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Introduction

This paper is a doctor thesis of the author. In this paper, we study the moduli
spaces of finite flat models of 2-dimensional local Galois representations over finite
fields.

First, we explain the moduli space of finite flat models. Let K be a p-adic
field for p > 2. We consider a two-dimensional continuous representation Vg of
the absolute Galois group Gk over a finite field F of characteristic p. By a finite
flat model of Vg, we mean a finite flat group scheme G over Ok, equipped with an
action of F, and an isomorphism V& —— G(K) that respects the action of G and
F. We assume that V& has at least one finite flat model. Then there exists a moduli
space of finite flat models of Vg, which is projective scheme over F, and we denoted
it by gg@vp’o.

In the section 1, we recall the moduli space of finite flat models, and explain
a relationship between a local deformation ring and the moduli space of finite flat
models. Then we explain a conjecture by Kisin on the connected component of the
moduli space of finite flat models.

In the section 2, we study the connected components of the moduli space of finite
flat models. The projective scheme ¥ %Y, , over [ is the moduli of finite flat models
of V¢ with some determinant condition. From the viewpoint of the application to
the modularity problem, we are interested in the connected components of %%}}mo.

In the subsention 1, we prove some preliminary lemmas. In the subsection 2,
we prove the Kisin conjecture. The statement is the following.

Theorem. Let F' be a finite extension of F. Suppose x1,12 € YAy, o(F') corre-
spond to objects My g, Map of (Mod/S)p respectively. If My p and Map are
both non-ordinary, then 1 and x2 lie on the same connected component of 54%%70.

When K is totally ramified over Q,, this was proved in [Kis|. If the residue field
of K is bigger than IF, the situation changes greatly because & ®z, IF can be split
into a direct product. When K is a general p-adic field, the case of Vr being the
trivial representation was treated in [Gee].

In the subsection 3, as an application to global Galois representations, we prove
a theorem on the modularity, which states that a deformation ring is isomorphic to
a Hecke ring up to p-power torsion kernel. This completes Kisin’s theory for G L.



In the section 2, we study the dimension of moduli space of finite flat models.
Let e be the ramification index of K over Q,, and k be the residue field of K.
We consider a two-dimensional continuous representation Vg of the absolute Galois
group Gi over a finite field F of characteristic p. We assume that Vg has at least
one finite flat model. If e < p—1, the finite flat model of Vf is unique by Raynaud’s
result [Ray, Theorem 3.3.3]. In general, there are finitely many finite flat models
of Vg, and these appear as the F-rational points of ¥Z%v; ¢. It is natural to ask
about the dimension of 4%y, o. In this section, we determine the type of the zeta
functions and the range of the dimensions of the moduli spaces. The main theorem
of this section is the following.

Theorem. Letdy, = dimY Xy, o, and Z(G R v, 0;T) be the zeta function of YR v, ..
We put n = [k : F,]. Then followings are true.

1. After extending the field F sufficiently, we have

Z(GRv.0;T) = [[(1 = [FI'T) ™
i=0
for some m; € Z such that may, > 0.
2. If n =1, we have
e+ 2
0<dy. < .
< < [23]

If n > 2, we have

n+1 e (n—2]le+1 e+2
<dy. < .
0= VF{ 2 Hp+l]+_ 2 Hp+1]+[p+l]

Here, [z] is the greatest integer less than or equal to z for x € R.

Furthermore, each equality in the above inequalities can happen for any finite
extension K of Qp.

Raynaud’s result says that if e < p — 1 then Y%y, ¢ is one point, that is, zero-
dimensional and connected. If e < p — 1, the above theorem also implies that
G Rv, 0 is zero-dimensional. So it gives a dimensional generalization of Raynaud’s
result for two-dimensional Galois representations. The connectedness of 4%y, o is
completely false in general. For example, we can check that if K = Q,({,) and
V is trivial representations then 4%y, o consists of P& and two points (c.f. [Kis,
Proposition 2.5.15(2)]). Here PL denotes the 1-dimensional projective space over F.

In the subsection 1, we prove some Lemmas, and give an example for any K
where the moduli space of finite flat models is one point.

A proof of the main theorem separates into two cases, that is, the case where Vg
is not absolutely irreducible and the case where Vf is absolutely irreducible. In the
subsection 2, we treat the case where Vf is not absolutely irreducible. In this case,
we decompose 4%y, o into affine spaces in the level of rational points. Then we ex-
press the dimensions of these affine spaces explicitly and bound it by combinatorial



arguments. In the subsection 3, we treat the case where Vf is absolutely irreducible.
A proof is similar to the case where Vf is not absolutely irreducible, but, in this
case, we have to decompose 4%y, o into AZ and A%_l x G, and Ag_Q x G2, in the
level of rational points. Here A% denotes the d-dimensional affine space over F, and
Gy is A —{0}.

In the subsection 4, we state the main theorem and prove it by collecting the
results of former sections.

In the section 4, we study the rational points of moduli space of finite flat
models. In this section, we assume that K is totally ramified of degree e over Q,,
and Vg is the two-dimensional trivial representation of G over F.

We consider the constant group scheme Cp over Spec K of the two-dimensional
vector space over F. Let M (Cy, K) be the set of the isomorphism class of the finite
flat models of Cy. If e < p — 1, then M (CF, K) is one-point set by [Ray, Theorem
3.3.3]. However, if the ramification is big, there are surprisingly many finite flat
models. In this section, we calculate the number of the isomorphism class of the
finite flat models of Cf, that is, |M(C, K)|. The main theorem of this section is
the following.

Theorem. Let q be the cardinality of F. Then we have

M(Co, K)| = 3 (an + al)a"
n>0

Here a,, and a), are defined as in the following.
We express e and n by

e=(p—1e+e, n=((p—1ng+mn =((p—1)nj+n| +e

such that eg,ng,n{, € Z and 0 < e1,ny,n}) <p—2. Then

an:max{eo—(p—l—l)no—nl—l,()} ifny #£0,1,
an :max{eo —(p+1nog—ny — 1,0}
—|—max{eo— (p+1)ng —my —|—1,0} ifny =0,1,
and
a%:max{eofel —(p+1)ny —n} 72,0} if n} #0,1,
a, =max{eyg —e; — (p+ 1)nj —nj — 2,0}
+ max{eg — e — (p+ 1)ng —ny,0} ifny =0,1

except in the case where n =0 and ey = p — 2, in which case we put af = eg.

In the above theorem, we can easily check that [M(Cp, K)|=1ife <p—1.



Notation

Throughout this paper, we use the following notation. Let p > 2 be a prime number,
and k be the finite field of cardinality ¢ = p™. For a positive number m, the finite
field of cardinality p™ is denoted by F,=. For a ring R, the ring of Witt vectors
over R with respect to p is denoted by W (R). Let K, be the quotient field of W (k),
and K be a totally ramified extension of Ky of degree e. The ring of integers of K
is denoted by Ok, and the absolute Galois group of K is denoted by Gg. Let I
be the inertia group of the absolute Galois group Gk, and Fr, be the ¢g-th power
Frobenius of the absolute Galois group Gj. Let F be a finite field of characteristic
p. For a ring A, the formal power series ring of u over A is denoted by A[[u]], and
we put A((u)) = A[[u]](1/u). For a field F, the algebraic closure of F' is denoted
by F and the separable closure of F is denoted by F®P. Let v, be the valuation
of F((u)) normalized by v,(u) = 1, and we put v,(0) = co. For a local ring A,
the maximal ideal of A is denoted by m4. For a topological space X, the set of
connected components of X is denoted by mo(X). For € R, the greatest integer
less than or equal to « is denoted by [z]. For a positive integer d, the d-dimensional
affine space over F is denoted by A¢. Let G,, be AL — {0}.

1 Deformation ring and moduli space of finite flat
models

In this section, we explain the relationship between a deformation ring and a moduli
space of finite flat models.

First, we are going to introduce a deformation ring. Let V§ be a two-dimensional
continuous Gk -representation over I with a fixed ordered basis. A G i-representation
over a finite ring is said to be flat if and only if it is isomorphic to the generic fiber
of a finite flat group scheme over Ok as a G-module. We assume that Vi is flat.
Let ARy ) be the category of Artin local finite W (IF)-algebra A whose residue
field is isomorphic to F as a W (F)-algebra. To define a deformation, we use a no-
tion of groupoids. For the notion of groupoids, please consult [Kis, Appendix on

groupoids]. The framed flat deformation D%D of Vg over ARy () is a groupoid

Dgl’FD over ARy (r) determined as in the followings:

e For an object A in ARy (g, an object of D?/[’FD (A) is a triple (V4,v, B), where
V4 is a flat continuous G i-representation that is a free A-module of rank
2 with an ordered basis 5 over A, and ¥ : V4 ®4 F = V& is an F-linear
G i-isomorphism sending S to the fixed ordered basis of V.

e A morphism (Va,¥,8) = (Var,9’, 8') covering a given morphism A — A’ in
ARy (ry is an equivalence class [a], where a1 Vi ®4 A’ = Vo is an A'-linear
G k-isomorphism that is compatible with the morphisms v, 1" and sending (3
to A/, and two morphisms are equivalent if they differ by an element of A’*.

Then the framed flat deformation D%D is pro-represented by a complete local
W (IF)-algebra RHV]’FD.



We are going to define a deformation rirg with the condition that the p-adic
Hodge type v = (1), which is denoted by Rf‘]/ik V. Let (R%D[l/p])v be the quotient
of R?,]’Flj[l /p] corresponding to the connected components of Spec R?/[;D[l /p] whose

closed points ¢ satisfy the following:

If V¢ is the deformation corresponding to &, then Fil® Derys (Vf[l/p])K
is free of rank 1 over k({) ®q, K. Here, k(§) is the residue field of &.

We note that V¢[1/p] is Barsotti-Tate representation, since we are considering a flat

deformation. Then we define R@I’FD’V by the image of Rig/[’FD in (R&’F[l / p])v.

The information of the connected components of Spec Rf‘i,]’FD’v[l /p] is very im-

portant for an application to a theorem comparing a deformation ring and a Hecke
ring ([Kis, Theorem 3.4.11]). So we want to know my(Spec R?,];D’V[l/p]).

Next, we are going to explain the Kisin module and the moduli space of finite
flat models of V. By a finite flat model of Vg, we mean a finite flat group scheme
G over O, equipped with an action of IF, and an isomorphism V& =+ G(K) that
respects the action of G and F.

Let & = W(k)[[u]], and Og be the p-adic completion of &[1/u]. We consider
the action of ¢ on Og ®z, F = k((u)) ®F, F defined by p-th power on k((u)). Let
®Mo, @, ¥ be the category of finite (Og ®z, F)-modules M with ¢-semi-linear map
¢ : M — M such that the induced linear map ¢*M — M is bijective.

We take and fix a uniformizer m of Ox. We choose a system (7, )m>1 of elements
in K such that 7 = wand 7%, .| = 7, form > 1, and put Koo = U,,,>1 K (7). Let
Repp(Gk., ) be the category of finite-dimensional continuous G k__-representations
over F.

Then the functor

se =1
T: ®Mo.g, 5 — Repg(Gr.); M =+ (k((u))** @y M)*

is an equivalence of abelian categories. We take Mp € ®Mo, @, r such that T'(Mr)
is isomorphic to Vr(—1)|g, . Here (—1) denotes the inverse of the Tate twist.
Then Mr is a free (Og ®z, F)-module of rank 2.

We put & = 6®z,F. Let (Mod /&r) be the category of finite free Gp-modules
M with ¢-semi-linear map ¢ : M — N such that the cokernel of the induced linear
map ¢*9 — M is killed by u®. An object of (Mod /Sy) is called a Kisin module
with coefficients in F. Let (F-Gr/Og) be the category of finite flat group schemes
over Ok with a structure of an F-vector space.

Theorem 1.1. There exists an equivalence of categories
Gr: (Mod /&) — (F-Gr/Ok).
Proof. This follows from [Br, Théorém 4.2.1.6] and [Kis, Lemma 1.2.5]. O

Proposition 1.2 ([Kis, Proposition 1.1.13]). For an object M of (Mod /&), there
exists a canonical isomorphism

T(Os ®e M)(1) = Gr(M)(K)|c,.,

as Gk__-representations. Here (1) denotes the Tate twist.



By this proposition, we see that a Kisin module which is a sublattice of Mp
corresponds to a finite flat model of V. Here and in the sequel, a sublattices means
a finite free Gp-submodule of Mg that spans My over Og ®z, F. In the above, we
have defined a Kisin module with coefficients in F. More generally, we can define a
Kisin module with coefficients in a Z,-algebra (cf. [Kis, (1.2)]). Using this general
Kisin module, we can construct a moduli space of Kisin modules, which is denoted
by Y%y, and projective over Spec R?/&‘D (cf. [Kis, (2.1)]). The closed fiber of ¥Zv,

over Spec R&’FD is denoted by 4%y, 0. The scheme ¥ %y, o is a moduli space of
finite flat models of Vx in the sense of the following proposition.

Proposition 1.3 ([Kis, Corollary 2.1.13]). For any finite extension F' of F, there
is a natural bijection between the set of isomorphism classes of finite flat models of
Ve = Ve Qp F' and g%VF,O(F/)-

A closed subscheme 9%\, C 9%y, is defined by the condition that p-adic

Hodge type v = (1) as in [Kis, (2.4.2)]. The closed fiber of 4%7, over Spec R?,E is
denoted by Y%, .-
A,0,v

Then there is the following relation between the deformation ring Ry, ~" and
the moduli space Y%7, ,.

Proposition 1.4. There exists a natural bijection
1,0,v ~
mo(Spec Ry, "V [1/p]) = mo(9 %Y, 0)-

Proof. This follows from [Kis, Corollary 2.4.10], since 54%%{? =GRy, o by [Kis,
Proposition 2.4.6] if the p-adic Hodge type v = (1). O

So the problem has been reduced to study mo(9 %Y, ). The connected com-
ponents g%;’,};%d C YAY, , is defined by the points corresponding to the ordinary

finite flat group schemes. We can easily determine the set mg (g%""@o{)d) as in the
following:

Proposition 1.5 ([Kis, Proposition 2.5.15]). If %%’;J’F%d is non-empty, then it

X1
0

characters of Gx. In the latter case, we have the followings:

consist of a single point, unless Vg ~ ( O) where x1 and x2 are unramified
2

1. If x1 # X2, then %%‘(/;Ogd consists of two points.
2. If x1 = xa, then g%‘(/;’)gd = PL.
Next, we consider the non-ordinary part. We put

v,non-ord __ v v,ord
GRS = Gy, N\ IRV

Then Kisin conjectured that 4%y;"7 m-ord s connected.



2 Connected components

2.1 Preliminaries

We assume Spec R%D # (), and this assumption assures that the action of I on
det Vf is the reduction mod p of the cyclotomic character.
The fundamental character of level m is given by

()

T

Here mo, is the maximal ideal of O. If K'/K is a finite unramified extension that
contains the (p™ — 1)-st roots of unity, then the same formula as above defines a
character of G-, which is again denoted by w,,. Note that this extension depends
on the choice of the uniformizer 7.

-—X
wWm I =k 5 g mod mo-

Lemma 2.1. If Vr is absolutely irreducible and Fp» CIF, then
V|1, ~ w3, ® w3y,
for a positive integer s such that (¢ + 1)1 s.

Proof. Let Ip C Ik be the wild inertia group. Then VFIP # 0 and VFIP is Gi-stable,
SO V]FIP = Vr. As the action of Ix on Vg factors through the tame inertia group,
we get Vr|r, ~ wpl @ wy?, for some non-negative integers s1, s3 and some positive
integers mi, ms. Now we fix a lifting f‘rq € Gk of the g-th Frobenius Fr,. For
every o € Ix and every positive integer m, we have w,, (frqoao (ﬁrq)’l) = wp(0)7.
Changing the above basis by the action of (frq)*l, we obtain Vi|r, ~ wil ©wir2.

If wyt = wp2,, we get wyl = wl’l. So we may assume m; = n. As w,
is defined over Gi, we can consider the representation V& ® w, ** of Gx. Then
this representation is absolutely irreducible and factors through Gj. This is a
contradiction.

So we may assume w;! # w;2 . As Vi is an irreducible representation, w;! =

wh? and w2, = wlil. Hence w;! = ngfl and we may assume m; = 2n. Thus we
get Velr, ~ w3, ® w3,

If (¢4 1) | s, then Vi|r, ~ w? @ w? where s’ = 5/(q+ 1). This contradicts the
absolutely irreducibility of V& by considering V& ® w,; ", So we get (¢+1)ts. O

From now on, in this section, we assume > C F and fix an embedding & < F.
This assumption does not matter, because we may extend F to prove the Kisin
conjecture. We consider the isomorphism

O @z, F2k((w)er, FS  [[  F((w); (Z au) b (Za(ai)bui)

o€Gal(k/F,) 7

and let €, € k((u)) ®r, F be the primitive idempotent corresponding to o. Take
o1, ,0n € Gal(k/F,) such that 0,41 = 0; 0 ¢~ . Here we regard ¢ as the p-th



power Frobenius, and use the convention that ¢,,4; = ;. In the following, we often
use such conventions. Then we have ¢(es,) = €5,,,, and ¢ : Mg — My determines
¢:€x, Mp — €5, My. For (A;)i1<i<n € GLo (]F((u)))n, we write

MF ~ (A17A27 . 7An) = (AZ)Z

o i i+1
if there is a basis {e!, €4} of e,, M over F((u)) such that ¢ <z}) = A; (2’1'“)'
2 2

We use the same notation for any sublattice 9y C My similarly. Here and in the
following, we consider only sublattices that are (& ®z, F)-modules.

Finally, for any sublattice My C My with a chosen basis {e},e}}1<i<, and

B = (B;)1<i<n € GLy (F((u)))n, the module generated by the entries of <Bi (2}) >

2
with the basis given by these entries is denoted by B-Iy. Note that B-9Mip depends

on the choice of the basis of M.

Lemma 2.2. Suppose Vi is absolutely irreducible. If F' is the quadratic extension

of F, then
/ 0 (071 Qo 0 (07 0
M<( (o) (5 an))

for some a; € (F')* and a positive integer s such that (¢ + 1) ts. Conversely, for
each positive integer s such that (¢ + 1) t s, there exists an absolutely irreducible
representation Vi as above.

Proof. Let K’ be the quadratic unramified extension of K, and k’ be the residue
field of K’. Then
V]F(_l)‘GK/ ~ )\/w;nS S )\IOJQ_T?S

for an unramified character N : Gg — F* and a positive integer s such that

(g+ 1) 1 s by applying Lemma 2.1 to Vg(—1)*. By taking the quadratic extension

F’ of F, we can extend X to A : Gxg — (F')*. We take a lifting F~‘rq € Gk, of the

g-th Frobenius Fr,. Now we fix a (¢ — 1)-st root of 7, which is denoted by «*~/7.

Then we put & = ﬁq( ©*~y/m)/ /7 € Of, and let « be the reduction of & in k.

We have o € F/, because a¢ ~! = 1. Considering V¢ ®r ', we may assume F = F’.
We put K, = K’ - Koo. Then (Frg)? is in G, . Now we have

(Fro)2( /7)) _ (Frg)?(“ /@) Fr( /@) _ Fro(@ =) . =

= = a = Fr (a)a

SV Fr(#=y/m) VT B (FY/)

and WQn((I":I'q)Q) = o971, Hence we can take vy, vy € Vp(—1) so that
Fr,(v1) = A(Fry)a™®vy, Fry(vs) = A(Fry)a v,

and

g(v1) = Mg)wg, (9)v1, g(v2) = Ag)wa, (g9)v2



for all g € Gg,_. We take an element wj of (k®r, F)* so that g(wy) = (19A(g))wax
for all g € Gk. By this condition, wy is determined up to (k ®p, F)*.
By the definition of the action of Gk_, on Ogur, we can choose an element uy,, of

Ogur /pOgur s0 that ugifl = and Ii‘vrq(uzn) = alg,. We consider the isomorphism
K @p, F = H F;a®b— (o(a)h),
oceGal(k’ /Fp)

and let ¢ € k' ®p, F be the primitive idempotent corresponding to ids/. For
0 <r<2n—1, weput € = ¢"¢y. Note that (a?” @ 1)e, = (1 ® a)e, for all a € k.
We put
e = w;l{(u;n ® 1)(egv1 + €,v2) + (ugi ® 1)(e1v1 + € p1v2)+
n—1
s+ (’Ugn s & 1)(671,11)1 + Egnflvg)},

n., 71.+ls
ea = wy H{(ud,” @ 1)(€nv1 + €ov2) + (uh, ° @ 1)(€pp1v1 + €102)+

2n—1
(Wb, T@1)(ezp_1v1 + €n—1U2)}

in (Ogur /pOgur) @, Vr(—1). Then e; and ey are fixed by g € Gk, and E:rq. Hence
e1, ez are fixed by G, and these are a basis of ®PMo, r over O¢ ®z, F. We put
ay = wy/d(wy). As ¢(wy) satisfies the condition determining wy, the element c)
of (k®p, F)* is in (k ®r, F)*. Now we have

o(e1) = OéA{(El +ent1)+ o+ (enm1 + €2n—1)}61 + ax(eo + €n)ea,
Pea) = anu’(eo + €n)er + an{(e1 + €np1) + -+ + (€n—1 + €2n-1) }eo.
If we put
01 :(ba 02 :1dka 0—3:¢_17"'a o—n:¢2a
then we have
€6y = €n—1t €1, €6 =€)t €n,..., €5, = €p_o2 + €29

and
0 o (%) 0 Qp 0
(2 )5 D) 2)

Here «; is the 0;41-th component of «y in HaeGal(k:/]Fp) F.
We can check the last statement easily. O

2.2 Kisin conjecture

Lemma 2.3 ([Gee, Lemma 2.2]). IfF' is a finite extension of F, the elements of
GHY, o(F') naturally correspond to free k[[u]] ®p, F'-submodules My C My @p
of rank 2 that satisfy the following:



1. Mg is ¢-stable.

2. For some (so any) choice of k[[u]] ®r, F'-basis for My, and for each o €
Gal(k/F,), the map
¢ €My — 600¢—19ﬁ[5‘/

has determinant au® for some o« € F/[[u]]*.

Lemma 2.4 ([Gee, Lemma 2.4]). Suppose x1,z2 € GAY, o(F) correspond to objects
My r, Mar of (Mod/G)p respectively. Let N = (N;)1<i<n be a nilpotent element of
Mo (F((u)))n such that Moy = (L+ N) - My, and A = (A;)1<i<n be an element
of GLqy (F((u)))n such that My g ~ A. If $(N;)A;Niy1 € Mo (F[[u]]) for all i, then
there is a morphism P* — G %Y, , sending 0 to x1 and 1 to xs.

Lemma 2.5. Suppose n > 2. Let Mg be the object of (Mod/&)r corresponding

to a point x € 9RY, o(F). Fiz a basis of Mx over k[[u]] ®p, F. Consider U =
i n i u 0 i 1 0

(U; ))1§j§n € GLy(F((w)))" such that Ui() = (O u_1> and Uj() = (O 1) for

all j #4. IfUD - My is ¢-stable, it corresponds to a point =’ € GAHY, o(F), and '

lies on the same connected component of %.@‘(,}LO as .

Proof. First, U . 9p corresponds to a point &’ € GAY, o(F), because it satisfies
the conditions of Lemma 2.3. ,
Next, we consider N(*) = (N;l))lgjgn € M, (F((u)))n such that

Ni(i) = <u£1 :?) and NJ@ =0 for all j # i.

-1
@ . o — @)y . v 0N _ (0 1y 20—
Then UW - My = (1 + NW) - Mg, because ( 0 u> <_1 ou) \u-t 0 /-

So we can apply Lemma 2.4.

Theorem 2.6. Let ' be a finite extension of F. Suppose x1,12 € YAy, o(F)
correspond to objects My g, Mo of (Mod/S)p respectively. If My p and Mo g
are both mon-ordinary, then x1 and xzo lie on the same connected component of

GAHV, 0

Proof. When n = 1, this was proved in [Kis]. If e < p — 1, then 9%y, ,(F') is
one point by [Ray, Theorem 3.3.3]. So we may assume n > 2 and e > p — 1.
Furthermore, replacing V& by V& ®p F/, we may assume F = F’.
Suppose first that V& is reducible. We can choose a basis so that My p ~ A =
(Ai)1<i<n € Ma(F[[u]])" where A; = %i lc)l for a;, b, ¢; € Fl[u]], because My is
3
reducible and 9, y is ¢-stable. By the Iwasawa decomposition and the determinant
conditions, we can take B = (B;)1<i<n € GLo (F((u)))n such that Mo r = B- My

u—si ’Ui —
and B; = ( 0 u9> for s; € Z and v; € F((u)). Then Mo p ~ (qzb(Bi)AiBHll)i,

10



and we have

S(BABL = (v G(vi)) (@i bi) (u™ —vip
e 0 uPsi 0 ¢ 0 u S+
~ (auTPSTS g TP 4 byu PSS 4 (v )uT S
N 0 cuPsi TS '

In the last matrix, every component is integral because My r is ¢-stable.

First of all, we want to reduce the problem to the case where s; = 0 for all 1.
When e =p—1, we have 0 < v,(¢;) <p—1and 0 < v, (¢;) +ps; — si+1 < p—1 for
all 7 by the determinant conditions. From the second set of inequalities, we obtaine

n—1

0< Z{Uu(ciflfj) +psi—1—j — si—j ) <p'—1,

Jj=0

and we have
n—1 n—1
Z{Uu(ci—l—j) tPSi—1—j — Si—j }p] =" —1Dsi + Z vu(Cim1-5)P’-
7=0 =0

Combining these with 0 < v,(¢;) < p—1, we get —1 < s; < 1. If s; = 1 for
some 14, the second sign of the above inequality must be the equality sign. So we
get vy (c;) = 0 for all j. This contradicts the non-ordinarity of My r. If s; = —1
for some i, the first sign of the above inequality must be the equality sign. So we
get vy (¢j) + ps; — sj4+1 = 0 for all j. This contradicts the non-ordinarity of My 5.
Hence, we have s; = 0 for all . So we may assume e > p.

We consider U as in Lemma 2.5. If s; > 0 and U® - Mo r is ¢-stable, we
may replace My r with U (@) -My r by Lemma 2.5. This replacement changes s; into
s; — 1 and v; into uv;. If s; < 0, switching 901,  with 91, r so that we have s; > 0,
we consider the same replacement as above. Note that these replacements decrease
|s;| by 1. We prove that we can continue these replacements until we get to the case
where s; = 0 for all i. Suppose that we cannot continue the replacements and there
is some nonzero s;. Take an index i such that |s;,| is the greatest. By switching
My r with My r, we may assume s;, > 0. As we cannot continue the replacements,
we cannot decrease s;, keeping the ¢-stability, that is,

Uu(cio) + PSip — Sig+1 <p—lor Uu(ai0*1> — DSig—1 t Sip = 0.

If vy (ciy) + DSy — Sig+1 < p — 1, we have s;, = 1, v,(¢;,) = 0 and s;041 = 1,
because v, (¢, )+ (p—1) 8o+ (Sig—Sig+1) < p—1. Now we have v, (a;, ) —DSio+Sig+1 =
1, because e > p and v, (¢;y) + PSig — Sig+1 < P — 1. As 8;,4+1 cannot be decreased,
Uy (Cig4+1) + PSig+1 — Sig+2 < p — 1. The same argument shows that v, (c;) = 0 and
s; = 1 for all . This contradicts the non-ordinarity of 9y .

If vy (@iy—1)—PSig—1+8i, = 0, then s;,_1 > 0 and vy, (cjy—1)+PSig—1—Si, = € > P
As s;,_1 cannot be decreased, vy (a;,—2) — PSi;—2 + Sip—1 = 0. The same argument
shows that v, (a;) — ps; + s;41 = 0 for all 4. So we have that 9,y is an extension
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of a multiplicative module by an étale module. We show that such an extension

/ /
splits. Now we have My p ~ ((ai b )) for af, ¢, € Fl[u]]* and b; € F[[u]].
i

0 uc

1 2 a,  —alvl, + b+ uccio(vl)
7 . ~ 7 771+1 7 7 7
((0 1)) _ Mo ((0 ucc; ,

for v; € F[u]]. It suffices to show that there is (v})i<i<n € F[[u]]™ such that
ajvi,, = b +ucig(v;) for all 4, and we can solve the system of equations by finding
v} successively in ascending order of their degrees. Hence we have that My 5 is
ordinary, and this is a contradiction.

Thus we may assume s; = 0 for all i. Consider N = (N;)1<i<n € M2 (F((u)))

such that N; = (0 vi) for v; € F((u)). Then we have My p = (1 4+ N) - My r and

Then

n

0 0
d(N;) %i gl Niy1 = 0. Hence 7 and z2 lie on the same connected component
(3
by Lemma 2.4. This completes the proof in the case where Vf is reducible.
From now on, we consider the case where Vg is irreducible. If Vf is reducible
after extending the base field F, we can reduce this case to the reducible case. So
we may assume Vp is absolutely irreducible. Extending the field F, we have

0 1 10 10
e o (0 D)l )3 2)

for some «; € F* and a positive integer s by Lemma 2.2. This basis gives a
sublattice Mp. By the Iwasawa decomposition, we can take s},t, € Z and v} €

CAY s}
F((u)) so that My 5 = ((uO Utl()) Mp. Changing the basis by ((uO (2/_ )) )
u k2 . u K2 .

we get
0 wu* u’? 0 us 0
M]FN<CY1 (Utl O),a2<0 ut2>7...,an(0 Ut">>.

Here we have 0 < t1, 0 < s;,t; < e for 2 < ¢ < mn, and s; +t; = e for all ¢+ by the
¢-stability and the determinant conditions of 901; .

We are going to change the basis so that we have moreover ¢; < e. Changing the
U

basis of the i-th component by <O

ugl)’ we get the following transformations:

T‘iltiwti*p, ti_lwti_1+1f01‘i7é27
TgitQWtQ—p, tlwtl—l.

If t1 > e, we put
m=max{1<i<n|t F#e}l,

12



and carry out 73 when m = n, and Ty,41, Trto, ..., T, 71 when m # n. Then
0 < s;,t; <efor 2 <4 <mn,and t; decrease by p when m # 1, by p + 1 when
m = 1. Repeat this until we get to the situation where t; < e. If e > p, we get to
the situation where 0 < s1,t; <e. If e = p —1 and we do not get to the situation
where 0 < s1,t; < p— 1, then we have

M 0 wu! 1 0 1 0
F aq uP 0 , Qg 0 up—] yoeeyQp 0 up—l .

-1
In this case, changing the basis by ((é ul >> , we get
i

M 1 0 1 0 1 0
F (6751 up —up_l , Qg O up_l ey Qo O up_l .

This contradicts that My is irreducible. Hence we obtain a basis such that

0 u u®? 0 usm 0
(o ) ) 2)

for some s; and t; satisfying s; +¢; = e and 0 < s;,¢; < e for all 7. Let My be the
sublattice of My determined by this basis. Note that 9, r satisfies the conditions
of Lemma 2.3, and let 29 be the point of ¥%7;  corresponding to Mo F.

We prove that we can change (¢;)1<i<n furthermore by T;’s or Ti_l’s keeping
0 <t; <eforall 7, and get to the situation where |s; — t;| < p+ 1 for all i. By
Lemma 2.5, these changes do not affect which of the connected components xq lies
on. If e < p+ 1, this is satisfied automatically. So we may assume e > p + 2.
We prove that if there is an index j such that |s; — ¢;| > p + 2, then there is an
index jo such that |s;, —t;,| > p+ 2 and we can change ¢;, by T}, or Tjgl so that
|5, — tj,| decreases keeping 0 < t; < e for all i. We put h; = (—1)[=2/nl(s; — ;)
for i € Z. By assumption, there is an integer jo such that 1 < jo < 2n, hj, > p+2
and hj,—1 <e. If 2 < jy < n+1, we can change t;, by Tj;l, otherwise by Tj,,
so that |s;, — t;,| decreases keeping 0 < ¢; < e for all <. Thus we have proved the
claim. Hence if |s; —t;| > p+ 2 for an index j, we can carry out T}, or szl for an
index jo as above and this operation decreases Y .-, |s; —¢;| by at least 2. So after
finitely many operations, we get to the situation where |s; — ¢;| < p + 1 for all i.

Hence we may assume that s; and ¢; satisfy s; +¢;, = e, 0 < 5,8, < e and
|s;i —t;] < p+1 for all i. We are going to prove that xzy and z; lie on the same
connected component. We can prove that xy and x5 lie on the same connected
component by the same argument.

By the Iwasawa decomposition and the determinant conditions, we can take

—aq .

B = (Bi)i1<i<n € GLy(F((u)))" such that M, 5 = B-Myp and B; = <“0 vi )

u
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for a; € Z and v; € F((u)). Then we put r; = v, (v;). Now we have

¢(Bl) (uotl US1) B;l _ <¢(U1)Ut1+a2 ySt—Par—az _ ¢(U1)’U2U;t1) ’

0 ytitraitaz _UQutl'HDal
B usi 0 B_l B uSiTPaitai+1 ¢(Ui)uti_ai+1 _ Ui+1u8i_pai
¢( 2) 0 uti i+1 0 uti+pai_ai+1

for 2 <i < n. On the right-hand sides, every component of the matrices is integral
because M 7 is ¢-stable.
First, we consider the case t; + pa; + as > e. In this case,

(pri+ti+az) + (ro+t1 +pay) =e, s1—pay —ag =pri +ry +t; <0

by the ¢-stability and the determinant conditions of 9t r. We have a1 > ry,
because t1 + pa; + ag > e > pry + t1 + ao. Similarly, we have as > ro, because
t1 +pa;+ax >e>ro+t; 4+ paj.

We consider the following operations:

a; ~» a; — 1, v; ~ wv;, if it preserves the ¢-stability of B - Mo .

These operations replace x1 by a point that lies on the same connected component
as r1 by Lemma 2.5. We prove that we can continue these operations until we get
to the situation where t; + pa; + as < e. In other words, we reduce the problem to
the case t; + pa; + az < e. If we can continue the operations endlessly, we get to
the situation where t; 4+ pa; +as < e, because the conditions s; — pa; +a;+1 > 0 for
2 < i < n exclude that both a; and as remain bounded below. Suppose we cannot
continue the operations. This is equivalent to the following condition:

Sp —pan +a; =0o0rre+t; +pag <p-—1,
pr1+t1+az=0ortz+paz —az3 <p-—1,
Si—1 —paj—1 +a; =0or t; +pa; —a;+1 <p—1foreach 3 <i < n.

If e > p, there are only the following two cases, because (pri + t1 +as) + (1o +t1 +
par) = e and (s; — pa; + ;1) + (¢ +pa; — ;1) = e for 2 < i <n.

Casel :pri+t1+a2 =0, s; —pa; +a;41 =0 for 2 <i < n.
Case2:1ro+t1+pa; <p—1, t; +pa; —a;41 <p—1for 2 <i<n.

If e =p—1, clearly it is in Case 2.

In the Casel. Suppose that there is an index ¢ such that 2 < ¢ < n and
pr; +t; — a;j41 # Tiv1 + s; — pa;. Then both sides are non-negative, because
Uy (v )uti =3+ — g, u®7P%) > 0. Comparing ;41 + 8; — pa; > 0 with s; — pa; +
ai+1 = 0, we get ryy1 > aj41. Then priyr +4ip1 — aip2 > paip1 +tip1 — aip2 > 0,
and 742 + Si41 — pajr1 > 0 because vy, (P(v;yq)ubit1=%+2 — y;y gySi+1TPIH+1) > (),
Comparing 7,424 S;+1 —pa;+1 > 0 with s;11 —pa;41+a;42 =0, we get 7420 > a;yo.
The same argument goes on and shows r; > a;. This is a contradiction. Thus
pri +t; — ajy1 = 141 + s; — pa; for all 2 <i < n. Now we change the basis of

0 wu™ u®? 0 u®r 0
M]F ~ | a1 utl 0 y 02 0 utg yeooyOn 0 utn

14



—aq Ti
by <<UO Za>> . Then we have
1 0 1 0 1 0
Mg ~ (al (ut1+pa1+a2 _ue> ) (X2 (0 ue) gy On (O ue) ) ’

and this contradicts that Mf is irreducible.

In the Case2. Suppose that there is an index ¢ such that 2 < ¢ < n and
pr; +t; — a;41 # Tiv1 + s; — pa;. Then both sides are non-negative, because
vy (P(v;)uti~%i+1 — v, usiTP%) > 0. Comparing pr; +t; — a;+1 > 0 with ¢; + pa; —
ai+1 < p—1, we get r; > a;. Then r; + ;-1 —pa;—1 > s;—1 — pa;—1 + a; > 0, and
pri_1 +ti_1 —a; > 0 because vy (¢(v;_1)ubi-17% — p;ui-17P%-1) > (). Comparing
pri—1+ti1—a; > 0witht;_ 1 +pa;_1—a; <p—1, we get r;_1 > a;_1. The same
argument goes on and shows that ro > ao. This is a contradiction.

The above argument shows that

ri < @i, pri+t; — a1 =7rip1+5; —pa; <0 for 2 <i<n.

Combining these equations with s; — pa; — ag = pri + 79 + t1, we get

- (pn + 1)7‘1 = (pn + 1)0,1 + (Sn - tn) +p(5n—1 - tn—1)+
c " (83— t3) + "2 (s2 — t2) — P (s1— th),

= (" + Dr2 = (p" + L)az — (s1 —t1) = p(sn — tn)—

. n—3 n—2(

P (sa — tg) — p" P (s — t3) — p" M (s2 — L),
— (" 4+ 1rs = (" +1)az + (s — t2) — p(s1 —t1)—
c=p" B (s5 = t5) —p" P (sa — ta) — p" M (s3 — t3),

- (pn + l)rn = (pn + l)an + (Sn—l - tn—l) +p(5n—2 - tn—2)+
A " (52— ta) = "R (s1 — 1) =" (80— tn)

As|s; —t;| <p+1and

el

P+ +pp+1)+--+p" p+1) = (}; _11>(p+1) <2(p" +1),

weget —a; —1<r;<—a;+1. Whene=p—1,as|s; — ;] <p—1and

P=D+pp—1)+-+p" p-1) = (l;n_ll)(p— 1) <(p"+1),
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we get r; = —a;.
As ro +t1 +pay < p—1, we have

pay <t +pay <p—1—713 < p+as.
For 2 <i<mn,ast;, +pa; —a;+1 <p—1, we have
pa; <ti+pa; <p—1+a;1.

Take an index iy such that a,, is the greatest. As pa;, < a;o4+1 +p < ai, +p, we
get a;, < ﬁ < 2. Combining —a; — 1 < r; and r; < a;, we get a; > 0. Hence

a;=0,r,=—1, ora; =1, —2<r; <0

for every i.

In the case ap = 0, we have ro = —1. Comparing t; + pa; + as > e with
ro+t1 +pa; <p—1, we get e <p. When e =p — 1, we have ro = —ay. This is a
contradiction.

In the case ag = 1. As 0 <t;+pa; —a;41 <p—1for2 <i<n, wehavea; =1
foralliandt; =0for 2 <i<mn. Asrg+pay +t1 <p—1, we have ro < —1. As
pro +te —as = r3+ so —pag, we have rs =pro+p—1—e < —e—1< —3. This is
a contradiction.

Thus we may assume ¢; +paj+az < e. We put Mz = ((UO ' ug)) Mo,

(3

then

m 0 uSt—pai—az uS2—paztas 0
38~ | a1 | ttpar+as 0 » 42 0 uf2tpaz=as >

uSn—Pantai 0
- Qp 0 utnﬂmnfal

and My p = (((1) Uiul )) - M3 . Note that M3 r satisfies the conditions of

K3
Lemma 2.3, and let x3 be the point of 47,  corresponding to Mz . If we put

Ni = <8 ’UZ"LL07 1), then

0 uS1TPa1—a2 0 ¢(v1)vauh
(b(Nl) (ut1+pa1+a2 O ) N2 = (O 0 9

uSiTPaitTait1 0

¢(Nl) ( 0 uti+Paiai+1) Ni‘f‘l =0
for 2 < 4 < n. Here we have vu((b(vl)vgutl) > 0, because s1 — pa; —as > 0

and vy, (usl_pal_a? - ¢(U1)Ugut1) > 0. Hence x1 and z3 lie on the same connected
component by Lemma 2.4.

16



We are going to compare My r and Mz r. Recall the previous operations on the
basis of Mo r that changed (t;)1<i<n so that |s; —t;| < p+ 1 keeping 0 < ¢; < e
for all . Apply the same operations to the basis of M3 r. By Lemma 2.5, these
operations do not affect which of the connected components z3 lies on. So we may
assume that

§1 —pay —az, So —paz +as,..., S, —pan +ay

areallin [(e—p—1)/2,(e+p+1)/2]. As(e—p—1)/2<s; < (e+p+1)/2, we
have that

lpar +az| <p+1, |paz —asz| <p+1,..., [pa, —a1| <p+1.

Summing up the above inequalities after multiplying some p-powers so that we can
eliminate a; for j # i, we get |(p"™ + 1)a;| < {(»" —1)/(p — 1)} (p+1). So we have
la;] <1 for all i.

In the case e > p. We consider the operations that decrease |a;| by 1 for an
index 7 keeping the condition of ¢-stability. By Lemma 2.5, these operations do
not affect which of the connected components x3 lies on. We prove that we can
continue the operations until we have a; = 0 for all ¢, that is, g and x3 lie on the
same connected component. Suppose that we cannot continue the operations and
there is some nonzero a;. The condition of ¢-stability is equivalent to

C1:0<s1—pay —az <e, Ca:0=<53—paz+a3<e,
ey, Cp i 0< 8, —pa, +aq <e.

Note that if a; # 0 or a;+1 # 0, we can decrease |a;| or |a;+1]| keeping C;.
We put

a=f{i<j<i+1 | we can decrease |a;| keeping C; },

and claim that £{j | a; # 0} = Z?zl ¢;. First, ifa; # 0, we have ¢;_1 > 1land ¢; > 1
from the above remark. So we have §{j | a; # 0} < > | ¢;. Second, we count
a; # 0 in not both of C;_; and C}, because we cannot continue the operations. So
we have §{j | a; # 0} > > | ¢;. Hence we have equality. From this equality, we
have a; # 0 and ¢; = 1 for all i. For 2 < i < n, we have a; = a;+1 # 0 because
¢; = 1. So we have a; = ag # 0, but this contradicts ¢; = 1.

In the case e = p—1. We have |pa; +as| < p—1by Cq, and |pa; —a;41] <p-—1
by C; for 2 < i < n. Summing up these inequalities after multiplying some p-powers
so that we can eliminate a; for j # i, we get |(p" + 1)a;| < p" — 1. So we have
a; = 0 for all 1.

Hence zg and x3 lie on the same connected component. This completes the
proof. O

2.3 Application

As an application of Theorem 2.6, we can improve a theorem in [Kis|] comparing
a deformation ring and a Hecke ring. We recall some notation from [Kis], and the
interested reader should consult [Kis] for more detailed definitions.
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Let F be a totally real field, and D be a totally definite quaternion algebra with
center F'. Let X be the set of finite primes where D is ramified. We assume that X
does not contain any primes dividing p. We put ¥, = XU {p},p, and fix a maximal
order Op of D. Let U = [[,U, C (D ®p Alfg,)x be a compact open subgroup
contained in [, (Op),S, and we assume that U, = (Op); for all v € ¥,,. Let O be
the ring of integers of a p-adic field. We fix a continuous character 1) : (Aé) XJF* —
O* such that ) is trivial on U, ﬁ(’);v for any finite place v of F'. Let S be a finite set
of primes containing the infinite primes, ¥,, and the finite primes v of F' such that
U, C D} is not maximal compact. We fix a decomposition group G, C G, for
each v € S. Let T/, »(U) (resp. Ty, 0(U)) denote the image of TS (resp. TH'Y)
in the endomorphism ring of S3 (U, ©O). Let m be a maximal ideal of Ty o (U)
that induces a non-Eisenstein maximal ideal of ’]I“é‘,}i‘b? and put m' =mnNT o).
Then there exists a continuous representation pm: : Gpg — GLo (T%,O(U)m’) such
that the characteristic polynomial of py(Frob,) is X2 — T, X + N(v)S, for v ¢ S.
Here N(v) denotes the order of the residue field at v. Let F be the residue field
of ']I‘%O(U)m/. Let pm : Grs — GLo(F) denote the representation obtained by
reducing pns modulo m'.

Now we suppose that p,s satisfies the following conditions.

1. Py is unramified outside the primes of F' dividing p.
2. The restriction of pw to Gp(,) is absolutely irreducible.

3. If p = 5, and p, has projective image isomorphic to PGLsy(F5), then the
kernel of proj pns does not fix F({5).

4. For each finite prime v € S\ X,,, we have
(1-N@)) ((1 + N () det iy (Frob,) — (N(v)) (tr o (Frobv))Q) € F¥.

Let Rp s (resp. R% g) be the universal deformation O-algebra (resp. the universal

framed deformation O-algebra) of s, and put TH = R% s ®Rps Ty,0(U)m. We
take a subset o’ of the set of primes of F' dividing p, and an unramified character x,
of G, for each p € ¢/, such that m is o-ordinary when we put o = (0, {xp }peo’)-

Now we can define a deformation ring é;‘é and a map R;‘é — T as in (3.4) of
[Kis].

Theorem 2.7. With the above notation and the assumptions, R;iﬁ — T is an
isomorphism up to p-power torsion kernel.

Proof. Applying the Theorem 2.6, the proof goes on as in the proof of [Kis, Theorem
3.4.11]. O

3 Dimension

3.1 Preliminaries

The moduli space 4%y o is described via the Kisin modules as in the following.
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Proposition 3.1. For any F-algebra A, the elements of 9% v, o(A) naturally cor-
respond to finite projective (k[[u]] ®r, A)-submodules Ms C My @ A that satisfy
the followings:

1. M4 generate My ®p A over (k((u)) ®p, A).
2. utMa C (1® ¢)(¢*(WA)) CMy.
Proof. This follows from the construction of ¥Zy. ¢ in [Kis, Corollary 2.1.13]. O

By Proposition 3.1, we often identify a point of Y%y, o(F’) with the correspond-
ing finite free (k[[u]] ®r, F’')-module.

From now on, in this section, we assume F,> C F and fix an embedding k — .
This assumption does not matter, because we may extend F to prove the main
theorem of this section. We consider the isomorphism

O s, FEk(w)es, FS  [[  Fw): (Z au) b (Za(ai)bui)

oeGal(k/Fp)

(e

and let ¢, € k((u)) ®r, F be the primitive idempotent corresponding to . Take
o1, ,0n € Gal(k/F,) such that o, = 0, 0 ¢~ L. Here we regard ¢ as the p-th
power Frobenius, and use the convention that o,,4; = ;. In the following, we often
use such conventions. Then we have ¢(es,) = €5,., and ¢ : My — My determines
¢:€x, Mp = €5, Mp. For (A;)1<i<n € GLo (]F((u)))n, we write

My ~ (A1, As, ...  A) = (Ay)s

i i1
if there is a basis {e},eb} of e,, Mr over F((u)) such that ¢ <zé) = A; (Zi"’l)'
We use the same notation for any sublattice 9y C My similarly. Here and in the
following, we consider only sublattices that are (& ®z, F)-modules.

Let A be an F-algebra, and 94 be a finite free (k[[u]] ®F, A)-submodules of
My @ A that generate My ®p A over k((u)) @, A. We choose a basis {e},e5}; of

My over k[[u]] @, A. For B = (B;)1<i<n € GL2(F((u)) ©r, A)", the (& @z, A)-
module generated by the entries of <Bi (Z}>> for 1 < i < n with the basis given
2

by these entries is denoted by B - 4. Note that B - 914 depends on the choice
of the basis of M 4. We can see that if My ~ (A;); for (Ai)i<i<n € GLo (F((u)))n
with respect to a given basis, then we have

B - Mg ~ (¢(B;)Ai(Biy1)™ "),

7

with respect to the induced basis.

Lemma 3.2. Suppose ¥’ is a finite extension of F, and x € 9%, o(F') corresponds
Sji ..
to My:. Put mj,]}‘/ = <<u ’ Vi

0 u"ﬂ)) - Mg fO?”l <5 <2 sj,iatj,i € 7Z and Vji €
%
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F'((u)). Assume My p and Mo g correspond to x1,x2 € GRv, o(F') respectively.
Then x1 = z2 if and only if

S1,i = S2,i tl,i = tgﬂ' and V1,i — V2,4 € Utl’iF,[[u]] fOT’ all 1.

Proof. The equality z7 = x4 is equivalent to the existence of B = (B;)1<i<n €

G Ly (F'[[u]])™ such that o
uttt vy utt vy
B ( 0 ut1=i> - ( 0 ut“)

for all 4. It is further equivalent to the condition that

<u32,i_51,i Uz’iu_tl,i _ u52,i_31,i_t1,ivl’i

0 e ) € GLaF )

for all 4. The last condition is equivalent to the desired condition. O

Proposition 3.3. If My ~ ((% 1;)) , then YR v, o(F') is one point for any

K3
finite extension F of F.

Proof. Let My r be the lattice of My generated by the basis giving

Mg ~ ((% lf))

and let Mo = Mo r Or [’ for finite extensions F’ of F. Then Mo gives a point
of YRy, o(F'). By the Iwasawa decomposition, any point My of X, o(F') is

Vi

written as ((UO 1 ut)> - Mo for s;,t; € Z and v; € F((u)). Then we have
i

m uPsi (b(vi) ut u uSitt _vi+1u3i+1_ti+1
o 0 wt J\0 1 0 u~tit ‘

<<u€P5i+Si+1 ul=Psi—tit1 + (b(vi)u*tﬁl _ vi+1uepsi+8i+1ti+1>>
i

0 uPti—ti+1

with respect to the basis induced from the given basis of My r. We put r; =
—vy (V7).

By u*Mp C (1®¢) (¢*(th,)) C My, we have e—ps;+s;41 < e and pt; — ;41
0 for all 7, so we get s;,t; > 0 for all s.

We are going to show that 1 —ps; —t;41 > 0 for all . We assume that 1 —ps;, —
tio+1 < 0 for some ig. Then v, (v, u® Psio TSio+1~tio+1) < 1 —psg; —¢; 11, because
& (v, )u~to+1 has no term of degree 1 — ps;, — tiy11. SO we get ri, 11 — Sip+1 >
e —1 > 0. Take an index ¢; such that r;; — s;, is the maximum. We note that
Ty — Si; > 0. Then we have v, (@(vi, )u=b1+1) = v, (v, 4qué PoaTour1=tin )

%
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because vy, (¢(v, Ju~t1+1) < —ps;, —t;, 41. So we get 1y, 11—5;,41 = p(ri, —5i,)+e >
ri, — Si;- This is a contradiction. Thus we have proved that 1 —ps; —¢;11 > 0 for
all 4, and this is equivalent to that s; =0 and 0 < ¢; < 1 for all 7.

We assume t; = 1 for some i. Then we have t; = 1 for all ¢, because pt;_1—t; > 0
for all 7. We show that r; < —1 for all i. We take an index iy such that r;, is the
maximum, and assume that r;, > 0. Then we have r;,41 = pr;, + e > r;,, because
Uy (1 + ¢(vi,)u™t — Uinrlue_l) > (0. This is a contradiction. So we have r; < —1
for all ¢. Then we may assume v; = 0 for all ¢ by Lemma 3.2. Now we have

My ~ ((u : >> , but this contradicts u*Mp C (1 ® ¢) (" (Mg)).

0 wr!

Thus we have proved s; = t; = 0 for all &. Then we have r; < 0, because
vy (u + &(v;) — vip1u®) > 0. So we may assume v; = 0 for all ¢ by Lemma 3.2, and
we have My = My pr. This shows that GZv, o(F’) is one point. O
3.2 The case where V} is not absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli spaces in
the case where V7 is not absolutely irreducible. We put dy, = dim¥% %y, o. In the
proof of the following Proposition, three Lemmas appear.

Proposition 3.4. We assume Vi is not absolutely irreducible, and write e = (p +
Deg + ey foreg € Z and 0 < e; < p. Then the followings are true.

1. There are m; € Z for 0 < i < dy, such that m; > 0, My, > 0 and

d Vi

(G R0 ()] =D milE)
=0

for all sufficiently large extensions F' of FF.

2. (a) In the case 0 < ey < p—2, we have dy, < neg. In this case, if
u®o 0
M]FN ((O upeo)> ’
(b) In the case e; = p — 1, we have dy, < neg+ 1. In this case, if

u°0 0
MIF ~ (( 0 up60+p—1>> )

(c) In the case ey = p, we have dy, < neg + max{[n/2],1}. In this case, if
n=1 and
u®o 0
My ~ ( 0 upeoﬂnl) )
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then dy, = eo+ 1, and if n > 2 and

U 0
Mg ~ (( 0 UP(260+180,1‘))> ’
[

then dy, = neg + [n/2]. Here, eg; =eg if i is odd, and eg; = eo + 1 if i
1S even.

Proof. Extending the field ¥, we may assume that Vg is reducible. Let 9y be
a lattice of My corresponding to a point of Y%y, o(F). Then we take and fix

0 Biubos

(2
;B € F*, 0 < aps,bo; < e and wy,; € Fl[u]]. For any finite extension F’ of F,
we put Mo = Mo r Qp F' and My = My Qp F'. By the Iwasawa decomposition,

. ag,i .
a basis of Mo over k[[u]] @g, F such that Mor ~ <<a1u o >> o

S 'U/*

any sublattice of My can be written as (( 0 utli>> - Mo for s;,t; € Z and
i

v € F'((w)).
We put

I={(ab)eZ”x2Z" ‘ a=(a;)1<i<n, b= (bi)1<i<n, 0 < a;,b; < e},
and

£ /
GRv, 0.ap(F) = {((uo ;Z)) Mo € GRv, o(F')

K2

siyt; € Z,v; € F'((u)),

a; = Qo + Ps; — Siy1, by =bo; + pt; — ti+1}

for (g, b) = ((ai)lgign, (bi)lgign) € I. Then we have

GRvo(F) = | 9%vi0ap(F),
(a,b)€I

and this is a disjoint union by Lemma 3.2.

Si /
Take My = ((uo 5;)) Mo w € GA v 0,0,6(F) with the basis induced from

3
o ut wW;

the basis of Mgy, then My ~ (( 0 B-ubi>> for some (w;)1<i<n € F/[[u]]™.

We note that a;+b; —vy (w;) < e for all i by the condition u®Mp C (180¢) (¢* (Mp)).

Now, any My, € YRy, 0,0.5(F') can be written as <<é q’)) - My for some
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(vi)1<i<n € F'((w))™. With the basis induced from 9y, we have

p 1 ¢(v)\ (au® w; 1 —v;
(6 ) (8 ) 6 ),

| (au® wp — quivgg + Biubid(v;)
- 0 Biubi N

We are going to examine the condition for (v;)i1<i<n € F'((u))™ to give a point of

GRHVe0,00(F') as <<é vf)) -Mpr. Extending the field F, we may assume that

G R, 0,00(F) = 0 if and only if Y%y, 0.0.p(F") = 0 for each (a,b) € I and any finite
extension F’ of F.

For (v;)1<i<n € F'((u))", we have My, = ((é 111)> My € YR, 0,0p(F) if

and only if

Uy (wi — utivi + ﬂiubid)(vi))z 0 and

vy (au®) + vy (Biub) — vy (w; — au® v + Bl ¢(v;)) < e for all 4,
by the condition u*Mp C (1 ® @)(¢*(Mf)) C Mp,. This is further equivalent to
Uy (aiua"viﬂ — Biub%(vi))z max{0,a; + b; — e},
because v, (w;) > max{0, a; + b; — e}. We put r; = —v,(v;), and note that

vu(ozi_lu‘“*lvi) > max{O,ai_l +b;1 — 6} S < min{ai_l, e — bi—l}a

—a; b
Uy (ﬁiubiqs(ui))z max{0,a; + b; —e} & r; < min{ e-a , }
p p

We define an F/-vector space NQ&,FI by

Nopw = {(vi,- .., 00) € F'((u)" |
Uy (aiu‘“viﬂ — Biubiqb(vi))z max{0,a; + b; — e} for all 2}

We note that Ny D F/[[u]]”, and put Ny pp = Nyppr JF'[[u]]™. Then we have a
bijection Ngpp — G%v;.0,0.6(F') by Lemma 3.2. We put dgp = dimp Ny p v, and
note that dimg N, p p is independent of finite extensions F’ of F.

We take a basis (v;)i<j<d,, of Napr over F, where v; = (vj1,...,0jn) €
F((u))™. Then, by Proposition 3.1, an (F[[u]] ®F F[X1,..., Xq, ,])-module

1 S 0X;
SmfF[Xl,...,Xd <<O Z]UIJ’ J)) - (Mp @r F[Xy, ..., Xq,,])

g,é] o
4
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gives a morphism f, p : A;ﬂ’é — YRy, o such that f, »(F') is injective and the image
of fup(F") is YR vi.0.ab(F'). Then we have (1) and

{dgyb}'

dy, = max
(@d)€EI, YR vy ,0,a,b(F)#0

Before going into a proof of (2), we will examine d,; to evaluate dy,. We put

v =u" ",

Sapi = {(0, .., 0,0;,0,...,0) € F((u))"

. e—a; b
1§7“i§mln{ai1,6—bi1, 171}}

p p

for 1 <i<n,

v; =u" ",

Sg@,z}j = {(0, ey 0,05, 0541, . - s Vit g o,..., 0) S F((u))”

: i _ b;
1 <r; <min{a;_1,e —bi—1}, qipu® ™1 = Bipu’ d(viq)
and —vy, (Vigi41) > min{a;y;,e — b} for 0 <1< j—1,

. e — it biy:
— vy (vig ) < mm{’ﬂ, lﬂ}}

b b

forl<i<mnand1l<j<n-—1,and

Sap = {(vl, o tp) € F((u) | cqu®ivg g = Bl o(v;), v1 = ube (V1)
and —v,(viy1) > min{a;, e — b;} for all z}
In the above definitions, v; is on the i-th component. Clearly, all elements of
Ui Sapi U Ui,j Sab,ij U Sapb are in Ngp .

Lemma 3.5. The image of ; Sa,i YU, j Sab,ijUSab in Napw forms an F-basis
Of NQ,Q,F'

Proof. 1t is clear that the image of |J; Sa.p,i U U, j Sab,i,j U Sap in Nepr are lin-
early independent over F. So it suffices to show that U; Sap,s UU; ; Sab,i,j U Sab

and F[[u]]" generates N, pr. We take (v1,...,0,) € Nypr. We want to write
(v1,...,vn) as a linear combination of elements of |J; Sa,b,s UU; ; Sab,i,j U Sa,p and
Flfu]]™.

First, we consider the case where there exsits an index ig such that —uv,(v;,) >
min{a;,—1,€ — bj,—1, (e — a;,)/p, bi, /p}. Then there are following two cases:

(i) There are 1 <i; <n and 1 < j; <n — 1 such that
io € [i1,91 + j1], 1 < —vyu (v, ) < minfa;,—1,e —b;, 1},

iy 1+ Vu(Viy 4141) = biy 1 + pou (i 1)
and —vy (Vi 41+1) > min{a;y;,e — b} for 0 <1< j; — 1

and _Uu(vil-‘rjl) < min{(e - aiﬁ‘jl)/pv (bi1+j1)/p}'
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(i) a; + vy (vig1) = b; + pvy(v;) and —v,, (vi41) > min{a;, e — b;} for all 4.

In the case (i), we can subtract a linear multiple of an element of Sq i, ;, from
(v1,...,v,) so that the w-valuations of the i-th component increase for all i €
[i1,91 + j1]. In the case (ii), we can subtract a linear multiple of an element of S, p
from (vy,...,v,) so that the u-valuations of the i-th component increase for all i.

Repeating such subtractions, we may assume that —v,(v;) < min{a;_1,e —
bi_1,(e—a;)/p,b;/p} for all i. Then we can write (vy, ..., v,) as a linear combination
of elements of | J; Sap,; and F[[u]]™. O

By Lemma 3.5, we have dap = >; [Sab,il +2; ; [Sab.ijl + |[Sas|- We note that
0 < [Sq| < 1 by the definition, and put d;, , = 3=, [Sap,i| + 22, ; [Sabijl-
We put

Tg,b,i = {m cZ

min{ai,l, e — bifl} <pm-+a;—1—bi_1 < min{ € G , l}}7

and consider the map

U Sapii = Tapns (0i)i<ir<n = —vu(vn-1).
i+j=h

We can easily check that this map is injective. Sowe have >, ;) [Sa il < [Tapbn
and d/g,g < Zlgignﬂsg,b,i + |Tg,b,i|)'
We take (a/,b) € I such that Zlgign(|5g’,y,i| + |Tw 1 4]) is the maximum.

Lemma 3.6. |1,/ y ;| <1 for all i.

Proof. We assume there is an index 4o such that [T,y ;,| > 2. We note that

o , . [e—ai, b
min{a;,_;,e =0 i} +p+1<min , =2 (%)
p p
by [Ty i,| > 2. We are going to show that we can replace aj ;,b; ; so
that >, ;o (1Sarril + [Ta pr,i|) increases. This contradicts the maximality of
S i<icn(ISar il + |Tw v .i]). We divide the problem into three cases.

Firstly, if @i, _; +2 < e — b} _;, we replace a; _, by aj _, + p, and note that
aj,_; +p < e by (). Then there is no change except for Sy p io—1, S’ p.ig>
To b ig—1 and Ty pr ;. We can see that |Sg ;| increases by at least 2. The
condition that there exists m € Z such that

. / / / / . / /
mln{aig—la € — big—l} <pm-+a; _;— bio—l < mln{aio—l +p,e— bio—l}y

is equivalent to the condition that there exists m € Z such that

/ / / /
e—a; _ ;o . e—a; _ o
min{ml)ml} <m§mm{lo1’lol+1}7
p p p p
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and further equivalent to the condition that there does not exists m € Z such that

e—a, bl e —a, bl
min{ -l g, Z"_l} <m<min{1°_17lo_1}.
p p p p

If the above condition is satisfied, then [Sa p io—1]s [Ta’ b ig—1| do not change and
|Tar b iy | decreases by 1. Otherwise, |Sy v/ io—1| + |Ta’ b/ .ig—1| decreases by at most
1 and |T,/ p ;.| does not change. In both cases, we have that Z1gign(|5g’,b’,i| +
|Ta 1,i|) increases by at least 1.

Secondly, if aj,_; > e — b _; + 2, we replace b _; by b; _; —p. Then, by the
same arguments, we have that >, . (|Sa v i| + [T v s|) increases by at least 1.

In the remaining case, that is the case where aj,_; —1<e—bj _; <af ,+1,
we replace aj,_q, b 4 by aj _;+p, b _; —p respectively, and note that a] _; +p <
e and b;o_l —p > 0 by (x). Then there is no change except for Sy p i,—1,
Sar v ior T v ig—1 and Ty pr 4. We can see that Sy io—1| + [Tar g1 de-
creases by at most 1, [Sy/ p i, | increases by p and [Ty ;.| decreases by 1. Hence
Y i<icn(Sar il + |Tar ii]) increases by at least p — 2 > 0.

Thus we have proved that |Ty ;| < 1 for all 4. O

Lemma 3.7. For all i, we have the followings:

(A3) If |y il + | T il = €0 +1 for 1 > 1,
then | Sy v iv1| + T priv1| < €0 +e1 —pl + 1.

(Bi) If 1Sar il + |Tar v il = €0 +1
and Sy iv1| + Ty iv1| =eo+er —p+1,
then [Sar p iva| + |Tar b iv2l < eo— (p—1)ex + 1.

Proof. By the definition of T, ;, we have

€ — a; b,

[Tapil < max{min{ , } — min{a;_1,e — bil},O}.

p p

Combining this with the definition of S, p;, we get

<[22 [}]} ”

and equality happens if and only if in the following two cases:

. min{ [%], {%} } —min{a;_1,e — b1} <0.

|Sg,b7i| + ‘Tg,kﬂ'

e min [%], {%} —min{a;_1,e — b1} =1

and p ‘ (min{e — ai_l,bi_l} + 1)
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We assume [Sy/ p “| + |To iy | = €0 + 1 for some 41 and [ > 1. Then we have
pleo +1) < minfe —aj ,b; } by ( ) By this inequality, we have

‘Sg’yb',i1+1| < min{a/' b/ } < max{az ,€ — bil}
=e—min{e —a;,,b; } <e—pleg+1) =eo+e —pl.

Combining this with [T,/ p i, 11| < 1, we get
Sar v i1l + [ Tarp i1 < eo+en —pl+ 1.

This shows (A4;) for all i.

Further, we examine the case where equality holds in the above inequality,
assuming I = 1. In this case, we have that min{a; ,e— bgl} =eg+ e —p, min{e —
a; ;b } = pleo+1) and [Ty p 5, 41| = 1. Let m be the unique element of Ty p 5, 11-

Then, by the definition of T} p ;, +1, we have

I /

e—a, bl

min{““,““}—min{agl,e—b’ } > pm —min{e —a;,, b;, } > p,
p p

because min{e — a; ,b; } = p(eo + 1) and pm — min{e — a; ,b; } > 0. Combining

this with mln{a“, — b, } =eo+e1—p, we get pleg +e1) <minfe —aj 1,0 4}
By the previous argument, we have

|Sar v ivv2l + T b iy 42l < €0 — (p—1)er + 1.
Thus we have proved (B;) for all i. O

We are going to show (2). Firstly, we treat (a). We note that e +e; —pl+1 <
eo — p(l — 1) — 2 in the case where 0 < e¢; < p— 3, and that eg +e; —pl +1 <
eo—p(l—1)—1land ey — (p—1)e; +1 < ey —1 in the case where e; = p—2. Then
(A;) and (B;) for all i implies that Y-, .., (|Sa s wil) < neg. It further
implies that

d b S Z (|Sg,§,i‘ + |TQ:Q7i|) S neo

1<i<n

for all (a,b) € I, and that dj, , = neg only if [Sqpi| +|Typ,i| = o for all i. To prove
dgqp < ney, it suffice to show that dy,, = neg implies S, = 0, because S, < 1
for all (a,b) € T o

We assume that d/
Tap,i]), we have |T,

by
and we put rg; = —v,

= neg and S, p # 0. By the maximality of Zl<z<n(|sa byl

<1 for all 3. Let (vg,;)1<i<n be the unique element of S, ,
vo,4)- Then we have

ab =

|

(v
a; — roi+1 = b — pro; < max{0,a; + b; — e}

for all 4, by the definition of S, ;. By () and eg — 1 < |Sg 4| for all 4, we have

eo—1<a; <eg+er, peg <b; <peg+e1+1
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for all 7. Take an index i such that r;, is the maximum. Then we have

(p— D704, < Proiy, — T0,is+1 = biy — @iy < (peg +e1 +1) — (eg — 1)
=(p-1es+e1+2<(p—1)ey+p.

So we get 79 < eg + 1 for all i.

If a; + b, —e < 0, we have ro; > eg + 1 by b; —pro,; < 0 and pey < b;. If
a; +b; —e >0, we have r9; > eg +1 by b; —pro; < a; +b; —e and a; < eg + e;.
So we have rg; = eg + 1 for all 4.

By a; — roi4+1 = b; — pro,;, we have (p — 1)(ep + 1) = b; — a; for all i. By the
range of a; and b;, we have the following two possibilities for each i:

(aivbi) = (60 - 1up60 +p - 2) or (607p60 +p - ]‘)

In both cases, we have [Sqp,i+1] = €0 — L.

Now we must have equality in (x). So we must have p | (min{e—a;_1,b;—1}+1),
noting that |T, 4| = 1. This contradicts the possibilities of a;_1,b;—;. Thus we
have proved dy;, < neg.

For a = (eg)1<i<n and b = (peg)1<i<n, we have dgp > Zlgign [Sap,il = neo.
This shows that dy;, = ney, if

u®o 0
w5 L)),
i

Secondly, we treat (b). In this case, we note that eg+e; —pl+1 =¢ey—p(l—1)
and eg — (p — 1)e1 + 1 < eg — 3. Then (A;) and (B;) for all i implies d, , < neo,
and further implies d,, < neg + 1, because |S,p| < 1. Thus we have proved
dy, < nep+ 1.

For a = (€0)1<i<n and b = (peo +p — 1)1<i<n, we have dop > 321 i), [Sapil +
|Sup| = neo + 1, because (u=(¢0t1), o, € S, p. This shows that dy;, = neg + 1, if

uco 0
My ~ <( 0 up€0+p1)> .

At last, we treat (c). In this case, we note that eg+e3 —pl+1=e9—p(l—1)+1
and eg—(p—1)e;+1 < eg—5. Then (A;) and (B;) for all 7 implies d;,b < neg+[n/2],
and that d, , = neg + [n/2] only if eg < [Supil + [Tap,il <eo+1 for all 4.

If n = 1, then dfhb < eo implies d,, < eg + 1, and the given example for
dv, = eg + 1 is the same as in (b). So we may assume n > 2 in the following.

To prove dgp < neg + [n/2], it suffices to show that d, , = neg + [n/2] implies
Sap =0, because Sy p| < 1 for all (a,b) € I. -

We assume that d, , = neg + [n/2] and S,p # 0. By the maximality of
Y i<icn (Sabil + [Tap,il), we have [Topi| < 1 for all i. Let (v1;)i<i<n be the
unique element of Sy, and we put r1,; = —v,(v1,;). Then we have

a; —T1441 = b; — prig; < maX{O, a; +b; — 6}
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for all ¢ by the definition of S, 5. By (x) and eg — 1 < S, p.:|, we have
eo—1<a; <ey+p, peo <b; <peg+p+1
for all . Take an index i3 such that r; ;, is the maximum. Then we have

(P = D)r1,ig S Prijig — Tig+1 = biy — iy
<(peot+p+1)—(eo—1)=(p—1)eo+p+2.

So we get 715 < eg + 2 for all i.

If a; +b —e <0, we have r1; > eg + 1 by b; —pr;; < 0 and pey < b;. If
a;+b—e>0,wehaver; >ey+1byb —pri; <a;+b —eanda; <ey+p. So
we have eg +1 < r;; < eg+ 2 for all ¢.

By n > 2, there is an index i4 such that [Sqpi,| + [Tapi] = €0 + 1. Then
we have e¢g + 1 < min{(e — a;,)/p,bi,/p} by (x). We are going to prove that
if €o + 1 < min{(e - ai)/p, bi/p}, then |Sg,b,i+1| + |Tg,g,i+1| = €9 and eo + 1 <
min{ (e — a;4+1)/p,bi4+1/p}. If we have proved this claim, we have a contradiction
by considering i4.

We assume that eg +1 < min{(e —a;)/p, bl-/p}. Then we have eg — 1 < a; < e,
peo+p <b <peg+p+1landey—1<|Sypit1| <eo. If|Sgpit1] = eo, we have
a; = ey and b; = peg + p. However, this contradicts pr; — r;41 = b; — a;, because
pri—riv1 # (p—1)eo+p by eg+1 < 7, mip1 < eg+2. So we have |Sgpit1]| =eo—1
and |T, 41| = 1. Let m be the unique element of Ty p;+1. By the definition of
Ty pi+1, We have

it b
min{eazﬂ, ZH} —min{a;,e — b;} > pm —min{e — a;,b;} >p—12> 2,
p p

because peg + p < min{e — a;,b;} < peg +p + 1 and pm — min{e — a;,b;} > 0.
This shows ey 4+ 1 < min{(e — a;+1)/p,bi+1/p}. Thus we have proved that dy, <
neg + [n/2].

For a = (ep,i)1<i<n and b = (p(Qeo +1-— eovi))1<i<n’ we have

dap = Z |Sap,i| = neo +[n/2],

1<i<n

where e ; is defined in the statement of Proposition 3.4(2)(c). This shows that

dVL: = neg + [n/2}7 if
ufo 0
Mg ~ (( 0 up(2€0+1—€0,i)>> :

3.3 The case where Vf is absolutely irreducible

In this section, we give the maximum of the dimensions of the moduli spaces in the
case where Vi is absolutely irreducible. In the proof of the following Proposition,
three Lemmas appear.
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Proposition 3.8. We assume Vi is absolutely irreducible, and write e = (p+1)eg+
e1 foreg € Z and 0 < ey < p. Then the followings are true.

1. There are m; € Z for 0 < i < dy. such that My, > 0 and

d Vi

(%R0 () =D milF)
=0

for all sufficiently large extensions F' of FF.

2. (a) In the case ey = 0, we have dvy, < neg — 1. In this case, if

0 1 uco 0 uco 0
MIF ~ u(p+1)6071 0 ) O ,upeg gy 0 upeo )

then dy, = neg — 1.
(b) In the case 1 < ey < p—1, we have dy, < neg. In this case, if

0 1 u®o 0 u®o 0
Mg ~ uPtheot+1 0/’ 0 wPeo |7\ uPeo )

we have dy, = neg.
(c) In the case e = p, we have dy, < neg + [n/2]. In this case, if

M 0 1 y2eotl—eo 0
F ™~ <U(P+1)€o+1 O> ’ < 0 upeo,i)QSign )

then dy, = neg + [n/2]. Here, eq; = eg if i is odd, and eg; = eo + 1 if i
1S even.

Proof. Extending the field F, we may assume that

0 aq Q2 0 Qn 0
MFN((alum 0>’<O 042>""’<0 an)>

for some a; € F* and a positive integer m such that (¢+1) f m, by Lemma 2.2. Let
Mo, r be the lattice of My generated by the basis giving the above matrix expression.

For any finite extension F' of F, we put Mo = Mor Qr F' and Mp =
My @p F'. By the Iwasawa decomposition, any sublattice of My can be written as

utt / /
0 ‘ - Mo g for s;,t; € Z and v, € F'((u)).

u k2
We put

S /
Gz 0,a0(F) = {((uo U§~)> Mo € YR, 0(F) | si,ts € Z, vi € F'((u)),

ps1 — t2 = a1, m+ pty — 53 = by,

psj = Sj+1 = aj, ptj —tj1 =bjfor 2 <j < ”}
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for (a,b) = ((ai)lgigm (bi)1§i§n> € Z™ x Z". Then we have

GRvioF)= | G%v0ap(F)

a,b)EL™ XL
(

and this is a disjoint union by Lemma 3.2. Later, in Lemma 3.9, we will show that
there are only finitely many (a, b) such that Y%, ¢.q.(F') # 0.

We take
usi v
(( 0 utzi)> “Mopr € YA 0,00,

and put

Then we have

0 u™ u® 0 u 0
mtg)bﬁ[p/ ~ | 01 ubl 0 , o 0 ’U,b2 goeey Oy 0 ubn

with respect to the basis induced from 9% 5.
v

Now, any M € YA, 0,0,5(F') can be written as (((1) 1 )) Mg pr for some
i

(vi)1<i<n € F'((w))", and we put r; = —v,(v;). Then we have

b1 ar _ by a; Noybi oy, a;
Mo ~ [ ¢(v1b)1u u qS(vlb)lvgu o d(vi)u - Vig1U
u —U2U 0 u 2<i<n
with respect to the induced basis, and
dv)ubr  uh — (v )vou _ d(vy)ubr  u™ 1 —vy
ubr —voult o ubt 0 0 1

B v;lu‘“ uh — ¢(vy)voult 1 0
N 0 —vpubt —vyt 1)

Naturally, we consider the second equality only in the case vy # 0.
If ro > 0, the condition u*Mp C (1 ® ¢)(¢*(Mw)) C M is equivalent to

0<a;+rp<e 0<b —ry<e,

C
Uy, (u“1 — qﬁ(vl)vgubl) > max{0,a;1 + b — e}, (C14)
Ogaige,ogbige,
b w . (C2)
Vy, (qb(vi)u P — 01U 1) > max{0,a; + b; — e} for 2 < i < n.
If ro < 0, it is equivalent to
0<a;<e 0<b <e, pr;y <min{e—a,bi}, (C1,-)
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and (Cs).
We show the following fact:

If R, 0,0.p(F') # 0, there does not exist (r])1<;<n € Z"

such that a; = by —pr] —r4 and a; — rj, = b; — pr; for 2 < i < n.

()

We assume that there exists (7})1<;<n € Z" satisfying this condition. Changing

the basis of Mg p r by <<(1) u*1 )) , we get

M (ubl —pri 0 u® 0
Fr ~ aq b [— , O b: .
1 _ 1—T i
u w2 0w/ ocicn

This contradicts that Vg is absolutely irreducible.
Lemma 3.9. If Y%v, 0,a0(F) # 0, then

e

1§a1§e, 0<h < pel and 0 < a;,b; <e for2<i<n.
p—= p—=

Proof. We take Mp: € YRy, 0,0.5(F') and write it as ((é vf)) Mg b, for some
(vi)1<i<n € F'((w))™. We put r; = —v,(v;).

If ro > e/(p—1), we have that a; — r;41 = b; — pr; < 0 for 2 < i < n and
r; > e/(p — 1) for all ¢ by the condition (Cs), and that a; = by —pr; —r2 < 0 by
the condition (C7 ). This contradicts (¢), and we have ro <e/(p — 1).

Then (C4,+), (C1,—) and (Cy) shows the claim.

To examine |9 Zv; 0,a,0(F)|, we consider the case where 0 < a; < e and 0 <
b1 < e, and the case where max{—ay,b; — e} > 0.

First, we treat the case where 0 < a7 < e and 0 < b; < e. In this case, the
condition u*Mp C (1 ® ¢)(¢*(Mp)) C M is equivalent to the condition that
max{pry + ro,pri,r2} < min{e — ay, b;} and (Cy). We put

IQ,Q = {(Rl,RQ) cZ X7 ’ pR1 + Ry < min{e—al,b1}, Rl,RQ > 0}

and

1 v
WVF’O’“’Z”Rl’&(F):{((O 1)> My € IR, 0an(E) | 0 € F((w),

ri =Ry, ro = 32}

for (R1,R2) € Ip. Then we have a disjoint union

GRvi0ap )= |  9%vioabr . (F)
(R1,R2)€l4p
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Vg

by Lemma 3.2, because if <(1) 1)) Mo pm € GRV, 0,00F) for v; € F'((u))

then we may replace v; so that v; ¢ ulF'[[u]] without changing the (k[[u]] ®F, F')-

1 Uy

0 1
We fix (Ry, R2) é I, . Then the condition that 11 = Ry and ro = Ry implies

module (( ) - My b7 again by Lemma 3.2.

max{pry + ro,pr1,r2} < min{e —ay,b1}. So (((1) 11%)) - My b gives a point of
i

GR e 0,06,R:,1, F') if and only if
max{ry,0} = Ry, max{ry,0} = R and (Cb).

We assume 9 Zv; 0,a.b, k1 ,r,(F') # 0. Considering —uv,(v;) for (v;)1<i<, that gives
a point of Y%v; 0,a.b,r:,r,(F'), we have the following two cases:

(i) Thereare 2 <ng <nmy <n+land R; € Zfor3<i<nyandn; <i<n
such that
a; — Riy1 = b, — pR; < maX{O,ai +b; —6}

for2<i<ng—1and n; <i<n,and

e—ap, b
Ry, <min{an,—1,6 —bp,—1}, Rn, < min{nz, nz}
b b

(ii) There are R; € Z for 3 < i < n such that
a; — Ri+1 = b7 — pRz < max{(), a; + bl — 6}
for 2 <i<n.

We note that (ii) includes the case n = 1.
We define an F'-vector space Ngp r, R, 7 DY

Nap, 1 row = {(Vi)1<i<n € F'((u))™ | 71 < Ry, r2 < Ry and (Cy)}.

We note that Nop,r,,r, 5 O F'[[u]]". We put Nop,ry,ro 5 = Nab,ry,ro e /F [[u]]"
and dg,é,Rl,Rz = dimg- Na b R, R F - We note that dimpg- Na b Ri,Ro " 1S independent
of finite extensions ' of F. We put

_ _
Ny Ry Ry = {(Uz‘)lgign € Nap,Ry,Ry v | T1 = R1, T2 = R2}~

[e] 3 ~O 3
Let Ny g, r,p be the image of N7\ p g w In Ngp g, r, . Then we have a
bijection
o /
N bRy Ro i =GRV 0,05, 1.1 (F)
by Lemma 3.2. By choosing a basis of Ny r,,r, r over F, we have a morphism

da,b,R{,R
fabRiRo AT = G Ry 0
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in the case R = Ry =0,
(da,b, Ry, Ry —2) 2
fE1Q»R17R2 : AIF T X Gm,]F - gq‘%VF,O

in the case where R; > 0, Ry > 0 and (i) holds true, and

(da,b,Ry Ry —1)
fapryry A 77TV X Gip = G Rvi 0

in the other case, such that fqp,r,,r, (F') is injective and the image of fop,r,,r. (F')
is YA, ,0,a,b,R1 R (F).

Lemma 3.10. If0<a; <e and 0 < by < e, the followings hold:

(a) In the case e1 = 0, we have dgp.ry R, < neo — 1. In this case, if a1 = 0,

by = (p+ 1leg — 1, a; = eg and b; = peq for 2 < i < n, then there exists
(R1, Rz) S I&Q such that dg,Q,Rl,RQ =neg — 1.

(b) In the case 1 < e; <p—1, we have dgp g, r, < neo. In this case, if a1 =0,
by = (p+ leo + 1, a; = eg and b; = peq for 2 < i < n, then there exists
(R1, Ro) € I, such that dgp g, R, = Ne€o.

(c) In the case e1 = p, we have dgp R, Ry, < neo + [n/2]. In this case, if a1 =0,
b1 =(p+1)eo+1, a; =2e0+1—ep,; and b; = peg,; for 2 <i<n, then there
exists (R1, Re) € I, such that dgp R, R, = neo + [n/2]. Here, eg; = eg if i
is odd, and eg; = eg + 1 if 1 is even.

Proof. First, we treat the case n = 1. In this case, we have

min{e — a1, b1}

= <
f RQ_[ p+1

] < eo.

So we get dop rir, < €0 for (a,b) € Z™ x Z™ and (R1,R2) € I, such that
GRV, 0,00, 7:1,1: (F') # 0 and 0 < aq,b; < e. We have to eliminate the possibility
of equality in the case e; = 0. In this case, if we have dgp r,,r, = €0, then a; =0
and by = (p+ 1)eg. This contradicts ().

We can check that if e; =0, a; =0, by =e—1and Ry = Ry = ¢y — 1, then
dg,Q,Rth = 60—1, and that if €1 # 0, a; = O, bl = (p—|— 1)60+1 and R1 = R2 = €9,
then d27§7R1,R2 = €q.

So we may assume n > 2. We put

Sab,Ri,Ra1 = {(u*”,O,...,O) € F((u))™ | 1 <r; <min{Ry,an,e— bn}},

— b
]-STQSmin{RQ;e aQaQ} ’
b b

v =u" ",

S27Q7R17R2,2 = {(O,’UJTQ,O, - ,0) € F((u))n

Sg,Q,Rl,Rg,i = {(0, - 7(),’L)i,O,. . .,O) S F((u))"

—a b
1§7”i§min{ai—1ae_bi—lve al7l}
p p
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for 3 <i <n, and

SQ,Q,R17R27i,j = {(0, A 70,/Ui,vi+17. .. ,’l}j+170, . ,0) S F((u))” Vi = u_”,
T é min{ai,l,e - bifl} if 4 75 2, T2 S R2 if i = 2,

uMvpg = ubl¢(vl) and —vy(vi41) > min{a;,e — b} for i <1 < 3,

*(Uu(ijrl) S min{eajﬂa ]H} lf] 7& n, 71)”("01) S Rl 1f] = TL}
b b

for 2 < i < j < n. In the above definitions, v; is on the i-th component. Then, as in

the proof of Lemma 3.5, we can check that ; Sa.b,r1,R2,i UU; ; Sa.b, Ry, R i, 18 an F-

basis of Nqp r, R, ¥ S0 We have dap Ry, Ry = D2 |Sab. Ry Rail + 225 5 [Sab, Ry Rovigl-
We put

Tap Ry Ryl = {m Y/ | min{a,,e — b,} < pm +a, — b, < Rl},

To bRy Ro2 = 0 and

TQ,Q,Rl,RQ,i = {m cZ min{ai,l, e — bifl} <pm-+a;—1 — bi_1
e—a; b

< min{ :, l}
p D

U Sabrimein-1 = Tubriren; (Vi)i<i<n — —vu(vn-1)
2<i<h—1

for 3 < i < n. We consider the map

for 3 < h < n+ 1. We can easily check that this map is injective. So we have
Yocicho11Sab. R Roih—1] < |Tap, Ry Ro bl and dap, Ry Ry < 1 <icn (1Sa, R Rovil +

|Ta,b, R, Rasil)-

We take (a/,b) € Z" x Z" and (R}, R}) € I, such that 0 < a},b] < e
and Zl<i<n(|Sﬂl7ﬁ/>R§,R§,i| + |Tg’,b’,R’17R’27i|) is the maximum. We can prove that
|Tar v, ry ry,il <1 foralliasin the proof of Lemma 3.6.

We can also show that

(Ai) if [Sar v my Ryl + [ Turp Ry Ryl = €0 + 1 for 1> 1,
then |Sg/,Q/,R/1,R'2,’L'+1| + |Tg’,Q’,R/1,R/2,’L+1‘ S eg+ep — pl +1

for i # 1, and that

(Bi) if [Sar v Ry Ryil + | Tar v Ry Ryl = €0+ 1
and [Sa v, ry Ry i1l + Ty Ry Ry i1l = €0+ e —p+1,
then |Sy v Ry Ry i2| + [Ty vy Ry it S €0 — (p—1)er +1
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for 2 < i < n—1 as in the proof of Lemma 3.7. By the same argument, we can
show that

(A1) if [Sar ' ry Ryl + Tar Ry Ry 1| = €0+ for 1 > 1,
then [Sor v gy ry 2| + | Tar v Ry Ry 2| < €0+ €1 —pl,

and that

(Bn) if |So Ry Ryl + 1 To 1y Ryn| = €0 + 1
and |Sg',é’,R/1,R'2,1| + |TQ'7Q’7R/17R,271| =ey+e—p+1,
then |S@l’b/7R,17R,272 + |TQ/7§/7R/17R/272| S €o — (p - 1)617

using the followings:

+ Ty v vy Ry 1| < Ba, pR1+ Re <ee,
< Ry and TQ/7Q/,R/17R/272 = 0.

|Sw b\ Ry, Ry 1

|Sar b Ry Ry,

Firstly, we treat the case where 0 < e; < p — 1, that is, (a) or (b). We note

that eg +e1 —pl+1 < ey —p(l — 1) — 1 in the case 0 < e; < p — 2, and that

eoter—pl+1l=ey—p(l—1)andeg—(p—1)e1 +1 < eg—3 in the case e; = p—1.
Then (A;) for all ¢ and (B;) for i # 1 implies

dopryis < Y (1Sabin ol + [ Tab Ry Rovil)

1<i<n

< (1S v, ry Ry il + [ Tar v Ry Ry l) < meo

1<i<n
for (a,b) € Z™ x Z" and (Ry,R2) € I, such that Y%v, 0.0, R, 7. (F') # 0 and
0 < a,b; < e. So we get the desired bound, if 1 < e; < p— 1. In the case
e; = 0, we have to eliminate the possibility of equality. In this case, if we have
equality, we get that >, ;. (1SabRi,Rail + |Tab,Re,R2,i|) is the maximum and
(186,81, Ravil + |Tasp, e, Rasil) = €0 for all i by (A;) for all i. Then we have

Ry =Ry=¢eg, eg—1<a; <eg, peg <b; <peg+1for2<i<n
by the followings:
pR1+ R = €, |Sap Ry, ko1 | + [Tab, Ry kot | < By [Sab Ry Ro 2| < Ro,
|Sab,Ry,Ravil + [ Tab, Ry Ro il < min{(e —a;)/p,bi/p} for 2 <i<n
and |SQ,Q7R1,R2,Z'| > €y — 1 for 4 75 2.

Now we have a1 = 0 and by = (p + 1)eg by R4 = Ry = eo. We show that
|Tub RyRoil = 0 for 3 < i < n. We assume that [T, R, Rs,i,| = 1 for some
io # 1,2, and let m be the unique element of T p R, R,,i,- Then, by the definition
of Ty b, Ry, Rs.i0, We have

. fe—ai, b . .
mln{pm7 ;)0} —min{aj,—1,€ — bj,—1} > pm — min{e — aj,—1,bi,—1}
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because pey < min{e — a;,—1,b;,—1} < peg + 1 and pm — min{e — a;,—1,b;,—1} > 0.
This contradicts the possibilities of a;,—1, @iy, bi,—1 and b;,. The same argument
shows that [Ty b R, ry.1| = 0. Now we have |Sqp R, Rr,,i| = €o for all ¢, and that

a1 =0, by = (p+ ey, a; = ey, b; = peg for 2 < i < n.
Then we have
ar =by —pry —ryand a; — i, =b;—pr; for 2<i<n

for (r})1<i<n = (€0)1<i<n. This contradicts (). So we have dgp g, r, < Neo — 1,
if €1 = 0.

We can check that ife; =0, a1 =0, by = (p—|—1)€0—1, Ri=eg, Ry =e€e9—1,a; =
ep and b; = peg for 2 < i < n, then dap Ry Ry = Y 1<icn |Sab,Ri,Re,il = neg—1. We
can check also that if 1 <e; <p—1,a; =0,b; = (p+1)eg+1, Ry = eg, R2 = ep+1,
a; = eg and b; = peg for 2 <i < n, then dap R, Ry = D 1<jcn |Sab Ry, Rs,i| = N€0-

Secondly, we treat (c). In this case, we note that eg+e1 —pl+1 = eg—p(l—1)+1
and eg — (p — 1)es + 1 < eg — 5. Then (A;) for all ¢ and (B;) for i # 1 implies

dap iy < Y (1Sab i roil + | Tab ri osil)

1<i<n

n
< D (8w my il + 1 Tww mmyal) < meo+ M

1<i<n

for (a,b) € Z™ x Z™ and (Ri, R3) € I, such that 0 < ay,b; < e. So we get the
desired bound.

We can check that if e; = p, a1 =0, b1 = (p+1)eg+1, Ry = eg, Ra = ep+1, a; =
2e0+1— €0,i and b; = Peo,; for 2 < i < n, then d@,h,Rth > Zl<i<n |Sg,Q,R1,R2,i| =
neg + [n/2]. o O

Next, we consider the remaining case, that is, the case where max{—aq,b; —e} >
0. In this case, v, (ual *(;S(Ul)’l)gubl) > max{0, a1 +by —e} implies pri+ry = by —ay,
because a; < max{0, a;+b;—e}. So the condition u*Mp C (1Q¢)(¢* (My)) C M
implies

pr1+re = by — a1, max{—a1,b; —e} <ry <min{e —ay, b1 }.

We note that if n = 1, then pri +ro = by — a; contradicts () because r1 = ro. So
we may assume n > 2. We put

Ig,b = {(R1,R2) €L X7 ‘ pRi + Ry = by — aq,

max{—a1,b; — e} < Ry < min{e — ay, bl}}

and mgp = [(max{—a1,b1 — e} — 1)/p]. We note that Ry > mgap +1 > 0 and
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Ry > max{—aj,b; — e} > 0. We put

1 v
WVF’O’“”R“RZ(M:{<(0 1)> M € IR, 0an(F) | v € F((w),

vy (v1) = =Ry, vy(v2) = —Rz}

for (Ri1, R2) € I, p. Then we have a disjoint union

GRv0an)= | 9%v0abr 5 (F)

(R1,R2)€Ia b

by Lemma 3.2. Extending the field F, we may assume that 9 %Zv, 0.a.0.5, .k, (F') # 0

2405

if and only if Y%, 0.0.b.r, .k, (F) # 0 for each (R1, R2) € Iy, (a,b) € Z™ x Z™ and

24,0,

any finite extension F’ of .

We fix (Ry, R2) € Inp, and assume Y%v, 0.0, Ry .1 (F) # 0. If v,(v1) = =Ry
and v, (v2) = —Ra, the condition v, (u® — ¢(v1)vau’) > max{0,a; + by — €} is
equivalent to the following:

There uniquely exist v1,0,72,0 € (F')* and v1,4,72,; € F' for 1 < i < mg such that

— Uy <U1 — Z ’}/1,¢uRl+i> <Ry —mgyp — 1,

0<i<mgp

— Uy, (112 - Z ’Y2,iU_R2+pi> < Ry — max{—ay, b — e},

Ogigmg,b

Y1,072,0 = 1, Z Y1,i72,1—i = 0 for 1 <1 <mgp.
0<i<l

We note that (71,:)o<i<m,, determines (V1,i,72,4)o<i<mg.,-

We prove that for 0 < 7 < mg;, there uniquely exist 2 < ng; < ni; < n+1,
T, € Qforni; <j<n+1landry;; € Zfor 2 < j < ng; such that rip; € Z
forn; o <j<n+1and

aj; —Tli,j+1 = bj — PTrij < max{O, Q. + bj - 6} for n1,4 S] S n,
Tinsl = R — 0, T1im,, <min{an, ,—1,6 = bp, 1},
aj — T2 j+1 = bj —prog; < max{O, aj + bj - 6} for2<j< ng; — 1,
€= Qn,, bnz}

roi2 = Ro — i, 1240, < Hlln{p "

Define r1;; € Qfor 2 <j<n+1and ry;; € Z for 2 < j <n+ 1 such that

Tins1 = B — 4, aj =141 = by —pri;j for 2 < j <n,

Toi2=Ro—pi, aj —ra;jt1 =0bj —pro,j for 2<j<n.
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nii = max{{?) S] § n+1 | T1,i,5 § min{aj,l,e - bjfl}} @] {2}},

—as bs
nz,i_min{{2§j§n r27i7j§min{e%’ﬂ}}u{n+1}}.
p p

We consider (v;)i1<i<n that gives a point of YZv; 04,7, r,(F). Then we have
71,05 = —Uu(v;) € Zfornyo <j<mn+1landreg,; =—v,(v;) € Zfor2<j<ngyy.
It remains to show that ny; < ni,;. We have na; < nao and n19 < ny;, because
T4, < T10,5 and ro; 5 < 1o for 2 < j < n 4 1. So it suffices to show ng g ; <

n1,0,5- If n2.0,5 > n1,0,5, We have

a1 = by — puy(v1) — vy (v2) and a; — vy (vj41) = bj — v, (v;) for 2 < j < n,

and this contradicts ().
We put

Mgy ri R, = {0 <i<mgyp|rii;€Zforn; <j<n+1}.

For (v;)1<i<n that gives a point of ¥Zv; 0,00,k k. ('), we take 1 i, v2;, and nq 4,
N2, T4, T2,i,; as above. We note that vi; =0if ¢ ¢ My r, r,.- We put

Mygp i o ={0<i<mgp|ni; <j<n+1},
Maa bRy Roj = {0 <0 < Mgy | 2<j<ng;}
for 2 < j <n+1, and define (v])1<i<n € F'((uw))" by
’U;( =, — Z ,yl’iu—n,i,,j _ Z Vz’iu_rz,i,j
1€Mi a,b,Ry Ry i 1€M3.a.b, Ry, Ry.j
for 2 < j <n+ 1. This is well-defined by the above remark. We put
N; i moe = {(0])1<i<n € F'(W)" | (vi)1<i<n € F'((u))" gives
a point of Y%v, 0,06, 7,8, (F') }-
Then we have
Ny oy o = {(0)1<i<n € F/(0)" | —vu(v1) < Ry —mgyp — 1,
71}u(’U2) S R2 - max{fal,bl — 6}, (CQ)}

by the construction of (v})1<i<, and the conditions (C4 4+) and (C2). This implies
that Ny, g g, C F'((w))" is an F'-vector subspace, and Nj , p p, @ O F/[[u]]".
We put o

* _ * / n
Nav o, rop = Nap,ry ro e /T[]
" T « . N ..
and dg’é’RhR2 = dimp- NQ’Q’RI,R%F,. We note that dimps NQ’Q’RI’RQ’F, is independent
of finite extensions F’ of F. By Lemma 3.2, giving an element of N; oy Ry r, o and
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(71,i)0<i<m,., such that 19 # 0 and vy1; = 0 if i € My r, R, is equivalent to
giving a point of Y% v; 0,a.b,r,,r, (F'). By choosing a basis of N, g, g, r* over F,
we have a morphism

(d:; b,R1,R +|M21§’R1’R2‘71)
anD7R17R2 : A]F s X Gm,IE‘ — g%VF,O

such that fop R, r,(F') is injective and the image of fup r, r,(F') is equal to
GRV:,0,00. 10,1 (F). We put daprire = dyp py,r, + | Map, e |- Then we have
(1) and

dvg {dap.r R }-

= max
GR Vi 0,a.b. Ry Ro (F)£D

In this maximum, we consider all (a,b) € Z™ x Z™. We have already examined
dg.b, Ry, R, for (a,b) such that a; > 0 and b; < e. So it suffices to bound dg b R, R,
for (a,b) such that max{—ay,b; — e} > 0.

Lemma 3.11. If max{—ay,b; — e} > 0, the followings hold:

(a) In the case ex =0, we have dgp r, R, < neg— 1.

(b) In the case 1 < ey <p—1, we have dyp g, R, < NEo.

(c) In the case e1 = p, we have dgp R, R, < NEQ + [1/2].
Proof. We put

Sapri ket = {(v1,0,...,0) € F((w)" | vy =u™",

1<r; <min{R; —mgp—1,an,€e— bn}},

T2

Vo =u 2,

S£7b1R1,R2,2 = {(07 v2,0,..., 0) € ]F((u))n

— b
1< 7y Smin{RgmaX{ahbl@},e a272}}»
p p

v =u

SQ,Q,Rl,Rg,i = {(O, vy 050,000 ,0) S F((u))n

—a b
1S7‘iémin{az’—1,€—bz‘—176 az7z}
p p

for 3 <i < n, and

vi=u ',

S&Q,Rl,Rg,i,j = {(0, e ,O,Ui,”UH_h. .. ,”Uj+1,0,. .. ,0) € ]F((U))n

r; <min{a;—1,e —bj_1} if i # 2, ro < Ry —max{—ay,b; —e} if i = 2,

u vy = ué(vy) and —vy(vi1) > min{a;, e — by} fori <1< 7,

it b
— vy (vj41) < min{eaﬁl7 j“} ifj#n, —v,(vi) <R —mgp—1ifj= n}
p p T
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for 2 < i < j < n. In the above definitions, v; is on the i-th component. Then, as in

the proof of Lemma 3.5, we can check that |J; Sa.b,r,,R,i UU; j Sab, ki Rs.i,j 1S an F-

basis of Ny, p, g, 5 S0 we have dj , p g, = 32 [Sa.b. R, Ro il + Zi,j |Sa.b. Ry Raig -
We put

Tyb Ry kot = {m € Z | min{an, e — by} < pm+an — by < Ry —mgp — 1},

Ry — max{—aj,b; —e} < Ry —pm

< min{Rz, e_az,bz}
p P

Tap,Ry,Ry2 = {m €L

and

min{a;_1,e —b_1} < pm+a;_1 —bi_1

.{e_ai bi}
< miny ——, —
p p

for 3 < i < n. We note that these definitions for Sap r, Ry.is Sab,Ri,Re.i,; and
Tab Ry Ry,i I the case max{—az,b; — e} > 0 are compatible with the definitions in
the case max{—aj,b; — e} < 0, if max{—a1,b; — e} = 0. So in the following, we
can consider also the case max{—a1,b; — e} = 0. We need to consider this case in
the following arguments.

We consider the map

T&Q,Rl,Rz,i = {m €L

U Sasrirein-1U{0<i<may | n2i=h} = Tubr rons
2<j<h—1

(vi)i<i<n — —Vu(Vp—1), @+ T2 -1
for 3 < h <n -+ 1. We can easily check that this map is injective and that

{0<i<map | noi =2} =Tupri ko2
So we have (Zzglgjgn |Sg,Q,R1,Rz,i,j|> +map+1< Z1§i§n |Tab, Ry, R»,i| and

dapriis < oy, s +Map + 1< D (1Sabry il + Tab Ry ko il)-
1<i<n

We take (a”,b") € Z"xZ™ and (R}, RY) € Iy such that max{—a{,e—b{} >0
and Zlgign (|Sg//’b//7R/1/’R/2/’i| + |Tg//7bl/’Ri/’R/2/’i|) is the maximum. We can prove that
| Tor v, Ry Ry il <1 forall i # 2 as in the proof of Lemma 3.6.

We show that we may take (a”,b") € Z™ x Z" and (R{,RY) € I, such
that 0 < —af = b —e < p—1. If —af > b} — ¢, then we replace b} by b/ + 1
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and R4 by Ry + 1. We again have (RY, Ry) € I,y after the replacement. This
replacement increases Z1<i<n(‘Sg”,b”7R’{,R’2’,i| + |Tg”,g/’,R’1’7R’2’,i|) by 0 or 1, but by
the maximality there is no case where it increases by 1. Similarly, if —af < b{ —e,
we may replace af by af —1 and R by RY 4+ 1. So we may assume —af = b} —e.

If —af > p and min{by/p, (e — a3)/p} > RY, we replace R} by R} — 1 and R}
by RY + p. By

R§'+p§§+p<e+p§e—a’{: 1

we again have (RY, RY) € I, after the replacement. This replacement increases
>i<icn (IS vy Ry il + |Tg”,Q”,R’1’,R’2’,7L|) by at least p—2. This is a contradiction.
So if —a/ > p, we have min{bJ /p, (e — a)/p} < RY. If —a} > p, we replace a by
af+p, by by b —p, R by R —1 and Rj by Ry —p. We again have (R, Ry) € I,
after the replacement. This replacement does not change >, ;<. (ISa v, r7, Ry il +
‘TQ”7Q”7R’1’,R/2’,i|)~ Iterating these replacements, we may assume 0 < —af = b/ —e <
p — 1. We already treated the case where —a} = b/ — e = 0. So we may assume
1< —af =b/ —e<p—1. Wenote that [T,/ pv ry | <1 in this case.

Now we can show that

(A;) lf |Sg”,b”,R/1/,R'2',i| =+ |T2/’,Ql',R’1/,R/2',i| = €p +l fOI' l Z ]_7

then |SQ”,Q”,R/1’,R’2/,'L+1| + |T£”,Q”,R/1',R’2’,i+1| S €o + e1 — pl + 1
for i # 1, and that
(BY) if [Sar vy, my il + [T b my my il = €0 + 1

and [Sor b7 ry Ry i1l + [ Tar vy Ry i1 = €0 +e1 —p+1,
then [Saor v ry, Ry ivel + [ Tar v Ry Ry 2] < €0 — (p—1)er +1

for 2 < i < n—1 as in the proof of Lemma 3.7. By the same argument, we can
show that

(A1) i [Sarp ry, my 1l + [T v ry Ry | = o + L for 1210,
then [Sy» 7 g ry 2| + | Tar v rY RY 2| < €0 +e1 —pl,

and that

(Br) if |Sar v my my ol + 1 Tar b my Ry | = €0 + 1
and S v my ry 1| + | Tar vy ry 1l = €0 +e1—p+1,
then |Sg”,g”,R’1’,R’2/,2| + |T2”,§”,R/1/,R/2/,2| S €y — (p — ].)617

using the followings:

Sy g1l + 1 Tar vy rygal < Bi =1, pRi+ Ry = e — 2af,

Sar vy ry 2l < Re+af, 1< —af <p—1and [Ty pr ry ryal <1.

Then (A}) for all ¢+ and (BY) for i # 1 implies that

D (1S v my ry il + | Tar b,y my al) < meo

1<i<n
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in the case 0 < ey < p— 2, and that

Y (ISwrwr ry ryal + 1 Tar by .y il) < meo + [Z]

1<i<n

in the case e; = p— 1. It remains to eliminate the possibility of equality in the case
€1 = 0.

We assume that e; = 0 and Zlgign(|Sg”,b”,R’{,R'2’,i| + ‘Tg”,b”,R’l/,Ré’,iD = neg.
Then (A;) for all 4 1mphes that |SQ”’QII’R/1/7R/2/,Z'| + |Tg“,b”,R’1’,R/2’,i| =€y for all 2. Now
we have

eo = [Sar v my mRy Al + | Tar b my Ry 1| < R1—1

and
eo — 1 < [Sur 7 ry Ry 2l < R +af.

This implies e+p—1—a} < pR; + Ry. Because pRy + Ry = e — 2a/, this inequality
happens only in the case —a} = p — 1, and in this case the above inequalities
become equality. So we have eq — 1 =[Sy gy gy 2| and Ry = eg +p — 2.
By |Tarpr ry Ry 2l = 1, we have Ry < min{(e — ay)/p,b5/p}. So we get ay <
eo —p(p —2) < eg — 3, but this contradicts [Sy» p rr Ry 3] > €0 — 1. Thus we have
eliminated the possibility of equality in the case e; = 0. O

The claim (2) follows from Lemma 3.10 and Lemma 3.11. O
Remark 3.12. By Lemma 2.2, we can check that there is Vg satisfying the condi-
tions for My in Proposition 3.8.

3.4 Bounds of dimensions

To fix the notation, we recall the definition of the zeta function of a scheme of finite
type over a finite field.

Definition 3.13. Let X be a scheme of finite type over F. We put qp = |F|. The
zeta function Z(X;T) of X is defined by

Z(X;T) = exp(i WMTW>.

Here,
exp(f(T)) = 3 —F(T)" € Q7]
m=0 :

for f(T) € TQ[[T]].

Theorem 3.14. Let Z(9% v 0;T) be the zeta function of YRy, 0. Then the fol-
lowings are true.
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1. After extending the field F sufficiently, we have

dvy
Z(GRv.0;T) = [[(1 = [FI'T)~™
i=0
for some m; € Z such that may, > 0.
2. If n =1, we have
e+ 2

0<dy < .
== [p+ 1]

If n > 2, we have

0 < dy, < n+1 e + n—2|e+1 + e—|—2.
2 p+1 2 p+1 p+1
Furthermore, each equality in the above inequalities can happen for any finite
extension K of Q.

Proof. This follows from Proposition 3.3, Proposition 3.4, Proposition 3.8 and Re-
mark 3.12. O

4 Rational points

Let Cf be the constant group scheme over Spec K of the two-dimensional vector
space over F. To calculate the number of finite flat models of Cg, we use the moduli
spaces of finite flat models.

Let Vg be the two-dimensional trivial representation of G over F. By Propo-
sition 1.3, to calculate the number of finite flat models, it suffices to count the
number of the F-rational points of ¥ %y, o.

For A € GLy(F((u))), we write Mg ~ A if there is a basis {e1, e2} of My over

€

F((u)) such that ¢ <21> =A (el . We use the same notation for any sublattice
2 2

Mr C My similarly.
Finally, for any sublattice Mr C My with a chosen basis {e1,e3} and B €

GL>(F((u))), the module generated by the entries of <B <Zl>> with the basis
2

given by these entries is denoted by B - 9ip. Note that B - 9y depends on the
choice of the basis of Mr. We can see that if M ~ A for A € GLy(F((u))) with

respect to a given basis, then we have
B - Mg ~ $(B)AB™!
with respect to the induced basis.

Theorem 4.1. Let q be the cardinality of F. Then we have
|M(Cr, K)| = ) (an +ay)g"

n>0

Here a,, and al, are defined as in the introduction.
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Proof. Since Vp is the trivial representation, Mp ~ (é (1)> for some basis. Let
0

Mr,o be the lattice of My generated by the basis giving My ~ <(1) 1>. By the

S
Iwasawa decomposition, any sublattice of My can be written as (uo Z:t> - M0

for s,t € Z and v € F((u)). We put

uS

g%VF,O,s,t(F) = { (O ::t) . ‘)ZTI]F’O c g%VF,O(F)

ve F(@))}.

Then
GRveo(F) = | 9%vi0.54(F)

S,tEZL

and this is a disjoint union by Lemma 3.2.

We put
u® 0
m]l?,s,t = (0 ut> 'mtIF’O.

(
Then we have Mp 1 ~ <u 0

u(ﬁm> with respect to the basis induced from

Mro. Any Mp in GZ v, 0,5,¢(F) can be written as <(1) 11}> - Mr ¢ for v in F((u)).

Then we have

uP=Ds  —pyuP=Ds 4 p(v)uP—Dt
Mg ~ 0 w1t

with respect to the induced basis. The condition u*Mp C (1 ® @) (¢*(Mr)) C Mg
is equivalent to the following:

0<(p—1)s<e,0<(p— 1t <e,
v (vuP7YS — p(0)uPV) > max{0, (p — 1)(s +t) —e}.

Conversely, s,t € Z and v € F((u)) satisfying this condition gives a point of

1 v
g%w,ms)t(F) as (0 1
We fix s,t € Z such that 0 < s,t < ey. The lowest degree term of vu(P~1Ds is
equal to that of ¢(v)uP~D if and only if v, (v) = s—t, in which case v, (vuP~1%) =
ps —t.
In the case where ps—t > maX{O, (p—1)(s+t)— e}, the condition v, (vuP~1s —
P(v)uP~ V) > max{0, (p — 1)(s + t) — e} is equivalent to

) My 5.0 We put 7 = —v,(v).

min{vu(vu(p_l)s), Uy (d)(v)u(p_l)t)} > max{0, (p— 1)(s +t) — e},
and further equivalent to

e—(p—1)s

r < min{(p —1)s,
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We put

ot = min{@ s, [ o ey |21 }

In this case, the number of the points of 4%y, 0.s.+(F) is equal to ¢"* by Lemma
3.2.
Next, we consider the case where ps — t < maux{O7 (p—1)(s+1t)— e}. We note
that
rsy <min{(p—1)s,e — (p— 1)t} <t —s

in this case. We claim that the condition v, (vuP=D% — ¢(v)uP~1*) > max{0, (p —
1)(s +t) — e} is satisfied if and only if

v=oau*""+uv; for « € Fand vy € F((u)) such that — v, (vy) < ey

Clearly, the latter implies the former. We prove the converse. We assume that the
former condition. If

min{vu(vu(pfl)s), Uy (qﬁ(v)u(p*l)t)} > max{0, (p — 1)(s +t) — e},
we may take o = 0. So we may assume that
min{vu(vu(p_l)s), Uy (d)(v)u(p_l)t)} < max{0,(p—1)(s+1t) —e}.

Then the lowest degree term of vuP~Y* is equal to that of gzﬁ(v)u(p*l)t, and the
lowest degree term of v can be writen as au®~* for a € F*. We put vy = v—au’~?.
We can see —v,(vy) < 744, because v, (v4uP~D% — ¢(vy )uP~D) > max{0, (p —
1)(s+t) — e} and the lowest degree term of v uP~1* cannot be equal to that of
(v )uP~Dt. Thus the claim has been proved, and the number of the points of
G R, 0.5.¢(F) is equal to ¢"=*T1 by Lemma 3.2.

We put hs; = log, |9%v; 0.:(F)|. Collecting the above results, we get the
followings:

o If s+t <epand ps—1t >0, then hsy = [(p — 1)t/p].

o If s+t <epand ps—t <0, then hgy = (p—1)s+ 1.

e If s+t>epandps—t> (p—1)(s+1t) —e, then hyy = [(e — (p—1)s) /p].
e Ifs+t>eandps—t<(p—1)(s+t)—e, thenhsy =e—(p—1)t+ 1.

| C]F) Z q

0<s,t<egp

Now we have

We put
Sn={(s,t) €Z* |0 < s,t < eq, hgy =n},
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and

={(s,t) € S | s+t <eq, ps—t >0},
ng—{(s,t)65n|s+t§eo, ps—t<0},
i ={(st) €Sy |s+t>eq, ps—t>(p—1)(s+1t)—e},
o ={(st) €Sy | s+t>eq, ps—t<(p—1)(s+1t)—e}.
It suffices to show that [Sy, 1| + Sy 2| = a, and [S], | + |5}, o = aj,.
Firstly, we calculate |S,, 1. We assume (s,t) € S, 1. In the case ny # 0, we

have t = png+n1+1 by [(p—1)t/p] = (p— 1)ng +n1. Then ps >t =png+ny +1
implies s > ng + 1, and we have

ng+1<s<e—png—n;—1.
We note that if ¢ > ey, we have
(eo—pnp—n1—1)—(no+1)+1=e—(p+1)np—ny —1<0.
So we get
[Sp.1] = max{eg — (p + 1)ng —n1 — 1,0}.

In the case ny = 0, we have t = png or t = png + 1 by [(p — 1)t/p] = (p — )ng. If
t = png, we have ng < s < eg—png. If t = png+1, we have ng+1 < s < eg—png—1.
So we get

[Sn.1| = max{ep — (p + 1)no + 1,0} + max{eg — (p + 1)no — 1,0}.

Secondly, we calculate |S,, 2|. In the case ny # 1, we have S, 2 = (. In the case
ny = 1, we assume (s,t) € S, 2. Then s = ng, and we have png +1 <t < ey — ng.
So we get

|Sp.2| = max{eg — (p + 1)ng, 0}.

Collecting these results, we have Sy, 1] + [Sn,2| = an.

Next, we calculate |S], ;|. We assume (s,t) € S, 1 In the case n} # 0, we have
s=ey—e; —pny—nj —1by [(e— -1 )/p] (p — 1)nf + nf + e1. We note
that [(e — (p— 1) )/p] —n>Osh0WSS<eo Thenps—t> (p—1(s+1t)—
implies pt < peg — pnj —ny — 1, and further implies ¢t < eg —nj — 1. So we have

e1+png+n)+2<t<ey—mny—1.

We note that e; +png +nf +2=n+ny+2 > 1 and eg —ny — 1 < eg, because
ny > —1. We note also that if s < 0, then

(o —ny—1)—(e1 +pny+ni+2)+1=e—e1 — (p+1)nj —n} —2 <0.

So we get
S}, 1| = max{eg —e1 — (p+ 1)ng — nj —2,0}.
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Inthecasenl—O we have s = eg —e; —pnjy — 1 or s = eg — e; — pny, by
[(e— -1) )/p] p—1)ng+er. If s=eg—e; —pnj —1, we have ey +pnj+2 <
t<ey—nj—1 Ifs—eo—61 pny, we have eq +pnj +1 <t < ey —nj. We note
that n{ > 0, because nj = 0. So we get

S}, 1| = max{eo — e1 — (p + 1)ng — 2,0} + max{eg — e; — (p + 1)ng, 0}.

At last, we calculate |S], ,|. In the case ny # 1, we have S}, , = ). In the case
ny = 1, we assume (s,t) € S, 5. Then t = ey — ng, and we have ng +1 < s <
ep — e1 — pnj, — 1. Here we need some care, because there is the case nj, = —1, in
which case t > eg. Now nj; = —1 is equivalent to n = 0 and e; = p — 2. So we get

S}, 2| = max{eg —e1 — (p+ 1)ng — 1,0}

except in the case where n = 0 and e; = p — 2, in which case S;LQ = (). Collecting
these results, we have [S], ;| + (S, »| = a;,. This completes the proof. O

Example 4.2. If K = Q,(¢,) and F =F,, we have |M(C’Fp,(@p(cp))| =p+3 by
Theorem 4.1. We know that Z/pZ © Z/pZ, L/pZ & pp and i, © p, over Og,(c,)

have the generic fibers that are isomorphic to Cr,. We can see |Aut(C]Fp)| =
p(p+1)(p — 1)2. On the other hand, we have

Aut(Z/pZ @ pp) = Aut(Z/pZ) x Hom(Z/pZ, pup) x Aut(pp),

because Hom(uy, Z/pZ) = 0. In particular, we have |Aut Z/pZ ® iy ’ =p(p—1)=2.
Hence, there are (p + 1)-choices of an isomorphism Cg, — (Z/pZ @ ,up) &) that

give the different elements of M (Cr,,Q,((p)). So the equation ‘M(C’Fp,(@p Cp))} =
14 (p+1)+1 shows that there does not exist any other isomorphism class of finite
flat models of Cf,,.

Remark 4.3. Theorem 4.1 is equivalent to an explicit calculation of the zeta func-
tion of 9 Rv, .0, and we can see that dim YRy, o = max{n > 0 | an +al, #0}.
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