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1 Introduction

1.1 Results

A tropical curve is a geometric object over the tropical semifield of real numbers

= (RU {—co},®, ®), where the addition & is the max-operation in the real
field R, and the multiplication © is the addition of R. For a tropical curve C
and a divisor D on C, the set M = HO(C, Oc{D)) of the sections of D has the
structure of a T-module that is defined as follows.

A T-module M is defined as a module over a semifield. (M, &, ®, —co) is said
to be a T-module if (M, &, —oo) is a tropical semigroup, and @ is an additive
semigroup action on M by T. A tropical semigroup is a commutative semigroup
with unity such that any element v satisfies the idempotent condition v@& v = w.

A T-module M is analogous to a module over a field. A subset S C M is
said to be a basis if it is a minimal system of generators. But the number of
elements of a basis of M is not necessarily equal to the topological dimension
of it. We introduce straight T-modules in section 2. This class is a gener-
alization of lattice-preserving submodules of the free T-module T®, where a
lattice-preserving submodule is a submodule preserving the infimum of any two
elements with respect to the cancnical partial order relation on T™.

Theorem 1.1. Let M be o finitely generated straight submodule of the free
T-module T*. Then M is generated by n elements.

We have four corollaries (Theorem 2.1, 2.2, 2.3, 2.4). The semifield T is
generalized to a quasi-complete totally ordered rational tropical semifield k.
We find a sufficient condition to the existence of a left-inversion of an injective
homomorphism of k-modules (Theorem 2.1). The dimension of a straight re-
flexive k-module is defined to be the number of elements of a basis. We show
the inequality dim(}M) < dim(N) for a pair of straight reflexive k-modules
M ¢ N (Theorem 2.2). We show that a finitely generated straight pre-reflexive
k-module is reflexive (Theorem 2.3). Also we consider finiteness of a submodule
of a k-module {Theorem 2.4). The proofs are given in section 3.7.

This result has an application to polytopes in a tropical projective space
TP". By Joswig and Kulas [3], a polytrope (it means a polytope in TEF™ that
is real convex) is a tropical simplex, and therefore it is the tropically convex
hull of at most n -+ 1 points. We show a generalization of this result {Theorem

2.5). A polytope P is the tropically convex hull of at most n + 1 points if the
correspondmg submodule M < T?*! is straight reflexive. Also M is stra.1ght
reflexive if P is a polytrope.

Also we have an application to tropical curves. A Riemann-Roch theorem
for tropical curves is proved by Gathmann and Kerber [1]. This theorem states
an equality for an invariant r(D) of the divisor. We see that r(D) is not an
invariant of the T-module M = H%(C,O¢(D)) (Example 6.5), and show the
inequality 7(D) < dim(M) — 1 (Theorem 2.7). -



1.2 Background

A survey of tropical mathematics is found in [4]. Tropical varieties are intro-
duced as follows. Let K = C[[R]] be the group algebra of power series defined
by the group R. We have a multiplicative seminorm )

JFl: K — Rxo
defined by
: fl] = exp(— val{z}),

where val means the canonical valuation on K. This seminorm induces the

amoeba map
A (K*)" — R"
defined by
Afz1,...,za) = (log||z4]], . .- , log [|znl])-

The image A(V) of a variety V in the algebraic torus (K*)" is said to be a
tropical variety in the tropical torus R™.
Tropical algebra is introduced by the map

m: K — RU{—o0}

defined by
7(z) = log||z]|.

This map induces a hyperfield homornorphism
m: K — X,

where X is the tropical hyperfield with underlying set RU{—o0}, introduced in
[7]. The power set 2% is a semiring with operations induced by multi-operations
of X.

Now we have the lower-saturation map

vi X — 2%

deﬁnéd by
v(a)={ce X|c<a}.
The power set 2¥ has a subsemiring

I=Xur(X),

which is isomorphic to Izhakian’s extended tropical semiring introduced in [2].
The lower-saturation map v means the ghost map in [2]. The image +(X) means
the ghost part, which is isomorphic to the tropical semifield of real numbers
(RU {-~co}, ®,®), where operations are defined as follows.

a & b = max{a, b},



a@b=a+b

In this paper, the symbol T means the tropical semifield of real numbers. Under
the identification T = v(X), the canonical homomorphism #: I — T is the lower-
saturation map.

Section 2 contains definitions and theorems. Section 3 and 4 contain foun-
dation of tropical modules, and the proof of Theorem 2.1, 2.2, 2.3, 2.4, and 2.5.
Section 5 and 6 contain foundation of tropical matrices and tropical curves, and
the proof of Theorem 2.7. Section 7 is an appendix for tropical plane curves.

Acknowledgements. The author thanks Professor Yujiro Kawamata for help-
ful advice. :

2 Definitions and theorems

A semigroup (M, &) is a set M with an associative operation &.

Definition. (M, &, —c0) is a tropical semigroup if it satisfies the following ax-

ioms.
(1) (M,®) is a semigroup.
(i) vow=wduv.
{iii) v @& 00 =w.
(iv) v®v ="
The element —co is called the zero element of M.
There is a unique partial order relation ‘<’ on M such that for any v,w &€ M
it implies
sup{v,w} = v Hw.
The proof is given.in section 3.1.

Definition. A tropical semigroup M is quasi-complete if any non-empty subset
§ ¢ M admits the infimum inf{S) (i.e. it admits the maximum element of the
lower-bounds of S).

Definition. (4, @, ®, —oo,0} is a tropical semiring if it satisfles the following
axioms.

(i) {A,®,—o0) is a tropical semigroup.
(ii} (A, ®) is a semigroup.
(i) a®b=boa.
iv) a®@ (bhe)=aGb®abe



v) a®@0=a.
(vi) a @ —o0 = —oc.

The element —oo is called the zero element of A. The element 0 is called the

unity of A.

Definition. (k,&,®, —00,0) is a tropical semifield if it satisfies the following
axioms.

(i) (k,®,®,—00,0) is a tropical semiring.
(ii) For any a € k\ {—oc} there is an element @a € k such that o © (@a) = 0.

Definition. A tropical semifield % is rational if it satisfies the following condi-
tions.

(i)ack,meN=Tbeck a=1t0m
(ii) % has no maximum element.
The tropical semifield of real numbers (T, &, ®, —co, 0} is the set
T=RU{—oc0}

equipped with addition
a ®b = max{a,b}

and multiplication
a®b=a+b

and zero element —co and unity 0. T is a quasi-complete totally ordered rational
tropical semifield.
Let k be a quasi-complete totally ordered rational tropical semifield.

Definition. (M,®,®, —o0) is a k-module if it satisfies the following axioms.
(i) (M, &, —co) is a tropical semigroup.
(ii) ® is a semigroup action k x M 3 (a,v) —+ a@v € M, ie.

) (a@bOv=a06(bov).
iiy 0v=w.

(i) (aeb)Ov=_(c0v)®bLOwv).

(iv) a0 (v w) =(eOv)& (e Ow).
(v) —co @y = —o0.

(vi) a® —0o = —co.

Definition. A homomorphism a: M — N of k-modules is a map with the
following conditions.



(1) a(—o0) =—c0.
(1) o(v® w) = o(v) ® alw).
(iil) ala@v) =a® afv).

Let Hom(M, N) denote the k-module of homomorphisms from M to N.
The dual module MV is defined by MY = Hom(M, k). We have the pairing
map {-,-): M x MY — k defined by

{v,6) = £(v).

Definition. M is pre-reflezive if the homomorphism ¢ps: M — (MV)Y is injec-
tive. M is reflexive if ¢pr is an isomorphism.

Definition. A k-module M is straight if it is a finitely distributive ordered
lattice, i.e. it satisfies the following conditions.

(i) Any two elements v,w € M admit the infimum infas {v, w}.
(i1} v, v, w € M = Infar{v1 & v, w} = infar{vy, w} @ infpy {ve, w}.
(iii) vi,v9,wEM = infM{'v]_,'Uz} D w =infpr{v, O w,ve dw}.

Definition. A homomorphism «: M — N is lightly surjective if for any w € N
there is v € M such that w < a(v).

A homomorphism 8: N — M is said to be a left-inversion of a if Box = idy.

Theorem 2.1. Leta: M — N be an injective lightly surjective homomorphism
of k-modules such that M is straight reflexive. Then o has o lefi-inversion.

Definition. A basis {ex|A € A} of a k-module M is a minimal system of
generators (ie. there is no Mg € A such that the elements {ey | A € A\ {Ao}}
generate M). A subset § C M generate M if any element of M is written as-a
linear combination

a Qe - da, @

of elements of 5 over k.

Definition. An element e € A \ {—oc} is eztremal if for any v,vs € M such
that v; @ vy = e it implies v; = e or v2 = e. M is emtremally generated if
M is generated by extremal elements. An eziremal ray of M is the submodule
generated by an extremal element of M.

Definition. The dimension of a straight reflexive k-module M is the number
of extremal rays.

The number of extremal rays of M is equal to the number of elements of
any basis of M. The proof is given in section 3.3.

Theorem 2.2. Let a: M — N be an injective homomorphism of finitely gen-
erated straight reflexive k-modules. Then



(1) dim{(M) < dim(N).
(2) If dim(M) = dim(N), then o is Lightly surjective.

Theorem 2.3. Let M be a finitely generated straight pre-reflexive k-module.
Then M is reflexive.

Theorem 2.4. Let oc: M — N be an injective homomorphism of straight pre-
reflexive k-modules. Suppose that M has o basis, and that N is finitely gener-
ated. Then M is finitely generated.

Let P be a polytope in TP". P is the tropically convex hull of finitely many
points p1,...,Pp. Let
@: T\ {—c0} — TP

be the canonical projection. Then the subset
M =y (P)U{~co} C T

is a submodule generated by elements vy, . .., v, such that p(v;) =p; (1 <4 < 7).
Also we have an injection :
v T — TP?

defined by (a1,...,6a) — (0,a1,...,a,). This map induces an embedding R™ C
T™ C TP®. A polytope P C TP is said to be a polytrope if if is a real convex
subset of R™.

Theorem 2.5. Let P be a polytope in TP™ with the corresponding submodule
M c T

(1) If P is a polytrope, then M is straight reflezive.
(2) If M is straight reflezive, then P is the tropically convez hull of at most
n + 1 points.

Let C be a tropical curve. Let D be a divisor on C. Let HY(C, Og(D)) be
the set of the sections of D. (A section of D is a rational function f: C — T
such that either f = —oc or (f) + D > 0.) For r € Z3q, let

U(D,r) =C"\5(D,r),
S(D’T) = {(Pla---apr) eC” |H0(O,OC(D - Z Pﬁ)) ?é _00}‘
1<i<r
Let U(D,r) = 0 if r = —1. The following theorem is known.

Theorem 2.6 (Gathmann and Kerber [1]}. Let C be a compact tropical curve
with first Betti number by (C). Let D be a divisor on C. Let K be the canonical
divisor on C. Then

r(D) —r(K — D) =1—b,(C) -+ deg(D),

where
(D) = max{r € Z>_ |U(D,r) = 0}.



The set M = H(C, Oc(D)) is a T-module with addition

(f®g)(P)=f(P)@y(P)
and scalar multiplication
@@ f)(P)=a® f(P).
The dimension of M is defined as follows.

Definition. The dimension of a k-module M is the maximum dimension of the
straight reflexive submodules of M.

This definition is compatible with the previous one. If M is straight reflexive,
then the maximum dimension of the straight reflexive submodules of M equals
the dimension of M by Theorem 2.2.

Theorem 2.7. Let C be a tropical curve. Let D be e divisor on C. Then the
inequality )
7(D) < dim HY(C, Oc(D)) — 1

is fulfilled.

3 Tropical algebra

3.1 Tropical semigroups, semirings, and semifields

Proposition 3.1. Let M be a tropical semigroup. Then there is a unique partial
order relation ‘<’ such that for any v,w € M it implies

sup{v,w} = v ® w.
Proof. We define a relation ‘<’ on M as follows.
v<w == vOw=w

This is a partial order relation, because v @ v = v. The element v & w is the
minimum element of the upper bounds of {v,w}. O

Let A be a tropical semiring.

Ezample 3.2. The semiring of polynomials B = Afz;, ..., z,] is the set of poly-
-nomials

f=Pa oz
%

= P ey 02" 00z

i1 yeenyin 20



with coefficients a; € A, equipped with addition an(i multiplication of polyno-
mials. B is a tropical semiring. An element f € B is said to be a tropical
polynomial over A: The induced map

F:A" — A
(ala---)an) — f(a'l:"":an)
is said to be a tropical polynomial function.

Remark 3.3. We use the notation ma by the meaning of tropical m-th power
a®™. For example, 2(a @ b) means the second power of (a @ b), so we have

200@b)=200a0bBa@b®2b
=205a2b@2b

Also a tropical polynomial is written as
= @ a; Oizx.
i

Proposition 3.4. Let A be a tropical semiring. Let f € Alzy,...,z5]. Then
for anyv,w € A",

flvdw) 2 f(v)® f(w).

Proof. Assume that
F=t21® - Qinty,

v="{a1,...,a.),
w = (by,...,bn).
Then
Fodw)=i(a1@h)O - Qislan & by)
> (1101 © - Qinn) @ (i1b1 © - O inby)
= fv) & f(w).

O

Let k be a tropical semifield. Recall that % is said to be rational if it satisfies
the following conditions.

(i) ack,meN=3beck, a=10"
(ii} % has no maximum element.
Proposition 3.5. Let k be a rotional tropical semifield. Then for anya €k it

implies
ir;f{bek|a<b} =a.



Proof. The case of a = —co. Suppose that there is an element ¢ € k \ {—o0}
such that k»(c) = k\ {—oo}. Then the element 0 @ ¢ is the maxirmum element
of k, which is contradiction.

The case of a # —co. The condition a < b is fulfilled if and only if 0 < b@a.
So we may assume ¢ = 0. Suppose that there is an element ¢ £ 0 such that ¢ is
a lower-bound of the set {b € k|0 < b}. There is an element ¢’ € k such that
e=(/)9? =2¢. Since 0 < 0 ¢/, we have ¢ 0@ ¢’. So we have

20 )=086c @2

=08 dc
= 0@,
0@ =0.
So we have ¢ < 0, which is contradiction. O

3.2 Modules over a tropical semifield
Let k be a tropical semifield. Let M be a k-module.
Definition. A submodule N of M is a subset with the following conditions.
(i) —cc € N.
(i) If v,w € N then v@w € N.
(iii) fveNandac kthena@v € N.

Erample 3.6. Suppose that k is totally ordered. Let g € k[zy,...,2,) be a
homogeneous polynomial of degree m. Let p: k* — k be a homomorphism of
k-modules. Then the subset .

M = {v e §"|mp(v} < q(v)}
is a submodule of k”. Indeed, forv,w e M and ¢ € k,

‘mp(a @ v} =m(a©p(v))
= ma @ mp(v)
< ma© q(v)
= Q(a' @‘U),

mp(v ® w) = m(p{v) ® p(w))
= max{mp{v), mp{w)}
- = mp(v) ® mp(w)
< q(v) ® g{w).

By Proposition 3.4, we have g(v) ® g(w) < ¢(v & w).

10



Ezample 3.7. A free module M = k™ of finite rank is reflexive. Indeed there is
a pairing map (-, }: &® x k™ — k defined by '

((a1,---,8n)y (b1, BR)) =01 O L1 @ - D aq O bn.

So we have (k)" = k™.
Recall that M is said to be pre-reflexive if the homomorphism epr: M —
(MV)" is injective.

Proposition 3.8. M is pre-reflexive if end only if there is an injection M — F
Jor some direct product F =[], k-

Proof. There is an injection (MY)" — T a k, Where A is the set V. Con-
versely, if there is an injection M — F for some direct product F', then M is
pre-reflexive, because I is pre-reflexive. O

Lemma 3.9. Suppose that k is rational. Let M be a pre-reflexive k-module.
Then for any v € M and any o € k it implies

i}rj{f{bevlbek,a<b}=a®v.

Proof. Let w € M be a lower-bound of the subset {b®v|b € k,a < b}. For
¢ € MY and b € k such that a < b, we have

§(w) <bOE().
By Proposition 3.5, we have
{(w) < a@&(v).
Since M is pre-reflexive, we have w < a © v. O

Lemma 3.10. Suppose that k is totally ordered. Let M be a pre-reflexive k-
module. Then for any v,w € M and any a € k,

viwe<l=vidwdadu.

Proof. Since M is pre-reflexive, there is an element £ € MY such that £(v) £
£(w). Since k is totally ordered, we have £(w) < €(v). So

max{£(w), a © £(v}} < &(v).
So we have the conclusion. ]

Example 3.11. Let G be a tropical semigroup with at least two elements. Let
M = (G x R} U {—o0} be the T-module with addition

(v,a) B {w,b) = (vdw,adh)

11



and scalar multiplication

(m,e@a) ifceRr
—co if e = —o0.

cO (v,a) ={

M is a T-module generated by the subset G x {0}. M is not pre-reflexive,
because it does not satisfy Lemma 3.10. Let v,w € G be elements such that
v £ w. Then

(v,0) £ (w,0),
('U: 0) < (w: 0) @ (_1) @ (Ul 0)

3.3 Basis and extremal rays

Let k be a totally ordered tropical semifield. Let M be a k-module. Recall that
an element e € M \ {—co} is said to be extremal if for any v, v € M such that
v Bvs = e it implies v1 = e or v2 =e.

Proposition 3.12. Let M be a pre-reflezive k-module. Then the following are
equivalent.

(i) There is a basis of M,
(ii) M is extremally generated.

More precisely, a system of generators E = {ex| A € A} is o basis if and only if
each ey is extremal and it satisfies kG ey #kOey (A # u)

Proof. Suppose that there is & basis E of M. Let ¢; be an element of the basis -
E. Let v1,v2 € M be elements such that 11 @ va = e;. There are elements
€y, €a,...,er of the basis F and elements a;,b; € & such that
r=00edad®@ed -da Oer,
V=00 ®hOed --Dbh e

Since k is totally ordered, we may assume a1 < b;. Then
gy = bhhGe @ w,

where
w= (220 b)0e@ - ®(a-Bb) Ve,
Since E is a basis, we have w # ¢;. By Lemma 3.10, we have b; = 0. It means
va > e1. So we have vo = e;. Thus e is extremal.
Conversely, let F be a system of generators that consists of extremal elements
with different extremal rays. Suppose that E is not a basis. There are elements
€1,€3,...,er of F and elements a; € k such that

e1=@ed -Da. Oep.

Since ey is extremal, there is a number i such that e; = a; © e;, which is
contradiction. O

12



Proposition 3.13. Let a: M — N be @ homomorphism of k-modules. Let
w € N be an extremal element. Then any minimal element of the subset a1 {w)
is extremal.

Proof. Let e € M be a minimal element of a~!(w)}. Let vy,vs € M be clements
such that vy ® va = e. Then a(v) @ ave) = w. Since w is extremal, we may
assume a(v;) = w. Then v, is a lower-bound of e in o~ (w). Since e is minimal,
we have v; = e. O

3.4 Locators
Let & be a totally ordered tropical semifield. Let M be a k-module. For a subset
S ¢ M, the lower-saturation M< (S) is defined by
Mc(S)= | J{ve M[v<w}
weS
The set of the lower-bounds Low s (S) is defined by
Lownr(8) = m {veM|v<uw}
weS

A subset S C M is said to be lower-saturated if M<(S) = 5.

Definition. A locator § of M is a lower-saturated subsemigroup of the semi-
group (M, @) that generates the k~module M.

Let Loc(M) denote the set of the locators of a k-module M, equipped with
addition v
SeT=8nT
and scalar multiplication

V. j(@)os ifack\{-wx}
“QS“{M if a = —oo.

v
Proposition 3.14. (Loc(M ),E\é, ®) is a k-module with zero element M. There
is a homomorphism
: i: MY — Loc(M)

defined by
(€} ={v e M|{v,£) <0}.

Proof. Loc(M) is a tropical semigroup. Indeed,
S®8=5nS=3.

Loc(M) is a k-module. Indeed, for a,b € k such that a < b, since S is lower-
saturated, we have
Qb S CedS.

13



So we have
v
(e@pb)0S=0000S8
={@a®S)N (@b S)
v v
=a0S5®H0S.
i is a homomorphism. Indeed, for v € M,

vEUE B &) — w&Le&) L0
— (’U: 61) o (’U,fg) < 0
== v € (&) Nif)

= veill) di().

So i{E1 ® &) = (1) Bi(&a).

veifa®f) = (1@ L0
= {(a@v,§ <0
= a@uEif)

— veadilf)

v
Soife®&) =a®ilf). O
Lemma 3.15. Suppose that k is quasi-complete and rotional.

(1) For any locator S € Loc(M) there is a unique element § € MY that
satisfies the following conditions.

(v,6) <0 (veS),
(0,8 >0 (veM\S).

(2) The mapping S — £ induces o homomorphism
p: Loc(M) — MY
which satisfies po i =1idasv.
Proof. (1) Let £: M — k be the map defined as follows.

§(v)=i1;f{a€k|u€a®3}.

The set in right side is non-empty. (Since S generates the k-modnle M, there
are s; € S and a; € & such that

V=108 & - Da; O sr.

14



Let @ be the maximum element of a1,...,ar. Since S is lower-saturated, there
are s, € S such that '
v=a0( & Ds,)

Since .S is a subsemigroup, we have v € a ® S.) For any v € M \ S we have
¢(v) > 0, because S is lower-saturated. For any v € S, we have {(v) < 0.
We show that £ is a homomorphism. Since § is lower-saturated, we have

() ®&(w) (v w).

Suppose that £(v)®&(w) < £(vdw). There are a,b € k such that a®b < {(vOw)
and v € @8 and w € b@5. Then v@w € (a®b)®S. So we have {(vPw) < add,
which is contradiction.

We prove uniqueness. Let £ € MY be an element that satisfies the following
conditions.

v, <0 (veds),
& >0 (veM\S).

Then
{v,6) < i%f{a cklvea® S}

< il;f{a €k|{v. & <a}.

By Proposition 3.5,
infla € | (5,€) < a} = (v,6)

So we have
(v,£) -—-i%f{a eklvea®S}

(2) We have
(v,p(S)®p(T)) <0 (veSNT),
(0,p(8) ®p(T) 20 (v e M\(SNT)).
It means p(S) & p(T) = p(S®T). So p is a homomorphism. For & € MY, let
S={veM|{§ <0}
Then

(0,8 <0 {wes),
(v,§) =0 (ve M\S)

It means £ = p(5). . ) O

15



3.5 Straight modules

Let & be a totally ordered tropical semifield. Recall that a k-module M is said
to be straight if it satisfies the following conditions.

(i) Any two elements v,w € M admit the infimum infar{v, w}.

(i) vy, v2,w € M = infar{v1 ® vo, w} = infar{vy, w} @ infar{vz, w}.

(iii} v1,va,w € M = infpr{vy, 2} @ w = infyr{v) Sw,ve Dw}.
Proposition 3.16. The above conditions (il), (iil) are equivalent.
Proof. (ii) = (iil).

iﬁf{vl Dw, v Bw} = iﬁf{vl,vz} ) i}l}ff{vl,w} ) i&f{w,vz} O w
= iﬁf{vl,vz} & .

(iii) = (ii) is similar. O

Definition. A homomorphism «: M — N of k-modules is lattice-preserving
if for any v,w € M and any lower-bound x € Lown(a(v),2(w)) there is a
lower-bound y € Lowas(v, w) such that z < a(y).

If M, N are ordered lattices, « is lattice-preserving if and only if it preserves
the infimum of any two elements.

Proposition 3.17. Let a: M — N be a lattice-preserving injective homomor-
phism of k-modules such that N is straight. Then M is straight.

Proof. For v,w € M, let z = infy{a(v),a{w)}. There is a lower-bound y of
{v,w} such that z < a(y). Theny = infa {v,w}. (Let ¢’ € M be a lower-bound
of {v,w}. Then a(y’) < = < ofy). Since « is injective, we have ¥ < 3.} a(y) is
a lower-bound of {a(v), afw)}. So we have £ = a(y). M is finitely distributive,
because ¢ preserves the infimum of any two elements. O

- Proposition 3.18. Suppese thet k is quasi-complete and rational. Let M be o
straight k-module. Then M"Y end Loc(M) are straight.

Proof. We show that Loc{M) is straight. For 5,T € Loc(M), let
U=8¢T={sat|scStecT}

U is lower-saturated. (Let v € M and s € S and ¢t € T be elements such that
v < s@®t Then

v= 1i1£f{1),s @t}
= 1}1\1}{1},3} ® 111\14f{u,t}.
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So we have v € U.) U is a locator of M, and we have

U= Lolggm{S, T}.

Loc(M) is fititely distributive. Indeed, -
(S1NS)eT = (S1eT)N (S e

(Let v be an element of right side. There are s; € 51 and 53 € Sp and #1,t2 € T
such that
v=28 Dt = 52D ta.

Then
v = iﬁ{f{&l BDt, 8 Bta}

= iﬁf{sl, s} d iﬁf{sl, iz} 3] .iﬁf{tl, sa} B i}’g{tl, tg}.

So we have v € (51N Sy) @ T.) ,

We show that MV is straight. For £,¢s € MV, let 51,53 € Loc{M) be the
induced element. There is a unique element 5 € MV that satisfies the following
conditions (Lemma 3.15).

(v,m <0 (vESLDS:),
(v,m =0 (veM\(5:1885))

We have 57 = infpv{£1,€}. So the canonical injection i: MY — Loc(M) is
lattice-preserving. Since Loc(M) is straight, MY is straight (Proposition 3.17}.
' O

Proposition 3.19. Let M be a k-module. Let7: M — k be o lattice-preserving
homomorphism. Then 7 is an extremal element of MY .

Proof. Suppose that 1 is not extremal. There are elements &;,¢2 € MY and
elements v1,v2 € M such that & & & =7 and {v1,£1) < {v1,7) and {wg, &2} <
{va,m). We may assume {(v1,%) = {ve,7) = 0. Since 7 is lattice-preserving, there
is a lower-bound w of {1, %2} such that {w,n) = 0. Then

0= (w,m)
= {w, &1 © &2)
< {1, 61) @ (va, &2)
< {v,m @ {va, M)
—0,

which is contradiction. O

Definition. A dual element n € MY of an element ¢ € M is an element with
the following conditions.
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(@) {e.m =0.
(ii) veM e MY = (v,m) © (e,&) < {v,6).
Proposition 3.20. The dual element of an element e € M is unigue.

Proof. Let 7 be a dual element of €. Then
n =min{¢ € MY |{e,€) = 0},

because
n®{e,§) <¢
for any £ € MVY. O

Proposition 3.21. Let e € M be an element of a pre-reflexive k-module M.
Suppose that e has the dual element 7 € MY, Then

(1) e is an extremal element.

(2) n: M — k is a lattice-preserving homomorphism (therefore is an extremal
element of MY ).

Proof. (1) Let v1,v2 € M be elements such that v; @ v = e. Then

(v, m @ {v2,7) : (e,;m =0.
We may assume (v;,n) =0. For £ € MV,
(G,E) = (vlzn) O] (6, f)
S (T}l,&).

Since M is pre-reflexive, we have e € v;. So we have e = v;.

(2) Let v1,v2 € M be elements such that {v1,1) < (v, 7). Let w = {v1,7)®e.
For £ € MY, we have (w, &) < {v;,£). Since M is pre-reflexive, we have w < v;.
So w is a lower-bound of {vq,v2} such that {w,n) = (v1,n). Thus % is lattice-
preserving. By Proposition 3.19, 7 is an extremal element of MV.

Lemma 3.22. Suppose that k is quasi-complete and rational. Let M be a
straight pre-reflexive k-module. Then any extremal element of M has the dual
element.

Proof. Let e € M be an extremal element. The subset
S={veM|efv}
is a subsemigroup. (Let vi,vs € M be elements such that e < v; @ vo. Then
e= ilr‘llf{e, 7 D va}

= 1}1‘1;{@,1;1} EB]}\ldf{e,vg}.
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We may assume e = infzs{e,v1}. Then e < v1.) Also S generates the & module
M. (Let v € M be any element. By Lemma 3.9, we have

iﬁf{b@u[be k\ {—cc}} = —cc.

So there is b € k \ {—oc} such that e £ b©®v.) Thus 5 is a locator of M.
By Lemma 3.15, there is a unique element 7 € MY that satisfies the following
conditions.

(v,m <0 (veds),
(v} >0 (veM\S).

Then
(v,) <inf{a € klaoe £ v}
< i%f{a ck|{v,n) <a}
= ()
So we have
{v,n) =ir;f{a€ kla®e £v}
S0

{e,) = i%f{a € k[0 <a}
= (.
Also, for any a € k such that 0 < a, we have
{(v,m)0a)0e<

By Lemma 3.9, we have
() ©e<.

Thus 5 is the dual element of e. O

Lemma 3.23. Let M be a finitely generated pre-reflexive k-module. Let B8: k™ —
M be the surjection defined by a basis {ey,...,en} of M. Suppose that e; has
the dual element n; (1 <i<n). Then

(1) M is straight.

(2) The homomorphism a: M — k™ defined by the elements m1,...,7, @5 0
right-inversion of B, t.e. foa =1idu.

(3) « is the unigue right-inversion of 8.
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Proof. For v € M, we have
v {v,m)Oer @ ® (v,7.) O en.
It means S oo < idays. Also, for 1 €4 < n, we have
Boale) = {eim ©e = 6.

Since M is generated by {e1,...,en}, we have fo a = idy. So « is injective.
Also v is lattice-preserving {Proposition 3.21). Since & is straight, M is straight
(Proposition 3.17).

We prove uniqueness. Let ni,...,7, € MY be elements such that the in-
duced homomorphism M — k™ is a right-inversion of . Then we have

v={v,5)Ce & & {7 Oen.

So
' e = {5, 7;) © & & wi,
where
w; = P lew, ) © 5.
7
Since {e1,...,e,} is a basis, we have w; # e; and

e = (e, m) Oe:
(Proposition 3.12). So we have {e;,7j} = 0. Thus #} is the dual element of
€;. O
3.6 Existence of inversions

Let % be a totally ordered tropical semifield. Let a: Af — N be a homomor-
phism of k-modules.

Definition. An element £ € MY domineies an element w € N if there is an
element v € M such that (v,&) <0 and w < a(v).

Proposition 3.24. Let & € MY be an element that dominates w; € N (i =
1,2). Then any lower-bound & € Lowav (£1,&2) dominates wy O wa.

Proof, There are elements vy,vs € M such that (v;,&) < 0 and w; < afv).
Then

{(vg D2, &) < (v1,&1) B {va,&2)
<0

Also we have wy B we < af{vy @ va). a

Recall that a homomorphism «: M — N is said to be lightly surjective if
for any w € N there is v € M such that w < a(v).
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Lemma 3.25. Let oo: M — N be an injective lightly surjective homomorphism
of k-modules. Suppose that MY is straight.

(1) There is a homomorphism v: N — Loc(MV) that satisfies the following
condition. For any w € N the locator y(w) is the subsemigroup of MY
generated by the elements that dominates the element w.

(2) The diagram

M—2—sN

| ]
(Mv)Y 5 Loe(MY)
commutes, i.e. for anyv € M and any £ € MV the condition {v,£} <0 is
fulfilled if and only if € € y(a(v)).

Proof. (1) For w € N, let y(w) C MY be the subsemigroup of M" generated by
the elements that dominates the element w. ~y(w} is lower-saturated. (Let§ € M
and ¢’ € y(w) be elements such that £ < £'. There are elements £1,...,& € MY
such that & dominates w and

€ =4@ 8¢
Then
¢=inf{e60 - 08)
= mf{6,6} @ ®int{6,6}.

So £ € y(w).) Also y(w) generates the k~module MY. (Let £ € MY be any
element. Since o is lightly surjective, there is v € M such that-w < a(v). Let
a € k\ {~co} be an element such that (v,£) < a. Then @a © £ dominates w.)
So y(w) is a locator of MV.

‘We show that v is 2 homomorphism. For w;,ws € N, we have

(w1 ®wz) C y(w) Ny{ws).

Let £ be an element of right side. There are elements & ; € MY (1 <1 < 2,
1 < 7 < r) such that & ; dominates w; and

g:gljle'--.@gl’r =€2:1®”'®62,1'"
Then

£= %5}@{51,1 G BB By}

= @ni,ja

)
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where
g = }&lg{gl,isglj}-

7i,; dominates wy @ wy (Proposition 3.24). So we have £ € v(w; ® wa).
(2) Let £ € MY be an element that dominates a(v). There is an element
v’ € M such that (v/,£) < 0 and a(v) < afv’). Since a is injective, we have
v <v'. 8o we have
(v,6) < (v,€) <.
Let
T={eM|({v¢ <0}

Now we have £ € T'. Since T is a subsemigroup, we have y(a(v)) =T. O

3.7 Straight reflexive modules

Let k be a quasi-complete totally ordered rational tropical semifield. Recall that
the dimension of a straight reflexive k-module M is the number of extremal rays.
By Proposition 3.12, the number of elements of any basis of M is di_m(M ).

Proof of Theorem £.1. We have an isomorphism £57: M — (M")}" and a homo-
morphism -y: N — Loc(M") defined in Lemma 3.25. There is a left-inversion p
of the homomorphism #: (MY)" — Loc(MY) (Lemma, 3.15). By the commuta-
tive diagram .

M—%— N

o

(MvyY - Loc(MVY)
we have ipr lopoyoa =idp. O

Proof of Theorem 2.2. By Lemma 3.22 and Lemma 3.23, there is an injection
N — k", where n = dim(N). Let N’ be the lower-saturation of the image of
M — k" N’ is a frec module of rank »’ < n. If »’ = n, then « is lightly
surjective. Now we may assume that N = k™ and that « is lightly surjective.
By Theorem 2.1, o has a left-inversion 8: N — M. Since § is surjective, we
have dim{M) < dim(N). ' O

Proof of Theorem 2.3. By Lemma 3.22 and Lemma 3.23, there is a right-inversion
c: M — k™ of the surjection 3: k™ — M. By the commutative diagram

g

r—M

T
B — (MY)Y
(ﬁ")"( :

we have (371 = Bo (@¥)Y. 3
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Proof of Theorem 2.4. By Theorem 2.3, N is reflexive. Similarly to the proof
of Theorem 2.2, we may assume that N = £™ and that « is lightly surjective.
We have a homomorphism +v: N — Loc{M") defined in Lemma 3.25. There is
a left-inversion p of the homomorphism i: (MY)Y — Loc(M") (Lemma 3.15).
There is a homomorphism é: MY — NV such that for any w € N and any

& € MY it implies
(w, 8()) = (p(v(w)), &)
By the commutative diagram

M—F N

T
(av)Y —> Loc(M")
for any v € M we have
{ce(v), 8(€)} = (v, &)
So a¥ o6 = idasv. So we have
dim{M"} < dim{NV) =n.

By Lemma 3.22 and Proposition 3.21, there is an injection from the set of
the extremal rays of M to the set of the extremal rays of MV. So we have
dim{M) < n. O

Ezample 3.26. There is an example of straight submodule M ¢ T2 that is not
finitely generated. Let :

M = {{a,b) € T?|b# —co} U {—00}.

M is a submodule of T2. M is straight, because it is lattice-preserving,.

Ezample 3.27. There is an example of extremally generated submodule M c T?
that is not finitely generated. Let

Mo (a,b,c)eT? | (-D@adec<h,
- W<a@e - )

M is a submodule of T? (Example 3.6). Tor 0 ¢ < 1, let
e(t) = (2t,4,0) € M.

e(t) is extremal. (Proposition 3.13. Indeed e(t) is & minimal element of the

subset
8. = {(a,b,c) € M |b=1}.

So it is extremal.) So M is not finitely generated. {e(¢)|0 < ¢t £ 1} is a basis
of M. Indeed, for any (a,b,¢) € M,

(a,b,e)=cOebc)®(2b@a)0e(a@b).
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M is not straight. Indeed, let

Then we have

11
a4’
. 1

1}\1}{‘01,@2} bw= (11 Z,O)’

i.{lJf{'Ulatm} = ( U):

. 1
inf{v) ®w,v2 ©w} = (1, 5,0)-

So M is not straight.

3.8 Free modules

Let & be a totally ordered tropical semifield. Let # = k™ be the free module
with the basis {ei,...,e,}. Let F* be the set of the linear combinations of
{e1,...,es} with coefficients in k* = k\ {—oo}. Let {ey,...,ex} be the dual
basis in FV. We have a bijective map

b: F* — (FY)*
defined by .
V(e Qe @ ®e,0ey) ={Qa1)0ef @--- B (Qa,) Del.
For v,w € F*, the condition v < w is fulfilled if and only if
{v,%(w)) < 0.
ForweFfand1<i<mn,let
M(w,5) = {v € F |, (v,e]} © {eg, ¥ (w)) = (v,€) @ (e, ¥ (w)) }-

M (w,i) is a submodule of F (Example 3.6). It is easy to see that M(w,1} is
lattice-preserving in F, i.e. the inclusion M{w,i) — F preserves the infimum
of any two elements. Forn € F¥ and 1 <i<n, let

N(ni) = {'U = F ('UJ?) = (1)36'\;) @ (e, m}
= {U € F|Vj1 (vs 8;,) © ('3:'»"?) < (v, 8.:/) © (65177)}'

N(n,1) is also a lattice-preserving submodule of F.,
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Proposition 3.28. Let M be a submodule of F with a basis {w1,...,w.}.
Suppose that wy € F* {1 < h <r). Then the following are equivalent.

(i) M is lattice-preserving in F.
(i) For any i< {1,...,n}, there is the minimum element of M NV}, where

Vi={veF|{ve) =0}

(ifi) There is a surjective map
s: {1l,....,n} —{1,...,7}

such that

M= (] Mwu,i).
1<ign

(iv) There is a surjective map
s: {1,...,n} —{1,...,7}

such that
M= ﬂ N(ns(i):?:)':

1<ign
where 1, is the dual element of wy,.
Proof. (iii) = (i} and (iv) = (i} are easy.

Since FY is also a free' module, for 7 &€ (FV)* and 1 < i < n we have the
lattice-preserving submodule M (n,1) of FV. The bijective map

i F* —s (FV)*
induces bijective maps
P’ M\ {—o0} — M"\ {~00},

P N(n,i) \ {—oc} — M(n,) \ {—o0}.
So we have only to prove that conditions (i), {ii), (iii) are equivalent.
(i) = (ii). Let
v = ir}f{@&h,i Ouwi|l<h<r},

where
api = (wn,€)).
"Then v; is the minimum element of M N V;.

(ii) = (iii). Let v; be the minimum element of M N V;, v; is an extremal
element of M. The extremal ray k& ® v; is generated by an element of the basis
{ws,...,w.} (Proposition 3.12). There is a number s() such that ¥ © v; ==
kow, oL
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We show that s is surjective. For h € {1,...,7}, we have
Wy =ap)1 @U1 B Dappn O Up.
Since wy, is extremal (Proposition 3.12), there is a number ¢ such that
Wy, = Gp,i O Vg

So we have h = s(%).
We show the equality

For v € F, let z; = (u,e)). The condition v € M (w,), 1) is fulfilled if and only
if for any j it implies

Q@as(s),; © T 2 Da(i),i © Ti-
For1<h<randl<i<n, wehave

Blg(i),i © Wei) = Vs
< @ap,; O Wy,

For 1 < j € n, we have
@as(s),; @ Gs(s),j < DOh,i O G, j-

It means wy € M (wy(;),%). Since M is generated by {w1,...,wr}, we have

McC ﬂ M(wa{t-),z').

1<i<n

Let v be an element of right side. Then

v= @ Qils(i);s © Ty © Wa(s)-

{Indeed,
{v, ezv) =&
= {@(5),s © T4 © Wa(a), €] )-
SO . .
v < (D @ay(n),: © 7 O ws)-
i
The converse is easy.) So we have v € M. O
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4 DPolytopes in a tropical projective space

Let F = T™*1 be the free module with coordinates (zy,...,%ns1) over T =
RU {~o0}. Let F* = Rn+1,

Proposition 4.1. Let M be ¢ submodule of F' generated by finitely many ele-
ments of F*. Then the@’ollowing are equivalent.
(i} M is lattice-preserving in F.
(i) M\ {—oo} is a real conver subset of R"1,
Proof. (i) = (il). By Proposition 3.28, M is defined by inequalities
mjzmi—ci,j (z,3€{1,,n+1})
for some ¢; ; € R. So M \ {—oo} is real convex.
(i} = (i). Let mp: F — T™ and wp: F — T be projections defined as follows.
Wl(mly . smn-}-l) = (-Tl: LR vmﬂ.)v
T2 T1,5 e s Trgl) = Tl
For a € R, let N;{(a) C F be the submodule defined as follows.
Ni(a) = {v=(21,---,Fn41) € F|Tn1 =z +a}.

By induction on n, we may assume that modules 7 (M), ma(M), M N N;(a) are
lattice-preserving. Suppose that M is not lattice-preserving. By Proposition
3.28, there is a number { such that there is no minimum element of M NV,
where

Vi={v={(21,...,2n41)€ F|z; =0}
We may assume 7 < n. Let wy,ws be minimal elements of M N V; such that
1 (wy) is the minimum element of w1 (M N V) and that m{w,) is the minimum
element of m2(M NV;). Let a € R be an element such that

ﬂ'g(’wg) < a< Tl'g(wl).

There is the minimum element v{a) of M N N;(a) N Vi. Since M N V; is real
convex, v(a) is a minimal element of M NV;. (Let v € M NV; be an element
such that v’ < v(a). The real line segment combining v’ and w; contains an
element v € M N N;{a} N V; such that v # o', Since m1(wn) < m(v') <
1 (v{a)), we have v < v(a). ) So M has infinitely many extremal rays, which
is contradiction. O

Let
@: T\ {—c0} — TP"

be the canonical projection to the tropical projective space TP"., We identify
@(R™*1) with R™. A subset P € TP" is said to be tropically convex if the subset

M = Y P)U {~o0} C T

is a submodule. A subset P C TPP" is said to be a tropical polytope if it is the
tropically convex hull of finitely many points of R™.
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Proof of Theorem 2.5. (1) Suppose that P is a polytrope. Then P is real convex.
By Proposition 4.1, M is lattice-preserving in T™"'. So M is straight. By
Theorem 2.3, M is reflexive.

(2) Suppose that M is straight reflexive. Let {v1,...,v,} be a basis of M.
By Theorem 2.2, we have r < n + 1. Let p; = (v;). Then P is the tropically
convex hull of {p,...,pr} O

5 Square matrices over a tropical semifield
Let & be a totally ordered rational tropical semifield. A square matrix of order

n over k is a homomorphism A: k™ — k™. Let {ej,...,en} be the basis of &™.
The coefficient {A @ e;, e;¥) is simply written as Ay, Let E,: k™ — k™ be the

. identity.

Let A(A), A(A) be square matrices of order n defined as follows.
A(A)y = b5 0 Ay,
K(A)ij = Eij O] A,;j,

where
0 if¢=j
8y = e s .
—oo ifi#j
- —o0 ifi=j
i = P
0 if 4 < 4.

The determinant det(A) is the sum of elements Aoy @ -1+ @ Apy(ny for all
permutations s € §(n).

Lemma 5.1. Let A be a square matriz of order n over k. Suppose that A(A) =
E,, and det{A) = 0. Then A®" = A®™1,

Proof. Since E, < A, we have A®" < A®™*1 for any 7 > 0. (A9"),; is the sum
of elements
b= Anon © AnrE @ © Ann—1)a@m)

for all maps h: {0,...,n} — {1,...,n} such that k{0) =i and A{n) = 4. his
not injective. So there are numbers I, m and a cyclic permutation s € S(n) such
that .

s: h({l) = I+ 1) - 12 h(m — 1) — R(m) = h(1).

Since A(A) = E,,, we have
Arna+1) © - @ Apm—1)n(m) < det(A).

So we have
A®™ < det(A) @ A9™,

Since det(A) = 0, we have the conclusion. O
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Lemma 5.2. Let A be a square malriz of order n over k. Then either (i) or

(1i) is fulfilied.

(i) There are an element v € (k\ {—oco})* and an element ¢ > 0 such that

(A 0AA))ov=A(4)Ow.

(i) There is an element v € k™ \ {—oc0} such that

Aov=A(4) 0w

Proof. Let e(A) be the sum of elements A1) @+ O Ang(a) for all s € S(n)\{id}.
Let
C(A) = det(A(A)) = All [OXEEXO] Ann-

We show that the condition (i) is fulfilled if e(A) < ¢{A). Replacing A by
@(A(A)) @ A, we may assume A{A) = E,. There is an element £ ¢ k such that
g >0and

e(A) @ ne < e(A).

Let
B=A®c0A(4).

Then we have e(B) < ¢(B). By Lemma 5.1, we have B®™ = B®*~1  Let
w € (k\ {—co})™ be any element. Letv = B®*!@w. Then we have BOv =v.

‘We show that the condition (ii) is fulfilled if e{4) < e{A). We may asswne
A(A) = E,. (If A; = —oc, then the element v = e; satisfies the conclu-
sion.) There is a cyclic permutation s € S(n) \ {id} and a map h: {0,...,1} —
{1,...,n} such that

s h(0) > A{1) >« > h(l — 1) > (1) = h(0),

Apoyn() @ © Apg_nrpn = 0.

Let

U= @ (Anprinima1) @ -+ © Apg—1)a1)) © en(m)-

1<mxl .

Then _
: A(A)Guv =
So we have the conclusion, O
6 Tropical curves
Let A = T[z1,-%1,.--,%n, —Za) be the semiring of Laurent polynomials over

T=RU {—oo} (where —z; means @uz;). Let

f = @ Ciy.idn © i]_:ﬂ]_ @ e @ 'inxn,

110 in EE
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be any element of A. The induced map

NHrRr — T
(@1,-.-,8n) +—  fla1,...,8n)
is said to be a Laurent polynomial function over T. If f is a monomial, then f
is a Z-affine funection, i.e. there are e € R and 41,...,%, € Z such that

F=c+nz1+- +inTn.

In general case, f is the supremum of finitely many Z-affine functions, which is
a locally convex piecewise-Z-affine function.
Let T, € B” be the subset defined as follows.

Tp,=EUB U - UE,,
Ey={(a1,...,an) € R*|Y4,Yj,a; = a; > 0},
for 1 <i<n,
E;={(a1,...,00) €R"[a; €0,%j #4,a; = 0}.
T, has a (n-1)-valent vertex P = (0,...,0). Also I'y is equipped with Euclidean
topology on R™.

Definition. A function f: T, — T is reqularif it is induced by a locally Laurent
polynomial function f: R*® — T.

Let Op, be the sheaf of the regular functions on I',. Or, is a sheaf of
semirings. Let R be the stalk of Op, at the vertex P.

Proposition 6.1. Let f € R\ {—co} be any element. Then lhere are o unigue
number r € Z»q and o unigue Laurent monomial h € R such that
F=hor(z ®0).

Proof. f is the sum of Laurent monomials fi,...,fm. If f;(P) < f(P), then
fi < f on a neighborhood of P. So we may assume f;(P) = f(P). Then f is
Z-affine on B; (1 <4 < n). So there is a; € Z such that f = f(P) ® a;z; on E;.
Let

h=f(P)Oaiz1 @ O anln.

Then f=hon By U---UE,. f@h is the sum of monomials g1,...,gm such
that g;(P) = 0. There are b;; € Z»q such that

g5 = bljwl (ORRRAC bnjwn-

Then
g5 = (brj + -~ + bng)z1

on Ey. So we have f @ h = rz1 on Ey, where

= 69 Z bi;.

1< <m 1<ign
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The number 7 in the above statement is called the order of f at P, and
denoted by ord(f, P}.

For 0 < 4 < n, let X;f be the partial differential of f at P with direction
E;. (ie. X;f =aifandonlyif f = f(P)—az; on E; (1 <4 <n). Xof =aif
and only if f = f(P)+ az; on Ey.)

Proposition 6.2. Let f € R\ {—o} be any element. Then

ord(f,P) = Y Xif.

0<i<n
Proof. Let k be a Laurent monomial written as follows.
h=c®arz1® - ©anTn.

Then
Xh=—-a; (1<i<m),

Xoh=a1+ -+ ag.

> Xih=0.

0<ign

So we have

Also we have

Z Xi(zy @ 0)=1.

0<i<n

So we have the conclusion. , O
Proposition 6.3. Let f,g € R\ {—o0} be any elements.

(1) ord(f ® g, P) = ord(f, P) + ord(g, P).

(2) If g(P) < f(P), then ord(f, P) < ord(f @ g, P}.

Proof. (1) is easy.
(2) If g(P) < f(P), then f & g = f. So we may assume g(P) = f(P). Then
we have
Xi(fog) =X:f & Xig.

By Proposition 6.2, we have the conclusion. O

A function f: Iy, — T is said to be rational if locally
f=0-02=00¢

for regular functions g;, go. By Proposition 6.1, there is a number m > 0 such
that the function m(x; ®0)® f is regular at P. The order of f at P is defined
as follows.
ord(f, P) = ord{m{z: ®0) @ f, P) — m.
Let @ € T, be a point such that @ # P. Then a neighborhood of Q is
embedded in T; = R. So we can define the order of f at @ similarly.
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Definition. (C,O¢) is a tropical curve if for any P € C there are a neighbor-
hood U7 of P and a number n > 1 such that (U, Oy) is embedded in (T, Op_ ).

A divisor D on a tropical curve C is an element of the free abelian group
Div{C) generated by all the points of C. For a rational function f: ¢ — T, the
divisor (f} € Div(() is defined as follows.

(£)= ) ord(f,P)P.

PeC

fis said to be a section of D if either f = —oo or (f} + D > 0. Let O¢(D) be
the sheaf of the sections of D.

Proposition 6.4. The sef M = H°(C,Og(D)) is a T-module.

Proof. Let f,g € M\ {—co} be any elements. By Proposition 6.3, for P € C

we have
ord(f & g, P) > min{ord(f, P), ord{g, P)}.

So .
(foa)+D > f {(1.@}+D20

So we have f g e M. [

Recall that
‘ (D) = max{r € Z,_, |U(D,r) = 0}.

Proof of Theorem 2.7. Note that r(D) = s(D) — 1, where
8(D) = min{r € Z»o |U(D,r) # 0}.

Let m = (D). We show that there is a straight reflexive submodule N C M =
HY(C, ©g(D)) with dimension m. Let B,..., Py, € C be points such that

HY(C,0¢(D - E)) = —oo,

where
E=PR4+. .+ P,

There is an element
fi € HYC,0c(D — E -+ P;)}

such that f; # —o0. Let
a: T — M

be the homomorphism defined by afe;) = fi. Let
B M—T"
be the homomorphism defined by

Blg)=g(P)0er @ @ g(Pm)©em.
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Let A be the square matrix induced by 5o a: T — T™.
Now we suppose that there is an element

V=006, 8 By @ e € T\ {—o0}

such that A® v = A(A) @v. Then there is a map h: {1,...,m} — {1,...,m}
such that h(z) # ¢ and

a(v)(B) = apgy © fue (Fi)-
Then

ord{e(v), P;) Z ord{fny), )
{Proposition 6.3}. So @(v) is a section of D — E such that a(v) # —co, which
is contradiction.

So there is no element » € T™ \ {—oco} such that A®v = A(A) ®v. By
Lemma. 5.2, there are an element v € R™ and an element £ > 0 such that

(Ade@A(A))ov=A4) o0
Let L{v,£) C T™ be the submodule defined as follows.
Live)=To{weT"|v<w<eOv}
L(v,€) is a straight reflexive 'I['-IﬁOdule with dimension m. We have

AlLu,e) = A(A)|Lv,e)-

So « is injective on L{v,e). The image N = a{L{v,c)) is a submodule of A
such that N & L(v,e). O

Erample 6.5. The mapping D — r{D) is not an invariant of a T-module. We
show that there are tropical curves C, C' and divisors D, D' such that

HD(O: OC(D)) = HD(C’! OC’(D'))y

(D} # (D).

Let C be a tropical curve with genus 1 with a vertex V' and an edge E. Let
P be an interior point of E. Let D = V + P. Then HY(C, Og(D)) is isomorphic
to the submodule of T? generated by (0,0) and (0, §), where o is the lattice
length of E. We have r(D) = 1.

Let ¢ be a tropical curve with genus 2 with vertices Vi,Ve and edges
Ej, Es, E3 such that the boundary of E; is {V;,Va} (1 €4 < 3). Let P be
an interior point of E;. Let D' = Vi + P. Then for any interior point @ of
E5 U B3 we have s

HY(C', 06 (D' - Q)) = ~c0.

So HY(C', O (D)) is isomorphic to the submodule of T? generated by (0,0)
and (0, %), where b is the lattice length of the path rom Vi to P contained in
E1. We have r(D’) = 0. In the case of a = b, the required condition is fulfilled.
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7 'Tropical plane curves

7.1 Tropicalization

Tt is well known that some example of tropical curve is given by tropicalization
of a family of affine complex curves.

First, we define tropical plane curves. Let f € Tz, —z,y, —y| be a Laurent
polynomial over T =R U {—cc}. The subset

V{f) = {(a,b) € R?| — f is not locally convex at (a,b)}

is called the algebraic subset defined by f. The morphism Cy — R? parametriz-
ing V(f) with a tropical curve C is called the tropical plane curve defined by
f. The genus of Cy is defined to be the first Betti number b1 (Cy).
A tropical plane curve is a dequantization of complex amoebas in following
way. For t > 1, let
Ag: (T — R?
be the homomorphism of groups defined by

log |a| log |6}
log(t) " log(t)

Ay is called the complex amoeba map. Let

.At(a,b) = ( )

g: € Clz, 2 Lz, 227 (2> 1)

be a family of complex Laurent polynomials such that each coefficient is a Lau-
rent polynomial of t—*. This family is written as an element of a valuation field
K. We use the group algebra K = C{[R]| of power series defined by the group
R. The indeterminate is denoted by t—!, and the valuation is defined to be the
maximum index of ¢ multiplied by —1. So, val{t®) = —a. The family {g; [t > 1}
is written as an element

g€ K[z, 17 2,227

The amoeba map over K
A: (KX)? — R?

is defined as follows.
Ala,b) = (—val(a), — val(h)).

The affine curve V{g) C (K*)? is the family of affine complex curves V(g:) C
(C*)2. Taking ¢ — +oo, the family of complex amoebas A(V(g:)) converges to
the amoeba A(V(g)) over K. Also, the amoeba over K is the algebraic subset
defined by a tropical Laurent polynomial. Let

A: K[z17z1~12z2’z2_1] B T[:E, —I, _y]
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be the map defined as follows.

Alg) = f;
g= E cijzji.z%.)
4,j€Z
§ =P ~val(ey) 0 iz © jy.

i,jEZ

Then we have
AV(g) =V{(f). -

This construction is called the tropicalization of a family of affine complex
curves.

7.2 Examples
Ezample 7.1. For a,b,c € C*, let
g=a+ bz +cz.
Then
f=Alg)=00zdy.

The tropical plane curve C} is said to be a tropical projective line. We have
bi(Cy) = 0.
Ezample 7.2. For r,s € N and a;,b; € R, let

f=f1®f2|

fil=®a, 0rda®2r® - ®ar O,
o=@ 0y@b02ye - &b ©sy.

Assume that
20 > a1+ Gt

ij > bj_]_ + bj~|—1-
Then b1 (Cy) = (r —1)(s —1).
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