use the same notation for any sublattice MF ⊂ MF similarly. Here and in the
following, we consider only sublattices that are (S⊗Zp F)-modules.

Finally, for any sublattice MF ⊂ MF with a chosen basis {ei1, ei2}1≤i≤n and

B = (Bi)1≤i≤n ∈ GL2

(
F((u))

)n
, the module generated by the entries of

⟨
Bi

(
ei1
ei2

)⟩
with the basis given by these entries is denoted by B ·MF. Note that B ·MF depends
on the choice of the basis of MF.

Lemma 2.2. Suppose VF is absolutely irreducible. If F′ is the quadratic extension
of F, then

MF ⊗F F′ ∼

((
0 α1

α1u
s 0

)
,

(
α2 0
0 α2

)
, . . . ,

(
αn 0
0 αn

))

for some αi ∈ (F′)× and a positive integer s such that (q + 1) - s. Conversely, for
each positive integer s such that (q + 1) - s, there exists an absolutely irreducible
representation VF as above.

Proof. Let K ′ be the quadratic unramified extension of K, and k′ be the residue
field of K ′. Then

VF(−1)|GK′ ∼ λ′ω−s
2n ⊕ λ′ω−qs

2n

for an unramified character λ′ : GK′ → F× and a positive integer s such that
(q + 1) - s by applying Lemma 2.1 to VF(−1)∗. By taking the quadratic extension

F′ of F, we can extend λ′ to λ : GK → (F′)×. We take a lifting F̃rq ∈ GK∞ of the
q-th Frobenius Frq. Now we fix a (q2 − 1)-st root of π, which is denoted by q2−1

√
π.

Then we put α̃ = F̃rq( q2−1
√
π)/ q2−1

√
π ∈ OK , and let α be the reduction of α̃ in k.

We have α ∈ F′, because αq
2−1 = 1. Considering VF ⊗F F′, we may assume F = F′.

We put K ′
∞ = K ′ ·K∞. Then (F̃rq)

2 is in GK′
∞
. Now we have

(F̃rq)
2( q2−1

√
π)

q2−1
√
π

=
(F̃rq)

2( q2−1
√
π)

F̃rq( q2−1
√
π)

· F̃rq(
q2−1

√
π)

q2−1
√
π

=
F̃rq(α̃ q2−1

√
π)

F̃rq( q2−1
√
π)

α̃ = F̃rq(α̃)α̃

and ω2n

(
(F̃rq)

2
)
= αq+1. Hence we can take v1, v2 ∈ VF(−1) so that

F̃rq(v1) = λ(F̃rq)α
−qsv2, F̃rq(v2) = λ(F̃rq)α

−sv1

and
g(v1) = λ(g)ω−s

2n (g)v1, g(v2) = λ(g)ω−qs
2n (g)v2
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for all g ∈ GK′
∞
. We take an element wλ of (k⊗Fp

F)× so that g(wλ) =
(
1⊗λ(g)

)
wλ

for all g ∈ GK . By this condition, wλ is determined up to (k ⊗Fp F)×.
By the definition of the action of GK∞ on OEur , we can choose an element u2n of

OEur/pOEur so that uq
2−1

2n = u and F̃rq(u2n) = αu2n. We consider the isomorphism

k′ ⊗Fp F ∼→
∏

σ∈Gal(k′/Fp)

F ; a⊗ b 7→
(
σ(a)b

)
σ

and let ϵ0 ∈ k′ ⊗Fp F be the primitive idempotent corresponding to idk′ . For

0 ≤ r ≤ 2n− 1, we put ϵr = ϕrϵ0. Note that (ap
r ⊗ 1)ϵr = (1⊗ a)ϵr for all a ∈ k′.

We put

e1 = w−1
λ

{
(us2n ⊗ 1)(ϵ0v1 + ϵnv2) + (ups2n ⊗ 1)(ϵ1v1 + ϵn+1v2)+

· · ·+ (up
n−1s

2n ⊗ 1)(ϵn−1v1 + ϵ2n−1v2)
}
,

e2 = w−1
λ

{
(up

ns
2n ⊗ 1)(ϵnv1 + ϵ0v2) + (up

n+1s
2n ⊗ 1)(ϵn+1v1 + ϵ1v2)+

· · ·+ (up
2n−1s

2n ⊗ 1)(ϵ2n−1v1 + ϵn−1v2)
}

in (OEur/pOEur)⊗Fp VF(−1). Then e1 and e2 are fixed by g ∈ GK′
∞

and F̃rq. Hence
e1, e2 are fixed by GK∞ , and these are a basis of ΦMOE ,F over OE ⊗Zp F. We put
αλ = wλ/ϕ(wλ). As ϕ(wλ) satisfies the condition determining wλ, the element αλ
of (k ⊗Fp F)× is in (k ⊗Fp F)×. Now we have

ϕ(e1) = αλ
{
(ϵ1 + ϵn+1) + · · ·+ (ϵn−1 + ϵ2n−1)

}
e1 + αλ(ϵ0 + ϵn)e2,

ϕ(e2) = αλu
s(ϵ0 + ϵn)e1 + αλ

{
(ϵ1 + ϵn+1) + · · ·+ (ϵn−1 + ϵ2n−1)

}
e2.

If we put
σ1 = ϕ, σ2 = idk, σ3 = ϕ−1, . . . , σn = ϕ2,

then we have

ϵσ1 = ϵn−1 + ϵ2n−1, ϵσ2 = ϵ0 + ϵn, . . . , ϵσn = ϵn−2 + ϵ2n−2

and

MF ∼

((
0 α1

α1u
s 0

)
,

(
α2 0
0 α2

)
, . . . ,

(
αn 0
0 αn

))
.

Here αi is the σi+1-th component of αλ in
∏
σ∈Gal(k/Fp)

F.
We can check the last statement easily.

2.2 Kisin conjecture

Lemma 2.3 ([Gee, Lemma 2.2]). If F′ is a finite extension of F, the elements of
G Rv

VF,0
(F′) naturally correspond to free k[[u]] ⊗Fp F′-submodules MF′ ⊂ MF ⊗F F′

of rank 2 that satisfy the following:
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1. MF′ is ϕ-stable.

2. For some (so any) choice of k[[u]] ⊗Fp F′-basis for MF′ , and for each σ ∈
Gal(k/Fp), the map

ϕ : ϵσMF′ → ϵσ◦ϕ−1MF′

has determinant αue for some α ∈ F′[[u]]×.

Lemma 2.4 ([Gee, Lemma 2.4]). Suppose x1, x2 ∈ G Rv
VF,0

(F) correspond to objects
M1,F,M2,F of (Mod/S)F respectively. Let N = (Ni)1≤i≤n be a nilpotent element of
M2

(
F((u))

)n
such that M2,F = (1 + N) ·M1,F, and A = (Ai)1≤i≤n be an element

of GL2

(
F((u))

)n
such that M1,F ∼ A. If ϕ(Ni)AiNi+1 ∈ M2

(
F[[u]]

)
for all i, then

there is a morphism P1 → G Rv
VF,0

sending 0 to x1 and 1 to x2.

Lemma 2.5. Suppose n ≥ 2. Let MF be the object of (Mod/S)F corresponding
to a point x ∈ G Rv

VF,0
(F). Fix a basis of MF over k[[u]] ⊗Fp F. Consider U (i) =

(U
(i)
j )1≤j≤n ∈ GL2

(
F((u))

)n
such that U

(i)
i =

(
u 0
0 u−1

)
and U

(i)
j =

(
1 0
0 1

)
for

all j ̸= i. If U (i) ·MF is ϕ-stable, it corresponds to a point x′ ∈ G Rv
VF,0

(F), and x′
lies on the same connected component of G Rv

VF,0
as x.

Proof. First, U (i) ·MF corresponds to a point x′ ∈ G Rv
VF,0

(F), because it satisfies
the conditions of Lemma 2.3.

Next, we consider N (i) = (N
(i)
j )1≤j≤n ∈M2

(
F((u))

)n
such that

N
(i)
i =

(
1 −u
u−1 −1

)
and N

(i)
j = 0 for all j ̸= i.

Then U (i) ·MF = (1 +N (i)) ·MF, because

(
u−1 0
0 u

)
=

(
0 1
−1 2u

)(
2 −u
u−1 0

)
.

So we can apply Lemma 2.4.

Theorem 2.6. Let F′ be a finite extension of F. Suppose x1, x2 ∈ G Rv
VF,0

(F′)
correspond to objects M1,F′ ,M2,F′ of (Mod/S)F′ respectively. If M1,F′ and M2,F′

are both non-ordinary, then x1 and x2 lie on the same connected component of
G Rv

VF,0
.

Proof. When n = 1, this was proved in [Kis]. If e < p − 1, then G Rv
VF,0

(F′) is
one point by [Ray, Theorem 3.3.3]. So we may assume n ≥ 2 and e ≥ p − 1.
Furthermore, replacing VF by VF ⊗F F′, we may assume F = F′.

Suppose first that VF is reducible. We can choose a basis so that M1,F ∼ A =

(Ai)1≤i≤n ∈M2

(
F[[u]]

)n
where Ai =

(
ai bi
0 ci

)
for ai, bi, ci ∈ F[[u]], because MF is

reducible and M1,F is ϕ-stable. By the Iwasawa decomposition and the determinant
conditions, we can take B = (Bi)1≤i≤n ∈ GL2

(
F((u))

)n
such that M2,F = B ·M1,F

and Bi =

(
u−si vi
0 usi

)
for si ∈ Z and vi ∈ F((u)). Then M2,F ∼

(
ϕ(Bi)AiB

−1
i+1

)
i
,

10



and we have

ϕ(Bi)AiB
−1
i+1 =

(
u−psi ϕ(vi)
0 upsi

)(
ai bi
0 ci

)(
usi+1 −vi+1

0 u−si+1

)
=

(
aiu

−psi+si+1 −aivi+1u
−psi + biu

−psi−si+1 + ciϕ(vi)u
−si+1

0 ciu
psi−si+1

)
.

In the last matrix, every component is integral because M2,F is ϕ-stable.
First of all, we want to reduce the problem to the case where si = 0 for all i.

When e = p− 1, we have 0 ≤ vu(ci) ≤ p− 1 and 0 ≤ vu(ci) + psi− si+1 ≤ p− 1 for
all i by the determinant conditions. From the second set of inequalities, we obtaine

0 ≤
n−1∑
j=0

{
vu(ci−1−j) + psi−1−j − si−j

}
pj ≤ pn − 1,

and we have

n−1∑
j=0

{
vu(ci−1−j) + psi−1−j − si−j

}
pj = (pn − 1)si +

n−1∑
j=0

vu(ci−1−j)p
j .

Combining these with 0 ≤ vu(ci) ≤ p − 1, we get −1 ≤ si ≤ 1. If si = 1 for
some i, the second sign of the above inequality must be the equality sign. So we
get vu(cj) = 0 for all j. This contradicts the non-ordinarity of M1,F. If si = −1
for some i, the first sign of the above inequality must be the equality sign. So we
get vu(cj) + psj − sj+1 = 0 for all j. This contradicts the non-ordinarity of M2,F.
Hence, we have si = 0 for all i. So we may assume e ≥ p.

We consider U (i) as in Lemma 2.5. If si > 0 and U (i) · M2,F is ϕ-stable, we
may replace M2,F with U (i) ·M2,F by Lemma 2.5. This replacement changes si into
si − 1 and vi into uvi. If si < 0, switching M1,F with M2,F so that we have si > 0,
we consider the same replacement as above. Note that these replacements decrease
|si| by 1. We prove that we can continue these replacements until we get to the case
where si = 0 for all i. Suppose that we cannot continue the replacements and there
is some nonzero si. Take an index i0 such that |si0 | is the greatest. By switching
M1,F with M2,F, we may assume si0 > 0. As we cannot continue the replacements,
we cannot decrease si0 keeping the ϕ-stability, that is,

vu(ci0) + psi0 − si0+1 ≤ p− 1 or vu(ai0−1)− psi0−1 + si0 = 0.

If vu(ci0) + psi0 − si0+1 ≤ p − 1, we have si0 = 1, vu(ci0) = 0 and si0+1 = 1,
because vu(ci0)+(p−1)si0+(si0−si0+1) ≤ p−1. Now we have vu(ai0)−psi0+si0+1 ≥
1, because e ≥ p and vu(ci0) + psi0 − si0+1 ≤ p− 1. As si0+1 cannot be decreased,
vu(ci0+1) + psi0+1 − si0+2 ≤ p− 1. The same argument shows that vu(ci) = 0 and
si = 1 for all i. This contradicts the non-ordinarity of M1,F.

If vu(ai0−1)−psi0−1+si0 = 0, then si0−1 > 0 and vu(ci0−1)+psi0−1−si0 = e ≥ p.
As si0−1 cannot be decreased, vu(ai0−2)− psi0−2 + si0−1 = 0. The same argument
shows that vu(ai)− psi + si+1 = 0 for all i. So we have that M2,F is an extension
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of a multiplicative module by an étale module. We show that such an extension

splits. Now we have M2,F ∼

((
a′i b′i
0 uec′i

))
i

for a′i, c
′
i ∈ F[[u]]× and b′i ∈ F[[u]].

Then ((
1 v′i
0 1

))
i

·M2,F ∼

((
a′i −a′iv′i+1 + b′i + uec′iϕ(v

′
i)

0 uec′i

))
i

for v′i ∈ F[[u]]. It suffices to show that there is (v′i)1≤i≤n ∈ F[[u]]n such that
a′iv

′
i+1 = b′i+u

ec′iϕ(v
′
i) for all i, and we can solve the system of equations by finding

v′i successively in ascending order of their degrees. Hence we have that M2,F is
ordinary, and this is a contradiction.

Thus we may assume si = 0 for all i. Consider N = (Ni)1≤i≤n ∈ M2

(
F((u))

)n
such that Ni =

(
0 vi
0 0

)
for vi ∈ F((u)). Then we have M2,F = (1 +N) ·M1,F and

ϕ(Ni)

(
ai bi
0 ci

)
Ni+1 = 0. Hence x1 and x2 lie on the same connected component

by Lemma 2.4. This completes the proof in the case where VF is reducible.
From now on, we consider the case where VF is irreducible. If VF is reducible

after extending the base field F, we can reduce this case to the reducible case. So
we may assume VF is absolutely irreducible. Extending the field F, we have

MF ∼

(
α1

(
0 1
us 0

)
, α2

(
1 0
0 1

)
, . . . , αn

(
1 0
0 1

))

for some αi ∈ F× and a positive integer s by Lemma 2.2. This basis gives a
sublattice MF. By the Iwasawa decomposition, we can take s′i, t

′
i ∈ Z and v′i ∈

F((u)) so thatM1,F =

((
us

′
i v′i

0 ut
′
i

))
i

·MF. Changing the basis by

((
us

′
i 0

0 ut
′
i

))
i

,

we get

MF ∼

(
α1

(
0 us1

ut1 0

)
, α2

(
us2 0
0 ut2

)
, . . . , αn

(
usn 0
0 utn

))
.

Here we have 0 ≤ t1, 0 ≤ si, ti ≤ e for 2 ≤ i ≤ n, and si + ti = e for all i by the
ϕ-stability and the determinant conditions of M1,F.

We are going to change the basis so that we have moreover t1 ≤ e. Changing the

basis of the i-th component by

(
u 0
0 u−1

)
, we get the following transformations:

Ti : ti  ti − p, ti−1  ti−1 + 1 for i ̸= 2,

T2 : t2  t2 − p, t1  t1 − 1.

If t1 > e, we put
m = max{ 1 ≤ i ≤ n | ti ̸= e },
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and carry out T1 when m = n, and Tm+1, Tm+2, . . . , Tn, T1 when m ̸= n. Then
0 ≤ si, ti ≤ e for 2 ≤ i ≤ n, and t1 decrease by p when m ̸= 1, by p + 1 when
m = 1. Repeat this until we get to the situation where t1 ≤ e. If e ≥ p, we get to
the situation where 0 ≤ s1, t1 ≤ e. If e = p− 1 and we do not get to the situation
where 0 ≤ s1, t1 ≤ p− 1, then we have

MF ∼

(
α1

(
0 u−1

up 0

)
, α2

(
1 0
0 up−1

)
, . . . , αn

(
1 0
0 up−1

))
.

In this case, changing the basis by

((
1 u−1

0 1

))
i

, we get

MF ∼

(
α1

(
1 0
up −up−1

)
, α2

(
1 0
0 up−1

)
, . . . , αn

(
1 0
0 up−1

))
.

This contradicts that MF is irreducible. Hence we obtain a basis such that

MF ∼

(
α1

(
0 us1

ut1 0

)
, α2

(
us2 0
0 ut2

)
, . . . , αn

(
usn 0
0 utn

))

for some si and ti satisfying si + ti = e and 0 ≤ si, ti ≤ e for all i. Let M0,F be the
sublattice of MF determined by this basis. Note that M0,F satisfies the conditions
of Lemma 2.3, and let x0 be the point of G Rv

VF,0
corresponding to M0,F.

We prove that we can change (ti)1≤i≤n furthermore by Ti’s or T−1
i ’s keeping

0 ≤ ti ≤ e for all i, and get to the situation where |si − ti| ≤ p + 1 for all i. By
Lemma 2.5, these changes do not affect which of the connected components x0 lies
on. If e ≤ p + 1, this is satisfied automatically. So we may assume e ≥ p + 2.
We prove that if there is an index j such that |sj − tj | ≥ p + 2, then there is an
index j0 such that |sj0 − tj0 | ≥ p+ 2 and we can change tj0 by Tj0 or T−1

j0
so that

|sj0 − tj0 | decreases keeping 0 ≤ ti ≤ e for all i. We put hi = (−1)[(i−2)/n](si − ti)
for i ∈ Z. By assumption, there is an integer j0 such that 1 ≤ j0 ≤ 2n, hj0 ≥ p+ 2
and hj0−1 < e. If 2 ≤ j0 ≤ n + 1, we can change tj0 by T−1

j0
, otherwise by Tj0 ,

so that |sj0 − tj0 | decreases keeping 0 ≤ ti ≤ e for all i. Thus we have proved the
claim. Hence if |sj − tj | ≥ p+ 2 for an index j, we can carry out Tj0 or T−1

j0
for an

index j0 as above and this operation decreases
∑n
i=1 |si− ti| by at least 2. So after

finitely many operations, we get to the situation where |si − ti| ≤ p+ 1 for all i.
Hence we may assume that si and ti satisfy si + ti = e, 0 ≤ si, ti ≤ e and

|si − ti| ≤ p + 1 for all i. We are going to prove that x0 and x1 lie on the same
connected component. We can prove that x0 and x2 lie on the same connected
component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take

B = (Bi)1≤i≤n ∈ GL2

(
F((u))

)n
such that M1,F = B ·M0,F and Bi =

(
u−ai vi
0 uai

)
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for ai ∈ Z and vi ∈ F((u)). Then we put ri = vu(vi). Now we have

ϕ(B1)

(
0 us1

ut1 0

)
B−1

2 =

(
ϕ(v1)u

t1+a2 us1−pa1−a2 − ϕ(v1)v2u
t1

ut1+pa1+a2 −v2ut1+pa1

)
,

ϕ(Bi)

(
usi 0
0 uti

)
B−1
i+1 =

(
usi−pai+ai+1 ϕ(vi)u

ti−ai+1 − vi+1u
si−pai

0 uti+pai−ai+1

)
for 2 ≤ i ≤ n. On the right-hand sides, every component of the matrices is integral
because M1,F is ϕ-stable.

First, we consider the case t1 + pa1 + a2 > e. In this case,

(pr1 + t1 + a2) + (r2 + t1 + pa1) = e, s1 − pa1 − a2 = pr1 + r2 + t1 < 0

by the ϕ-stability and the determinant conditions of M1,F. We have a1 > r1,
because t1 + pa1 + a2 > e ≥ pr1 + t1 + a2. Similarly, we have a2 > r2, because
t1 + pa1 + a2 > e ≥ r2 + t1 + pa1.

We consider the following operations:

ai  ai − 1, vi  uvi, if it preserves the ϕ-stability of B ·M0,F.

These operations replace x1 by a point that lies on the same connected component
as x1 by Lemma 2.5. We prove that we can continue these operations until we get
to the situation where t1 + pa1 + a2 ≤ e. In other words, we reduce the problem to
the case t1 + pa1 + a2 ≤ e. If we can continue the operations endlessly, we get to
the situation where t1+pa1+a2 ≤ e, because the conditions si−pai+ai+1 ≥ 0 for
2 ≤ i ≤ n exclude that both a1 and a2 remain bounded below. Suppose we cannot
continue the operations. This is equivalent to the following condition:

sn − pan + a1 = 0 or r2 + t1 + pa1 ≤ p− 1,

pr1 + t1 + a2 = 0 or t2 + pa2 − a3 ≤ p− 1,

si−1 − pai−1 + ai = 0 or ti + pai − ai+1 ≤ p− 1 for each 3 ≤ i ≤ n.

If e ≥ p, there are only the following two cases, because (pr1 + t1 + a2) + (r2 + t1 +
pa1) = e and (si − pai + ai+1) + (ti + pai − ai+1) = e for 2 ≤ i ≤ n.

Case 1 : pr1 + t1 + a2 = 0, si − pai + ai+1 = 0 for 2 ≤ i ≤ n.

Case 2 : r2 + t1 + pa1 ≤ p− 1, ti + pai − ai+1 ≤ p− 1 for 2 ≤ i ≤ n.

If e = p− 1, clearly it is in Case 2.
In the Case 1. Suppose that there is an index i such that 2 ≤ i ≤ n and

pri + ti − ai+1 ̸= ri+1 + si − pai. Then both sides are non-negative, because
vu(ϕ(vi)u

ti−ai+1 − vi+1u
si−pai) ≥ 0. Comparing ri+1 + si− pai ≥ 0 with si− pai+

ai+1 = 0, we get ri+1 ≥ ai+1. Then pri+1 + ti+1 − ai+2 ≥ pai+1 + ti+1 − ai+2 ≥ 0,
and ri+2 + si+1 − pai+1 ≥ 0 because vu(ϕ(vi+1)u

ti+1−ai+2 − vi+2u
si+1−pai+1) ≥ 0.

Comparing ri+2+si+1−pai+1 ≥ 0 with si+1−pai+1+ai+2 = 0, we get ri+2 ≥ ai+2.
The same argument goes on and shows r1 ≥ a1. This is a contradiction. Thus
pri + ti − ai+1 = ri+1 + si − pai for all 2 ≤ i ≤ n. Now we change the basis of

MF ∼

(
α1

(
0 us1

ut1 0

)
, α2

(
us2 0
0 ut2

)
, . . . , αn

(
usn 0
0 utn

))
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by

((
u−ai uri

0 uai

))
i

. Then we have

MF ∼

(
α1

(
1 0

ut1+pa1+a2 −ue
)
, α2

(
1 0
0 ue

)
, . . . , αn

(
1 0
0 ue

))
,

and this contradicts that MF is irreducible.
In the Case 2. Suppose that there is an index i such that 2 ≤ i ≤ n and

pri + ti − ai+1 ̸= ri+1 + si − pai. Then both sides are non-negative, because
vu(ϕ(vi)u

ti−ai+1 − vi+1u
si−pai) ≥ 0. Comparing pri + ti − ai+1 ≥ 0 with ti + pai −

ai+1 ≤ p− 1, we get ri ≥ ai. Then ri + si−1 − pai−1 ≥ si−1 − pai−1 + ai ≥ 0, and
pri−1 + ti−1 − ai ≥ 0 because vu(ϕ(vi−1)u

ti−1−ai − viu
si−1−pai−1) ≥ 0. Comparing

pri−1 + ti−1 − ai ≥ 0 with ti−1 + pai−1 − ai ≤ p− 1, we get ri−1 ≥ ai−1. The same
argument goes on and shows that r2 ≥ a2. This is a contradiction.

The above argument shows that

ri < ai, pri + ti − ai+1 = ri+1 + si − pai < 0 for 2 ≤ i ≤ n.

Combining these equations with s1 − pa1 − a2 = pr1 + r2 + t1, we get

− (pn + 1)r1 = (pn + 1)a1 + (sn − tn) + p(sn−1 − tn−1)+

· · ·+ pn−3(s3 − t3) + pn−2(s2 − t2)− pn−1(s1 − t1),

− (pn + 1)r2 = (pn + 1)a2 − (s1 − t1)− p(sn − tn)−
· · · − pn−3(s4 − t4)− pn−2(s3 − t3)− pn−1(s2 − t2),

− (pn + 1)r3 = (pn + 1)a3 + (s2 − t2)− p(s1 − t1)−
· · · − pn−3(s5 − t5)− pn−2(s4 − t4)− pn−1(s3 − t3),

...

− (pn + 1)rn = (pn + 1)an + (sn−1 − tn−1) + p(sn−2 − tn−2)+

· · ·+ pn−3(s2 − t2)− pn−2(s1 − t1)− pn−1(sn − tn).

As |si − ti| ≤ p+ 1 and

(p+ 1) + p(p+ 1) + · · ·+ pn−1(p+ 1) =

(
pn − 1

p− 1

)
(p+ 1) < 2(pn + 1),

we get −ai − 1 ≤ ri ≤ −ai + 1. When e = p− 1, as |si − ti| ≤ p− 1 and

(p− 1) + p(p− 1) + · · ·+ pn−1(p− 1) =

(
pn − 1

p− 1

)
(p− 1) < (pn + 1),
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we get ri = −ai.
As r2 + t1 + pa1 ≤ p− 1, we have

pa1 ≤ t1 + pa1 ≤ p− 1− r2 ≤ p+ a2.

For 2 ≤ i ≤ n, as ti + pai − ai+1 ≤ p− 1, we have

pai ≤ ti + pai ≤ p− 1 + ai+1.

Take an index i0 such that ai0 is the greatest. As pai0 ≤ ai0+1 + p ≤ ai0 + p, we
get ai0 ≤ p

p−1 < 2. Combining −ai − 1 ≤ ri and ri < ai, we get ai ≥ 0. Hence

ai = 0, ri = −1, or ai = 1, −2 ≤ ri ≤ 0

for every i.
In the case a2 = 0, we have r2 = −1. Comparing t1 + pa1 + a2 > e with

r2 + t1 + pa1 ≤ p− 1, we get e < p. When e = p− 1, we have r2 = −a2. This is a
contradiction.

In the case a2 = 1. As 0 ≤ ti+ pai− ai+1 ≤ p− 1 for 2 ≤ i ≤ n, we have ai = 1
for all i and ti = 0 for 2 ≤ i ≤ n. As r2 + pa1 + t1 ≤ p − 1, we have r2 ≤ −1. As
pr2 + t2 − a3 = r3 + s2 − pa2, we have r3 = pr2 + p− 1− e ≤ −e− 1 ≤ −3. This is
a contradiction.

Thus we may assume t1+pa1+a2 ≤ e. We put M3,F =

((
u−ai 0
0 uai

))
i

·M0,F,

then

M3,F ∼

(
α1

(
0 us1−pa1−a2

ut1+pa1+a2 0

)
, α2

(
us2−pa2+a3 0

0 ut2+pa2−a3

)
,

. . . , αn

(
usn−pan+a1 0

0 utn+pan−a1

))

and M1,F =

((
1 viu

−ai

0 1

))
i

· M3,F. Note that M3,F satisfies the conditions of

Lemma 2.3, and let x3 be the point of G Rv
VF,0

corresponding to M3,F. If we put

Ni =

(
0 viu

−ai

0 0

)
, then

ϕ(N1)

(
0 us1−pa1−a2

ut1+pa1+a2 0

)
N2 =

(
0 ϕ(v1)v2u

t1

0 0

)
,

ϕ(Ni)

(
usi−pai+ai+1 0

0 uti+pai−ai+1

)
Ni+1 = 0

for 2 ≤ i ≤ n. Here we have vu
(
ϕ(v1)v2u

t1
)
≥ 0, because s1 − pa1 − a2 ≥ 0

and vu
(
us1−pa1−a2 − ϕ(v1)v2u

t1
)
≥ 0. Hence x1 and x3 lie on the same connected

component by Lemma 2.4.
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We are going to compare M0,F and M3,F. Recall the previous operations on the
basis of M0,F that changed (ti)1≤i≤n so that |si − ti| ≤ p + 1 keeping 0 ≤ ti ≤ e
for all i. Apply the same operations to the basis of M3,F. By Lemma 2.5, these
operations do not affect which of the connected components x3 lies on. So we may
assume that

s1 − pa1 − a2, s2 − pa2 + a3, . . . , sn − pan + a1

are all in
[
(e− p− 1)/2, (e+ p+ 1)/2

]
. As (e− p− 1)/2 ≤ si ≤ (e+ p+ 1)/2, we

have that

|pa1 + a2| ≤ p+ 1, |pa2 − a3| ≤ p+ 1, . . . , |pan − a1| ≤ p+ 1.

Summing up the above inequalities after multiplying some p-powers so that we can
eliminate aj for j ̸= i, we get |(pn + 1)ai| ≤

{
(pn − 1)/(p− 1)

}
(p+ 1). So we have

|ai| ≤ 1 for all i.
In the case e ≥ p. We consider the operations that decrease |ai| by 1 for an

index i keeping the condition of ϕ-stability. By Lemma 2.5, these operations do
not affect which of the connected components x3 lies on. We prove that we can
continue the operations until we have ai = 0 for all i, that is, x0 and x3 lie on the
same connected component. Suppose that we cannot continue the operations and
there is some nonzero ai. The condition of ϕ-stability is equivalent to

C1 : 0 ≤ s1 − pa1 − a2 ≤ e, C2 : 0 ≤ s2 − pa2 + a3 ≤ e,

. . . , Cn : 0 ≤ sn − pan + a1 ≤ e.

Note that if ai ̸= 0 or ai+1 ̸= 0, we can decrease |ai| or |ai+1| keeping Ci.
We put

ci = ♯
{
i ≤ j ≤ i+ 1

∣∣ we can decrease |aj | keeping Ci
}
,

and claim that ♯{j | aj ̸= 0} =
∑n
i=1 ci. First, if ai ̸= 0, we have ci−1 ≥ 1 and ci ≥ 1

from the above remark. So we have ♯{j | aj ̸= 0} ≤
∑n
i=1 ci. Second, we count

ai ̸= 0 in not both of Ci−1 and Ci, because we cannot continue the operations. So
we have ♯{j | aj ̸= 0} ≥

∑n
i=1 ci. Hence we have equality. From this equality, we

have ai ̸= 0 and ci = 1 for all i. For 2 ≤ i ≤ n, we have ai = ai+1 ̸= 0 because
ci = 1. So we have a1 = a2 ̸= 0, but this contradicts c1 = 1.

In the case e = p−1. We have |pa1+a2| ≤ p−1 by C1, and |pai−ai+1| ≤ p−1
by Ci for 2 ≤ i ≤ n. Summing up these inequalities after multiplying some p-powers
so that we can eliminate aj for j ̸= i, we get |(pn + 1)ai| ≤ pn − 1. So we have
ai = 0 for all i.

Hence x0 and x3 lie on the same connected component. This completes the
proof.

2.3 Application

As an application of Theorem 2.6, we can improve a theorem in [Kis] comparing
a deformation ring and a Hecke ring. We recall some notation from [Kis], and the
interested reader should consult [Kis] for more detailed definitions.
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Let F be a totally real field, and D be a totally definite quaternion algebra with
center F . Let Σ be the set of finite primes where D is ramified. We assume that Σ
does not contain any primes dividing p. We put Σp = Σ∪{p}p|p, and fix a maximal

order OD of D. Let U =
∏
v Uv ⊂ (D ⊗F AfF )× be a compact open subgroup

contained in
∏
v(OD)

×
v , and we assume that Uv = (OD)

×
v for all v ∈ Σp. Let O be

the ring of integers of a p-adic field. We fix a continuous character ψ : (AfF )×/F× →
O× such that ψ is trivial on Uv∩O×

Fv
for any finite place v of F . Let S be a finite set

of primes containing the infinite primes, Σp, and the finite primes v of F such that
Uv ⊂ D×

v is not maximal compact. We fix a decomposition group GFv ⊂ GF,S for
each v ∈ S. Let T′

ψ,O(U) (resp. Tψ,O(U)) denote the image of Tuniv
S,O (resp. Tuniv

Sp,O)
in the endomorphism ring of S2,ψ(U,O). Let m be a maximal ideal of Tψ,O(U)
that induces a non-Eisenstein maximal ideal of Tuniv

Sp,O, and put m′ = m ∩ T′
ψ,O(U).

Then there exists a continuous representation ρm′ : GF,S → GL2(T′
ψ,O(U)m′) such

that the characteristic polynomial of ρm′(Frobv) is X
2 − TvX +N(v)Sv for v /∈ S.

Here N(v) denotes the order of the residue field at v. Let F be the residue field
of T′

ψ,O(U)m′ . Let ρ̄m′ : GF,S → GL2(F) denote the representation obtained by
reducing ρm′ modulo m′.

Now we suppose that ρ̄m′ satisfies the following conditions.

1. ρ̄m′ is unramified outside the primes of F dividing p.

2. The restriction of ρ̄m′ to GF (ζp) is absolutely irreducible.

3. If p = 5, and ρ̄m′ has projective image isomorphic to PGL2(F5), then the
kernel of proj ρ̄m′ does not fix F (ζ5).

4. For each finite prime v ∈ S \ Σp, we have(
1−N(v)

)((
1 +N(v)

)2
det ρ̄m′(Frobv)−

(
N(v)

)(
tr ρ̄m′(Frobv)

)2) ∈ F×.

Let RF,S (resp. R�
F,S) be the universal deformation O-algebra (resp. the universal

framed deformation O-algebra) of ρ̄m′ , and put T� = R�
F,S ⊗RF,S Tψ,O(U)m. We

take a subset σ′ of the set of primes of F dividing p, and an unramified character χp

of GFp
for each p ∈ σ′, such that m is σ-ordinary when we put σ = (σ′, {χp}p∈σ′).

Now we can define a deformation ring R̃σ,ψF,S and a map R̃σ,ψF,S → T� as in (3.4) of
[Kis].

Theorem 2.7. With the above notation and the assumptions, R̃σ,ψF,S → T� is an
isomorphism up to p-power torsion kernel.

Proof. Applying the Theorem 2.6, the proof goes on as in the proof of [Kis, Theorem
3.4.11].

3 Dimension

3.1 Preliminaries

The moduli space G RVF,0 is described via the Kisin modules as in the following.
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Proposition 3.1. For any F-algebra A, the elements of G RVF,0(A) naturally cor-
respond to finite projective (k[[u]] ⊗Fp A)-submodules MA ⊂ MF ⊗F A that satisfy
the followings:

1. MA generate MF ⊗F A over
(
k((u))⊗Fp A

)
.

2. ueMA ⊂ (1⊗ ϕ)
(
ϕ∗(MA)

)
⊂ MA.

Proof. This follows from the construction of G RVF,0 in [Kis, Corollary 2.1.13].

By Proposition 3.1, we often identify a point of G RVF,0(F′) with the correspond-
ing finite free (k[[u]]⊗Fp F′)-module.

From now on, in this section, we assume Fq2 ⊂ F and fix an embedding k ↪→ F.
This assumption does not matter, because we may extend F to prove the main
theorem of this section. We consider the isomorphism

OE ⊗Zp F ∼= k((u))⊗Fp F ∼→
∏

σ∈Gal(k/Fp)

F((u)) ;
(∑

aiu
i
)
⊗ b 7→

(∑
σ(ai)bu

i
)
σ

and let ϵσ ∈ k((u)) ⊗Fp F be the primitive idempotent corresponding to σ. Take
σ1, · · · , σn ∈ Gal(k/Fp) such that σi+1 = σi ◦ ϕ−1. Here we regard ϕ as the p-th
power Frobenius, and use the convention that σn+i = σi. In the following, we often
use such conventions. Then we have ϕ(ϵσi) = ϵσi+1 and ϕ : MF → MF determines

ϕ : ϵσiMF → ϵσi+1MF. For (Ai)1≤i≤n ∈ GL2

(
F((u))

)n
, we write

MF ∼ (A1, A2, . . . , An) = (Ai)i

if there is a basis {ei1, ei2} of ϵσiMF over F((u)) such that ϕ

(
ei1
ei2

)
= Ai

(
ei+1
1

ei+1
2

)
.

We use the same notation for any sublattice MF ⊂ MF similarly. Here and in the
following, we consider only sublattices that are (S⊗Zp F)-modules.

Let A be an F-algebra, and MA be a finite free (k[[u]] ⊗Fp A)-submodules of
MF ⊗F A that generate MF ⊗F A over k((u))⊗Fp A. We choose a basis {ei1, ei2}i of
MA over k[[u]]⊗Fp A. For B = (Bi)1≤i≤n ∈ GL2

(
F((u))⊗Fp A

)n
, the (S⊗Zp A)-

module generated by the entries of

⟨
Bi

(
ei1
ei2

)⟩
for 1 ≤ i ≤ n with the basis given

by these entries is denoted by B · MA. Note that B · MA depends on the choice
of the basis of MA. We can see that if MF ∼ (Ai)i for (Ai)1≤i≤n ∈ GL2

(
F((u))

)n
with respect to a given basis, then we have

B ·MF ∼
(
ϕ(Bi)Ai(Bi+1)

−1
)
i

with respect to the induced basis.

Lemma 3.2. Suppose F′ is a finite extension of F, and x ∈ G RVF,0(F′) corresponds

to MF′ . Put Mj,F′ =

((
usj,i vj,i
0 utj,i

))
i

·MF′ for 1 ≤ j ≤ 2, sj,i, tj,i ∈ Z and vj,i ∈
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F′((u)). Assume M1,F′ and M2,F′ correspond to x1, x2 ∈ G RVF,0(F′) respectively.
Then x1 = x2 if and only if

s1,i = s2,i, t1,i = t2,i and v1,i − v2,i ∈ ut1,iF′[[u]] for all i.

Proof. The equality x1 = x2 is equivalent to the existence of B = (Bi)1≤i≤n ∈
GL2(F′[[u]])n such that

Bi

(
us1,i v1,i
0 ut1,i

)
=

(
us2,i v2,i
0 ut2,i

)
for all i. It is further equivalent to the condition that(

us2,i−s1,i v2,iu
−t1,i − us2,i−s1,i−t1,iv1,i

0 ut2,i−t1,i

)
∈ GL2(F′[[u]])

for all i. The last condition is equivalent to the desired condition.

Proposition 3.3. If MF ∼

((
ue u
0 1

))
i

, then G RVF,0(F′) is one point for any

finite extension F′ of F.

Proof. Let M0,F be the lattice of MF generated by the basis giving

MF ∼

((
ue u
0 1

))
i

,

and let M0,F′ = M0,F ⊗F F′ for finite extensions F′ of F. Then M0,F′ gives a point
of G RVF,0(F′). By the Iwasawa decomposition, any point MF′ of G RVF,0(F′) is

written as

((
u−si vi
0 uti

))
i

·M0,F′ for si, ti ∈ Z and vi ∈ F((u)). Then we have

MF′ ∼

((
u−psi ϕ(vi)
0 upti

)(
ue u
0 1

)(
usi+1 −vi+1u

si+1−ti+1

0 u−ti+1

))
i

=

((
ue−psi+si+1 u1−psi−ti+1 + ϕ(vi)u

−ti+1 − vi+1u
e−psi+si+1−ti+1

0 upti−ti+1

))
i

with respect to the basis induced from the given basis of M0,F′ . We put ri =
−vu(vi).

By ueMF′ ⊂ (1⊗ϕ)
(
ϕ∗(MF′)

)
⊂ MF′ , we have e−psi+si+1 ≤ e and pti−ti+1 ≥

0 for all i, so we get si, ti ≥ 0 for all i.
We are going to show that 1−psi− ti+1 ≥ 0 for all i. We assume that 1−psi0 −

ti0+1 < 0 for some i0. Then vu(vi0+1u
e−psi0+si0+1−ti0+1) ≤ 1−psi0 − ti0+1, because

ϕ(vi0)u
−ti0+1 has no term of degree 1 − psi0 − ti0+1. So we get ri0+1 − si0+1 ≥

e − 1 ≥ 0. Take an index i1 such that ri1 − si1 is the maximum. We note that
ri1 − si1 ≥ 0. Then we have vu

(
ϕ(vi1)u

−ti1+1
)
= vu(vi1+1u

e−psi1+si1+1−ti1+1),
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because vu
(
ϕ(vi1)u

−ti1+1
)
≤ −psi1−ti1+1. So we get ri1+1−si1+1 = p(ri1−si1)+e >

ri1 − si1 . This is a contradiction. Thus we have proved that 1− psi − ti+1 ≥ 0 for
all i, and this is equivalent to that si = 0 and 0 ≤ ti ≤ 1 for all i.

We assume ti = 1 for some i. Then we have ti = 1 for all i, because pti−1−ti ≥ 0
for all i. We show that ri ≤ −1 for all i. We take an index i2 such that ri2 is the
maximum, and assume that ri2 ≥ 0. Then we have ri2+1 = pri2 + e > ri2 , because
vu
(
1 + ϕ(vi2)u

−1 − vi2+1u
e−1
)
≥ 0. This is a contradiction. So we have ri ≤ −1

for all i. Then we may assume vi = 0 for all i by Lemma 3.2. Now we have

MF′ ∼

((
ue 1
0 up−1

))
i

, but this contradicts ueMF′ ⊂ (1⊗ ϕ)
(
ϕ∗(MF′)

)
.

Thus we have proved si = ti = 0 for all i. Then we have ri ≤ 0, because
vu(u+ ϕ(vi)− vi+1u

e) ≥ 0. So we may assume vi = 0 for all i by Lemma 3.2, and
we have MF′ = M0,F′ . This shows that G RVF,0(F′) is one point.

3.2 The case where VF is not absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli spaces in
the case where VF is not absolutely irreducible. We put dVF = dimG RVF,0. In the
proof of the following Proposition, three Lemmas appear.

Proposition 3.4. We assume VF is not absolutely irreducible, and write e = (p+
1)e0 + e1 for e0 ∈ Z and 0 ≤ e1 ≤ p. Then the followings are true.

1. There are mi ∈ Z for 0 ≤ i ≤ dVF such that mi ≥ 0, mdVF
> 0 and

|G RVF,0(F′)| =
dVF∑
i=0

mi|F′|i

for all sufficiently large extensions F′ of F.

2. (a) In the case 0 ≤ e1 ≤ p− 2, we have dVF ≤ ne0. In this case, if

MF ∼

((
ue0 0
0 upe0

))
i

,

then dVF = ne0.

(b) In the case e1 = p− 1, we have dVF ≤ ne0 + 1. In this case, if

MF ∼

((
ue0 0
0 upe0+p−1

))
i

,

then dVF = ne0 + 1.

(c) In the case e1 = p, we have dVF ≤ ne0 +max
{
[n/2], 1

}
. In this case, if

n = 1 and

MF ∼
(
ue0 0
0 upe0+p−1

)
,
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then dVF = e0 + 1, and if n ≥ 2 and

MF ∼

((
ue0,i 0
0 up(2e0+1−e0,i)

))
i

,

then dVF = ne0 + [n/2]. Here, e0,i = e0 if i is odd, and e0,i = e0 + 1 if i
is even.

Proof. Extending the field F, we may assume that VF is reducible. Let M0,F be
a lattice of MF corresponding to a point of G RVF,0(F). Then we take and fix

a basis of M0,F over k[[u]] ⊗Fp F such that M0,F ∼

((
αiu

a0,i w0,i

0 βiu
b0,i

))
i

for

αi, βi ∈ F×, 0 ≤ a0,i, b0,i ≤ e and w0,i ∈ F[[u]]. For any finite extension F′ of F,
we put M0,F′ = M0,F ⊗F F′ and MF′ = MF ⊗F F′. By the Iwasawa decomposition,

any sublattice of MF′ can be written as

((
usi v′i
0 uti

))
i

· M0,F′ for si, ti ∈ Z and

v′i ∈ F′((u)).
We put

I =
{
(a, b) ∈ Zn × Zn

∣∣ a = (ai)1≤i≤n, b = (bi)1≤i≤n, 0 ≤ ai, bi ≤ e
}
,

and

G RVF,0,a,b(F′) =

{((
usi v′i
0 uti

))
i

·M0,F′ ∈ G RVF,0(F′)

∣∣∣∣∣ si, ti ∈ Z, v′i ∈ F′((u)),

ai = a0,i + psi − si+1, bi = b0,i + pti − ti+1

}

for (a, b) =
(
(ai)1≤i≤n, (bi)1≤i≤n

)
∈ I. Then we have

G RVF,0(F′) =
∪

(a,b)∈I

G RVF,0,a,b(F′),

and this is a disjoint union by Lemma 3.2.

TakeMF′ =

((
usi v′i
0 uti

))
i

·M0,F′ ∈ G RVF,0,a,b(F′) with the basis induced from

the basis of M0,F′ , then MF′ ∼

((
αiu

ai wi
0 βiu

bi

))
i

for some (wi)1≤i≤n ∈ F′[[u]]n.

We note that ai+bi−vu(wi) ≤ e for all i by the condition ueMF′ ⊂ (1⊗ϕ)
(
ϕ∗(MF′)

)
.

Now, any M′
F′ ∈ G RVF,0,a,b(F′) can be written as

((
1 vi
0 1

))
i

·MF′ for some
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(vi)1≤i≤n ∈ F′((u))n. With the basis induced from MF′ , we have

M′
F′ ∼

((
1 ϕ(vi)
0 1

)(
αiu

ai wi
0 βiu

bi

)(
1 −vi+1

0 1

))
i

=

((
αiu

ai wi − αiu
aivi+1 + βiu

biϕ(vi)
0 βiu

bi

))
i

.

We are going to examine the condition for (vi)1≤i≤n ∈ F′((u))n to give a point of

G RVF,0,a,b(F′) as

((
1 vi
0 1

))
i

·MF′ . Extending the field F, we may assume that

G RVF,0,a,b(F) = ∅ if and only if G RVF,0,a,b(F′) = ∅ for each (a, b) ∈ I and any finite
extension F′ of F.

For (vi)1≤i≤n ∈ F′((u))n, we have M′
F′ =

((
1 vi
0 1

))
i

·MF′ ∈ G RVF,0,a,b(F′) if

and only if

vu
(
wi − αiu

aivi+1 + βiu
biϕ(vi)

)
≥ 0 and

vu(αiu
ai) + vu(βiu

bi)− vu
(
wi − αiu

aivi+1 + βiu
biϕ(vi)

)
≤ e for all i,

by the condition ueM′
F′ ⊂ (1⊗ ϕ)

(
ϕ∗(M′

F′)
)
⊂ M′

F′ . This is further equivalent to

vu
(
αiu

aivi+1 − βiu
biϕ(vi)

)
≥ max{0, ai + bi − e},

because vu(wi) ≥ max{0, ai + bi − e}. We put ri = −vu(vi), and note that

vu(αi−1u
ai−1vi) ≥ max{0, ai−1 + bi−1 − e} ⇔ ri ≤ min{ai−1, e− bi−1},

vu
(
βiu

biϕ(vi)
)
≥ max{0, ai + bi − e} ⇔ ri ≤ min

{
e− ai
p

,
bi
p

}
.

We define an F′-vector space Ña,b,F′ by

Ña,b,F′ =
{
(v1, . . . , vn) ∈ F′((u))n

∣∣
vu
(
αiu

aivi+1 − βiu
biϕ(vi)

)
≥ max{0, ai + bi − e} for all i

}
.

We note that Ña,b,F′ ⊃ F′[[u]]n, and put Na,b,F′ = Ña,b,F′
/
F′[[u]]n. Then we have a

bijection Na,b,F′ → G RVF,0,a,b(F′) by Lemma 3.2. We put da,b = dimF′ Na,b,F′ , and
note that dimF′ Na,b,F′ is independent of finite extensions F′ of F.

We take a basis (vj)1≤j≤da,b
of Na,b,F over F, where vj = (vj,1, . . . , vj,n) ∈

F((u))n. Then, by Proposition 3.1, an (F[[u]]⊗F F[X1, . . . , Xda,b
])-module

M′
F[X1,...,Xda,b

] =

((
1
∑
j vj,iXj

0 1

))
i

· (MF ⊗F F[X1, . . . , Xda,b
])
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gives a morphism fa,b : A
da,b

F → G RVF,0 such that fa,b(F′) is injective and the image
of fa,b(F′) is G RVF,0,a,b(F′). Then we have (1) and

dVF = max
(a,b)∈I, G RVF,0,a,b(F)̸=∅

{da,b}.

Before going into a proof of (2), we will examine da,b to evaluate dVF . We put

Sa,b,i =

{
(0, . . . , 0, vi, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

1 ≤ ri ≤ min

{
ai−1, e− bi−1,

e− ai
p

,
bi
p

}}

for 1 ≤ i ≤ n,

Sa,b,i,j =

{
(0, . . . , 0, vi, vi+1, . . . , vi+j , 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

1 ≤ ri ≤ min{ai−1, e− bi−1}, αi+luai+lvi+l+1 = βi+lu
bi+lϕ(vi+l)

and −vu(vi+l+1) > min{ai+l, e− bi+l} for 0 ≤ l ≤ j − 1,

− vu(vi+j) ≤ min

{
e− ai+j

p
,
bi+j
p

}}

for 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1, and

Sa,b =
{
(v1, . . . , vn) ∈ F((u))n

∣∣∣ αiuaivi+1 = βiu
biϕ(vi), v1 = uvu(v1)

and −vu(vi+1) > min{ai, e− bi} for all i
}
.

In the above definitions, vi is on the i-th component. Clearly, all elements of∪
i Sa,b,i ∪

∪
i,j Sa,b,i,j ∪ Sa,b are in Ña,b,F.

Lemma 3.5. The image of
∪
i Sa,b,i ∪

∪
i,j Sa,b,i,j ∪Sa,b in Na,b,F forms an F-basis

of Na,b,F.

Proof. It is clear that the image of
∪
i Sa,b,i ∪

∪
i,j Sa,b,i,j ∪ Sa,b in Na,b,F are lin-

early independent over F. So it suffices to show that
∪
i Sa,b,i ∪

∪
i,j Sa,b,i,j ∪ Sa,b

and F[[u]]n generates Ña,b,F. We take (v1, . . . , vn) ∈ Ña,b,F. We want to write
(v1, . . . , vn) as a linear combination of elements of

∪
i Sa,b,i ∪

∪
i,j Sa,b,i,j ∪Sa,b and

F[[u]]n.
First, we consider the case where there exsits an index i0 such that −vu(vi0) >

min{ai0−1, e− bi0−1, (e− ai0)/p, bi0/p}. Then there are following two cases:

(i) There are 1 ≤ i1 ≤ n and 1 ≤ j1 ≤ n− 1 such that
i0 ∈ [i1, i1 + j1], 1 ≤ −vu(vi1) ≤ min{ai1−1, e− bi1−1},
ai1+l + vu(vi1+l+1) = bi1+l + pvu(vi1+l)
and −vu(vi1+l+1) > min{ai+l, e− bi+l} for 0 ≤ l ≤ j1 − 1
and −vu(vi1+j1) ≤ min{(e− ai1+j1)/p, (bi1+j1)/p}.
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(ii) ai + vu(vi+1) = bi + pvu(vi) and −vu(vi+1) > min{ai, e− bi} for all i.

In the case (i), we can subtract a linear multiple of an element of Sa,b,i1,j1 from
(v1, . . . , vn) so that the u-valuations of the i-th component increase for all i ∈
[i1, i1 + j1]. In the case (ii), we can subtract a linear multiple of an element of Sa,b
from (v1, . . . , vn) so that the u-valuations of the i-th component increase for all i.

Repeating such subtractions, we may assume that −vu(vi) ≤ min{ai−1, e −
bi−1, (e−ai)/p, bi/p} for all i. Then we can write (v1, . . . , vn) as a linear combination
of elements of

∪
i Sa,b,i and F[[u]]n.

By Lemma 3.5, we have da,b =
∑
i |Sa,b,i|+

∑
i,j |Sa,b,i,j |+ |Sa,b|. We note that

0 ≤ |Sa,b| ≤ 1 by the definition, and put d′a,b =
∑
i |Sa,b,i|+

∑
i,j |Sa,b,i,j |.

We put

Ta,b,i =

{
m ∈ Z

∣∣∣∣∣ min{ai−1, e− bi−1} < pm+ ai−1 − bi−1 ≤ min

{
e− ai
p

,
bi
p

}}
,

and consider the map∪
i+j=h

Sa,b,i,j → Ta,b,h; (vi′)1≤i′≤n 7→ −vu(vh−1).

We can easily check that this map is injective. So we have
∑
i+j=h |Sa,b,i,j | ≤ |Ta,b,h|

and d′a,b ≤
∑

1≤i≤n
(
|Sa,b,i|+ |Ta,b,i|

)
.

We take (a′, b′) ∈ I such that
∑

1≤i≤n
(
|Sa′,b′,i|+ |Ta′,b′,i|

)
is the maximum.

Lemma 3.6. |Ta′,b′,i| ≤ 1 for all i.

Proof. We assume there is an index i0 such that |Ta′,b′,i0 | ≥ 2. We note that

min{a′i0−1, e− b′i0−1}+ p+ 1 ≤ min

{
e− a′i0
p

,
b′i0
p

}
(∗)

by |Ta′,b′,i0 | ≥ 2. We are going to show that we can replace a′i0−1, b
′
i0−1 so

that
∑

1≤i≤n
(
|Sa′,b′,i| + |Ta′,b′,i|

)
increases. This contradicts the maximality of∑

1≤i≤n
(
|Sa′,b′,i|+ |Ta′,b′,i|

)
. We divide the problem into three cases.

Firstly, if a′i0−1 + 2 ≤ e − b′i0−1, we replace a′i0−1 by a′i0−1 + p, and note that
a′i0−1 + p ≤ e by (∗). Then there is no change except for Sa′,b′,i0−1, Sa′,b′,i0 ,
Ta′,b′,i0−1 and Ta′,b′,i0 . We can see that |Sa′,b′,i0 | increases by at least 2. The
condition that there exists m ∈ Z such that

min{a′i0−1, e− b′i0−1} < pm+ a′i0−1 − b′i0−1 ≤ min{a′i0−1 + p, e− b′i0−1},

is equivalent to the condition that there exists m ∈ Z such that

min

{
e− a′i0−1

p
,
b′i0−1

p

}
< m ≤ min

{
e− a′i0−1

p
,
b′i0−1

p
+ 1

}
,
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and further equivalent to the condition that there does not exists m ∈ Z such that

min

{
e− a′i0−1

p
− 1,

b′i0−1

p

}
< m ≤ min

{
e− a′i0−1

p
,
b′i0−1

p

}
.

If the above condition is satisfied, then |Sa′,b′,i0−1|, |Ta′,b′,i0−1| do not change and
|Ta′,b′,i0 | decreases by 1. Otherwise, |Sa′,b′,i0−1|+ |Ta′,b′,i0−1| decreases by at most
1 and |Ta′,b′,i0 | does not change. In both cases, we have that

∑
1≤i≤n

(
|Sa′,b′,i| +

|Ta′,b′,i|
)
increases by at least 1.

Secondly, if a′i0−1 ≥ e− b′i0−1 + 2, we replace b′i0−1 by b′i0−1 − p. Then, by the

same arguments, we have that
∑

1≤i≤n
(
|Sa′,b′,i|+ |Ta′,b′,i|

)
increases by at least 1.

In the remaining case, that is the case where a′i0−1 − 1 ≤ e− b′i0−1 ≤ a′i0−1 + 1,
we replace a′i0−1, b

′
i0−1 by a′i0−1+p, b

′
i0−1−p respectively, and note that a′i0−1+p ≤

e and b′i0−1 − p ≥ 0 by (∗). Then there is no change except for Sa′,b′,i0−1,
Sa′,b′,i0 , Ta′,b′,i0−1 and Ta′,b′,i0 . We can see that |Sa′,b′,i0−1| + |Ta′,b′,i0−1| de-
creases by at most 1, |Sa′,b′,i0 | increases by p and |Ta′,b′,i0 | decreases by 1. Hence∑

1≤i≤n
(
|Sa′,b′,i|+ |Ta′,b′,i|

)
increases by at least p− 2 > 0.

Thus we have proved that |Ta′,b′,i| ≤ 1 for all i.

Lemma 3.7. For all i, we have the followings:

(Ai) If |Sa′,b′,i|+ |Ta′,b′,i| = e0 + l for l ≥ 1,
then |Sa′,b′,i+1|+ |Ta′,b′,i+1| ≤ e0 + e1 − pl + 1.

(Bi) If |Sa′,b′,i|+ |Ta′,b′,i| = e0 + 1
and |Sa′,b′,i+1|+ |Ta′,b′,i+1| = e0 + e1 − p+ 1,
then |Sa′,b′,i+2|+ |Ta′,b′,i+2| ≤ e0 − (p− 1)e1 + 1.

Proof. By the definition of Ta,b,i, we have

|Ta,b,i| ≤ max

{
min

{
e− ai
p

,
bi
p

}
−min{ai−1, e− bi−1}, 0

}
.

Combining this with the definition of Sa,b,i, we get

|Sa,b,i|+ |Ta,b,i| ≤ min

{[
e− ai
p

]
,

[
bi
p

]}
, (⋆)

and equality happens if and only if in the following two cases:

• min

{[
e−ai
p

]
,
[
bi
p

]}
−min{ai−1, e− bi−1} ≤ 0.

• min

{[
e−ai
p

]
,
[
bi
p

]}
−min{ai−1, e− bi−1} = 1

and p |
(
min{e− ai−1, bi−1}+ 1

)
.
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We assume |Sa′,b′,i1 | + |Ta′,b′,i1 | = e0 + l for some i1 and l ≥ 1. Then we have
p(e0 + l) ≤ min{e− a′i1 , b

′
i1
} by (⋆). By this inequality, we have

|Sa′,b′,i1+1| ≤ min{a′i1 , e− b′i1} ≤ max{a′i1 , e− b′i1}
= e−min{e− a′i1 , b

′
i1} ≤ e− p(e0 + l) = e0 + e1 − pl.

Combining this with |Ta′,b′,i1+1| ≤ 1, we get

|Sa′,b′,i1+1|+ |Ta′,b′,i1+1| ≤ e0 + e1 − pl + 1.

This shows (Ai) for all i.
Further, we examine the case where equality holds in the above inequality,

assuming l = 1. In this case, we have that min{a′i1 , e− b′i1} = e0 + e1 − p, min{e−
a′i1 , b

′
i1
} = p(e0+1) and |Ta′,b′,i1+1| = 1. Let m be the unique element of Ta′,b′,i1+1.

Then, by the definition of Ta′,b′,i1+1, we have

min

{
e− a′i1+1

p
,
b′i1+1

p

}
−min{a′i1 , e− b′i1} ≥ pm−min{e− a′i1 , b

′
i1} ≥ p,

because min{e − a′i1 , b
′
i1
} = p(e0 + 1) and pm −min{e − a′i1 , b

′
i1
} > 0. Combining

this with min{a′i1 , e− b′i1} = e0 + e1 − p, we get p(e0 + e1) ≤ min{e− a′i1+1, b
′
i1+1}.

By the previous argument, we have

|Sa′,b′,i1+2|+ |Ta′,b′,i1+2| ≤ e0 − (p− 1)e1 + 1.

Thus we have proved (Bi) for all i.

We are going to show (2). Firstly, we treat (a). We note that e0 + e1 − pl+1 ≤
e0 − p(l − 1) − 2 in the case where 0 ≤ e1 ≤ p − 3, and that e0 + e1 − pl + 1 ≤
e0 − p(l− 1)− 1 and e0 − (p− 1)e1 +1 ≤ e0 − 1 in the case where e1 = p− 2. Then
(Ai) and (Bi) for all i implies that

∑
1≤i≤n

(
|Sa′,b′,i| + |Ta′,b′,i|

)
≤ ne0. It further

implies that

d′a,b ≤
∑

1≤i≤n

(
|Sa,b,i|+ |Ta,b,i|

)
≤ ne0

for all (a, b) ∈ I, and that d′a,b = ne0 only if |Sa,b,i|+ |Ta,b,i| = e0 for all i. To prove

da,b ≤ ne0, it suffice to show that d′a,b = ne0 implies Sa,b = ∅, because |Sa,b| ≤ 1

for all (a, b) ∈ I.
We assume that d′a,b = ne0 and Sa,b ̸= ∅. By the maximality of

∑
1≤i≤n

(
|Sa,b,i|+

|Ta,b,i|
)
, we have |Ta,b,i| ≤ 1 for all i. Let (v0,i)1≤i≤n be the unique element of Sa,b,

and we put r0,i = −vu(v0,i). Then we have

ai − r0,i+1 = bi − pr0,i < max{0, ai + bi − e}

for all i, by the definition of Sa,b. By (⋆) and e0 − 1 ≤ |Sa,b,i| for all i, we have

e0 − 1 ≤ ai ≤ e0 + e1, pe0 ≤ bi ≤ pe0 + e1 + 1
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for all i. Take an index i2 such that r0,i2 is the maximum. Then we have

(p− 1)r0,i2 ≤ pr0,i2 − r0,i2+1 = bi2 − ai2 ≤ (pe0 + e1 + 1)− (e0 − 1)

= (p− 1)e0 + e1 + 2 ≤ (p− 1)e0 + p.

So we get r0,i ≤ e0 + 1 for all i.
If ai + bi − e ≤ 0, we have r0,i ≥ e0 + 1 by bi − pr0,i < 0 and pe0 ≤ bi. If

ai + bi − e > 0, we have r0,i ≥ e0 + 1 by bi − pr0,i < ai + bi − e and ai ≤ e0 + e1.
So we have r0,i = e0 + 1 for all i.

By ai − r0,i+1 = bi − pr0,i, we have (p − 1)(e0 + 1) = bi − ai for all i. By the
range of ai and bi, we have the following two possibilities for each i:

(ai, bi) = (e0 − 1, pe0 + p− 2) or (e0, pe0 + p− 1).

In both cases, we have |Sa,b,i+1| = e0 − 1.
Now we must have equality in (⋆). So we must have p | (min{e−ai−1, bi−1}+1),

noting that |Ta,b,i| = 1. This contradicts the possibilities of ai−1, bi−1. Thus we
have proved dVF ≤ ne0.

For a = (e0)1≤i≤n and b = (pe0)1≤i≤n, we have da,b ≥
∑

1≤i≤n |Sa,b,i| = ne0.
This shows that dVF = ne0, if

MF ∼

((
ue0 0
0 upe0

))
i

.

Secondly, we treat (b). In this case, we note that e0+ e1− pl+1 = e0− p(l− 1)
and e0 − (p − 1)e1 + 1 ≤ e0 − 3. Then (Ai) and (Bi) for all i implies d′a,b ≤ ne0,

and further implies da,b ≤ ne0 + 1, because |Sa,b| ≤ 1. Thus we have proved
dVF ≤ ne0 + 1.

For a = (e0)1≤i≤n and b = (pe0 + p− 1)1≤i≤n, we have da,b ≥
∑

1≤i≤n |Sa,b,i|+
|Sa,b| = ne0 + 1, because (u−(e0+1))1≤i≤n ∈ Sa,b. This shows that dVF = ne0 + 1, if

MF ∼

((
ue0 0
0 upe0+p−1

))
i

.

At last, we treat (c). In this case, we note that e0+e1−pl+1 = e0−p(l−1)+1
and e0−(p−1)e1+1 ≤ e0−5. Then (Ai) and (Bi) for all i implies d′a,b ≤ ne0+[n/2],

and that d′a,b = ne0 + [n/2] only if e0 ≤ |Sa,b,i|+ |Ta,b,i| ≤ e0 + 1 for all i.

If n = 1, then d′a,b ≤ e0 implies da,b ≤ e0 + 1, and the given example for

dVF = e0 + 1 is the same as in (b). So we may assume n ≥ 2 in the following.
To prove da,b ≤ ne0 + [n/2], it suffices to show that d′a,b = ne0 + [n/2] implies

Sa,b = ∅, because |Sa,b| ≤ 1 for all (a, b) ∈ I.
We assume that d′a,b = ne0 + [n/2] and Sa,b ̸= ∅. By the maximality of∑

1≤i≤n
(
|Sa,b,i| + |Ta,b,i|

)
, we have |Ta,b,i| ≤ 1 for all i. Let (v1,i)1≤i≤n be the

unique element of Sa,b, and we put r1,i = −vu(v1,i). Then we have

ai − r1,i+1 = bi − pr1,i < max{0, ai + bi − e}
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for all i by the definition of Sa,b. By (⋆) and e0 − 1 ≤ |Sa,b,i|, we have

e0 − 1 ≤ ai ≤ e0 + p, pe0 ≤ bi ≤ pe0 + p+ 1

for all i. Take an index i3 such that r1,i3 is the maximum. Then we have

(p− 1)r1,i3 ≤ pr1,i3 − r1,i3+1 = bi3 − ai3

≤ (pe0 + p+ 1)− (e0 − 1) = (p− 1)e0 + p+ 2.

So we get r1,i ≤ e0 + 2 for all i.
If ai + bi − e ≤ 0, we have r1,i ≥ e0 + 1 by bi − pr1,i < 0 and pe0 ≤ bi. If

ai + bi − e > 0, we have r1,i ≥ e0 +1 by bi − pr1,i < ai + bi − e and ai ≤ e0 + p. So
we have e0 + 1 ≤ r1,i ≤ e0 + 2 for all i.

By n ≥ 2, there is an index i4 such that |Sa,b,i4 | + |Ta,b,i4 | = e0 + 1. Then
we have e0 + 1 ≤ min

{
(e − ai4)/p, bi4/p

}
by (⋆). We are going to prove that

if e0 + 1 ≤ min
{
(e − ai)/p, bi/p

}
, then |Sa,b,i+1| + |Ta,b,i+1| = e0 and e0 + 1 ≤

min
{
(e − ai+1)/p, bi+1/p

}
. If we have proved this claim, we have a contradiction

by considering i4.
We assume that e0+1 ≤ min

{
(e−ai)/p, bi/p

}
. Then we have e0− 1 ≤ ai ≤ e0,

pe0 + p ≤ bi ≤ pe0 + p+ 1 and e0 − 1 ≤ |Sa,b,i+1| ≤ e0. If |Sa,b,i+1| = e0, we have
ai = e0 and bi = pe0 + p. However, this contradicts pri − ri+1 = bi − ai, because
pri−ri+1 ̸= (p−1)e0+p by e0+1 ≤ ri, ri+1 ≤ e0+2. So we have |Sa,b,i+1| = e0−1
and |Ta,b,i+1| = 1. Let m be the unique element of Ta,b,i+1. By the definition of
Ta,b,i+1, we have

min

{
e− ai+1

p
,
bi+1

p

}
−min{ai, e− bi} ≥ pm−min{e− ai, bi} ≥ p− 1 ≥ 2,

because pe0 + p ≤ min{e − ai, bi} ≤ pe0 + p + 1 and pm − min{e − ai, bi} > 0.
This shows e0 + 1 ≤ min

{
(e − ai+1)/p, bi+1/p

}
. Thus we have proved that dVF ≤

ne0 + [n/2].
For a = (e0,i)1≤i≤n and b =

(
p(2e0 + 1− e0,i)

)
1≤i≤n, we have

da,b ≥
∑

1≤i≤n

|Sa,b,i| = ne0 + [n/2],

where e0,i is defined in the statement of Proposition 3.4(2)(c). This shows that
dVF = ne0 + [n/2], if

MF ∼

((
ue0,i 0
0 up(2e0+1−e0,i)

))
i

.

3.3 The case where VF is absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli spaces in the
case where VF is absolutely irreducible. In the proof of the following Proposition,
three Lemmas appear.
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Proposition 3.8. We assume VF is absolutely irreducible, and write e = (p+1)e0+
e1 for e0 ∈ Z and 0 ≤ e1 ≤ p. Then the followings are true.

1. There are mi ∈ Z for 0 ≤ i ≤ dVF such that mdVF
> 0 and

|G RVF,0(F′)| =
dVF∑
i=0

mi|F′|i

for all sufficiently large extensions F′ of F.

2. (a) In the case e1 = 0, we have dVF ≤ ne0 − 1. In this case, if

MF ∼

((
0 1

u(p+1)e0−1 0

)
,

(
ue0 0
0 upe0

)
, . . . ,

(
ue0 0
0 upe0

))
,

then dVF = ne0 − 1.

(b) In the case 1 ≤ e1 ≤ p− 1, we have dVF ≤ ne0. In this case, if

MF ∼

((
0 1

u(p+1)e0+1 0

)
,

(
ue0 0
0 upe0

)
, . . . ,

(
ue0 0
0 upe0

))
,

we have dVF = ne0.

(c) In the case e1 = p, we have dVF ≤ ne0 + [n/2]. In this case, if

MF ∼

((
0 1

u(p+1)e0+1 0

)
,

(
u2e0+1−e0,i 0

0 upe0,i

)
2≤i≤n

)
,

then dVF = ne0 + [n/2]. Here, e0,i = e0 if i is odd, and e0,i = e0 + 1 if i
is even.

Proof. Extending the field F, we may assume that

MF ∼

((
0 α1

α1u
m 0

)
,

(
α2 0
0 α2

)
, . . . ,

(
αn 0
0 αn

))
for some αi ∈ F× and a positive integer m such that (q+1) - m, by Lemma 2.2. Let
M0,F be the lattice ofMF generated by the basis giving the above matrix expression.

For any finite extension F′ of F, we put M0,F′ = M0,F ⊗F F′ and MF′ =
MF ⊗F F′. By the Iwasawa decomposition, any sublattice of MF′ can be written as((

usi v′i
0 uti

))
i

·M0,F′ for si, ti ∈ Z and v′i ∈ F′((u)).

We put

G RVF,0,a,b(F′) =

{((
usi v′i
0 uti

))
i

·M0,F′ ∈ G RVF,0(F′)

∣∣∣∣∣ si, ti ∈ Z, v′i ∈ F′((u)),

ps1 − t2 = a1, m+ pt1 − s2 = b1,

psj − sj+1 = aj , ptj − tj+1 = bj for 2 ≤ j ≤ n

}
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for (a, b) =
(
(ai)1≤i≤n, (bi)1≤i≤n

)
∈ Zn × Zn. Then we have

G RVF,0(F′) =
∪

(a,b)∈Zn×Zn

G RVF,0,a,b(F′)

and this is a disjoint union by Lemma 3.2. Later, in Lemma 3.9, we will show that
there are only finitely many (a, b) such that G RVF,0,a,b(F′) ̸= ∅.

We take ((
usi v′i
0 uti

))
i

·M0,F′ ∈ G RVF,0,a,b(F′),

and put

Ma,b,F′ =

((
usi 0
0 uti

))
i

·M0,F′ .

Then we have

Ma,b,F′ ∼

(
α1

(
0 ua1

ub1 0

)
, α2

(
ua2 0
0 ub2

)
, . . . , αn

(
uan 0
0 ubn

))
with respect to the basis induced from M0,F′ .

Now, any MF′ ∈ G RVF,0,a,b(F′) can be written as

((
1 vi
0 1

))
i

·Ma,b,F′ for some

(vi)1≤i≤n ∈ F′((u))n, and we put ri = −vu(vi). Then we have

MF′ ∼

(
α1

(
ϕ(v1)u

b1 ua1 − ϕ(v1)v2u
b1

ub1 −v2ub1

)
, αi

(
uai ϕ(vi)u

bi − vi+1u
ai

0 ubi

)
2≤i≤n

)
with respect to the induced basis, and(

ϕ(v1)u
b1 ua1 − ϕ(v1)v2u

b1

ub1 −v2ub1

)
=

(
ϕ(v1)u

b1 ua1

ub1 0

)(
1 −v2
0 1

)
=

(
v−1
2 ua1 ua1 − ϕ(v1)v2u

b1

0 −v2ub1

)(
1 0

−v−1
2 1

)
.

Naturally, we consider the second equality only in the case v2 ̸= 0.
If r2 ≥ 0, the condition ueMF′ ⊂ (1⊗ ϕ)

(
ϕ∗(MF′)

)
⊂ MF′ is equivalent to

0 ≤ a1 + r2 ≤ e, 0 ≤b1 − r2 ≤ e,

vu
(
ua1 − ϕ(v1)v2u

b1
)
≥ max{0, a1 + b1 − e},

(C1,+)

0 ≤ ai ≤ e, 0 ≤ bi ≤ e,

vu
(
ϕ(vi)u

bi − vi+1u
ai
)
≥ max{0, ai + bi − e} for 2 ≤ i ≤ n.

(C2)

If r2 < 0, it is equivalent to

0 ≤ a1 ≤ e, 0 ≤ b1 ≤ e, pr1 ≤ min{e− a1, b1}, (C1,−)
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and (C2).
We show the following fact:

If G RVF,0,a,b(F′) ̸= ∅, there does not exist (r′i)1≤i≤n ∈ Zn

such that a1 = b1 − pr′1 − r′2 and ai − r′i+1 = bi − pr′i for 2 ≤ i ≤ n.
(♢)

We assume that there exists (r′i)1≤i≤n ∈ Zn satisfying this condition. Changing

the basis of Ma,b,F′ by

((
1 u−r

′
i

0 1

))
i

, we get

MF′ ∼

(
α1

(
ub1−pr

′
1 0

ub1 −ub1−r′2

)
, αi

(
uai 0
0 ubi

)
2≤i≤n

)
.

This contradicts that VF is absolutely irreducible.

Lemma 3.9. If G RVF,0,a,b(F′) ̸= ∅, then

− e

p− 1
≤ a1 ≤ e, 0 ≤ b1 ≤ pe

p− 1
and 0 ≤ ai, bi ≤ e for 2 ≤ i ≤ n.

Proof. We take MF′ ∈ G RVF,0,a,b(F′) and write it as

((
1 vi
0 1

))
i

·Ma,b,F′ for some

(vi)1≤i≤n ∈ F′((u))n. We put ri = −vu(vi).
If r2 > e/(p − 1), we have that ai − ri+1 = bi − pri < 0 for 2 ≤ i ≤ n and

ri > e/(p − 1) for all i by the condition (C2), and that a1 = b1 − pr1 − r2 < 0 by
the condition (C1,+). This contradicts (♢), and we have r2 ≤ e/(p− 1).

Then (C1,+), (C1,−) and (C2) shows the claim.

To examine |G RVF,0,a,b(F′)|, we consider the case where 0 ≤ a1 ≤ e and 0 ≤
b1 ≤ e, and the case where max{−a1, b1 − e} > 0.

First, we treat the case where 0 ≤ a1 ≤ e and 0 ≤ b1 ≤ e. In this case, the
condition ueMF′ ⊂ (1 ⊗ ϕ)

(
ϕ∗(MF′)

)
⊂ MF′ is equivalent to the condition that

max{pr1 + r2, pr1, r2} ≤ min{e− a1, b1} and (C2). We put

Ia,b =
{
(R1, R2) ∈ Z× Z

∣∣ pR1 +R2 ≤ min{e− a1, b1}, R1, R2 ≥ 0
}

and

G RVF,0,a,b,R1,R2(F′) =

{((
1 vi
0 1

))
i

·Ma,b,F′ ∈ G RVF,0,a,b(F′)

∣∣∣∣∣ vi ∈ F′((u)),

r1 = R1, r2 = R2

}

for (R1, R2) ∈ Ia,b. Then we have a disjoint union

G RVF,0,a,b(F′) =
∪

(R1,R2)∈Ia,b

G RVF,0,a,b,R1,R2(F′)
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by Lemma 3.2, because if

((
1 vi
0 1

))
i

· Ma,b,F′ ∈ G RVF,0,a,b(F′) for vi ∈ F′((u))

then we may replace vi so that vi /∈ uF′[[u]] without changing the (k[[u]] ⊗Fp F′)-

module

((
1 vi
0 1

))
i

·Ma,b,F′ again by Lemma 3.2.

We fix (R1, R2) ∈ Ia,b. Then the condition that r1 = R1 and r2 = R2 implies

max{pr1 + r2, pr1, r2} ≤ min{e− a1, b1}. So

((
1 vi
0 1

))
i

·Ma,b,F′ gives a point of

G RVF,0,a,b,R1,R2(F′) if and only if

max{r1, 0} = R1, max{r2, 0} = R2 and (C2).

We assume G RVF,0,a,b,R1,R2(F′) ̸= ∅. Considering −vu(vi) for (vi)1≤i≤n that gives
a point of G RVF,0,a,b,R1,R2(F′), we have the following two cases:

(i) There are 2 ≤ n2 < n1 ≤ n + 1 and Ri ∈ Z for 3 ≤ i ≤ n2 and n1 ≤ i ≤ n
such that

ai −Ri+1 = bi − pRi < max{0, ai + bi − e}

for 2 ≤ i ≤ n2 − 1 and n1 ≤ i ≤ n, and

Rn1 ≤ min{an1−1, e− bn1−1}, Rn2 ≤ min

{
e− an2

p
,
bn2

p

}
.

(ii) There are Ri ∈ Z for 3 ≤ i ≤ n such that

ai −Ri+1 = bi − pRi < max{0, ai + bi − e}

for 2 ≤ i ≤ n.

We note that (ii) includes the case n = 1.

We define an F′-vector space Ña,b,R1,R2,F′ by

Ña,b,R1,R2,F′ =
{
(vi)1≤i≤n ∈ F′((u))n

∣∣ r1 ≤ R1, r2 ≤ R2 and (C2)
}
.

We note that Ña,b,R1,R2,F′ ⊃ F′[[u]]n. We put Na,b,R1,R2,F′ = Ña,b,R1,R2,F′
/
F′[[u]]n

and da,b,R1,R2 = dimF′ Na,b,R1,R2,F′ . We note that dimF′ Na,b,R1,R2,F′ is independent
of finite extensions F′ of F. We put

Ñ◦
a,b,R1,R2,F′ =

{
(vi)1≤i≤n ∈ Ña,b,R1,R2,F′

∣∣∣ r1 = R1, r2 = R2

}
.

Let N◦
a,b,R1,R2,F′ be the image of Ñ◦

a,b,R1,R2,F′ in Na,b,R1,R2,F′ . Then we have a
bijection

N◦
a,b,R1,R2,F′ → G RVF,0,a,b,R1,R2(F′)

by Lemma 3.2. By choosing a basis of Na,b,R1,R2,F over F, we have a morphism

fa,b,R1,R2 : Ada,b,R1,R2

F → G RVF,0
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in the case R1 = R2 = 0,

fa,b,R1,R2 : A(da,b,R1,R2
−2)

F ×G2
m,F → G RVF,0

in the case where R1 > 0, R2 > 0 and (i) holds true, and

fa,b,R1,R2 : A(da,b,R1,R2
−1)

F ×Gm,F → G RVF,0

in the other case, such that fa,b,R1,R2(F′) is injective and the image of fa,b,R1,R2(F′)
is G RVF,0,a,b,R1,R2(F′).

Lemma 3.10. If 0 ≤ a1 ≤ e and 0 ≤ b1 ≤ e, the followings hold:

(a) In the case e1 = 0, we have da,b,R1,R2 ≤ ne0 − 1. In this case, if a1 = 0,
b1 = (p + 1)e0 − 1, ai = e0 and bi = pe0 for 2 ≤ i ≤ n, then there exists
(R1, R2) ∈ Ia,b such that da,b,R1,R2 = ne0 − 1.

(b) In the case 1 ≤ e1 ≤ p− 1, we have da,b,R1,R2 ≤ ne0. In this case, if a1 = 0,
b1 = (p + 1)e0 + 1, ai = e0 and bi = pe0 for 2 ≤ i ≤ n, then there exists
(R1, R2) ∈ Ia,b such that da,b,R1,R2 = ne0.

(c) In the case e1 = p, we have da,b,R1,R2 ≤ ne0 + [n/2]. In this case, if a1 = 0,
b1 = (p+1)e0 +1, ai = 2e0 +1− e0,i and bi = pe0,i for 2 ≤ i ≤ n, then there
exists (R1, R2) ∈ Ia,b such that da,b,R1,R2 = ne0 + [n/2]. Here, e0,i = e0 if i
is odd, and e0,i = e0 + 1 if i is even.

Proof. First, we treat the case n = 1. In this case, we have

R1 = R2 ≤
[
min{e− a1, b1}

p+ 1

]
≤ e0.

So we get da,b,R1,R2 ≤ e0 for (a, b) ∈ Zn × Zn and (R1, R2) ∈ Ia,b such that
G RVF,0,a,b,R1,R2(F′) ̸= ∅ and 0 ≤ a1, b1 ≤ e. We have to eliminate the possibility
of equality in the case e1 = 0. In this case, if we have da,b,R1,R2 = e0, then a1 = 0
and b1 = (p+ 1)e0. This contradicts (♢).

We can check that if e1 = 0, a1 = 0, b1 = e − 1 and R1 = R2 = e0 − 1, then
da,b,R1,R2 = e0−1, and that if e1 ̸= 0, a1 = 0, b1 = (p+1)e0+1 and R1 = R2 = e0,
then da,b,R1,R2 = e0.

So we may assume n ≥ 2. We put

Sa,b,R1,R2,1 =
{
(u−r1 , 0, . . . , 0) ∈ F((u))n

∣∣ 1 ≤ r1 ≤ min{R1, an, e− bn}
}
,

Sa,b,R1,R2,2 =

{
(0, u−r2 , 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ 1 ≤ r2 ≤ min

{
R2,

e− a2
p

,
b2
p

}}
,

Sa,b,R1,R2,i =

{
(0, . . . , 0, vi, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

1 ≤ ri ≤ min

{
ai−1, e− bi−1,

e− ai
p

,
bi
p

}}
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for 3 ≤ i ≤ n, and

Sa,b,R1,R2,i,j =

{
(0, . . . , 0, vi, vi+1, . . . , vj+1, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

ri ≤ min{ai−1, e− bi−1} if i ̸= 2, r2 ≤ R2 if i = 2,

ualvl+1 = ublϕ(vl) and −vu(vl+1) > min{al, e− bl} for i ≤ l ≤ j,

−vu(vj+1) ≤ min

{
e− aj+1

p
,
bj+1

p

}
if j ̸= n, −vu(v1) ≤ R1 if j = n

}

for 2 ≤ i ≤ j ≤ n. In the above definitions, vi is on the i-th component. Then, as in
the proof of Lemma 3.5, we can check that

∪
i Sa,b,R1,R2,i∪

∪
i,j Sa,b,R1,R2,i,j is an F-

basis of Na,b,R1,R2,F. So we have da,b,R1,R2 =
∑
i |Sa,b,R1,R2,i|+

∑
i,j |Sa,b,R1,R2,i,j |.

We put

Ta,b,R1,R2,1 =
{
m ∈ Z

∣∣ min{an, e− bn} < pm+ an − bn ≤ R1

}
,

Ta,b,R1,R2,2 = ∅ and

Ta,b,R1,R2,i =

{
m ∈ Z

∣∣∣∣∣ min{ai−1, e− bi−1} < pm+ ai−1 − bi−1

≤ min

{
e− ai
p

,
bi
p

}}

for 3 ≤ i ≤ n. We consider the map∪
2≤i≤h−1

Sa,b,R1,R2,i,h−1 → Ta,b,R1,R2,h; (vi′)1≤i′≤n 7→ −vu(vh−1)

for 3 ≤ h ≤ n + 1. We can easily check that this map is injective. So we have∑
2≤i≤h−1 |Sa,b,R1,R2,i,h−1| ≤ |Ta,b,R1,R2,h| and da,b,R1,R2 ≤

∑
1≤i≤n

(
|Sa,b,R1,R2,i|+

|Ta,b,R1,R2,i|
)
.

We take (a′, b′) ∈ Zn × Zn and (R′
1, R

′
2) ∈ Ia′,b′ such that 0 ≤ a′1, b

′
1 ≤ e

and
∑

1≤i≤n
(
|Sa′,b′,R′

1,R
′
2,i
| + |Ta′,b′,R′

1,R
′
2,i
|
)
is the maximum. We can prove that

|Ta′,b′,R′
1,R

′
2,i
| ≤ 1 for all i as in the proof of Lemma 3.6.

We can also show that

(Ai) if |Sa′,b′,R′
1,R

′
2,i
|+ |Ta′,b′,R′

1,R
′
2,i
| = e0 + l for l ≥ 1,

then |Sa′,b′,R′
1,R

′
2,i+1|+ |Ta′,b′,R′

1,R
′
2,i+1| ≤ e0 + e1 − pl + 1

for i ̸= 1, and that

(Bi) if |Sa′,b′,R′
1,R

′
2,i
|+ |Ta′,b′,R′

1,R
′
2,i
| = e0 + 1

and |Sa′,b′,R′
1,R

′
2,i+1|+ |Ta′,b′,R′

1,R
′
2,i+1| = e0 + e1 − p+ 1,

then |Sa′,b′,R′
1,R

′
2,i+2|+ |Ta′,b′,R′

1,R
′
2,i+2| ≤ e0 − (p− 1)e1 + 1
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for 2 ≤ i ≤ n − 1 as in the proof of Lemma 3.7. By the same argument, we can
show that

(A1) if |Sa′,b′,R′
1,R

′
2,1

|+ |Ta′,b′,R′
1,R

′
2,1

| = e0 + l for l ≥ 1,
then |Sa′,b′,R′

1,R
′
2,2

|+ |Ta′,b′,R′
1,R

′
2,2

| ≤ e0 + e1 − pl,

and that

(Bn) if |Sa′,b′,R′
1,R

′
2,n

|+ |Ta′,b′,R′
1,R

′
2,n

| = e0 + 1
and |Sa′,b′,R′

1,R
′
2,1

|+ |Ta′,b′,R′
1,R

′
2,1

| = e0 + e1 − p+ 1,
then |Sa′,b′,R′

1,R
′
2,2

|+ |Ta′,b′,R′
1,R

′
2,2

| ≤ e0 − (p− 1)e1,

using the followings:

|Sa′,b′,R′
1,R

′
2,1

|+ |Ta′,b′,R′
1,R

′
2,1

| ≤ R1, pR1 +R2 ≤ e,

|Sa′,b′,R′
1,R

′
2,2

| ≤ R2 and Ta′,b′,R′
1,R

′
2,2

= ∅.

Firstly, we treat the case where 0 ≤ e1 ≤ p − 1, that is, (a) or (b). We note
that e0 + e1 − pl + 1 ≤ e0 − p(l − 1) − 1 in the case 0 ≤ e1 ≤ p − 2, and that
e0+ e1−pl+1 = e0−p(l−1) and e0− (p−1)e1+1 ≤ e0−3 in the case e1 = p−1.
Then (Ai) for all i and (Bi) for i ̸= 1 implies

da,b,R1,R2 ≤
∑

1≤i≤n

(
|Sa,b,R1,R2,i|+ |Ta,b,R1,R2,i|

)
≤
∑

1≤i≤n

(
|Sa′,b′,R′

1,R
′
2,i
|+ |Ta′,b′,R′

1,R
′
2,i
|
)
≤ ne0

for (a, b) ∈ Zn × Zn and (R1, R2) ∈ Ia,b such that G RVF,0,a,b,R1,R2(F′) ̸= ∅ and
0 ≤ a1, b1 ≤ e. So we get the desired bound, if 1 ≤ e1 ≤ p − 1. In the case
e1 = 0, we have to eliminate the possibility of equality. In this case, if we have
equality, we get that

∑
1≤i≤n

(
|Sa,b,R1,R2,i| + |Ta,b,R1,R2,i|

)
is the maximum and(

|Sa,b,R1,R2,i|+ |Ta,b,R1,R2,i|
)
= e0 for all i by (Ai) for all i. Then we have

R1 = R2 = e0, e0 − 1 ≤ ai ≤ e0, pe0 ≤ bi ≤ pe0 + 1 for 2 ≤ i ≤ n

by the followings:

pR1 +R2 = e, |Sa,b,R1,R2,1|+ |Ta,b,R1,R2,1| ≤ R1, |Sa,b,R1,R2,2| ≤ R2,

|Sa,b,R1,R2,i|+ |Ta,b,R1,R2,i| ≤ min{(e− ai)/p, bi/p} for 2 ≤ i ≤ n

and |Sa,b,R1,R2,i| ≥ e0 − 1 for i ̸= 2.

Now we have a1 = 0 and b1 = (p + 1)e0 by R1 = R2 = e0. We show that
|Ta,b,R1,R2,i| = 0 for 3 ≤ i ≤ n. We assume that |Ta,b,R1,R2,i0 | = 1 for some
i0 ̸= 1, 2, and let m be the unique element of Ta,b,R1,R2,i0 . Then, by the definition
of Ta,b,R1,R2,i0 , we have

min

{
e− ai0
p

,
bi0
p

}
−min{ai0−1, e− bi0−1} ≥ pm−min{e− ai0−1, bi0−1}

≥ p− 1 ≥ 2,

36



because pe0 ≤ min{e− ai0−1, bi0−1} ≤ pe0 +1 and pm−min{e− ai0−1, bi0−1} > 0.
This contradicts the possibilities of ai0−1, ai0 , bi0−1 and bi0 . The same argument
shows that |Ta,b,R1,R2,1| = 0. Now we have |Sa,b,R1,R2,i| = e0 for all i, and that

a1 = 0, b1 = (p+ 1)e0, ai = e0, bi = pe0 for 2 ≤ i ≤ n.

Then we have

a1 = b1 − pr′1 − r′2 and ai − r′i+1 = bi − pr′i for 2 ≤ i ≤ n

for (r′i)1≤i≤n = (e0)1≤i≤n. This contradicts (♢). So we have da,b,R1,R2 ≤ ne0 − 1,
if e1 = 0.

We can check that if e1 = 0, a1 = 0, b1 = (p+1)e0−1, R1 = e0, R2 = e0−1, ai =
e0 and bi = pe0 for 2 ≤ i ≤ n, then da,b,R1,R2 ≥

∑
1≤i≤n |Sa,b,R1,R2,i| = ne0−1. We

can check also that if 1 ≤ e1 ≤ p−1, a1 = 0, b1 = (p+1)e0+1, R1 = e0, R2 = e0+1,
ai = e0 and bi = pe0 for 2 ≤ i ≤ n, then da,b,R1,R2 ≥

∑
1≤i≤n |Sa,b,R1,R2,i| = ne0.

Secondly, we treat (c). In this case, we note that e0+e1−pl+1 = e0−p(l−1)+1
and e0 − (p− 1)e1 + 1 ≤ e0 − 5. Then (Ai) for all i and (Bi) for i ̸= 1 implies

da,b,R1,R2 ≤
∑

1≤i≤n

(
|Sa,b,R1,R2,i|+ |Ta,b,R1,R2,i|

)
≤
∑

1≤i≤n

(
|Sa′,b′,R′

1,R
′
2,i
|+ |Ta′,b′,R′

1,R
′
2,i
|
)
≤ ne0 +

[
n

2

]

for (a, b) ∈ Zn × Zn and (R1, R2) ∈ Ia,b such that 0 ≤ a1, b1 ≤ e. So we get the
desired bound.

We can check that if e1 = p, a1 = 0, b1 = (p+1)e0+1, R1 = e0, R2 = e0+1, ai =
2e0 +1− e0,i and bi = pe0,i for 2 ≤ i ≤ n, then da,b,R1,R2 ≥

∑
1≤i≤n |Sa,b,R1,R2,i| =

ne0 + [n/2].

Next, we consider the remaining case, that is, the case where max{−a1, b1−e} >
0. In this case, vu

(
ua1−ϕ(v1)v2ub1

)
≥ max{0, a1+b1−e} implies pr1+r2 = b1−a1,

because a1 < max{0, a1+b1−e}. So the condition ueMF′ ⊂ (1⊗ϕ)
(
ϕ∗(MF′)

)
⊂ MF′

implies

pr1 + r2 = b1 − a1, max{−a1, b1 − e} ≤ r2 ≤ min{e− a1, b1}.

We note that if n = 1, then pr1 + r2 = b1 − a1 contradicts (♢) because r1 = r2. So
we may assume n ≥ 2. We put

Ia,b =
{
(R1, R2) ∈ Z× Z

∣∣∣ pR1 +R2 = b1 − a1,

max{−a1, b1 − e} ≤ R2 ≤ min{e− a1, b1}
}

and ma,b =
[(

max{−a1, b1 − e} − 1
)/
p
]
. We note that R1 ≥ ma,b + 1 > 0 and
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R2 ≥ max{−a1, b1 − e} > 0. We put

G RVF,0,a,b,R1,R2(F′) =

{((
1 vi
0 1

))
i

·Ma,b,F′ ∈ G RVF,0,a,b(F′)

∣∣∣∣∣ vi ∈ F′((u)),

vu(v1) = −R1, vu(v2) = −R2

}

for (R1, R2) ∈ Ia,b. Then we have a disjoint union

G RVF,0,a,b(F′) =
∪

(R1,R2)∈Ia,b

G RVF,0,a,b,R1,R2(F′)

by Lemma 3.2. Extending the field F, we may assume that G RVF,0,a,b,R1,R2(F′) ̸= ∅
if and only if G RVF,0,a,b,R1,R2(F) ̸= ∅ for each (R1, R2) ∈ Ia,b, (a, b) ∈ Zn ×Zn and
any finite extension F′ of F.

We fix (R1, R2) ∈ Ia,b, and assume G RVF,0,a,b,R1,R2(F) ̸= ∅. If vu(v1) = −R1

and vu(v2) = −R2, the condition vu
(
ua1 − ϕ(v1)v2u

b1
)
≥ max{0, a1 + b1 − e} is

equivalent to the following:

There uniquely exist γ1,0, γ2,0 ∈ (F′)× and γ1,i, γ2,i ∈ F′ for 1 ≤ i ≤ ma,b such that

−vu

(
v1 −

∑
0≤i≤ma,b

γ1,iu
−R1+i

)
≤ R1 −ma,b − 1,

−vu

(
v2 −

∑
0≤i≤ma,b

γ2,iu
−R2+pi

)
≤ R2 −max{−a1, b1 − e},

γ1,0γ2,0 = 1,
∑

0≤i≤l

γ1,iγ2,l−i = 0 for 1 ≤ l ≤ ma,b.

We note that (γ1,i)0≤i≤ma,b
determines (γ1,i, γ2,i)0≤i≤ma,b

.
We prove that for 0 ≤ i ≤ ma,b there uniquely exist 2 ≤ n2,i < n1,i ≤ n + 1,

r1,i,j ∈ Q for n1,i ≤ j ≤ n + 1 and r2,i,j ∈ Z for 2 ≤ j ≤ n2,i such that r1,0,j ∈ Z
for n1,0 ≤ j ≤ n+ 1 and

aj − r1,i,j+1 = bj − pr1,i,j < max{0, aj + bj − e} for n1,i ≤ j ≤ n,

r1,i,n+1 = R1 − i, r1,i,n1,i ≤ min{an1,i−1, e− bn1,i−1},
aj − r2,i,j+1 = bj − pr2,i,j < max{0, aj + bj − e} for 2 ≤ j ≤ n2,i − 1,

r2,i,2 = R2 − pi, r2,i,n2,i ≤ min

{
e− an2,i

p
,
bn2,i

p

}
.

Define r1,i,j ∈ Q for 2 ≤ j ≤ n+ 1 and r2,i,j ∈ Z for 2 ≤ j ≤ n+ 1 such that

r1,i,n+1 = R1 − i, aj − r1,i,j+1 = bj − pr1,i,j for 2 ≤ j ≤ n,

r2,i,2 = R2 − pi, aj − r2,i,j+1 = bj − pr2,i,j for 2 ≤ j ≤ n.
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We put

n1,i = max
{{

3 ≤ j ≤ n+ 1
∣∣ r1,i,j ≤ min{aj−1, e− bj−1}

}
∪ {2}

}
,

n2,i = min

{{
2 ≤ j ≤ n

∣∣∣∣ r2,i,j ≤ min
{e− aj

p
,
bj
p

}}
∪ {n+ 1}

}
.

We consider (vi)1≤i≤n that gives a point of G RVF,0,a,b,R1,R2(F). Then we have
r1,0,j = −vu(vj) ∈ Z for n1,0 ≤ j ≤ n+1 and r2,0,j = −vu(vj) ∈ Z for 2 ≤ j ≤ n2,0.
It remains to show that n2,i < n1,i. We have n2,i ≤ n2,0 and n1,0 ≤ n1,i, because
r1,i,j ≤ r1,0,j and r2,i,j ≤ r2,0,j for 2 ≤ j ≤ n + 1. So it suffices to show n2,0,j <
n1,0,j . If n2,0,j ≥ n1,0,j , we have

a1 = b1 − pvu(v1)− vu(v2) and aj − vu(vj+1) = bj − vu(vj) for 2 ≤ j ≤ n,

and this contradicts (♢).
We put

Ma,b,R1,R2 =
{
0 ≤ i ≤ ma,b

∣∣ r1,i,j ∈ Z for n1,i ≤ j ≤ n+ 1
}
.

For (vi)1≤i≤n that gives a point of G RVF,0,a,b,R1,R2(F′), we take γ1,i, γ2,i and n1,i,
n2,i, r1,i,j , r2,i,j as above. We note that γ1,i = 0 if i /∈Ma,b,R1,R2 . We put

M1,a,b,R1,R2,j =
{
0 ≤ i ≤ ma,b

∣∣ n1,i ≤ j ≤ n+ 1
}
,

M2,a,b,R1,R2,j =
{
0 ≤ i ≤ ma,b

∣∣ 2 ≤ j ≤ n2,i
}

for 2 ≤ j ≤ n+ 1, and define (v∗i )1≤i≤n ∈ F′((u))n by

v∗j = vj −
∑

i∈M1,a,b,R1,R2,j

γ1,iu
−r1,i,j −

∑
i∈M2,a,b,R1,R2,j

γ2,iu
−r2,i,j

for 2 ≤ j ≤ n+ 1. This is well-defined by the above remark. We put

Ñ∗
a,b,R1,R2,F′ =

{
(v∗i )1≤i≤n ∈ F′((u))n

∣∣ (vi)1≤i≤n ∈ F′((u))n gives

a point of G RVF,0,a,b,R1,R2(F′)
}
.

Then we have

Ñ∗
a,b,R1,R2,F′ =

{
(vi)1≤i≤n ∈ F′((u))n

∣∣−vu(v1) ≤ R1 −ma,b − 1,

−vu(v2) ≤ R2 −max{−a1, b1 − e}, (C2)
}

by the construction of (v∗i )1≤i≤n and the conditions (C1,+) and (C2). This implies

that Ñ∗
a,b,R1,R2,F′ ⊂ F′((u))n is an F′-vector subspace, and Ñ∗

a,b,R1,R2,F′ ⊃ F′[[u]]n.
We put

N∗
a,b,R1,R2,F′ = Ñ∗

a,b,R1,R2,F′

/
F′[[u]]n

and d∗a,b,R1,R2
= dimF′ N∗

a,b,R1,R2,F′ . We note that dimF′ N∗
a,b,R1,R2,F′ is independent

of finite extensions F′ of F. By Lemma 3.2, giving an element of N∗
a,b,R1,R2,F′ and
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(γ1,i)0≤i≤ma,b
such that γ1,0 ̸= 0 and γ1,i = 0 if i /∈ Ma,b,R1,R2

is equivalent to
giving a point of G RVF,0,a,b,R1,R2(F′). By choosing a basis of Na,b,R1,R2,F∗ over F,
we have a morphism

fa,b,R1,R2 : A
(
d∗a,b,R1,R2

+|Ma,b,R1,R2
|−1
)

F ×Gm,F → G RVF,0

such that fa,b,R1,R2(F′) is injective and the image of fa,b,R1,R2(F′) is equal to
G RVF,0,a,b,R1,R2(F′). We put da,b,R1,R2 = d∗a,b,R1,R2

+ |Ma,b,R1,R2 |. Then we have

(1) and
dVF = max

G RVF,0,a,b,R1,R2
(F)̸=∅

{
da,b,R1,R2

}
.

In this maximum, we consider all (a, b) ∈ Zn × Zn. We have already examined
da,b,R1,R2 for (a, b) such that a1 ≥ 0 and b1 ≤ e. So it suffices to bound da,b,R1,R2

for (a, b) such that max{−a1, b1 − e} > 0.

Lemma 3.11. If max{−a1, b1 − e} > 0, the followings hold:

(a) In the case e1 = 0, we have da,b,R1,R2 ≤ ne0 − 1.

(b) In the case 1 ≤ e1 ≤ p− 1, we have da,b,R1,R2 ≤ ne0.

(c) In the case e1 = p, we have da,b,R1,R2 ≤ ne0 + [n/2].

Proof. We put

Sa,b,R1,R2,1 =
{
(v1, 0, . . . , 0) ∈ F((u))n

∣∣ v1 = u−r1 ,

1 ≤ r1 ≤ min{R1 −ma,b − 1, an, e− bn}
}
,

Sa,b,R1,R2,2 =

{
(0, v2, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ v2 = u−r2 ,

1 ≤ r2 ≤ min

{
R2 −max{−a1, b1 − e}, e− a2

p
,
b2
p

}}
,

Sa,b,R1,R2,i =

{
(0, . . . , 0, vi, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

1 ≤ ri ≤ min

{
ai−1, e− bi−1,

e− ai
p

,
bi
p

}}

for 3 ≤ i ≤ n, and

Sa,b,R1,R2,i,j =

{
(0, . . . , 0, vi, vi+1, . . . , vj+1, 0, . . . , 0) ∈ F((u))n

∣∣∣∣∣ vi = u−ri ,

ri ≤ min{ai−1, e− bi−1} if i ̸= 2, r2 ≤ R2 −max{−a1, b1 − e} if i = 2,

ualvl+1 = ublϕ(vl) and −vu(vl+1) > min{al, e− bl} for i ≤ l ≤ j,

−vu(vj+1) ≤ min

{
e− aj+1

p
,
bj+1

p

}
if j ̸= n, −vu(v1) ≤ R1 −ma,b − 1 if j = n

}
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for 2 ≤ i ≤ j ≤ n. In the above definitions, vi is on the i-th component. Then, as in
the proof of Lemma 3.5, we can check that

∪
i Sa,b,R1,R2,i∪

∪
i,j Sa,b,R1,R2,i,j is an F-

basis of N∗
a,b,R1,R2,F. So we have d∗a,b,R1,R2

=
∑
i |Sa,b,R1,R2,i|+

∑
i,j |Sa,b,R1,R2,i,j |.

We put

Ta,b,R1,R2,1 =
{
m ∈ Z

∣∣ min{an, e− bn} < pm+ an − bn ≤ R1 −ma,b − 1
}
,

Ta,b,R1,R2,2 =

{
m ∈ Z

∣∣∣∣∣ R2 −max{−a1, b1 − e} < R2 − pm

≤ min

{
R2,

e− a2
p

,
b2
p

}}

and

Ta,b,R1,R2,i =

{
m ∈ Z

∣∣∣∣∣ min{ai−1, e− bi−1} < pm+ ai−1 − bi−1

≤ min

{
e− ai
p

,
bi
p

}}

for 3 ≤ i ≤ n. We note that these definitions for Sa,b,R1,R2,i, Sa,b,R1,R2,i,j and
Ta,b,R1,R2,i in the case max{−a1, b1 − e} > 0 are compatible with the definitions in
the case max{−a1, b1 − e} ≤ 0, if max{−a1, b1 − e} = 0. So in the following, we
can consider also the case max{−a1, b1 − e} = 0. We need to consider this case in
the following arguments.

We consider the map∪
2≤j≤h−1

Sa,b,R1,R2,j,h−1 ∪
{
0 ≤ i ≤ ma,b

∣∣ n2,i = h
}
→ Ta,b,R1,R2,h;

(vi)1≤i≤n 7→ −vu(vh−1), i 7→ r2,i,h−1

for 3 ≤ h ≤ n+ 1. We can easily check that this map is injective and that{
0 ≤ i ≤ ma,b

∣∣ n2,i = 2
}
= Ta,b,R1,R2,2.

So we have
(∑

2≤ı≤j≤n |Sa,b,R1,R2,i,j |
)
+ma,b + 1 ≤

∑
1≤i≤n |Ta,b,R1,R2,i| and

da,b,R1,R2 ≤ d∗a,b,R1,R2
+ma,b + 1 ≤

∑
1≤i≤n

(
|Sa,b,R1,R2,i|+ |Ta,b,R1,R2,i|

)
.

We take (a′′, b′′) ∈ Zn×Zn and (R′′
1 , R

′′
2 ) ∈ Ia′′,b′′ such that max{−a′′1 , e−b′′1} ≥ 0

and
∑

1≤i≤n
(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
is the maximum. We can prove that

|Ta′′,b′′,R′′
1 ,R

′′
2 ,i

| ≤ 1 for all i ̸= 2 as in the proof of Lemma 3.6.

We show that we may take (a′′, b′′) ∈ Zn × Zn and (R′′
1 , R

′′
2 ) ∈ Ia′′,b′′ such

that 0 ≤ −a′′1 = b′′1 − e ≤ p − 1. If −a′′1 > b′′1 − e, then we replace b′′1 by b′′1 + 1
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and R′′
2 by R′′

2 + 1. We again have (R′′
1 , R

′′
2 ) ∈ Ia′′,b′′ after the replacement. This

replacement increases
∑

1≤i≤n
(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
by 0 or 1, but by

the maximality there is no case where it increases by 1. Similarly, if −a′′1 < b′′1 − e,
we may replace a′′1 by a′′1 − 1 and R′′

2 by R′′
2 + 1. So we may assume −a′′1 = b′′1 − e.

If −a′′1 ≥ p and min{b′′2/p, (e − a′′2)/p} ≥ R′′
2 , we replace R′′

1 by R′′
1 − 1 and R′′

2

by R′′
2 + p. By

R′′
2 + p ≤ e

p
+ p < e+ p ≤ e− a′′1 = b′′1 ,

we again have (R′′
1 , R

′′
2 ) ∈ Ia′′,b′′ after the replacement. This replacement increases∑

1≤i≤n
(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
by at least p−2. This is a contradiction.

So if −a′′1 ≥ p, we have min{b′′2/p, (e− a′′2)/p} < R′′
2 . If −a′′1 ≥ p, we replace a′′1 by

a′′1+p, b
′′
1 by b′′1−p, R′′

1 by R′′
1−1 and R′′

2 by R′′
2−p. We again have (R′′

1 , R
′′
2 ) ∈ Ia′′,b′′

after the replacement. This replacement does not change
∑

1≤i≤n
(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+
|Ta′′,b′′,R′′

1 ,R
′′
2 ,i

|
)
. Iterating these replacements, we may assume 0 ≤ −a′′1 = b′′1 − e ≤

p − 1. We already treated the case where −a′′1 = b′′1 − e = 0. So we may assume
1 ≤ −a′′1 = b′′1 − e ≤ p− 1. We note that |Ta′′,b′′,R′′

1 ,R
′′
2 ,2

| ≤ 1 in this case.
Now we can show that

(A′
i) if |Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

| = e0 + l for l ≥ 1,
then |Sa′′,b′′,R′′

1 ,R
′′
2 ,i+1|+ |Ta′′,b′′,R′′

1 ,R
′′
2 ,i+1| ≤ e0 + e1 − pl + 1

for i ̸= 1, and that

(B′
i) if |Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

| = e0 + 1
and |Sa′′,b′′,R′′

1 ,R
′′
2 ,i+1|+ |Ta′′,b′′,R′′

1 ,R
′′
2 ,i+1| = e0 + e1 − p+ 1,

then |Sa′′,b′′,R′′
1 ,R

′′
2 ,i+2|+ |Ta′′,b′′,R′′

1 ,R
′′
2 ,i+2| ≤ e0 − (p− 1)e1 + 1

for 2 ≤ i ≤ n − 1 as in the proof of Lemma 3.7. By the same argument, we can
show that

(A′
1) if |Sa′′,b′′,R′′

1 ,R
′′
2 ,1

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,1

| = e0 + l for l ≥ 0,
then |Sa′′,b′′,R′′

1 ,R
′′
2 ,2

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,2

| ≤ e0 + e1 − pl,

and that

(B′
n) if |Sa′′,b′′,R′′

1 ,R
′′
2 ,n

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,n

| = e0 + 1
and |Sa′′,b′′,R′′

1 ,R
′′
2 ,1

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,1

| = e0 + e1 − p+ 1,
then |Sa′′,b′′,R′′

1 ,R
′′
2 ,2

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,2

| ≤ e0 − (p− 1)e1,

using the followings:

|Sa′′,b′′,R′′
1 ,R

′′
2 ,1

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,1

| ≤ R1 − 1, pR1 +R2 = e− 2a′′1 ,

|Sa′′,b′′,R′′
1 ,R

′′
2 ,2

| ≤ R2 + a′′1 , 1 ≤ −a′′1 ≤ p− 1 and |Ta′′,b′′,R′′
1 ,R

′′
2 ,2

| ≤ 1.

Then (A′
i) for all i and (B′

i) for i ̸= 1 implies that∑
1≤i≤n

(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
≤ ne0
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in the case 0 ≤ e1 ≤ p− 2, and that∑
1≤i≤n

(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
≤ ne0 +

[
n

2

]
in the case e1 = p−1. It remains to eliminate the possibility of equality in the case
e1 = 0.

We assume that e1 = 0 and
∑

1≤i≤n
(
|Sa′′,b′′,R′′

1 ,R
′′
2 ,i

| + |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

|
)
= ne0.

Then (A′
i) for all i implies that |Sa′′,b′′,R′′

1 ,R
′′
2 ,i

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,i

| = e0 for all i. Now
we have

e0 = |Sa′′,b′′,R′′
1 ,R

′′
2 ,1

|+ |Ta′′,b′′,R′′
1 ,R

′′
2 ,1

| ≤ R1 − 1

and
e0 − 1 ≤ |Sa′′,b′′,R′′

1 ,R
′′
2 ,2

| ≤ R2 + a′′1 .

This implies e+p−1−a′′1 ≤ pR1+R2. Because pR1+R2 = e−2a′′1 , this inequality
happens only in the case −a′′1 = p − 1, and in this case the above inequalities
become equality. So we have e0 − 1 = |Sa′′,b′′,R′′

1 ,R
′′
2 ,2

| and R2 = e0 + p − 2.
By |Ta′′,b′′,R′′

1 ,R
′′
2 ,2

| = 1, we have R2 ≤ min{(e − a′′2)/p, b
′′
2/p}. So we get a′′2 ≤

e0 − p(p− 2) ≤ e0 − 3, but this contradicts |Sa′′,b′′,R′′
1 ,R

′′
2 ,3

| ≥ e0 − 1. Thus we have
eliminated the possibility of equality in the case e1 = 0.

The claim (2) follows from Lemma 3.10 and Lemma 3.11.

Remark 3.12. By Lemma 2.2, we can check that there is VF satisfying the condi-
tions for MF in Proposition 3.8.

3.4 Bounds of dimensions

To fix the notation, we recall the definition of the zeta function of a scheme of finite
type over a finite field.

Definition 3.13. Let X be a scheme of finite type over F. We put qF = |F|. The
zeta function Z(X;T ) of X is defined by

Z(X;T ) = exp

( ∞∑
m=1

∣∣X(FqmF )
∣∣

m
Tm

)
.

Here,

exp
(
f(T )

)
=

∞∑
m=0

1

m!
f(T )m ∈ Q[[T ]]

for f(T ) ∈ TQ[[T ]].

Theorem 3.14. Let Z(G RVF,0;T ) be the zeta function of G RVF,0. Then the fol-
lowings are true.
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1. After extending the field F sufficiently, we have

Z(G RVF,0;T ) =

dVF∏
i=0

(1− |F|iT )−mi

for some mi ∈ Z such that mdVF
> 0.

2. If n = 1, we have

0 ≤ dVF ≤
[
e+ 2

p+ 1

]
.

If n ≥ 2, we have

0 ≤ dVF ≤
[
n+ 1

2

][
e

p+ 1

]
+

[
n− 2

2

][
e+ 1

p+ 1

]
+

[
e+ 2

p+ 1

]
.

Furthermore, each equality in the above inequalities can happen for any finite
extension K of Qp.

Proof. This follows from Proposition 3.3, Proposition 3.4, Proposition 3.8 and Re-
mark 3.12.

4 Rational points

Let CF be the constant group scheme over SpecK of the two-dimensional vector
space over F. To calculate the number of finite flat models of CF, we use the moduli
spaces of finite flat models.

Let VF be the two-dimensional trivial representation of GK over F. By Propo-
sition 1.3, to calculate the number of finite flat models, it suffices to count the
number of the F-rational points of G RVF,0.

For A ∈ GL2

(
F((u))

)
, we write MF ∼ A if there is a basis {e1, e2} of MF over

F((u)) such that ϕ

(
e1
e2

)
= A

(
e1
e2

)
. We use the same notation for any sublattice

MF ⊂MF similarly.
Finally, for any sublattice MF ⊂ MF with a chosen basis {e1, e2} and B ∈

GL2

(
F((u))

)
, the module generated by the entries of

⟨
B

(
e1
e2

)⟩
with the basis

given by these entries is denoted by B · MF. Note that B · MF depends on the
choice of the basis of MF. We can see that if MF ∼ A for A ∈ GL2

(
F((u))

)
with

respect to a given basis, then we have

B ·MF ∼ ϕ(B)AB−1

with respect to the induced basis.

Theorem 4.1. Let q be the cardinality of F. Then we have

|M(CF,K)| =
∑
n≥0

(an + a′n)q
n.

Here an and a′n are defined as in the introduction.
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Proof. Since VF is the trivial representation, MF ∼
(
1 0
0 1

)
for some basis. Let

MF,0 be the lattice of MF generated by the basis giving MF ∼
(
1 0
0 1

)
. By the

Iwasawa decomposition, any sublattice of MF can be written as

(
us v
0 ut

)
· MF,0

for s, t ∈ Z and v ∈ F((u)). We put

G RVF,0,s,t(F) =
{(

us v
0 ut

)
·MF,0 ∈ G RVF,0(F)

∣∣∣∣ v ∈ F((u))
}
.

Then
G RVF,0(F) =

∪
s,t∈Z

G RVF,0,s,t(F)

and this is a disjoint union by Lemma 3.2.
We put

MF,s,t =

(
us 0
0 ut

)
·MF,0.

Then we have MF,s,t ∼
(
u(p−1)s 0

0 u(p−1)t

)
with respect to the basis induced from

MF,0. Any MF in G RVF,0,s,t(F) can be written as

(
1 v
0 1

)
·MF,s,t for v in F((u)).

Then we have

MF ∼
(
u(p−1)s −vu(p−1)s + ϕ(v)u(p−1)t

0 u(p−1)t

)
with respect to the induced basis. The condition ueMF ⊂ (1⊗ ϕ)

(
ϕ∗(MF)

)
⊂ MF

is equivalent to the following:

0 ≤ (p− 1)s ≤ e, 0 ≤ (p− 1)t ≤ e,

vu(vu
(p−1)s − ϕ(v)u(p−1)t) ≥ max

{
0, (p− 1)(s+ t)− e

}
.

Conversely, s, t ∈ Z and v ∈ F((u)) satisfying this condition gives a point of

G RVF,0,s,t(F) as
(
1 v
0 1

)
·MF,s,t. We put r = −vu(v).

We fix s, t ∈ Z such that 0 ≤ s, t ≤ e0. The lowest degree term of vu(p−1)s is
equal to that of ϕ(v)u(p−1)t if and only if vu(v) = s−t, in which case vu(vu

(p−1)s) =
ps− t.

In the case where ps−t ≥ max
{
0, (p−1)(s+t)−e

}
, the condition vu(vu

(p−1)s−
ϕ(v)u(p−1)t) ≥ max

{
0, (p− 1)(s+ t)− e

}
is equivalent to

min
{
vu(vu

(p−1)s), vu
(
ϕ(v)u(p−1)t

)}
≥ max

{
0, (p− 1)(s+ t)− e

}
,

and further equivalent to

r ≤ min

{
(p− 1)s,

e− (p− 1)s

p
, e− (p− 1)t,

(p− 1)t

p

}
.
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We put

rs,t = min

{
(p− 1)s,

[
e− (p− 1)s

p

]
, e− (p− 1)t,

[
(p− 1)t

p

]}
.

In this case, the number of the points of G RVF,0,s,t(F) is equal to qrs,t by Lemma
3.2.

Next, we consider the case where ps− t < max
{
0, (p− 1)(s+ t)− e

}
. We note

that
rs,t ≤ min

{
(p− 1)s, e− (p− 1)t

}
< t− s

in this case. We claim that the condition vu(vu
(p−1)s−ϕ(v)u(p−1)t) ≥ max

{
0, (p−

1)(s+ t)− e
}
is satisfied if and only if

v = αus−t + v+ for α ∈ F and v+ ∈ F((u)) such that − vu(v+) ≤ rs,t.

Clearly, the latter implies the former. We prove the converse. We assume that the
former condition. If

min
{
vu(vu

(p−1)s), vu
(
ϕ(v)u(p−1)t

)}
≥ max

{
0, (p− 1)(s+ t)− e

}
,

we may take α = 0. So we may assume that

min
{
vu(vu

(p−1)s), vu
(
ϕ(v)u(p−1)t

)}
< max

{
0, (p− 1)(s+ t)− e

}
.

Then the lowest degree term of vu(p−1)s is equal to that of ϕ(v)u(p−1)t, and the
lowest degree term of v can be writen as αus−t for α ∈ F×. We put v+ = v−αus−t.
We can see −vu(v+) ≤ rs,t, because vu(v+u

(p−1)s − ϕ(v+)u
(p−1)t) ≥ max

{
0, (p −

1)(s + t) − e
}
and the lowest degree term of v+u

(p−1)s cannot be equal to that of

ϕ(v+)u
(p−1)t. Thus the claim has been proved, and the number of the points of

G RVF,0,s,t(F) is equal to qrs,t+1 by Lemma 3.2.
We put hs,t = logq |G RVF,0,s,t(F)|. Collecting the above results, we get the

followings:

• If s+ t ≤ e0 and ps− t ≥ 0, then hs,t = [(p− 1)t/p].

• If s+ t ≤ e0 and ps− t < 0, then hs,t = (p− 1)s+ 1.

• If s+ t > e0 and ps− t ≥ (p− 1)(s+ t)− e, then hs,t =
[(
e− (p− 1)s

)/
p
]
.

• If s+ t > e0 and ps− t < (p− 1)(s+ t)− e, then hs,t = e− (p− 1)t+ 1.

Now we have
|M(CF,K)| =

∑
0≤s,t≤e0

qhs,t .

We put
Sn =

{
(s, t) ∈ Z2

∣∣ 0 ≤ s, t ≤ e0, hs,t = n
}
,
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and

Sn,1 =
{
(s, t) ∈ Sn

∣∣ s+ t ≤ e0, ps− t ≥ 0
}
,

Sn,2 =
{
(s, t) ∈ Sn

∣∣ s+ t ≤ e0, ps− t < 0
}
,

S′
n,1 =

{
(s, t) ∈ Sn

∣∣ s+ t > e0, ps− t ≥ (p− 1)(s+ t)− e
}
,

S′
n,2 =

{
(s, t) ∈ Sn

∣∣ s+ t > e0, ps− t < (p− 1)(s+ t)− e
}
.

It suffices to show that |Sn,1|+ |Sn,2| = an and |S′
n,1|+ |S′

n,2| = a′n.
Firstly, we calculate |Sn,1|. We assume (s, t) ∈ Sn,1. In the case n1 ̸= 0, we

have t = pn0 +n1 +1 by [(p− 1)t/p] = (p− 1)n0 +n1. Then ps ≥ t = pn0 +n1 +1
implies s ≥ n0 + 1, and we have

n0 + 1 ≤ s ≤ e0 − pn0 − n1 − 1.

We note that if t > e0, we have

(e0 − pn0 − n1 − 1)− (n0 + 1) + 1 = e0 − (p+ 1)n0 − n1 − 1 < 0.

So we get
|Sn,1| = max{e0 − (p+ 1)n0 − n1 − 1, 0}.

In the case n1 = 0, we have t = pn0 or t = pn0 + 1 by [(p− 1)t/p] = (p− 1)n0. If
t = pn0, we have n0 ≤ s ≤ e0−pn0. If t = pn0+1, we have n0+1 ≤ s ≤ e0−pn0−1.
So we get

|Sn,1| = max{e0 − (p+ 1)n0 + 1, 0}+max{e0 − (p+ 1)n0 − 1, 0}.

Secondly, we calculate |Sn,2|. In the case n1 ̸= 1, we have Sn,2 = ∅. In the case
n1 = 1, we assume (s, t) ∈ Sn,2. Then s = n0, and we have pn0 + 1 ≤ t ≤ e0 − n0.
So we get

|Sn,2| = max{e0 − (p+ 1)n0, 0}.

Collecting these results, we have |Sn,1|+ |Sn,2| = an.
Next, we calculate |S′

n,1|. We assume (s, t) ∈ S′
n,1. In the case n′1 ̸= 0, we have

s = e0 − e1 − pn′0 − n′1 − 1 by
[(
e − (p − 1)s

)/
p
]
= (p − 1)n′0 + n′1 + e1. We note

that
[(
e − (p − 1)s

)/
p
]
= n ≥ 0 shows s ≤ e0. Then ps − t ≥ (p − 1)(s + t) − e

implies pt ≤ pe0 − pn′0 − n′1 − 1, and further implies t ≤ e0 − n′0 − 1. So we have

e1 + pn′0 + n′1 + 2 ≤ t ≤ e0 − n′0 − 1.

We note that e1 + pn′0 + n′1 + 2 = n + n′0 + 2 ≥ 1 and e0 − n′0 − 1 ≤ e0, because
n′0 ≥ −1. We note also that if s < 0, then

(e0 − n′0 − 1)− (e1 + pn′0 + n′1 + 2) + 1 = e0 − e1 − (p+ 1)n′0 − n′1 − 2 < 0.

So we get
|S′
n,1| = max{e0 − e1 − (p+ 1)n′0 − n′1 − 2, 0}.
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In the case n′1 = 0, we have s = e0 − e1 − pn′0 − 1 or s = e0 − e1 − pn′0 by[(
e− (p− 1)s

)/
p
]
= (p− 1)n′0+ e1. If s = e0− e1−pn′0− 1, we have e1+pn

′
0+2 ≤

t ≤ e0 − n′0 − 1. If s = e0 − e1 − pn′
0, we have e1 + pn′

0 + 1 ≤ t ≤ e0 − n′0. We note
that n′0 ≥ 0, because n′1 = 0. So we get

|S′
n,1| = max{e0 − e1 − (p+ 1)n′0 − 2, 0}+max{e0 − e1 − (p+ 1)n′0, 0}.

At last, we calculate |S′
n,2|. In the case n′1 ̸= 1, we have S′

n,2 = ∅. In the case
n′1 = 1, we assume (s, t) ∈ S′

n,2. Then t = e0 − n′0, and we have n′0 + 1 ≤ s ≤
e0 − e1 − pn′0 − 1. Here we need some care, because there is the case n′0 = −1, in
which case t > e0. Now n′0 = −1 is equivalent to n = 0 and e1 = p− 2. So we get

|S′
n,2| = max{e0 − e1 − (p+ 1)n′0 − 1, 0}

except in the case where n = 0 and e1 = p− 2, in which case S′
n,2 = ∅. Collecting

these results, we have |S′
n,1|+ |S′

n,2| = a′n. This completes the proof.

Example 4.2. If K = Qp(ζp) and F = Fp, we have
∣∣M(CFp ,Qp(ζp)

)∣∣ = p + 3 by
Theorem 4.1. We know that Z/pZ ⊕ Z/pZ, Z/pZ ⊕ µp and µp ⊕ µp over OQp(ζp)

have the generic fibers that are isomorphic to CFp . We can see
∣∣Aut(CFp)

∣∣ =
p(p+ 1)(p− 1)2. On the other hand, we have

Aut(Z/pZ⊕ µp) ∼= Aut(Z/pZ)×Hom(Z/pZ, µp)×Aut(µp),

because Hom(µp,Z/pZ) = 0. In particular, we have
∣∣Aut(Z/pZ⊕ µp)

∣∣ = p(p− 1)2.

Hence, there are (p+ 1)-choices of an isomorphism CFp

∼−→
(
Z/pZ⊕ µp

)
Qp(ζp)

that

give the different elements of M
(
CFp ,Qp(ζp)

)
. So the equation

∣∣M(CFp ,Qp(ζp)
)∣∣ =

1+(p+1)+1 shows that there does not exist any other isomorphism class of finite
flat models of CFp .

Remark 4.3. Theorem 4.1 is equivalent to an explicit calculation of the zeta func-
tion of G RVF,0, and we can see that dimG RVF,0 = max

{
n ≥ 0

∣∣ an + a′n ̸= 0
}
.
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