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1. INTRODUCTION

This paper is divided into two parts. One of them presents a Morse theoretical and dynamical
description of non-commutative Reidemeister torsion, which is a generalization of the results
of Hutchings and Lee [21, 22] and Pazhitnov [39, 40] on abelian coefficients to the case of skew
fields. This content is the theme of [26]. The aim of the other part is to study algebraic structures
of certain submonoids of homology cylinders and the homology cobordism groups of them as
an application of non-commutative Reidemeister torsion. Here we consider a non-commutative
extension of the work of Cha, Friedl and Kim [3], and obtain an analogous result of Goda and
Sakasai [15].

Let X be a closed connected oriented Riemannian d-manifold with y(X) = Qand f: X — S'a
Morse function such that the stable and unstable manifolds of the critical points of f transversely
intersect and the closed orbits of flows of Vf are all nondegenerate. (See Section 2.1.2 and
22.1)

For a generic closed 1-form, for instance df, we can define the Lefschetz-type zeta func-
tion which counts closed orbits of flows induced by the 1-form. In [20], [21], [22] Hutchings
and Lee showed that the product of the zeta function and the algebraic torsion of the abelian
Novikov complex associated to the 1-form is a topological invariant and is equal to the abelian
Reidemeister torsion of X. In [39], [40] Pazhitnov also proved a similar theorem in terms of the
torsion of a canonical chain homotopy equivalence map between the abelian Novikov complex

and the completed simplicial chain complex of the maximal abehan covering of X. In the case
i :
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where X is a fiber bundle over a circle and f is the projection these results give Milnor’s theo-
rem in [30] which claims that the Lefschetz zeta function of a self map is equal to the abelian
Reidemeister torsion of the mapping torus of the map.

In fixed point theory there is a non-commutative substitute for the Lefschetz zeta function
which is called the total Lefschetz-Nielsen invariant, and in [12] Geoghegan and Nicas showed
that the invariant has similar properties to these of torsion and determines the Reidemeister
traces of iterates of a self map. In [36] Pajitnov considered the eta function associated to —V f
which lies in a suitable quotient of the Novikov ring of 71 X and whose abelianization coincides
with the logarithm of the Lefschetz-type zeta function. He also proved a formula expressing the
eta function in terms of the torsion of a chain homotopy equivalence map between the Novikov
complex and the completed simplicial chain complex of the universal covering of X. These
works were generalized to the case of generic closed 1-forms by Schiitz in [46] and [47].

Non-commutative Alexander polynomials which are called the higher-order Alexander poly-
nomials were introduced, in particular for 3-manifolds, by Cochiran in [4] and Harvey mn [19],
and are known by Friedl in [9] to be essentially equal to Reidemeister torsion over certain skew
fields. We call it higher-order Reidemeister torsion. The main aim of this paper is to give a
generalization of Hutchings and Lee’s theorem to the case where the coefficients are skew fields
by using Dieudonné determinant and to obtain a Morse theoretical and dynamical description of
higher-order Reidemeister torsion. Note that it is known by Goda and Pajitnov in [13] that the
torsion of a chain homotopy equivalence between the twisted Novikov complex and the twisted
simplicial complex by a linear representation equals the twisted Lefschetz zeta function which
was introduced by Jiang and Wang in [23]. This work is closely related to twisted Alexander
polynomials which were introduced first by Lin in [28] and later generally by Wada in [51].
Our objects and approach considered here are different from theirs.

Let Ar be the Novikov completion of Z[m, X] associated to f.: mX — (f), where 7 is the
“downward” generator of ;S '. We denote by ¥ the subgroup of the unit group of A, consisting
of elements of the form 1+ e, x4eq £:y)50 dyY- We fizst consider a certain quotient group Wz Of

the abelianization of # and introduce a non-commutative Lefschetz-type zeta function { € W
of f. Taking a poly-torsion-free-abelian group G and group homomorphisms p: mX — G,
@: G — mS! such that @ o p = £, we construct a certain Novikov-type skew field F,((¢)).
Similar to 7, we define a certain quotient group ‘7{9((t’)):b of the abelianization Kp((#))%, of
Ko((¢))*. We can check that p naturally extends to a ring homomorphism A, — Ky((¢)) and

also denote it by p. There is a naturally induced homomorphism p,: W, — Wg((t’)):b by p. If
the twisted homology group H2(X; Ku(())) of X associated to p vanishes, then we can define
the Reidemeister torsion 7,(X) of X associated to o and the algebraic torsion 7)°'(f) of the
Novikov complex over Ky(()) as elements in 7(9((1’))(’1‘!) / £ p(m X). Here is the main theorem
which can be applied for the higher-order Reidemeister torsion.

Theorem 1.0.1 (Theorem 2.2.7). For a given pair {p, @) as above, if HJ(X; Ko((£))) = 0, then
7o(X) = PULTN () € Kol (D) £ (1 X).

To prove the theorem we use a similar approach to that of Hutchings and Lee in [22], but
we need more subtle argument because of the non-commutative nature, especially in the second
half, which is the heart of the proof. We can check that the non-commutative zeta function £, can
be seen as a certain reduction of the eta function associated to —V £, and this theorem can also
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be deduced from the results of Pajitnov in [36] by a purely algebraic functoriality argument. In
[14, Theorem 5.4] Goda and Sakasai showed another splitting formula for Reidemeister torsion
over skew fields.

The background of the second part of this paper is as follows. Let Z,, be a compact oriented
surface of genus g with (possibly empty) » boundary components. We denote by M, the
mapping class group of Z,, which is defined to be the group of isotopy classes of orientation
preserving homeomorphisms of X, ,, where these isotopies are understood to fix 4%, , pointwise.

Homology cylinders were first introduced by Goussarov [16] and Habiro [17], where these
were referred to as homology cobordisms, in their works on so-called clover or clasper surgery
of 3-manifolds developed for the study of finite-type invariants. The set C,,, of isomorphism
classes of homology cylinders over X, naturally has a monoid structure by “stacking”. We
denote by 5&" the submonoid consisting of isomorphism classes of irreducible ones as 3-
manifolds. In [11, 27] Garoufalidis and Levine introduced the group H,, of smooth homol-
ogy cobordism classes of homology cylinders over ., which can be seen as an enlargement
of Mg,. (See also [3, Proposition 2. 4].) These sets naturally act on H(Zg,; Z), and we can
consider substitutes 1 Cg,,,I Con TH g of the Torelli subgroup 7, which are defined as the
kernels of the actions.

It is a natural question which properties of My, are carried over to C,,,, H,,,. The following
results contrast with the well-known facts that M, , is finitely presented, that M,, is perfect
for g > 3 [41] and that 7,4 and 7, are finitely generated for g > 3 [24]. Morita [32] showed
by using his “trace maps” in [31] that the abelianization of 77, has infinite rank. Goda and
Sakasai [15] showed by using sutured Floer homology theory that C,, is not finitely generated if
g > 1. Cha, Friedl and Kim [3] showed by using abelian Reidemeister torsion that the abelian-
ization of H, contains a direct summand isomorphic to (Z/2)* if (g,n) # (0,0),(0,1) and
one isomorphic to Z* if » > 1 and that the abelianization of 7'/, , contains a direct summand
1somorphic to (Z/2)” if (g, n) # (0,0), (0, 1) and one isomorphic to Z® if g> lorn > 1.

We set Iy = MZgn/(mZg,)™Y for each m > 0, where (m;E,,,)™ is the derived series
of m%,,. The derived series G™ of a group G is defined inductively by G® := G and
G+l =[G, G™]. In this paper for given m, we introduce komology cylinders of order m
over Xg,, which are characterized as homology cylinders over Z,, satisfying that the mark-
ing embeddings.from X, , to the boundary of the underlying manifold M induce isomorphisms

T, — 7 M/(m M)+, We denote by Cg’;,) and E(m) the submonoids of C, , and Eg,, consisting
of lsomorphlsm classes of homology cylinders of order m. These naturally give filtrations of

Cg’;,) nd C We also define an appropriate smooth homology cobordism group 7-{; ") in this
context, WhICh can be also seen as an enlargement of Mg ». There are a natural homomorphism

Ci,":,) — Out(I’,,) and the induced homomorphisms Cg,,, — Out([‘m),?{g(ff,) — Out(T,,). We use

the notation 1 Cg’,’,), I Cg?, IH é,”f,) for the kernels, which are substitutes of Ker(M,,, — Out(T',,)).

The filtration
m+1 ) 1
...Cfcé,n*’)cl‘cé"g c---cICY c IC,,

and the sequence of the homomorphisms

s THE > THE) — - THY,  TH,,
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can be seen as alternatives for the derived series of the Johnson filtrations of Cg,, H,,, [17, 11]
for the lower central series.

Our purpose is to investigate the algebraic structures of these objects by using non-
commutative Reidemeister torsion as an analogue of the work of Cha, Friedl and Kim [3].
We first construct the Reidemeister torsion homomorphisms

CI — (QT)%,/ £ Tn) = Out(Ty,),
HE > QT )%/ % T - (g3))  Out(T,),

where Q(I'») is the classical right ring of quotients Q[I,|(QII'x] \ 0)! of Q[[,] and

: Q)% — QL)% is the induced involution by y +— ! for ¥ € T,. (See Corollaries
3.2.6, 3.2.7,3.2.9, 3.2.10.) Moreover, we prove the following theorems, which establish own
interests of the objects. (See also Lemmas 3.1.4, 3.1.10.) -

Theorem 1.0.2 (Theorem 3.3.4). (i) ICy, # ICay.
(i) IC s # IC1.
—{m+1) —(m)
(iii) If (g.n) # (0,0),(0,1),(0,2),(1,0), then IC,, ~ # IC,, for all m.

Theorem 1.0.3 (Theorem 3.2.11). If (g, n) # (0,0), (0, 1), then the homomorphisms 7—[5,7,? —
Hop, I ‘Hg’;) — I'H,, are not surjective for m > 0.

Finally, we prove the following theorem, and give an observation on an approach for whether
ITH,, @ is in general finitely generated or not.

Theorem 1.0.4 (Corollary 3.4.6). If n > 0 and (g,1) # (0, 1),(0,2), then ICvr is ot finitely
generated for all m.

These can be regarded as an analogue of the question whether Ker(M,, — Out(I,)) is
finitely generated or not. It is worth pointing out that the technique in Section 3.4 to detect
nontriviality of elements in Q(I',,),/ = I'», has multiplicity of use and could be useful also in
other applications of non-commutative Reidemeister torsion.

This paper is organized as follows. In Section 2.1 we review some of the standard facts
of Reidemeister torsion and the Novikov complex of f. In Section 2.2 we introduce the non-
commutative Lefschetz-type zeta function ¢, and construct the skew field Ky((#)). There we
also set up notation for higher-order Reidemeister torsion. Section 2.3 is devoted to the proof
of Theorem 1.0.1. In Section 3.1 we define homology cylinders of order m and smooth ho-
mology cobordisms of them. Section 3.2 establishes the Reidemeister torsion homomorphisms
of Cg?,?—[éﬂ) and contains a proof of Theorem 1.0.3. Section 3.3 provides a way to construct
homology cylinders of order m from knots in S* by performing surgery and computations of
Reidemeister torsion of them. Here we prove Theorem 1.0.2. Finally, we prove Theorem 1.0.4
and discuss an approach for I ng") in Section 3.4.

In this paper all homology groups and cohomology groups are with respect to integral coef-
ficients unless specifically noted.
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2. NON-COMMUTATIVE REIDEMEISTER TORSION AND MORSE-NOVIKOV THEORY

2.1. Preliminaries.

2.1.1. Reidemeister torsion. We begin with the definition of Reidemeister torsion over a skew
field K. See [29] and [49] for more details.

For a matrix over K, we mean by an elementary row operation the addition of a left multiple
of one row to another row. After elementary row operations we can turn any matrix 4 € GL;(K)

_into a diagonal matrix (d; ;). Then the Dieudonné determinant det A is defined to be [[]%, d;,] €
KX = KX /KX, K*].

LetC, =(C, & c -1 = - = Cp) be a chain complex of finite dimensional right K-vector
spaces. If we have bases b; of Im ;. and 4; of H(C,) for i = 0,1,...n, we can take a basis
bihib;_1 of C; as follows. Picking a lift of /; in Ker d; and combining it with b;, we first obtain
a basis b;4; of C;. Then picking a lift of 4;_) in C; and combining it with b;4;, we can obtain a
basis bfhibj_l of C,'. '

Definition 2.1.1. For given bases ¢ = {¢;} of C, and & = {#;} of H,(C,), we choosc a basis {b;}
of Im &, and define

T(Ch e h) = l—[[bihibi—ll Ci](_l)m €K,

i=0
where [b;h;b;_1 /c;] is the Dieudonné determinant of the base change matrix from ¢; to b;4;6,_;.
If C, is acyclic, then we write 7(C,, ¢).

It can be easily checked that 7(C., ¢, k) does not depend on the choices of b; and b;4;b;_;.
. Torsion has the following multiplicative property. Let

0-C,—C,—»C/ -0

be a short exact sequence of finite chain complexes of finite dimensional right K-vector spaces
and let ¢ = {c;}, ¢’ = {c]}, ¢’ = {c}and h = (I}, ' = (K}, k" = (K} be bases of C,,C,,CY/
and H.(C.), H(C,), H(C}). Picking a lift of ¢/ in C; and combining it with the image of ¢] in
C;, we obtain a basis cjc}’ of C;. We denote by H, the corresponding long exact sequence in

homology and by d the basis of #, obtained by combining %, &', h”.
Lemma 2.1.2. ([29, Theorem 3. 1)) If [cic}' ;] = 1 for all i, then
T(Co, &, B) = 7(C., ¢, B)T(CY, "', W')T(H., d).

The following lemma is a certain non-commutative version of [49, Theorem 2.2]. Turaev’s
proof can be easily applied to this setting.
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Lemma 2.1.3. If C, is acyclic and we find a decomposition C, = C, & C, such that C; and C!
are spanned by subbases of ¢; and the induced map prer © c')‘flcr{ : €7 — CY | is an isomorphism
for each i, then

n
(C.,c) == n(det prey 04 c;)(_l)”
i=0

Let (X, Y) be a connected finite CW-pair and let ¢ Z[7,.X] — K be a ring homomorphism,
We define the twisted homology group associated to ¢ as follows:

HY(X, Y;K) = H{CuX, Y) Ozpnx KD,
where p: X — X is the universal covering and ¥ := p YY)

Definition 2.1.4. If H(X, Y; K) = 0, then we define the Reidemeister torsion T,(X, Y) associ-
ated to ¢ as follows. We choose a lift & in X for each cell e € X'\ Y. Then

16X, ) 1= [1(Co(, ) @ K. (2 ® 1))] € K/ (1 ).

We can check that 7,(X, Y) does not depend on the choice of &. It is known that Reidemeister
torsion is a simple homotopy invariant of a finite CW-pair.

2.1.2. The Novikov complex. Let X be a closed connected oriented Riemannian d-manifold and
S X — §'aMorse function. Here we review the Novikov complex of £, which is the simplest
version of Novikov’s construction for closed 1-forms in [34]. See also [37] and [38].

We can lift £ to a function f: X — R. If p is a critical point of £ or 7, the unstable manifold
D(p) 1s the set of all points x such that the upward gradient flow starting at x converges to p.
Similarly, the stable manifold A(p) is the set of all points x such that the downward gradient
flow starting at x converges to p. We choose a Riemann metric such that D(p) h A(p) for any
critical points p, g of f.

We take the “downward” generator f of 7;S'.

Definition 2.1.5. We define the Novikov completion Ay of Z[7,X] associated to f,: mX — ()
to be the set of a formal sum ', ., x a,y such that a, € Z and for any k € Z, the number of y
such that a, # 0 and deg /.(y) < k is finite.

Definition 2.1.6. The Novikov complex (CNov( ), & Jof f _is defined as follows. For each critical
point p of f, we choose a lift # € X. Then we define C?’”"(f) to be the free right A ~module
generated by the lifts p of index 7. If p is a critical point of index i, then

dp-v= Y npviViv,
g of index i-1,y'em X

where n(5-y,§-y') is the algebraic intersection number of D(5 - v), A(G-y’) and an appropriate
level set, which can be seen as the signed number of negative gradient flow lines from 5 - y to
g -v'. By the linear extension we obtain the differential 6‘{ t CNY(f) - CYey

Obviously, the definition dose not depend on the choices of £ and p. It is known that appro-
priate orientations of stable and unstable manifolds ensure that c'}if_ L © a{ = 0.

Theorem 2.1.7 ([38]). The Novikov complex CN*(f) is chain homotopic to C,(X) ®zpm x] Ay

2.2. The main theorem.
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2.2.1. Non-commutative zeta functions. First we introduce a non-commutative zeta function ¢ I
associated to f, which is closely related to the fotal Lefschetz-Nielsen invariant of a self map in
[12].

Let A% be the subring of A whose element ¥, e x ayY € Ay sat_isi‘ies that a, = 0ifdeg fi(y) <
0. We denote by W the subgroup of the unit group of A, consisting of elements of the form
l+Awithde A}. For x,y € W,y := W[[W, W], we write

x~y

if for any k € Z, there exist representatives Yiper x @yYs Liyer,x b .Y € W of x,y respectively such
that for any y € m X with deg f.(y) <k, a, = b,.

Lemma 2.2.1. The relation ~ is an equivalence relation in W,

Proof. We only need to show the transitivity. We assume that x ~ yand y ~ z for x,y,z €
W and for any k € Z take representatives 3., a,y, 2, byy and 3, by, ):T cyy of x,y and y, z
respectively such that for any y with deg /i(y) < &, @, = b, and b}, = ¢/. There exists 2 =
Xy dyy € [W, W] such that 3, b,y = (3, b,y)4. We set ¢, so that Zy c),'y = (2y ¢,y)A Then
2.y €y 18 also a representative of z. Since for any y with deg f.(¥) < 0, d, = 0, for any y with
deg /u(y) <k, b, = ¢, and so a, = c,. We thus get x ~ z. O

We define W, to be the quotient set by the equivalence relation. The group structure of W,
naturally induces that of ..

A closed orbit is a non-constant map o: S! — X with f,—i = —f3Vf for some 8 > 0. Two
closed orbits are called equivalent if they differ by linear parameterization. We denote by O
the set of the equivalence classes of closed orbits. The period p(0) is the largest integer p
such that o factors through a p-fold covering S' — S!. We assume that all the closed orbits
are nondegenerate, namely the determinant of id — d¢: T.X/T.0o(S") — T.X/T.0(S") does
not vanish for any [o] € O, where ¢ is a p{o)th return map around a point x € o(S!). The
Lefschetz sign €(0) is the sign of the determinant. We denote by i_(0) and iy(0) the numbers of
real eigenvalues of dgp: T.X/T,0(S!) — T.X/T:0o(S!) fora return map ¢ which are in (—oo, —1)
and in (-1, 1) respectively.

Definition 2.2.2. We number [o] € O with p(0) = 1 as {[0;]}2; and choose a path ¢, from the
base point of X to a point of 0;(S"') for each [o;]. Then we have [0,0,0,,] € m X, where &, is
the inverse path of o,,. We define

&= h—[(l — (1Y, 010, ) | € W
=1
By the completeness of Ay we can easily check that the infinite product []2,(1 —
y (o;1+i-(o;)+1 S =
(=10, 0,0, DTV & I makes sense.

Lemma 2.2.3. The zeta function {; does not depend on the choices of {[0,]}2, and o,

P;;oof We take another sequence {[0;]}:2, and another path o7, for each [0;]. For any & € Z,
since {[o;] € O ; deg f.([0;]) < &}, which equals {[0]] € O ; deg f.([o]) < &}, is a finite set and

[1 % [00,0i05,]] = [1 = [0},0i07,]1]
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in Waba

[ oo
[Ja= [aa,-of&o,-l)ﬂ}
| =1

= 1= [O'O;OiEO.-])iI] (1 £ [076,0:076,])*'

Lgicoo,deg fil[oi])<k | 1<i<oo,deg fu([o)>%

= (1 x [U'a;0§5a;.])ﬂ (1 x [a-o;OiEo,-])il
| L<igoo, deg f, ([0} T)<k ] | 1<io0,deg ful[oiDok
[ - ] [ -

= (1 % [0, 07, D! (1 [00,055 )" |
| 1<i<oo,deg £, ([0} )<k | | 1 <ioo,deg fi([os])>&

in Wy. Therefore for any & € Z, the products [H;’:l(l + [0'0,.0,-5;,,.])*1] and
[H;‘;] (1« [0';50;5;,_]?1] have representatives in W such that for any y € m X with deg fi(y) < &,

the coefficients of y are same, and the lemma follows. O

By the above lemma we can write

G= ] -0 O0m, -
[¢]0,p{o)=1

There is a formal exponential exp: A} — W given by exp(2) = X0, %’,1 Since
E(of) - (_1)1‘1‘-(0)+fn(0)
and

j=

for v € m X with deg f.(v) > 0,

=11 [exp [Z «©) [craof&o]]],
[0]e0,p(0)=1 J

J=1

where o/ is the composition of a j-fold covering §' — §' and o.

2.2.2. Novikov-type skew fields. We proceed to construct Novikov-type non-commutative co-
efficients for torsion and formulate the main theorem.
A group G is called poly-torsion-free-abelian (PTFA) if there exists a filtration

1=GyaGy4---<4G, 194G, =G
such that G;/G,_ 1s torsion-free abelian.

Proposition 2.2.4 ([35]). If G is a PTFA group, then Q[G] is a right (and left) Ore domain;
namely Q[G] embeds in its classical right ring of quotients Q(G) := Q[GI(Q[G]\ 0)L.
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Let G be a PTFA group and p: m X — G, a: G — {f) be group homomorphisms such that
a¢op = f.. Then Kere is also PTFA, and so we have the classical ring of quotients X of
Q[Ker @]. We denote by / the nonnegative integer such that ¢ generates Ime. We pick u € G
such that a(u) = # and let 8: %K — % be the automorphism given by 8(k) = uku™! for k € K.
Now we have a Novikov type skew field Ky((#)). More precisely, the elements of Ky((#)) are
formal sums 32, a;#" with n € Z and a; € K, and the multiplication is defined by using the rule
'k = (k). Note that the isomorphism type of the ring Ku((¥)) dose not depend on the choice
of 1, and we can regard Z[G] as a subring of Ky((£)).

For x,y € 9G((£)),, we write

x~y
if for any k € Z, there exist representatives 3.z ait’, Yz it € F((£)Y* of x,y respectively
such that for any i < k, a; = b;.
The following lemma can be similarly proved as Lemma 2.2.1 and so we omit the proof.

Lemma 2.2.5. The relation ~ is an equivalence relation in Ko((#))%,.

We define 7(9((1")); to be the quotient set by the equivalence relation, which is also an abelian

group. Note that if F((#)) is commutative, then ‘7(9((1")):,, = Wg((t’));‘b.

The group homomorphism p naturally extends to a ring homomorphism Ay — Ky((#)).
By abuse of notation, we also denote it by p. By virtue of Theorem 2.1.7 H2(X; Ku((t))) is
isomorphic to H.(CY°¥(f) @x Fo((£))). '

Definition 2.2.6. If H2(X; K((£))) = 0, then we define the Novikov torsion associated to p as
7" (f) = [(CI(f) 8y, Ko((), (P @ 1))] € Ka((£ )5/ + plmi X).

The ring homomorphism p: Ay — Kp((#)) naturally induces a group homomorphism
Pt Wy — "Kg((t’)):b and %g((t’)):b / + p(m X) is a quotient group of Kp((#))%,/ + p(mi X).
Theorem 2.2.7 (Main theorem). For a given pair (p, &) as above, if HY(X; Ko((£))) = 0, then

_
T(X) = plENT " (f) € Kot oo/ % pmiX).
Remark2.2.8. More generally, the same construction makes sense and the theorem also holds
under the assumption that Q[Ker «] is a right Ore domain instead of that G is PTFA. Moreover,

it is expected that we can climinate the ambiguity of multiplication by an element of p(m, X),
carefully considering Euler structures by Turaev [49], [50] as in [22].

An important example of a pair (p, @) is provided by Harvey’s rational derived series in [19].
Definition 2.2.9. For a group II, let 1Y = IT and we inductively define
09 = {y e I D ; ¥ ¢ D, 1197 for some k € Z \ 0}.
Lemma 2.2.10 ([19]). For any group L and any n, _
I/ = (D /[0, TID1)/ torsion
and TI/TI is a PTFA group.

For any n, we have the natural surjection p@: mX — 7. X/(mX)™" and the induced ho-
momorphism o™ m X, /(ﬂIX)£"+1) — {1) by f.. By the above construction we obtain the group
homomorphism p®: Z[m X] — KY)(¢') and the extended one 5®: A; — K(()), where
K)(¢') is the subfield of K7 (1)) consisting of rational elements.
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Definition 2.2.11. If 72" "X K@) = 0, then 7,0 (X) € KNS,/ + p®(m,X) is defined. We
call it the higher-order Reidemeister torsion of order n,

Remark 2.2.12. 1t is known by Friedl that 7,m(X) equals an alternating product of non-
commutative Alexander polynomials. See [9] for the details.

f 52" (0 K(#) = 0, then we have B2 (X; KE((#))) = 0, and we can also define Tz (X) €
K5+ p(")(mX) By the functoriality of Reidemeister torsion the image of 7, (X) by the
,natural map K ()%, + pP(mX) — KL + o™ (m.X) equals T50(X). Thus for the pair
(o™, &™), the main theorem gives a Morse theoretlcal and dynamica) presentation of T,»(X) in

_ %
K,/ £ p™(mX) as a corollary.

2.3. Proof. The proof of the main theorem is divided into two parts. In the first part we con-
struct an “approximate” CW complex X which is adapted to V £, and we show that the Reide-
meister torsion of X’ equals that of X. The second part is devoted to computation of the torsion
of X’, and we see that it has the des1red form.

2.3.1. An approximate CW—complex. Let X be a level set of a regular value of / and let ¥ be the
compact Riemannian manifold obtained by cutting X along X£. We can pick a Morse function
Jfo: Y — Rinduced by f. We write Y = Z,UZ,, where Xy, Z; are the cutting hypersurfaces and
—V fy points outward along Zy. We denote by Ay(p), Dy(p) the stable and unstable manifolds
of a critical point p of f.

We take a smooth triangulation 7 of £, such that each simplex is transverse to Ay(p) for
each critical point p of fy. For o € T, let us denote by (o) the set of all y € ¥ such that the
flow of V f; starting at y hits o~ It is well-known that the submanifolds Dy(p) and F (o) have
natura] compactifications Dy(p) and F (o) respectively by adding broken flow lines of —V f;.
(See for instance [21].) We choose a cell decomposition Ty of Zy such that Dy(p) N Xy and
F (o) N Zy are subcomplexes for each critical point p and each simplex . Then we can check
that the cells in Ty, 71, Do(p) and F (o) give a cell decomposition Ty of Y.

Let 2: (2o, 7o) — (&1, T1) be a cellular approximation to the canonical identification £y —
%, . We consider the mapping cylinder M, of &:

My, = (o x [0, 1) LU Z1)/(x, 1) ~ A(x).
It has a natural cell decomposition induced by Ty and 7.

Definition 2.3.1. Let X’ be the space obtained by gluing ¥ and M, along £, L1 Z,.

~For a cell A in Ty of the form Dy(p) and F (o), we define A to be the set obtained by gluing
A and

(AN Zo) x [0, 1]) LI A(A N Eo))/(x, 1) ~ h(x)

along A N Z,. Cells of the form Dy(p), o and F (o) for a critical point p of foand o € Ty give
a cell decomposition of X*.
We pick a homotopy equivalence map X* — X and identify ;. X" with ;. X.

Lemma 2.3.2. Under the assumptions of Theorem 2.2.7 we have

To(X) = T (X).



REIDEMEISTER TORSION, MORSE-NOVIKOV THEORY AND HOMOLOGY CYLINDERS 11

Proof. In all of the calculations below, we implicitly tensor the chain complexes with the skew
field Kp((¢')), and brackets mean that they are in Ko((#))%,/ £ p(m1 X).
We regard X as the union of ¥ and Zx [0, 1] along £, LJEI , then we.have short exact sequences

0> CuZy) 8 Cu(E)) = CEX[0,1]) & C.(V) = C.(X) — 0,
0 - C.Eo)® C.(%)) = C.(M) & C.(D) - C.(X) — 0.

The natural map £x [0, 1] — M, induces an isomorphism between HZ(Zx [0, 1]; Ke((£))) and
H?(M,,; Ko((£))), and there is an isomorphism between the long exact sequences in homology
for the above sequences. Let ¢ and ¢’ be bases of C.(X % [0, 1]) and C.(M,) consisting of lifts
of cells. We pick bases & and &' of HL(Z X [0, 1]; Ke((#)) and HL(My; Fe((£))) such that the
isomorphism maps 4 to #’. Then from Lemma 2.1.2 we obtain
X _ [HCEX 0, 1), ¢ B)]

X)) [H(CuMy), e, )]

- We have short exact sequences 7
0> C(Ex1) > C.EX[0,1]) = C.EX[0,1],Ex 1) = 0,
0 = Cu(Z)) = Cu(M;) = CM,,Z;) — 0.

The map Z x [0, 1] — M, also induces an isomorphism between the long exact sequences in
homology for the above sequences. Let d and 4’ be bases of C,(£x [0, 1],£x 1) and C,(M;, Z,)
induced by ¢ and ¢’. Then again from Lemma 2.1.2 we obtain

[f(C.EX[0,1]), &, m)] _ [H(C.EX[0,11,Tx1), 9]
[7(C.(M), ¢, )] [7(C(M, 1), )]
By direct computations we have
[(C.E X0, 1L,Ex 1), d)] = [((Cul(#4,, ), @] = [1].
Now the lemma follows from (2.1), (2.2) and these equalities. m!

.1

(2.2)

2.3.2. Computation of the torsion. We decompose
G Bz Ke(t)) = DO E; @ F,,

where D;, E; and F; are generated by elements of the form m, o and ?‘{(B:) for a critical
point p of fy and o € T respectively. There are natural identifications D; = CT(/)®a, Ko((£))
and F; = E;_;. Then the matrix for the differential 8; can be written as

D; E; F;
D, Ny 0 Wi

8 = Ey |-M; 87 I—¢o|,
Fu Lo 0 -&

where 87 is the differential on C.(Z) ®zpr,z Ko(()) and ¢;_; can be interpreted as the return map
of the gradient flow in X after perturbation by 4. We set

Kj = Nf + W,'(I'—' gbi_l)_lM,': Di — D,'_l.
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Since C.(X) ®zprx) Ko((#)) is acyclic, the Novikov complex (D, & ) is also acyclic by Theo-
rem 2.1.7, and we can choose a decomposition D; = D! & D}’ such that D} and D}’ are spanned
by lifts of the critical points of f and 8, induces an isomorphism D} — DY . We denote by
- K;: D} — D, the induced map by K.

Lemma 2.3.3. Under the assumptions of Theorem 2.2.7, if K; is non-singular for each i, then
d
,(0) = | [[det( = gry) det KTV
i=i

Proof. We consider the matrix

D, F
QDL (N W
By \-M; I-¢a)’

where M;: D} — E;_y, N;: D} ~» D!, and W;: F; — D] be the induced maps by M;, N; and
W; respectively. After elementary row operations we can turn €; into the matrix

K; 0
-M; I-¢ia)’

Since X; is nonsingular, £; is also nonsingular and
detQ; = det(] — ¢;_; ) det X;.

By Lemma 2.1.3 we have
: ‘ d

7,(X) = | [(det @,
i=1

which proves the lemma. m]

For a positive integer £ and x, y € ‘7(3((1")):,, [ + p(mX), we write
X~y

if there exist representatives Yoo, a;t”, o0 bit" € Ko((£))* of x, y respectively such that agby # 0
and a; = b;fori=0,1,..., k. Note that x = y if and only if for any positive integer k, x ~; y.

Lemma 2.3.4. For any positive integer k, if we choose Ty sufficiently fine and h sufficiently
close to the identity, then

d
]__[[det(f — ¢ DIV ~¢ [02))-

We prepare some notation and a lemma for the proof.

Let ¢: Z\U,Ag(p) — Z\U,Dy(p) be the diffeomorphism defined by the downward gradient
flows and let H: £x[0, 17 — X be the homotopy from id to #. We can consider the 7 times iterate
maps ¢’ and (H(-, 1) o ) for ¢ € [0, 1] which are partially defined. A natural compactification
f; of the graph IV € £ x £ of (H(-,f) o )’ is defined by attaching pairs (x, H(y, f)), where x is
the starting point and y is the end point of a broken flow line of —V £;. (See [21], [22] for more
details.)

It is known that there exists a positive integer N such that if the simplexes in T are all
contained in balls of radius €, then / can be chosen so that the distance between x and H(x, #) is
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< Neforall x € Zand ¢ € [0, 1]. (See for instance [43].) Since the set of fixed points of ¢’ lies
in the interior of ﬁj under the diagonal map £ — X x X and is compact from the nondegenerate

assumption, it follows for any positive integer % that we can choose € so that 1_"; does not cross
the diagonalin Z x Zforalli < k.

Lemma 2.3.5. Let k be a positive integer and suppose that I = 1. Let (a; ;) be the n-dimensional
matrix over Ko((£)) such that a;; = c;;t, where c;; € K. If ayya oty = 0 for any
sequence iy, iy, ..., i1 with j < k, then

[Aet(S;; — ai)1<ijen] ~x [det(S;) — a; p)aci,jen]s
where 6, ; is Kronecker's delta. ,

Proof. We set
o
b!(',j) = 6;',_]' - a,-,j

and inductively define bi’? form=1,...,n as follows:

b(m) b(m—l) b(.m 1)(b(m—l)) lb(m 1)
m,f
This is an elementary row operation with respect to the ith row and- b( ™ = 0ifi # j<m. We
have

[det(b; st jen] = [det(B s jon] = [ﬂ b(")].

By induction on m we first show the following observation concerning any nonzero term in
b(m) (5”
(1) The term has positive degree.
(i) The term has elements a;;,, a;, 4, - - - a;,_,,; as factors for a sequence 7y, 15, ..., ip;.
(111) If the term has ay; as a factor for some #, then the degree of the term is > k or we can make
such a sequence in (ii) contains 1.

It is easy to check them for 7z = 0. We assume them for m = m’ — 1. Since

By —1+Z( 1D -1y,

(1) for m = m’ follows from (i) for m = m’ — 1. By (11) for m = m’ — 1 we see at once (ii)
for m = m’. We take any nonzero term ¢ in (b(’" l)) which has @y, as a factor. Then there

is a nonzero term ¢’ in bg’f,mf ) which has a;,, as a factor such that ¢ has ¢’ as a factor. If ¢’ has
elements a,y ., s, 15 - - - 5 ai,_, . as factors for a sequence i1, &, . .., ip_; containing 1, then j* > £
by the assumption, and deg ¢’ > k. Hence by (ii) and (iii) for m = m’ — 1, degc > dege > k.
Now we can immediately check (iii) for m = w'.

As a consequence of the above argument the degree of any nonzero term in b(") which has

ay,1 as a factor is > £, and the part of [ - b(")] up to degree k is invartant even if we erase such
terms. Therefore in considering the equivalence class we can regard a;; as 0 for all i, which
deduce the lemma. O

Proof of Lemma 2.3.4. We only consider the case where / = 1. If / = 0, then ¢; = 0 for all {
and there is no closed orbit, and so there 1s nothing to prove. If / > 1, then we can prove it by a
similar argument.
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We set _
I, :={[o] € O; p(o) = 1,deg f([0]) < k}.

Then we see that

@3) oG~ [ | 11 = 1 Op(osoq, DI,

[o]ely

For [o] € I}, there is a sequence Xg, X1, . . . , Xaeg s(o]-1 OF fixed points of ¢9&/~{D such that
p(x;-1) =x;for j=1,2,...,deg f(Jo])-1. Choosing T sufficiently fine and H as above, we can
pick mutually disjoint contractible subcomplexes N,, of T satisfying the following conditions:
(i) Each N, contains all the fixed points of (H(-, ) o )™/ D which are close to x; for all
t€[0,1].

(i) There is a one-to-one correspondence between cells of N, and ones of N, by ho @ and
ho @(Ndegf.([o])—l) n Nj =0 fOI’J = L2,..., degﬁ([o]) -

(iii) If there is a sequence o = 07, 0y, ..., 0; = o for a simplex ¢ not contained in any N, such
thato; C Ao (o) for j=1,. zthenz>k

We denote by Nj;; and Ny for [o] € I the union of all A, for a fixed point x; € o(S!) and
that of all N,, for such a sequence of [0]. Then we define

<

Dot : CiNiop) ® Kol () = CilNpop) @ Ko((9)
Bopit GV @ Ko(()) — CilN,) ® Ko((1)

to be the maps induced by % o ¢ and (% o )% /~D respectively.
Note that all the entries of ¢; are monomials. By condition (iii) we can apply Lemma 2.3.5
repeatedly and obtain

@4) [det(7 ~ 6] ~; | | [det(Z — a1 )]

[elely

By condition (ii) we can take simplexes o; C N, such that 2 o p(o;y) = o; for j =
1,2,...,deg f([o]) — 1. The matrix of the restriction of I — ¢,; on these simplexes has the
form

1 0o ... 0 mMP(Yaeg fu(lo]))
o) 1 .. 0 0

0 =o(y2) - : : :

: P 1 0

0 0 . £0(aegsiop-1) 1

where m € Z and y; € m X. Since Hj.lz%f' ([t Ydeg ful(o])-j = LT000,] for a path o, from the base
point of X to xp, the determinant of the matrix is (1 — (xmp([o,00,])) and the coefficient of o
of @1.i(070 ® 1) is +mp([c,00,]). According to the above argument, we have

(2.5) [det({ — ¢po):)] = [det(] — ¢p,y ).
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Since the entries of the matrix Prori are all in an abelian ring p(Z[[o",007,]]),

ﬂ[det(f Br)] = [epoZ 2 st ),]
Jj=0 =0

e, Fix((plhy, Y 97 C)

~k leXP ["Ij p([a'ooo-o]) ‘

j=1

= [exp Z —p([o-aoo—a])j]

=[1-(~ 1)f—(O)p([o.aoo.a])](—1)!0(0)+1

where Fix((¢lw, Y deg 202Dy counts fixed points of (eln, Y deg Ul with sign. The second equiva-
lence follows from the machinery used to prove the Lefschetz fixed point theorem. From (2.3),
(2.4), (2.5) and this the lemma is proved. O

Lemma 2.3.6. For any positive integer k, if we choose T\ sufficiently fine and h sufficiently
close fto the identity, then K; is non-singular and

d
[ Jidet K1 ~; (21,
=i
Proof. Suppose to begin that /2 = id. The unstable manifold D(p) of a critical point p of f has

a natural compactification D(p) such as Dy(p). The compactification D(p) can be represented
as

Dol(p) + Z F(e MDe®)):
J'_
where by abuse of notation we also denote by F the linear extension of . So if we identify D;
with C¥(f) &, Ko((?')), then

8/ Do@) = Provs o 61| DaB + 3\ F(@L, M Do)
Do)

for a critical point p with index i. Hence c’)‘f induces K;: D] — DY, and X; is nonsingular.
From Lemma 2.1.3 we have

d o d | .
l—l[det Kf](_l)* = l—[[detprD;, o 5{|D,'.](_1)'
=1 i=1

— [Tgfovm]-

Next we consider the case where /2 # id.
Let pry, pra: l'J — X be the restriction of the first and second projections of Z X X, We deﬁne

Bl(p) = prapr" (H(, (Do) N Z0))
for j =0,1,...,k-1, ¢ € [0,1] and a critical point p of f. Since the set of the intersection
points of B/ (p) and Ay(g) N Z, for any critical point ¢ lies the interior of B/ (p) and 1s compact



16 T. KITAYAMA

from the transverse condition, it follows that we can choose T sufficiently fine and H as above
so that BJ(p) does not cross A(g) N Z; for all j < k, where we naturally identify %, with Z.

By a similar argument to that of Lemma 2.3.4 we can check that the image of the hat of
F (¢Jf_1M {(Do(p))) by pro,_, o 6; can be computed from the local intersection numbers of B{ (p)
and Ay(g) N Z; and the elements of m.X determined by the perturbed flows by /4 from p to g,
which are invariant on ¢ for j < k. Hence from the computation of the case where /& = id, we

obtain o
8/(DoP)) ~« KA Do(p)

for all p with index i, and K; is non-singular. Again from Lemma 2.1.3 we analogously see the
desired relation. O

From the proofs of Lemmas 2.3.4 and 2.3.6, if we choose appropriate 7; and H, then the
conclusions of the lemmas simultaneously hold for any positive integer &, and so

d
| Jidettz = ¢i1) det K1V ~; [ou(gPIN (N1
i=1
Now we can establish Theorem 2.2.7 at once from Lemma 2.3.2 and 2.3.3.

3. HoMOLOGY CYLINDERS OF HIGHER-ORDER
3.1. Definitions.

3.1.1. The monoids of homology cylinders of higher-order. We begin with introducing the
monoids of homology cylinders of higher-order, which give a filtration of the monoid of ordi-
nary homology cylinders introduced in [16], [17]. See [18], [45] for more details on homology
cylinders.

To simplify notation we often write Z, x instead of X, ,, m Z, ,, respectively. We set I, :=
7 /n®™*D for each m > 0.

Definition 3.1.1. For an integer 1 = 0, a homology cylinder (M, i) of order m over X is defined
to be a compact oriented 3-manifold M together with embeddings i,,i_: ¥ — dM satisfying
the following: -

(1) i. is orientation preserving and i_ is orientation reversing,

(i) oM = i () Vi_(Z) and i (Z) N i_(Z) = i, (OM) = i_(GM),

(iif) 71 las = i_laz,

(iv) (i )us (i)a : T = 7y MY (r MYV are isomorphisms.
Two homology cylinders (3, i,.), (N, j.) are called isomorphic if there exists an orientation pre-
serving homeomorphism f: M — N satisfying j. = f o i.. We denote by Cgﬁ,) the set of all
isomorphism classes of homology cylinders of order m over Z, .

Remark 3.1.2. By the Hurewicz theorem and a standard argument on homology groups it fol-
lows from the condition (iv) that (i, )., (i-).: H.(Z) — H,(M) are isomorphism. In particular, a
homology cylinder of order 0 is nothing but an ordinary homology cylinder, i.e., Cgf,), = Cgp

For € M;,,, we define M(y) to be the homology cylinder X x [0, 1]/ ~ (of order m for all
m) equipped with (i, = id X 1,i_ = y x 0), where (x, 5) ~ (x,£) forx € T and 5,7 € [0,1]. A
product operation on Cg,",,) is given by stacking:

(M, i:i:) (N, ]:l:) = (Mui_O(j+)‘1 N, iy, .j—)’
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which turns Cg’:,) into a monoid from the following lemma. The unit is given by M(id). For all m,
C('"“) is a submonoid of Cé":,) The correspondence y s M(y) gives a monoid homomorphism
Mg, — Cg? for each m.

Lemma 3.1.3. For (M, 1.),(N, j.) € C&, (M;is) - (N, j») € CI7.

Proof. We only need to check that (3, ii) (V, j.) satisfies the condition (iv).
By the van Kampen theorem 71, (MU,_(;,)1 N) = m Mx, 7 N. Let IT be the subgroup normally
generated by elements of (7 M)+ s gy (mN)('"“) Then

(ﬂ‘]M* n]N)/H (ﬂlM/(ﬂ1M)(m+1)) AT, (JTIN/(JTIN)(mH)) r,.
Since ITis a subgroup of (m) M #,; - NY™V, (i), G)u: Ty — (1 M5y 1 N/ (01 M 3 1 NYOD

are isomorphisms. m|

The following lemma can be seen at once from the definition and the observation that C(()O(),

and C(O) are naturally isomorphic to the monoid @; of integral homology 3-spheres with the
' connected sum operation. See Theorem 3.3.4 for the other cases.

Lemma 3.14. (i) Cyg = CfY = Ciy = G = 65 form 2 0.
(ii) Cg:g = C(()gfor mz 1.
(i) C\o = C{) form 2 1.
The same argument as the proof of [15, Proposition 2. 4] gives the following proposition.

Proposition 3.1.5. The monoid Cgf,’,) is not finitely generated.

In fact, we have an epimorphism F': Cgf,) — 65 as follows. For (M,i.} € Cg:,), we can
write M = MM, where M’ is the prime factor of M containing M. Then F(M,i.) := M".
Therefore as pointed out in [15] it is reasonable to consider the submonoid ES? consisting of

all (M, i..) € C%) with irreducible M. Note that Gy = 0 and Gy = 1 for all 7.

Let {; € m be a representative of each boundary circle. We denote by Out*(I',,) the group
of outer automorphisms of I',, which preserve the conjugacy class of [{;] € T, for all i. A
homomorphism ¢,, : Cé"},) — Out*(T,;) is given by

On(M, 1) =[G © ()]
It is easily seen that ¢,, does not depend on the choices of a base point and ¢;. We define
() . —
I Cg’f:, := Ker ¢,
=)
IC,, = Ker gpm|5$).
Remark 3.1.6. In [14, Proposition 2. 3] Goda and Sakasai showed that ¢y(M, i) preserves the

mtersection form of X forall homology cylinders (M, i.).

3.1.2. The homology cobordism groups of homology cylinders of higher-order. Next we con-
sider homology cobordisms for homology cylinders of higher-order. See [11], [27] for the case
of ordinary homology cylinders.
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Definition 3.1.7. For (M, i.), (N, j) € Cgﬁ,}, we write (M, i.) ~, (N, j.) if there exists a compact
oriented smooth 4-manifold satisfying the following:

(1) oW = MUi.,_aj:l,i._oj:l (_N)’

(1) H(M) = H.(W), H.(N) = H(W) are isomorphisms,

(iii) m M/ MY — o Wi WD o N (e NYD — g W) (o W)™ are isomor-
phisms.

Lemma 3.1.8. The relation ~,, is an equivalence relation on Cgf:,) which is compatible with the
product operation.

For the proof in the case where m = 0, we refer to [27, p. 246]. Using an almost same
technique as in the proof of Lemma 3.1.3, we can also prove the lemma in the general case, and
so we omit the proof.

We define ‘Hg(f',’,) = Cg,? [ ~m, which has a natural group structure induced by the monoid
structure of Cgf,’,) . The inverse of [M, i.] € 7—[;’,’,) is given by [—M, iz]. There is a natural homo-
morphism HIH — HYD for each m.

Remark 3.1.9. The group ?{g(?,? is nothing but the smooth homology cobordism group #,, of
ordinary homology cylinders. We can see that 7—(&?3 and ‘7—(501) are isomorphic to the smooth
hompelogy cobordism group ®; of integral homology 3-spheres, and that 7{(502) is isomorphic to
Z & Cz, where Cz is the smooth concordance group of knots in integral homology 3-spheres.
The Z factor comes from framings of knots.

We can also consider topological homology cobordisms instead of smooth ones in Definition
3.1.7. Let H.w ™ be the topological homology cobordism group of homology cylinders of
order m. Since we consider only topological methods, in fact, we can obtain analogous results
on HIW P to all the theorems on .7 in this paper. A

Using the results of Freedman [8], Furuta [10] and Fintushel and Stern [7], Cha-Friedl-
Kim [3, Theorem 1. 1] showed that the kemel of the epimorphism 7{;?,2 — 7-{3(?3 P contains
an abelian group of infinite rank, which is given by the image of a homomorphism ®@; — 71’;?,2.
Since the homomorphism ®; — 7—(8(.?,2 factors through 7-(;:’,’,), the kernel of the epimorphism
HI — H ©® also contains an abelian group of infinite rank.

The proof of the following lemma is straightforward from the definition and Lemma 3.1.4.
See Theorem 3.2.11 for general cases.

Lemma 3.1.10. (i) 7-{((,1’5) = 7-(&’1’) = ‘Hé?g = 7{5?1) =0; form = 0.
(ii) Hyy = Hea form = 1.
(iii) HYy = M for m > 1.

Proposition 3.1.11 ([3], [11], [27]). The homomorphism Mg, — Coy — Hen is injective.
Since this injection factors through 7—[;:’,’,), we obtain the following corollary.

Corollafy 3.1.12. The homomorphism Mg, — Cgff,) - ?{g(t’,’,) is injective for all m.

The homomorphism @, : Cgff,) — Out*(T,,) induces a homomorphism 'Hg(ff,) — Out(T',,). By
abuse of notation we also write ¢, for the homomorphism, We define

I 7{;”:3 = Ker(p, : (]-lg;’,) — Out*(Ty)).
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3.2. Reidemeister torsiom homomorphisms.

3.2.1. Torsion of homology cylinders of higher-order. First we define non-commutative torsion
invariants of homology cylinders of higher-order. Torsion invariants of homology cylinders
were first studied by Sakasai [43, 44].

Lemma 3.2.1. For a CW-pair (X, Y) and a homomorphism p: miM — T to a PTFA group T, if
H(X, Y;Q) =0, then HI(X,Y;Q(IN) = 0.

See [5, Proposition 2. 10] for a proof.

For (M, i;) € C), we denote by p,, the pullback 7 M — [, of (i,);': m M/ (er)("’“) — [
It 1s well-known that I, is torsion-free for all m, and hence I, is PTFA for all m. It follows
from the above lemma and Remark 3.1.2 that H2"(M, i,(Z); Q(T,)) = 0.

Definition 3.2.2. We define a map 7,,: (m) = Q) £ 0 by (M, iy) = 7, (M, i(Z)).

It can be easily computed that for all ¥ € M, and all m, 7,,(M(¥)) = 1.
We denote by Wh(I') := K (Z[I'])/ + T the Whitehead group of a group I'. The Dieudonné
determinant induces a homomorphism Wh(T;) — Q(I),/ + .

Proposition 3.2.3. For all (M,i.) € C¥ and all k < m, 1,(M, i) is in the image of Wh(Ty) —
Q)%,/ £ Ty Furthermore, for all (M, i) € Con, (M, i) € CS) if and only if To(M, i) = 1.

Proof. First we suppose that (M, i.) € Cg;,). Since M can be obtained by attaching 1-handles and
2-handles of same numbers to £ X [0, 1], C¥*(M, i, (X); Z[I;]) is simple homotopy equivalent to
a chain complex

0—>C2—a->C1—>O

with rank C; = rank C; for & < m. Hence 1:(M, i.) = [detd] for k < m.

Since (iy)*: a®D/x® 2 (r MY [(m M)*D is an isomorphism for &k < m,
H¥i.(Z); Z[T]) — Hy(M;Z[I;)) is also an isomorphism for £ < m. From the long exact
homology sequence for (M, i.(Z)), H*(M, i.(Z); Z[X;]) = 0 for k < m. Therefore 8 is.a surjec-
tion, and so an isomorphism for £ < m, which proves the first statement.

Now the necessary condition in the second statement follows from the result by [1] that for
any free abelian group I', Wh(T') = 1.

Next we suppose that 74(M, i) = 1 for (M,i;) € C‘g},. Since detd € +H|(Z), d is an iso-
morphism for & = 0. Hence HY(M, i.(X); Z[Hi(Z)]) = 0. From the Poincaré duality and
the universal coefficient theorem, we have H2(M,i_(Z); Z[H1(Z)]) = 0. From the long ex-
act sequence for (M, i.(2)), AT (i.(Z); Z[H1(X)]) = H°(M; Z[H,(%)]) are isomorphisms, and
80 (iy)e: 71D — (m M)YV/(m, M)® are also isomorphisms. Therefore (i.),: 7/7® —
M/ (m M) are isomorphisms, which gives the sufficient condition in the second state-
ment. : O

Remark 3.2.4. Though it is a well-known conjecture that for any finitely generated torsion-free
group I', Wh(I') = 1, to author’s knowledge there seems to be no appropriate reference on
whether Wh(I',,)) = 1 for m > 0. :

Each ¢ € Out™(T',,) induces an automorphism of Q(I,)}5/ + I, which we also denote by ¢.
The following proposition is an extension of [3, Proposition 3. 5]. See also [44, Proposition 6.
6] for a related result. :
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Proposition 3.2.5. For (M, i.), (N, j:) € CI™,
Tol(M, is) - (N, ji)) = Tn(M, i) - @M, 1) (TN, j2)).
Proof. In all of the calculations below, we implicitly tensor the chain complexes with Q(T,,).
We write W := MU, o,y N. We have the following short exact sequences:
0= C.(E) ~ CuM, i,(E) @ C.(N) = C.(7, 1,E) - 0,

0= C.U:E) = C.(N) = CuN, Ju(E) = 0,
_ where we consider the homomorphisms

(A
pi W = mWmw)ye L

- i\ :1
P mN = a1 N/ NY™D S oy W) (ry 7)) (@) r,

respectively. It follows from the long exact homology sequence that the inclusion map
J+(£) — N induces an isomorphism H (&), Q) — H" (N Q). Let ¢, ¢’ be bases of
C.(N), C.(j-(%)) consisting of cells and let k, #’ be bases of H® (N; Q). HY (j+(Z); QT,))

such that % is the image of &’ by the isomorphism. By Lemma 2.1.2 we obtain the following
equations:
T,(M,1,(D) - [T(C.(W), €, )] = [7(C.G D), ¢, 1)) - (W, 1.(2)),

[7(C.V), &, )] = [1(CL: ), &, 1)) - T (N, ju(E)).
Hence ’

Tp(m () = Tp(M L(X)) - 7o (N, J4(Z)).

By the functoriality of Reidemeister torsion 7,(¥, j+(Z)) = @u(M, i) (Tm(N, j.)), which estab-
lishes the formula. m
Corollary 3.2.6. The map T,, = @, ('") — Q@) / £Ty) = Out*(T,) is a homomorphism.
Corollary 3.2.7. The map T,,: I C(’") = Q(Cn)5,/ =T is a homomorphism.

3.2.2. Torsion and homology cobordisms. We denote by -: Z[T,,] — Z[I',,] the involution de-
fined by v = y~! for y € I, and naturally extend it to Q(I,,) for each .
The following theorem is an extension of [3, Theorem 3. 10].

Theorem 3.2.8. Let (M, i), (N, j.) € Cg:’,,,). If (M, i) ~p, (N, jo), then
' T(M,iz) = Tw(N, ji) - q-q
Jor some g € Q)5 / £ T

Proof. We pick a homology cobordism W between M and N as in Definition 3.1.7. Let p be

the homomorphism 7, W — m W/ (7, W)"+) —— G I The long exact homology sequences for

(W, M), (W, N), (W, i (%)) give H. (W, M) = H(W,N) = H.(W,i,(Z)) = 0. By Lemma 3.2.1 we
obtain HX(W, M; Q') = H(W,N;Q(Tr)) = HI(W,i.(2); Q(T,)) = 0. By applying Lemma
2.1.2 to the following exact sequence

0 = CAM, i, (Z) ® Q) —= C.(7, £LE) © QW) = CulW, M) ® Q) — O,
we get

Tp(m () = Tp(M (X)) - Tp(W: M).
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Similarly,
Tp(I/V; i(Z)) = Tp(Ns J+(E)) : Tp(FVs N).
By the duality of Reidemeister torsion

—_—
To(W, M) = 7,(W, N)
(e.g., see [2, 25, 29]). Hence

Tp(M, i,(Z)) = To(N, j(Z)) - To(W, N) - 7,(W, N),

which proves the theorem. m|

We set
‘ Nm = {i')’ g é"e Q(rm)::b s Ye rm’q € Q(rm):;b}
Corollary 3.2.9. The map T, 2 @y, : 7—(8(,’,’,? = (QT )5, /N > Out™(Ty,) is a homomorphism.
Corollary 3.2.10. The map 7,,: 1 7—(;",’,,) — Q)5 /Ny is a homomorphism.

The following theorem showed that if (g, #) # (0, 0),(0, 1) and m > 0, then 7—(;’:,’,) is another
enlargement of M, ,.

Theorem 3.2.11. If (g,n) # (0,0),(0, 1), then the homomorphisms ﬂg’,’,) - HO 1 7—[;"2 —

213
0) L.
I 7‘[;,,, are not surjective for m > 0.

Proof. By Proposition 3.2.3 the image of the composition of 7—(;”,,) - 7—(;?3 and Ty = ¢y 7{;?,2 -
(QTo)%,/Ng) > Out*(To) is contained in 1 x Out'(Ty) and that of THY — IHE and
To: I 7-{;(2 — Q)5 /No is trivial. On the other hand, in [3] Cha, Friedl and Kim detected
elements of the image of 7o g : ‘}'{8(,?3 — (Q(To);,/No) = Out*(Ty) not contained in 1 x Out*(T)
- and nontrivial ones of 7o: I 7—(;?3, — Q)5 /No when (g, #n) # (0,0),(0, 1). These prove the
theorem. |

Remark 3.2.12. It is an important question whether the homomorphisms ?[g(ﬁ? —
‘Hé?,z L 7—[;”2 - T 7-{2,), are in general injective or not.

3.3. Construction and computation. For y € x and a tame knot K c §3, we construct a
homology cylinder M(y, K) as follows. See [3, Section 4] for various constructions of homology
cylinders.

Let * € X be the base point for 7. We choose a smooth path f: [0, 1] — X representing y such
that /~'(%) = {0, 1}, and define £: [0,1] — Zx [0,1], ¢: [0,1] = =% [0,1] by F() = (f (), ?)
and c(f) = (*, 1 — #). After pushed into the interior, £ - ¢ determines a tame knot J < Int M(id).
We take a framing of J representing the conjugacy class of the image of y by & — m (M) \ J).
Let E;, Ex be the exteriors of J, K. Now M(y, K) is the result of attaching —E to E; along the
boundaries so that a longitude and a meridian of K correspond to a meridian and a longitude of
J respectively. Note that if (g, n) = (0, 0) or (0, 1), then M(1, K) = M(id) for all K.

Proposition 3.3.1. If (g, n) # (0,0), (0, 1) and y € ™, then M(y,K) € Con for all K.
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Proof. It follows from irreducibility of E; and Ey that M(y, K) is also irreducible.

Extending a degree 1 map (Ex,0Ex) — (D* x §1,8D* x S') by the identity map
on E;, we have f: M(y,K) — M(id). We show that £.: = M(y, K)/(m M(y, K)+) —
711 M(id)/ () M(id))™*+Y is an isomorphism, which immediately gives the desired conclusion.

Let Ay, 7 € mE; and Ag,ux € mEx be longitude-meridian pairs. By the van Kampen
theorem m; M(y, K) is the amalgamated product of m £ and m Ex with A; = yx and iy = Ag,
and m M(id) is that of m E; and (¢) with A; = ¢ and u; = 1. Here f,: m M(y, K) — n; M(id)
is the identity map on 7y E; and is the Hurewicz map on m Ex. Hence the kernel is the normal
closure of (1 Ex)" in 1 M(y, K). Thus it is suffice to show that m Ex < (7, M(y, K))™. Since
71 Ex is normally generated by u, it suffice to show that ux € (7 M(y, K))™.

Suppose that i € (7 M(y, K))® for an integer k& < m. Since y € 7%, a longitude of J bounds
a map from a symmetric m-stage grope in M{id) such that the grope stages meet .7 transversely
(e.g., see [6]). Hence it bounds a map from a punctured symmetric m-stage grope in £, where
the boundaries of these punctures are meridians of £;. Therefore for some &; € m £,

A= nfrﬂ f_ I—[[a_,r: _,v]

where representatives of a;,b; € mE; bounds a map from punctured (;m — 1)-stage gropes
in E,. Hence a;, b; have similar expressions as A;. Continuing in this fashion, we see from
gy = g € (m My, K)®D that uy = A, € (r My, K))¥*D, It follows by induction that
x € (m My, K))™. ‘ m

Proposition 3.3.2. Lety € n. Then 1,(M(y, K)) = [Ax(¥)) for all K.

Proof. In all of the calculations below, we implicitly tensor the chain complexes with Q(T,,).
First we suppose that [y] = 1 € I,,. We have the following short exact sequences:

0 — C.(Ex) — CUE ir(Z)) © Cu(Ex) — C.(M(y,K), 1,(Z)) = 0,

0 > C(BD2XSY) — Cu(Ey, iy (®)) @ CADEXSY) = C(MGd), ir(Z)) — 0,
where we consider p,,: M M(y,K) — T, p),: mM(id) — T,. Let f: M(y,K) — M(id)
be the map taken in the proof of Proposition 3.3.1. It is easily seen that the induced maps
HZ(9Ex; Q) — HE(OD*XS'; Q). H(Ex; Q) — HEM(D?XST; Q(Tp) are isomor-
phisms. We pick bases &, k', h" of H"(8Ex; Q(T,), Hi"(E 1, i (Z); Q) Ho"(Ex; Q)
respectively such that the isomorphism H{"(0Ex;QT.) — - H”'"(E 5 ZEQT)) &
CH"(Ex, Q) maps A to b’ ® A”. By Lemma 2.1.2 we obtain

[T(CUES, ir (), )] - [«(Cu(Eg), B)] = [7(CAIEK), B)] - T, (M(y, K), i (T)),
[T(C.(Ey, 1:(Z)), B)] - [TH(C(D2 XYY, ful k")) = [T(CLBDE X S, ful )] - T (MUidl), 14 (Z)),

where we consider bases of chain complexes consisting of cells and the notation of these bases
is omitted. Since

[7(C.(8Ex), B)] = [*(C.(8D% X S1), fu( )],
[T(C.(Ex), B")] = [T(C.(DE XS, fu(H"))],
7y (M(id), i,(D)) = 1,

we have
Tpu(M(y, K), i(X)) = 1 = [Ax(p)].
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Next we suppose that [y] # 1 € [',.. In this case Hy"(0Ex; Q(T), Ho"(Ex; Q(T)), HEm (8D?x
SU Q@) Hin(D* x §';Q(T,,)) vanish. Therefore H"(E, i.(Z); Q(T,,)) also vanishes. By

Lemma 2.1.2 we obtan '
Ton(Er, 1+(E)) - 7o (Ek) = Tp,(0Eg) - 7, (M(y, K), i,(Z)),
T (B, 1:(2)) - 1]‘,;"(D2 x 8§ = 1",,;”(31)2 xShy- T (M(id), 1, (Z)).

Here
Tou(Ex) = [Ax(y)(y = 1)7'),
T (D* xS = [(y - 1)),
Tpa(OFK) = 75,(8D* x S*) = 1, (M(id), i,(2)) = 1,
which are easy to check. Now these equations give the desired formula. ' m|

Considering the homology long exact sequences of the chain complexes with Z[I'] coeffi-
cients instead of Lemma 2.1.2 in the proof, we obtain the following lemma.

Lemma 3.3.3. Lety € ™. Then
H{"(M(y, K), 1+(Z); Z[TT) = Ag @gq17 Z[],

where Ay is the Alexander module of K and we consider the homomorphism Z[t, '] — Z[T,,]
defined by t — .

Now we are in position to show the difference between Cé"j,) and Cgﬁ,”).

Theorem 3.3.4. (i) I Ef)l; #* I Eff;.

(i) ICyp # ICry,

(iii) If (g, ) # (0, 0), (0, 1), (0, 2),(1,0), then ICon
Proof. Suppose that 7D # #0 Let y € 20 \ 0D and let K < S? be a tame knot with
nontrivial Ag. By Proposition 3.3.1 we see at once M(y, K) - M(¢(M(y,K))™) e I Eg:,) By
Lemma 3.3.3 we have _

H"(M(y, K) - M(go(M(y, K)) ™), i.:(Z); Z[Tn]) = A g7 Z[Tn] # 0.

On the other hand, H"(3, i.(Z); Z[T',]) = 0 for every (M,i.) € Cg:,“) (e.g., see the proof of
Proposition 3.2.3). Therefore M(y, K) - M(¢,,(M(y, K))™)) ¢ ng:;*‘”, which gives the theorem.
m|

'+ 1T for all m.

3.4. Reduction of the torsion group. A bi-order < of a group I is a total order of T" satisfying
that if x < y, then axb < ayb for all @, b, x,y € I'. A group I is called bi-orderable if T admits a
bi-order. It is well-known that an abelian group is bi-orderable if and only if it is torsion-free.
The following lemma is an immeadiate consequence of [33, Corollary 2. 4. 2, Corollary 2. 4.
3]

Lemma 3.4.1. For a free group F, F/F®™ is bi-orderable for all m.



24 T. KITAYAMA

Remark 3.4.2. Tt is well-known that every finitely generated torsion-free nilpotent group is resid-
ually p for any prime p. Rhemtulla [42] showed that a group which is residually p for infinitely
many p is bi-orderable. To author’s knowledge there seems to be no appropriate reference on
whether I',, is residually nilpotent, residually p for infinitely many p or bi-orderable in the case
where m > 0 and n = Q.

In the following we assume » > 0 and fix a bi-order of T,,_;. Let 4,, := 7 /2D and let

Crn={xa-p-yp v € Qdn)*; a€ Apy €L p € Q4"
We define a map d: Z[[,,] \ 0 — Q(4,,)*/C by

12 3 ol-

6elm—1 yelm.[y]=5

( >, aﬂ] Y% '] :
YEL i, [¥1=6max

where dmax € Iy is the maximum with respect to the fixed bi-order such that for some y € T,
with [y] = Gpax, @y # 0, and vy €T, is an element with [yy] = Gpax. The proof of the following
lemma is straightforward. '

Lemma 3.4.3. The map d: Z[I',]\ 0 — Q(4,,)*/C,, does not depend on the choice of yy and is
a monoid homomorphism.

By the lemma we have a group homomorphism Q(I',,)}y — Q(4,,)*/C,, which maps f - g™
to d(f) - d(g)™! for f,g € Z[I\n] \ 0. By abuse of notation, we use the same letter d for the
homomorphism. Since there is a natural section Q(4,,Y*/C,, — Q)Y of d, Q(A4,)*/C,n can
be seen as a direct summand of Q(T,,)%,.

For irreducible P-q € Z[A,]\0, we write p ~ g if there exist a € 4,, and y € [, such that p =
+a - yqy~'. Since Z[4,,] is a unique factorization domain, every x € Q(4,,)*/C,. can be written
as x = [[p]%", where ep,) is a uniquely determined integer. Let e: Q(Am)’< /Cn — @ Z be
the isomorphism given by x = ¥ €f.

Recall that for every monoid §, there exists a monoid homomorphism g: § — U(S) to a
group U(S) satisfying the following: For every monoid homomorphism f: § — G to a group
G, there exists a unique group homomorphism f": U(S) — G such that f = f" o g. By the
universality Z/(S) is uniquely determined up to isomorphisms. The following theorem is an
analogous result of Goda and Sakasai in [15].

Theorem 3.4.4. If n > 0 and (g,1) # (0,1),(0,2), then the abelianization of U(IC.") has
infinite rank for all m.

Proof. Lety € i \ 7%*1} and let K c S3 be a tame knot. By Proposition 3.3.1 we see at once
M(y,K) - M(¢p,(M(y,K)™) e I ng. By Propositions 3.2.5, 3.3.2 we have

d o Tu(M(y, K) - M($(M(y, K)) ) = [Ax(¥)].
Since it is well-known that for any p € Z[¢, '] with p(r™!) = p(#) and p(1) = 1, there exists a
knot K ¢ §3 such that Ax = p, the image of eodo,: I Egr::, — @,)Z contains a submonoid

isomorphic to Z,. Therefore the image of the induced map Z{(Z —C_ZT)) — ®,Z is a free abelian
group of mﬁmte rank which proves the theorem. O

Remark 3.4.5. if we know that Wh(T',,) = 1, we could conclude by Proposition 3.2.3 that under
the same assumption (LI(I ) [UIC, (m+ )) should have infinite rank for all ».
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Corollary 3.4.6. Ifn > 0 and (g, n). # (0,1),(0,2), then I Ef:;) is not finitely generated for all
. :

We conclude with an observation concerning the abelianization of I 7—(;’,",,). We set
N, ={ta-qg-q€Qn)"; ac dmqgc Q) )

There is a natural map ¢: Q(A,)*/(Cy - N;,) ~ Q)% /N:n. From the unique factorization
property of Z[A4,,] we have the isomorphism e": Q(4,,)/(C, - N;,) = (@1=01Z/2) ® (S5 Z)
induced by e: Q(4,,)*/Cy — &Z. If n > 0 and (g, n) # (0, 1), (0, 2), then from the argument
in the proof of Theorem 3.4.4 the image of 7,,,: 1 7—[("’) — Q') /Ny contains the image of a

direct summand isomorphic to (Z/2)* by ¢. Thus to mvestigate Kert 1s essential to detect size
of the image of 7,,,.
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