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Abstract

We extend the noncommutative L1-maximal ergodic inequality for semifinite
von Neumann algebras established by Yeadon in 1977 to the framework of non-
commutative L1-spaces associated with σ-finite von Neumann algebras. Since the
semifinite case of this result is one of the two essential parts in the proof of noncom-
mutative maximal ergodic inequality for tracial Lp-spaces (1 < p < ∞) by Junge-Xu
in 2007, we hope our result will be helpful to establish a complete noncommutative
maximal ergodic inequality for non-tracial Lp-spaces in the future.

1 Introduction

Theory of von Neumann algebras is regarded as the noncommutative measure and in-

tegration theory (Chapter IX, [28]), so it is natural to consider extensions of classical

ergodic theorems for spaces of measurable functions to the framework of noncommuta-

tive spaces associated with von Neumann algebras. Such an extension topic appeals to

many mathematicians and they had interesting results even from 1970’s (for example,

the pioneering works of [17] and [30]). Since then many classical mean ergodic theorems

and ergodic theorems of other types were successfully transformed to the noncommuta-

tive context which is a semifinite von Neumann algebra or a non-commutative Lp-space

associated with a semifinite von Neumann algebra, and some authors even considered a

general von Neumann algebra or a non-tracial Lp-space associated with it. Among these

noncommutative ergodic theorems, however, the problem of finding a noncommutative

analogue of the famous Dunford-Schwartz maximal ergodic inequality ([7]) was left open

until the appearance of Junge-Xu’s prominent paper in 2007. The main obstacle in this

problem is that it is difficult to define the supremum of a sequence of operators even

in the finite-dimensional Hilbert space cases, although it is straightforward to take the
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supremum of a sequence of measurable functions. For this reason, many powerful tech-

niques in classical ergodic theory involving maximal functions seem no longer available in

the research of noncommutative ergodic results. This difficulty was overcome in Junge-

Xu’s work ([15]) by using the noncommutative vector valued Lp-space theory developed

by Pisier and Junge (see [21] for the case of hyperfinite von Neumann algebras and [14]

for that of general ones). Junge-Xu established noncommutative version of the Dunford-

Schwartz maximal ergodic inequality first for non-commutaive Lp-spaces associated with

a semifinite von Neumann algebra, or in other words, tracial Lp-spaces (Theorems 4.1,

[15]). In order to state their result we need some notations as follows.

LetM be a semifinite von Neumann algebra equipped with a normal semifinite faithful

trace τ , and let Lp(M) be the associated noncommutative Lp-space (see, for example, [19]

for a detailed definition). The symbol T : M → M denotes a linear map which satisfies

the following conditions.

(J1) T is a contraction onM : ||Tx|| ≤ ||x|| for all x ∈M , where ||·|| means the ∞-norm,

or in other words, the usual operator norm.

(J2) T is positive: Tx ≥ 0 if x ≥ 0.

(J3) τ ◦ T ≤ τ : τ(T (x)) ≤ τ(x) for all x ∈ L1(M) ∩M+.

Theorem 1.1. (Theorem 4.1 in [15]). Let T be a linear map on a semifinite von Neumann

algebra M with (J1)–(J3), then T extends naturally to a contraction on Lp(M) for 1 ≤
p <∞. Put

Sn ≡ Sn(T ) =
1

n+ 1

n∑
k=0

T k,

then for every p, 1 < p <∞, we have∣∣∣∣∣∣∣∣sup
n

+Sn(x)

∣∣∣∣∣∣∣∣
p

≤ cp ||x||p , for all x ∈ Lp(M),

for some positive constant cp depending only on p.

Note that ||sup+
n Sn(x)||p is the notation for ||{T n(x)}n∈N||Lp(M ; l∞) used in [15], where

Lp(M ; l∞) is Pisier-Junge’s noncommutative vector valued Lp-space defined by the space

of all sequences x = {xn}n∈N in Lp(M) (1 ≤ p ≤ ∞) such that each sequence admits a

factorization of the following form: there are a, b ∈ L2p(M) and y = {yn}n∈N ⊂ L∞(M) =

M such that xn = aynb for all n ∈ N and the norm is defined by

||x||Lp(M ; l∞) ≡ inf{||a||2p sup
n∈N

||yn|| ||b||2p},

where the infimum runs over all such factorizations as above.

For details of such spaces, we refer the reader to [21] and [14].
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But considering only semifinite von Neumann algebras is not enough sometimes. It

was stated in [28] that most of factors arising from physics are of type III, which are of

course not semifinite. Another fact is that it was shown by Pisier ([22]) that OH cannot

completely embed in a semifinite L1(M). More and more recent works concern the type

III case or need results on noncommutative Lp-spaces associated with a not necessarily

semifinite von Neumann algebra.

For a general von Neumann algebra, there are several equivalent constructions of non-

commutative Lp-spaces associated with it, and the important ones include [9, 16, 29, 11,

6, 2, 13] and they are all based on the Tomita-Takesaki theory. Since a general von

Neumann algebra does not necessarily admit a normal semifinite faithful trace, any of

these (equivalent) constructions are called non-tracial Lp-spaces.

The first non-tracial Lp-spaces are Haagerup’s ones, and just for Haagerup’s Lp-spaces,

Junge-Xu established the non-commutative Dunford-Schwartz maximal ergodic inequal-

ity as a non-tracial extension of Theorem 1.1 above (see Theorem 7.4, [15]). Their method

is to use an early result of Haagerup named reduction method to approximate Haagerup’s

Lp-spaces by simifinite ones. We state this theorem here.

Theorem 1.2. (Theorem 7.4 in [15]). Suppose M is a (σ-finite) von Neumann algebra

with a normal faithful state φ, let T be a linear map on M satisfying the following

properties (H1)–(H4).

(H1) T is a contraction on M : ||Tx|| ≤ ||x|| for all x ∈M .

(H2) T is completely positive.

(H3) φ(T (x)) ≤ φ(x) for all x ∈M+.

(H4) T ◦ σφt = σφt ◦ T for all t ∈ R.

Then T extends naturally to a contraction on Haagerup’s Lp(M) for 1 ≤ p <∞. Put

Sn ≡ Sn(T ) =
1

n+ 1

n∑
k=0

T k.

Then for every p, 1 < p <∞, we have∣∣∣∣∣∣∣∣sup
n

+Sn(x)

∣∣∣∣∣∣∣∣
p

≤ cp ||x||p , for any x ∈ Lp(M),

for some positive constant cp depending only on p.
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This theorem was also established in [10] (Theorem 7.9).

We may compare the statement of this theorem with that of Theorem 1.1. It is clear

that the assumption (J2) is reinforced to the assumption (H2), and (H4) is new, the

others are natural extensions. Since the modular automorphism group στt induced by a

trace τ is trivial, we do not think the condition (H4) is unnatural any more when we

consider the non-tracial cases. However, we feel that the “complete positivity” assumption

of (H2) seems a little bit stronger. Although it is remarked in [15], page 425, that the

complete positivity is unlikely to be really necessary, they did not give a proof to release

this assumption, and they still used complete positivity assumption in [10].

We would like to remark that Haagerup’s reduction method used in [10] is really

powerful to extend the non-commutative martingale inequalities from the tracial cases to

the non-tracial ones without any change in the statement form for almost all those results.

This is because a conditional expectation in the framework of von Neumann algebras

is certainly completely positive ([1] and [27]). In non-commutative ergodic theorems,

“complete positivity” seems a little restrictive, moreover, many important positive but

not completely positive state-preserving transforms describing open quantum evolution

are now considered by mathematical physicists (see, for example, [24, 25, 12, 5, 26]).

So we do not think Theorem 1.2 is a complete answer for the problem of non-tracial

extension of Theorem 1.1. Recalling the proof of Theorem 1.1 in [15], we know that this

proof consists of two essential parts, one is the non-commutative maximal ergodic inequal-

ity for semifinite L1(M) established by Yeadon, and the other one is the non-commutative

semifinite Marcinkiewicz interpolation theorem in [15]. A natural and possible way of

thought for the problem of a complete non-tracial extension of Theorem 1.1 is to get

non-tracial extensions of these two parts. The main result of our paper is just to provide

the non-tracial extension of maximal ergodic inequality for the non-tracial L1(M). We

have been unable to get a non-commutative Marcinkiewicz interpolation theorem for the

non-tracial Lp-spaces so far and we will explain the reason in the next section. We hope

the result in this paper will be helpful to establish a complete noncommutative maximal

ergodic inequality for the non-tracial Lp-spaces in the future.

It is well-known that all the von Neumann algebras encountered in quantum statistical

mechanics and quantum field theory are σ-finite ([4], p.84), probably for this reason,

only the noncommutative Lp-spaces associated with a σ-finite von Neumann algebra

are considered in Theorem 1.2 instead of general non-tracial situation and we think this

restriction to the σ-finite case is of full meaning. Our framework is the Hilsum spatial Lp-

spaces associated with a σ-finite von Neumann algebra which are certainly isometrically

isomorphic to Haagerup’s ones associated with a σ-finite von Neumann algebra. On the

detailed construction of the Hilsum spatial Lp-spaces and the close relation between those
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spaces and complex interpolation theory, we will give a short description on them in the

beginning of the next section.

Let M be a σ-finite von Neumann algebra represented on a Hilbert space H, hence

we may assume M admits a normal faithful state φ, and ψ is a normal faithful state on

the commutant M ′ of M , let Lp(M ;ψ) denote the Hilsum spatial Lp-spaces with respect

to ψ. Our main result is the following theorem.

Theorem 1.3. (Theorem 2.1 in the next section). Assume M is a σ-finite von Neumann

algebra which admits a normal faithful state φ and T is a linear map on M satisfying the

following conditions.

(1) T is a contraction of M , i.e., ||Tx|| ≤ ||x|| for all x ∈M .

(2) T is positive, i.e., Ty ≥ 0 if y ∈M+.

(3) φ(T (y)) ≤ φ(y), for all y ∈M+,

Then T extends to a positive linear contraction on L1(M ;ψ). For any a ∈ L1
+(M ;ψ)

and any λ > 0, and any n ∈ N, there exists a projection en ∈M such that

enSr(a)en ≤ λenden for all r ∈ {0, 1, ..., n},

and

φ(1− en) ≤
2

λ

∫
adψ,

where Sr(a) =
1
r+1

∑r
k=0 T

k(a), d = dφ
dψ

is the spatial derivative and 1 is the identity of

M . Furthermore, for any a ∈ L1
+(M ;ψ), there exists a projection e ∈ M such that for

any r ∈ N, ∫
eSr(a)edψ ≤ 4λ, and φ(1− e) ≤ 2

λ

∫
adψ.

We recall that in the semifinite case, the L1-norm of the tracial L1-space L1(M) is

defined by ||·||1 = τ(| · |), and in the spatial L1-space L1(M ;ψ), the L1-norm is defined by

||·||1 = (
∫
| · |dψ), and we know that when M is semifinite, L1(M ;ψ) is equivalent to the

tracial L1(M), so this is the reason we use
∫
·dψ in the statement of our theorem. In the

semifinite case, Yeadon’s result ([30]) provided a bound on eSr(a)e, and this is because

in semifinite case, the elements in Lp-spaces are unbounded (also including bounded)

operators affiliated with the von Neumann algebra, hence we may cut such unbounded

operators by using some projection in the von Neumann algebra. However, for the non-

tracial case, elements in the Hilsum (or other equivalent) Lp-spaces are never affiliated

with the von Neumann algebra M , so eSr(a)e cannot be majorized by any bounded

operator, and the result in our theorem is the best one we can hope in the non-tracial

case.
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Such a result also has its own value. In the commutative case we know that the

following Chebyshev type inequality is quite important in measure theory and probability

theory,

µ({x : sup
n∈N

sn(f)(x) > λ}) ≤ c

λ
||f ||1 ,

and our result is a non-commutative extension of this inequality for σ-finite von Neumann

algebras.

2 Main Part

Now we introduce the definition of the Hilsum spatial Lp-spaces. We assume M is a

general von Neumann algebra (because the Hilsum Lp-spaces are defined for general von

Neumann algebras) which admits a normal semifinite faithful weight φ and furthermore,

M is represented on a Hilbert space H and we have a normal semifinite faithful weight

ψ on the commutant M ′ of M .

A vector ξ ∈ H is said to be ψ-bounded if there exists a positive constant c such that

||yξ||2 ≤ cψ(y∗y) for any y ∈ nψ, where nψ = {y ∈ M ′ | ψ(y∗y) < ∞}. We let D(H,ψ)

be the subspace of H consisting of all ψ-bounded vectors. Then for any ξ ∈ D(H,ψ),

Rψ(ξ) is the unique bounded operator from Hψ (the GNS representation Hilbert space

induced by ψ) to H such that Rψ(ξ)ηψ(y) = yξ, where ηψ is the canonical injection of

nψ into Hψ, and θ
ψ(ξ, ξ) = Rψ(ξ)Rψ(ξ)∗ ∈ M . The map ξ → ϕ(θψ(ξ, ξ)) defines a lower

semicontinuous positive form on D(H,ψ), where ϕ is any normal semifinite weight on

M . Then the positive self-adjoint operator associated with this form is called the spatial

derivative dϕ
dψ

defined by Connes ([6]).

The Hilsum spatial Lp-space Lp(M ;ψ) is defined as (1 ≤ p <∞)

Lp(M ;ψ) =


a is a closed densely defined operator on H with
spectral decomposition a = u|a| such that u ∈M

and |a|p = dϕ
dψ

for some ϕ ∈M+
∗


=


a is a closed densely defined operator on H and
(−1

p
)-homogeneous with respect to ψ such that∫

|a|pdψ <∞


The Lp-norm is defined by ||·||p = (

∫
| · |pdψ)

1
p . If p = ∞, L∞(M ;ψ) = M with the

usual operator norm.

For the definition of homogeneity with respect to ψ and the detailed properties of dϕ
dψ

and Lp(M ;ψ), we refer the reader to [6, 11, 29].

Concerning the Hilsum spatial Lp-spaces, Terp’s paper ([29]) deeply revealed the close

relation between the complex interpolation theory on (M,M∗) and L
p(M ;ψ).
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The subspace L of M consists of x ∈M for which there exists a φx ∈M∗ such that

for any y, z ∈ nφ : (z∗y, φx) = ⟨Jπφ(x)∗Jηφ(y), ηφ(z)⟩,

where J is the associated modular conjugation in Hφ, (·, ·) denotes the duality between

M and M∗, and ⟨ , ⟩ is the scalar inner product on Hφ .

For x ∈ L, we put ||x||L = max{||x|| , ||φx||}, where the norm for φx means the functional

norm.

The normed space (L, ||·||L) is a Banach space and it can be embedded naturally into

M and M∗ by x 7→ x : L→M and x 7→ φx : L→M∗.

By transposition of the above two embeddings we have the injections M → L∗ and

M∗ → L∗ given by

(x, y)(L,L∗) = (y, φx)(M,M∗), x ∈ L

for all y ∈M and

(x, ϕ)(L,L∗) = (x, ϕ)(M,M∗), x ∈ L

for all ϕ ∈M∗, where L
∗ means the dual of (L, ||·||L).

The following diagram commutes,

M

!!D
DD

DD
DD

D

L

  A
AA

AA
AA

A

>>||||||||
L∗

M∗

=={{{{{{{{

and L =M ∩M∗ when M and M∗ are considered as subspaces of L∗ (see Section 1, [29]),

and L is σ-weakly dense in M , the embedding of L in M∗ is weakly and norm dense in

M∗ (Corollary 5, [29]).

Hence (M,M∗) is turned into a compatible pair of Banach spaces in the complex

interpolation sense (Section 2.3, [3]), and Terp proved that for 1 < p < ∞, the Hilsum

spatial Lp-spaces Lp(M ;ψ) are just the complex interpolation spaces of M∗ and M .

Accurately speaking, Lp(M ;ψ) = Cp(M,M∗) (Theorem 36 in [29]).

Let T be a linear map on M satisfying the following conditions.

(1) T is a contraction of M , i.e., ||Tx|| ≤ ||x|| for all x ∈M .

(2) T is positive, i.e., Ty ≥ 0 if y ∈M+.

(3) φ(T (y)) ≤ φ(y) for all y ∈ L+.

From now on, we will concentrate on the σ-finite cases.
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Let M be a σ-finite von Neumann algebra acting standardly on the Hilbert space H,

M admits a normal faithful state φ, ψ is a normal faithful state on M ′, and T is a linear

transform satisfying the above conditions (1)− (3).

We note that for any x ∈ M , we have x ∈ mφ = span{x ∈ M+ | φ(x) < ∞} as φ

is a state, and we know from Note (2), p.329 in [29] that mφ ⊆ L, combined with the

fact that L is defined to be a linear subspace of M , we have mφ =M = L in the σ-finite

cases.

That is to say, condition (3) above can be replaced by the following one when M is

σ-finite.

(3) φ(T (y)) ≤ φ(y) for all y ∈M+.

Moreover, the embedding ofM = L into L1(M ;ψ) is given by the mapM → d
1
2Md

1
2 ,

where d = dφ
dψ

is the spatial derivative of φ with respect to ψ (see Section 2.3 and Theorem

27 in [29]). Such an embedding is equivalent to the embedding M → Mη ⊆ M∗ with

η = 1
2
in Definition 7.1 of [16] and Lp(M ;ψ) is equivalent to C 1

p
(Mη,M∗) with η = 1

2

(Definition 7.2, [16]). Moreover, since the Hilbert space is standard, the Hilsum space

L1(M ;ψ) is now as the same as the Araki-Masuda L1-space in [2].

Then for a general p, 1 ≤ p <∞, we may define the following map Tp as

Tp : d
1
2pMd

1
2p → d

1
2pMd

1
2p

d
1
2pxd

1
2p 7→ d

1
2pT (x)d

1
2p ,

for any x ∈M .

We claim that the map T1 defined above extends naturally to a positive contraction

of L1(M ;ψ) → L1(M ;ψ), and it will still be denoted by T1. To show this claim, we need

the Lemma 5.2 in [10]. Although this lemma is stated and proved for Haagerup’s L1-

spaces, it is still valid in the framework of the Hilsum spatial L1-spaces through isometric

isomorphism. We state it here for L1(M ;ψ). Let x ∈M and x is self-adjoint, then∣∣∣∣∣∣d 1
2xd

1
2

∣∣∣∣∣∣
1
= inf{φ(a) + φ(b) | x = a− b, a, b ∈M+}.

The proof of this result for L1(M ;ψ) is essentially the same as that of Lemma 5.2 in

[10] when replacing D there by the spatial derivative d. Then we will use this result and

follow the method of Lemma 5.3 in [10] to show our claim. Let y ∈M+, then d
1
2yd

1
2 ≥ 0,

so T1(d
1
2yd

1
2 ) = d

1
2T (y)d

1
2 ≥ 0, hence T1 is also positive. By condition (3),∣∣∣∣∣∣d 1
2T (y)d

1
2

∣∣∣∣∣∣
1
=

∫
d

1
2T (y)d

1
2dψ =

∫
T (y)ddψ

=φ(T (y)) ≤ φ(y) =
∣∣∣∣∣∣d 1

2yd
1
2

∣∣∣∣∣∣
1
.
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Now assume x ∈ M and x is self-adjoint, for any ε > 0, there exist a, b ∈ M+ such that

x = a− b and ∣∣∣∣∣∣d 1
2ad

1
2

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣d 1

2 bd
1
2

∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣d 1
2xd

1
2

∣∣∣∣∣∣
1
+ ε.

It follows that∣∣∣∣∣∣T1(d 1
2xd

1
2 )
∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣d 1
2T (a)d

1
2

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣d 1

2T (b)d
1
2

∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣d 1
2xd

1
2

∣∣∣∣∣∣
1
+ ε.

That is
∣∣∣∣∣∣T1(d 1

2xd
1
2 )
∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣d 1
2xd

1
2

∣∣∣∣∣∣
1
for any x ∈ M is self-adjoint since ε is arbitrary.

Finally, decomposing any x ∈M into its real and imaginary parts, we get
∣∣∣∣∣∣T1(d 1

2xd
1
2 )
∣∣∣∣∣∣
1
≤

2
∣∣∣∣∣∣d 1

2xd
1
2

∣∣∣∣∣∣
1
. And since d

1
2Md

1
2 is norm dense in L1(M ;ψ), T1 extends to a bounded

positive map on L1(M ;ψ) with ||T1|| ≤ 2. Thus it remains to reinforce the norm bound 2 to

1. To this end, we consider the adjoint map T ∗
1 which is a linear map onM = L1(M ;ψ)∗.

Since T1 is positive, T ∗
1 is also positive and T ∗

1 attains its norm at the identity 1 of M ,

i.e., ||T1|| = ||T ∗
1 || = ||T ∗

1 (1)||. Hence we are reduced to showing ||T ∗
1 (1)|| ≤ 1. Indeed, by

condition (3),∫
T ∗
1 (1)d

1
2yd

1
2dψ =

∫
T1(d

1
2yd

1
2 )dψ = φ(T (y)) ≤ φ(y) =

∣∣∣∣∣∣d 1
2yd

1
2

∣∣∣∣∣∣
1

for any y ∈M+. We get ||T ∗
1 (1)|| ≤ 1 by the density of d

1
2M+d

1
2 in L1

+(M ;ψ), and hence∣∣∣∣∣∣d 1
2T (x)d

1
2

∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣d 1
2xd

1
2

∣∣∣∣∣∣
1
for any x ∈M and our claim follows.

Combined with condition (1) and the abstract Riesz-Thorin Theorem, we obtain that∣∣∣∣∣∣d 1
2pT (x)d

1
2p

∣∣∣∣∣∣
p
≤

∣∣∣∣∣∣d 1
2pxd

1
2p

∣∣∣∣∣∣
p
, for 1 < p <∞, and x ∈M.

Moreover, since for 1 < p < ∞, Lp(M ;ψ) = C 1
p
(M∗,M) (Theorem 36 in [29]), in ac-

cordance with Theorem 4.2.2(a) in [3], we have that d
1
2pMd

1
2p is ||·||p-norm dense in

Lp(M ;ψ). Therefore, the map Tp defined above also extends naturally to a positive

contraction of Lp(M ;ψ) → Lp(M ;ψ) for each p and we still denote it by Tp (1 < p <∞).

From the idea in [29], M = L∞(M ;ψ),M∗ = L1(M ;ψ) and Lp(M ;ψ), 1 < p < ∞,

can be regarded as injective subspaces in M + M∗. In this situation it is easily seen

that the maps T, Tp (1 < p < ∞) and T1 defined above coincide on L. For this rea-

son, we may have a linear map on M + M∗, and the restriction of this map on M ,

Lp(M ;ψ) (1 < p < ∞) and M∗ will be T , Tp (1 < p < ∞) and T1, respectively when

considering M , Lp(M ;ψ) (1 < p < ∞) and M∗ in M +M∗. Since this map on M +M∗

is deduced by T on M , it is viewed as the extension of T on M +M∗, and we still denote

it by T .

Then we arrive at the stage to show our main result. From above we know that the

restriction of T on L1(M ;ψ) satisfies the following conditions.

• ||T (a)||1 ≤ ||a||1, for all a ∈ L1
+(M ;ψ).

• T is positive, i.e., T (a) ≥ 0 if a ∈ L1
+(M ;ψ).
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Theorem 2.1. We assume T is a linear transform on a σ-finite von Neumann algebra

M satisfying the conditions (1)−(3) above, and T extends to a linear positive contraction

on L1(M ;ψ). Then for any a ∈ L1
+(M ;ψ) and any λ > 0, and any n ∈ N, there exists a

projection en ∈M such that

enSr(a)en ≤ λenden for all r ∈ {0, 1, ..., n},

and

φ(1− en) ≤
2

λ

∫
adψ,

where Sr(a) =
1
r+1

∑r
k=0 T

k(a), d = dφ
dψ

is the spatial derivative and 1 is the identity of

M . Furthermore, for any a ∈ L1
+(M ;ψ), there exists a projection e ∈ M such that for

any r ∈ N, ∫
eSr(a)edψ ≤ 4λ, and φ(1− e) ≤ 2

λ

∫
adψ.

Proof. For any x ∈ M+,
∫
T (a)xdψ is a positive linear functional on L1(M ;ψ) since T

is positive. Indeed, the property M = (L1(M ;ψ))∗ implies that each x ∈ M+ gives a

positive linear functional on L1(M ;ψ), and T (a) is still positive, hence the functional

action
∫
T (a)xdψ takes positive values for any a ∈ L1

+(M ;ψ). Or in other words, we may

also compute this value explicitly as follows.

Since x
1
2 ∈M+, in accordance with Proposition 8(4) in [11],

∣∣∣∣∣∣x 1
2T (a)

∣∣∣∣∣∣
1
≤

∣∣∣∣∣∣x 1
2

∣∣∣∣∣∣ ||T (a)||1,
i.e., x

1
2T (a) ∈ L1(M ;ψ). The Proposition in page 159 of [11] yields that

∫
T (a)xdψ =∫

x
1
2T (a)x

1
2dψ. For any family {ξα} in D(H,ψ) such that

∑
α θ

ψ(ξα, ξα) = 1, hence from

the definition of
∫
·dψ in page 163 of [6], we have∫
x

1
2T (a)x

1
2dψ =

∑
α

⟨x
1
2T (a)x

1
2 ξα, ξα⟩

=
∑
α

⟨T (a)
1
2x

1
2 ξα, T (a)

1
2x

1
2 ξα⟩ =

∑
α

∣∣∣∣∣∣T (a) 1
2x

1
2 ξα

∣∣∣∣∣∣2 ≥ 0.

That is to say,
∫
T (a)xdψ ≥ 0 for any a ∈ L1

+(M ;ψ) and x ∈M+.

If the reader is more familiar with the properties of Haagerup’s Lp-spaces, we may

recall the Proposition 1.20 in [9], i.e., let p, q ∈ [1,∞], 1
p
+ 1

q
= 1 and let a ∈ Lq(M), then

a ≥ 0 if and only if tr(ab) ≥ 0 for any b ∈ Lp(M)+, and Hilsum’s spatial Lp-spaces are

isometrically isomorphic to Haagerup’s Lp-spaces, by replacing tr(·) by
∫
·dψ, we may

also get the positivity of the functional at the beginning of this proof.

Therefore there exists some x̃ ∈M+ such that
∫
T (a)xdψ =

∫
ax̃dψ again by the fact

M = (L1(M ;ψ))∗. If we denote x̃ by T̃ (x) for each x ∈M+, then∫
T (a)xdψ =

∫
aT̃ (x)dψ,

10



and T̃ extends linearly to be a linear transform on M such that T̃ (x) ≥ 0 if x ≥ 0.

Also we note that for any x ∈M+,∣∣∣∣∣∣T̃ (x)∣∣∣∣∣∣ = sup

{∫
aT̃ (x)dψ | ||a||1 ≤ 1, a ∈ L1

+(M ;ψ)

}
= sup

{∫
T (a)xdψ | ||a||1 ≤ 1, a ∈ L1

+(M ;ψ)

}
≤ ||x|| ,

where the last inequality is because ||T (a)||1 ≤ ||a||1 for any a ∈ L1
+(M ;ψ). This result∣∣∣∣∣∣T̃ (x)∣∣∣∣∣∣ ≤ ||x|| can also be obtained from the fact that T is a contraction on L1(M ;ψ) and

T̃ is just the adjoint map of T .

Let n ≥ 1 be fixed, we put

K = {(x0, x1, . . . , xn) | xr ∈M+ for 0 ≤ r ≤ n and
n∑
r=0

xr ≤ 1},

then K is σ-weakly compact in M ×M × · · · ×M of n+ 1-copies.

We know from Section 2.3 in [29] that the embedding map µ1 of L+ into L1(M ;ψ)+

is given by µ1(x) = d
1
2xd

1
2 = (x

1
2d

1
2 )∗(x

1
2d

1
2 ) for x ∈ L+, where d = dφ

dψ
is the spatial

derivative. Hence we may consider the value
∫
d

1
2xd

1
2 =

∫
dφx

dψ
dψ = φx(1) < ∞ since φx

is a positive normal linear functional on M . And for any x ∈ M+, as M = L in σ-finite

case,
∫
d

1
2xd

1
2dψ <∞ for any x ∈M+ is well-defined.

Therefore for any a ∈ L+
1 (M ;ψ), we may define a function g on K by

g((x0, x1, ..., xn)) =
n∑
r=0

(r + 1)

∫
Sr(a)xrdψ − λ

n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ.

Note that Sr(b)xr ∈ L1(M ;ψ) as xr ∈ M and Sr(b) ∈ L1
+(M ;ψ), so

∫
Sr(b)xrdψ is well-

defined and takes finite values for each 0 ≤ r ≤ n. We recall that K is σ-weakly compact

and g is σ-weakly continuous on K, hence the finite maximum value of g is attained

for some choice of (x0, x1, . . . , xn) in K. Then we explain the reason that g is σ-weakly

continuous. For each r ∈ N ∪ {0}, there exists a ϕr ∈ M∗ such that
∫
Sr(a)xrdψ =∫

dϕr
dψ
xrdψ = ϕr(xr) for xr ∈ M , and ϕr is normal, i.e., ϕr is σ-weakly continuous on

M . Also we have
∫
d

1
2xrd

1
2dψ =

∫
dxrdψ =

∫
dφ
dψ
xrdψ = φ(xr), for xr ∈ M , is σ-weakly

continuous on M for φ is a normal state on M . Thus g is σ-weakly continuous on K.

We let 1 −
∑n

r=0 xr = zn (we choose this notation because the positive operator

zn depends on n). For any x ∈ M+ with x ≤ zn, we have
∑n

r=0 xr + x ≤ 1 and∑n
r=0 xr + x ∈M+ and hence for any fixed r0 ∈ {0, 1, . . . , n},

g((x0, x1, . . . , xn)) ≥ g((xr + δ(r, r0)x)r=0,1,...,n), where δ(r, r0) =

{
1 r = r0

0 r ̸= r0.

11



As a result, we have

n∑
r=0

(r + 1)

∫
Sr(a)xrdψ − λ

n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ

≥
n∑
r=0

(r + 1)

∫
Sr(a)xrdψ + (r0 + 1)

∫
Sr0(a)xdψ−

− λ
n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ − λ(r0 + 1)

∫
d

1
2xd

1
2dψ.

Then we get

(r0 + 1)

∫
Sr0(a)xdψ ≤ λ(r0 + 1)

∫
d

1
2xd

1
2dψ for any r0 ∈ {0, 1, . . . , n}.

From the above inequality, for any x ∈M+, x ≤ zn, any r in {0, 1, . . . , n}, we have∫
Sr(a)xdψ ≤ λ

∫
d

1
2xd

1
2dψ. (2.1)

Take y = (yr)r=0,1,...,n with

yn =

{
T̃ (xr+1) 0 ≤ r ≤ n− 1,

0 r = n,

and we have
∑n−1

r=0 T̃ (xr+1) ≤ 1. Indeed, because T̃ is linear,

n−1∑
r=0

T̃ (xr+1) = T̃ (
n−1∑
r=0

xr+1) ≤ T̃ (1),

and for any a ∈ L1
+(M ;ψ), we have∫

aT̃ (1)dψ =

∫
T (a)dψ = ||T (a)||1 ≤ ||a||1 .

Therefore T̃ (1) ≤ 1 and we get
∑n−1

r=0 T̃ (xr+1) ≤ 1, so y is in K.

As a result, we obtain that g(x0, x1, . . . , xn) ≥ g(y). That is to say,

n∑
r=0

(r + 1)

∫
Sr(a)xrdψ − λ

n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ

≥
n−1∑
r=0

(r + 1)

∫
T (Sr(a))xr+1dψ − λ

n−1∑
r=0

(r + 1)

∫
d

1
2 T̃ (xr+1)d

1
2dψ.

Hence from the above inequality, it follows

n∑
r=0

(r + 1)

∫
Sr(a)xrdψ −

n−1∑
r=0

(r + 1)

∫
T (Sr(a))xr+1dψ

≥λ
n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ − λ

n−1∑
r=0

(r + 1)

∫
d

1
2 T̃ (xr+1)d

1
2dψ. (2.2)
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We compute the left hand side of (2.2), and it equals

n∑
r=0

(r + 1)

∫
Sr(a)xrdψ −

n−1∑
r=0

(r + 1)

∫
T (Sr(a))xr+1dψ

=

∫
S0(a)x0dψ +

n∑
r=1

(r + 1)

∫
Sr(a)xrdψ −

n−1∑
r=0

(r + 1)

∫
T (Sr(a))xr+1dψ

=

∫
S0(a)x0dψ +

n−1∑
r=0

(r + 2)

∫
Sr+1(a)xr+1dψ −

n−1∑
r=0

(r + 1)

∫
T (Sr(a))xr+1dψ.

Since (r + 2)Sr+1(a) = a+ T (a) + · · ·+ T r(a) + T r+1(a) and (r + 1)TSr(a) = T (a) +

T 2(a) + · · ·+ T r(a) + T r+1(a), the left hand side of (2.2) equals∫
S0(a)x0dψ +

n−1∑
r=0

∫
axr+1dψ

=

∫
ax0dψ +

n∑
r=1

∫
axrdψ =

n∑
r=0

∫
axrdψ.

Therefore, inequality (2.2) becomes

n∑
r=0

∫
axrdψ ≥ λ

n∑
r=0

(r + 1)

∫
d

1
2xrd

1
2dψ − λ

n−1∑
r=0

(r + 1)

∫
d

1
2 T̃ (xr+1)d

1
2dψ.

So we obtain the following inequality,

n∑
r=0

∫
axrdψ − λ

n∑
r=0

∫
d

1
2xrd

1
2dψ

≥λ
n∑
r=0

r

∫
d

1
2xrd

1
2dψ − λ

n∑
r=1

r

∫
d

1
2 T̃ (xr)d

1
2dψ ≥ 0,

from the following inequalities,∫
d

1
2 T̃ (xr)d

1
2dψ

=sup{
∫
d

1
2 T̃ (xr)d

1
2xdψ | x ∈M+, ||x|| ≤ 1}

=sup{
∫
xrT (d

1
2xd

1
2 )dψ | x ∈M+, ||x|| ≤ 1}

=sup{
∫
d

1
2xrd

1
2T (x)dψ | x ∈M+, ||x|| ≤ 1}

≤ sup{
∫
d

1
2xrd

1
2xdψ | x ∈M+, ||x|| ≤ 1}

=

∫
d

1
2xrd

1
2dψ.

Hence we have
n∑
r=0

∫
axrdψ ≥ λ

n∑
r=0

∫
d

1
2xrd

1
2dψ, (2.3)
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for any a ∈ L1
+(M ;ψ).

Letting 1−
∑n

r=0 xr =
∫ 1

0
sdps be the spectral decomposition of 1−

∑n
r=0 xr, suppose

y ∈M+, y ≤ 1. Writing ym = (1− pm−1)y(1− pm−1) for each m ∈ N, we have

0 ≤ ym ≤ 1− pm−1 ≤ m(1−
n∑
r=0

xr).

Hence by (2.1), ∫
Sr(a)ymdψ ≤ λ

∫
d

1
2ymd

1
2dψ

for 0 ≤ r ≤ n.

Taking the limit as m→ ∞, and putting en = 1− p0, we get∫
enSr(a)enydψ =

∫
Sr(a)enyendψ

≤ λ

∫
d

1
2 enyend

1
2dψ

= λ

∫
endenydψ,

hence enSr(a)en ≤ λenden for 0 ≤ r ≤ n because M = (L1(M ;ψ))∗.

Therefore for r = 0, we get enaen ≤ λenden, and since
∑n

r=0 xr ∈M+, we have∫
aen(

n∑
r=0

xr)dψ ≤ λ

∫
den(

n∑
r=0

xr)dψ,

which together with (2.3) gives∫
a(1− en)(

n∑
r=0

xr)dψ ≥ λ

∫
d(1− en)(

n∑
r=0

xr)dψ.

Since p01 − p0
∑n

r=0 xr = p0
∫ 1

0
sdps = 0, we obtain that 1 − en = (1 − en)(

∑n
r=0 xr).

Hence we get ∫
d

1
2 (1− en)d

1
2dψ ≤ 1

λ

∫
a(1− en)dψ ≤ 1

λ

∫
adψ.

From the above procedure, we get en for each n ∈ N such that φ(1 − en) ≤ 1
λ

∫
adψ

and enSr(a)en ≤ λenden for any r in {0, 1, . . . , n}. Choose a subnet enk
which converges

weakly to some h ∈M with 0 ≤ h ≤ 1.

We assume that Sr(a) ∈ L1
+(M ;ψ) corresponds to some ϕr ∈ M+

∗ for each r ∈ N.
Since M acts standardly on H and each ϕr is normal and hence a vector state, for any

fixed r ∈ N, there exists a vector ξr in H such that ϕr = ωξr,ξr . As a result,∫
hSr(a)hdψ = ϕr(h

2) = ⟨h2ξr, ξr⟩ = ||hξr||2 .
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The subnet enk
converges to h in the weak operator topology, and for each r ∈ N, we

have enk
ξr → hξr in the weak topology of H when k → ∞. Since the Hilbert space norm

||·|| is lower semicontinuous relative to this topology, we have

||hξr||2 ≤ lim inf
k→∞

||enk
ξr||2 . (2.4)

Hence, we have ∫
hSr(a)hdψ ≤ lim inf

k→∞
||enk

ξr||2 .

Combined with

||enk
ξr||2 = ϕr(enk

) =

∫
enk

Sr(a)enk
dψ

≤λ
∫
enk

denk
dψ = λ

∫
enk

dφ

dψ
dψ = λφ(enk

),

for k ∈ N such that nk is larger than r, we conclude that∫
hSr(a)hdψ ≤ λ lim

k→∞
φ(enk

) = λφ(h),

since φ is a normal state on M , i.e., φ is weakly continuous on the unit ball of M .

Taking the spectral decomposition for h =
∫ 1

0
sdes, and let e = 1− e 1

2
∈ M for e 1

2
is

in M , let g =
∫ 1

1
2
s−1des. Then for each r ∈ N,∫

eSr(a)edψ =

∫
ghSr(a)hgdψ ≤ 4

∫
hSr(a)hdψ,

thanks to e = gh and ||g|| ≤ 2.

Therefore we obtain that∫
eSr(a)edψ ≤ 4

∫
hSr(a)hdψ ≤ 4λφ(h) ≤ 4λφ(1) = 4λ.

Moreover, for the reason 1− e = e 1
2
≤ 2(1− h), we get

φ(1− e) ≤ 2φ(1− h) = 2 lim
k→∞

φ(1− enk
) = 2 lim

k→∞

∫
d

1
2 (1− enk

)d
1
2dψ ≤ 2

λ

∫
adψ,

also because φ is a normal state on M .

We should point out that we learned much from Professor Kosaki and Professor Xu

in the proof of this theorem.

We turn to the case thatM is semifinite, L1(M ;ψ) is equivalent to the tracial L1(M).

Moreover, since the construction of the Hilsum Lp-spaces is independent on the choice of

the normal semifinite faithful weight ψ in the isometrically isomorphic sense, hence we
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may choose a special case that ψ(·) = φ(J ·J), then the spatial derivative dφ
dψ

becomes △φ,

i.e., the modular operator associated with φ and in the semifinite case, φ can be assumed

to be a normal faithful semifinite trace. Considering the modular automorphism group

induced by a trace is trivial, we get △φ = 1 in this case, then the result in the above

theorem is for any a ∈ L1
+(M ;ψ) and any λ > 0, and any n ∈ N, there exists a projection

en ∈ M such that enSr(a)en ≤ λen for all r ∈ {0, 1, ..., n} and φ(1 − en) ≤ 2
λ

∫
adψ,

then by Yeadon’s method in [30], Sr(a)
1
2 enk

→ Sr(a)
1
2h weakly as k → ∞. In fact, for

ξ1 ∈ H, ξ2 ∈ D(Sr(a)
1
2 ), we have ⟨Sr(a)

1
2 enk

ξ1, ξ2⟩ = ⟨enk
ξ1,Mr(a)

1
2 ξ2⟩ → ⟨hξ, Sr(a)

1
2 ξ2⟩,

and ∣∣∣⟨hξ1, Sr(a) 1
2 ξ2⟩

∣∣∣ = lim
k→∞

∣∣∣⟨Sr(a) 1
2 enk

ξ1, ξ2⟩
∣∣∣ ≤ λ

1
2 ||ξ1|| ||ξ2|| .

Since
∣∣∣∣∣∣Sr(a) 1

2 enk

∣∣∣∣∣∣ = ||enk
Sr(a)enk

||
1
2 ≤ λ

1
2 if nk ≥ r, so that hξ1 ∈ D(Sr(a)

1
2 ) and

⟨Sr(a)
1
2hξ1, ξ2⟩ = ⟨hξ1, Sr(a)

1
2 ξ2⟩ = lim

k→∞
⟨Sr(a)

1
2 enk

ξ1, ξ2⟩.

Hence it follows

⟨hSr(a)hξ1, ξ1⟩ =
∣∣∣∣∣∣Sr(a) 1

2hξ1

∣∣∣∣∣∣2 ≤ lim
k→∞

∣∣∣∣∣∣Sr(a) 1
2 enk

ξ1

∣∣∣∣∣∣2
= lim

k→∞
⟨enk

Sr(a)enk
ξ1, ξ1⟩ ≤ lim

k→∞
λ⟨enk

ξ1, ξ1⟩ = λ⟨hξ1, ξ1⟩,

i.e., hSr(a)h ≤ λh for each r ∈ N. Taking the spectral decomposition for h =
∫ 1

0
sdes,

and let e = 1− e 1
2
, g =

∫ 1
1
2
s−1des. Then we have eSr(a)e ≤ λghg ≤ 2λe, this is just the

result of Yeadon’s Theorem 1 in [30].

Then we introduce the conceptions of “type” and “weak type” for the action of T on

M+M∗. Such conceptions “type” and “weak type” appeared in the classical real analysis

first and have been widely used in classical ergodic theorems. They are modified by

Junge-Xu (pp 396–397, [15]), for the framework of noncommutative Lp-spaces associated

with a semifinite von Neumann algebra. Here we rewrite them for the transform T we

constructed above in the framework of Lp(M ;ψ)’s (1 ≤ p ≤ ∞).

For each n ∈ N, Sn is a linear map on M +M∗ satisfying the conditions (1) − (3).

Thus S = (Sn)n∈N is a map which sends a positive element in Lp(M ;ψ) for some fixed p,

1 ≤ p ≤ ∞ to a sequence of positive elements in Lp(M ;ψ). Here we identify L1(M ;ψ)

with M∗ and L∞(M ;ψ) with M .

We say that S is of type (p, p), (1 ≤ p ≤ ∞) if there is a positive constant c such that

for any x ∈ Lp+(M ;ψ), there is a ∈ Lp+(M ;ψ) satisfying ||a||p ≤ c ||x||p and Sn(x) ≤ a, for

any n ∈ N.

Then we say that S is of weak type (p, p), (1 ≤ p <∞), if there is a positive constant

c such that for any x ∈ Lp+(M ;ψ), and any λ > 0 there is a projection e ∈M such that

φ(1− e) ≤
(
c ||x||p
λ

)p

and eSn(x)e ≤ λ1, for any n ∈ N,
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where 1 is the identity of the von Neumann algebra M .

Yeadon’s Theorem shows that S = (Sr)r∈N is of weak type (1, 1) whenM is semifinite.

It is obvious that S = (Sr)r∈N is of type (∞,∞) for an arbitrary von Neumann algebra

M . Indeed, by condition (1), we get that for each r ∈ N, if x ∈ M+ = L∞
+ (M ;ψ), we

have T r(x) ≥ 0 for n ∈ N and ||T r(x)|| ≤ ||x|| and thus ||Sr(x)|| ≤ ||x||. Hence if we put

a = ||x||1 ∈ L∞
+ (M ;ψ), we have ||a|| = ||x|| and Sr(x) ≤ a, for all r ∈ N.

As we have mentioned in the previous section, such a weak type conception is no

longer appropriate for the non-tracial cases. We give a pre-version of pre-weak type here,

we hope it is of some meaning.

We say that S is of pre-weak type (p, p), (1 ≤ p <∞) if there is a positive constant c

such that for any x ∈ Lp+(M ;ψ), and any λ > 0 there is a projection e ∈M such that

φ(1− e) ≤
(
c ||x||p
λ

)p

and ||eSn(x)e||p ≤ λ, for any n ∈ N,

where 1 is the identity of the von Neumann algebra M . Theorem 2.1 shows that S =

(Sr)r∈N is of pre-weak type (1, 1) for a σ-finite von Neumann algebra.

If we would like to obtain a satisfactory non-tracial extension of Theorem 1.1, one

possible method is to consider real interpolation theory (possible non-tracial real interpo-

lation theory for pre-weak type, though we are not very sure about the existence of such

theory and it is still in exploring) of von Neumann algebras, because the real interpola-

tion theory always provides us the type for midpoints from the weak type assumption

of endpoints. But as is pointed out by Junge-Xu (pp 385–386, [15]), in contrast with

the classical theory, the noncommutative nature of weak type (1, 1) inequalities seems a

priori unsuitable for classical interpolation arguments. More accurately speaking, Pisier-

Xu gave a counterexample saying that the complex interpolation space Lp(M) may not

coincide with the real interpolation space Lp,p(M) for non-tracial von Neumann algebras

if we establish non-commutative real interpolation theory verbatim from classical one

(p.1472, Example 3.3, [23]). We had tried several ways to modify the definition of real

interpolation construction in order to suit well to the von Neumann algebra theory and

the complex interpolation of Terp ([29]) at the same time. Unfortunately, we have not

obtained any valid method for this matter so far. Let us point out that a key obsta-

cle in this work is the absense of generalized singular numbers for the non-tracial cases.

The generalized singular number function ([8]) is a powerful tool when dealing with the

τ -measurable operators associated with a semifinite von Neumann algebra, and the non-

commutative tracial Lp-spaces are just consisting of such operators. In the non-tracial

cases, whether there exists such a counterpart theory which contains the generalized sin-

gular number theory by [8] has not been sufficiently understood now. We do not know
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whether there is any other method available and we will continue to explore this problem

in the future.

Finally, we give three examples as applications of Theorem 2.1.

Example 2.2. Let (Ω,F, µ) be a finite measure space and N be a σ-finite von Neumann

algebra equipped with a normal faithful state φ1. We consider the von Neumann algebra

tensor product (M,φ2) = (L∞(Ω), µ)⊗(N,φ1), where φ2 is a normal faithful state since

µ is finite and φ1 is a normal faithful state. For 1 ≤ p < ∞, the corresponding noncom-

mutative Lp(M ;ψ2) is just L
p(Ω, Lp(N ;ψ1)), the usual Lp-space of strongly measurable

p-integrable functions on Ω with values in Lp(N ;ψ1), where ψ1 (resp. ψ2) is a normal

faithful state on the commutant of N (resp. M), and we may choose ψ1 (resp. ψ2) to

be associated with φ1 (resp. φ2) by the Tomita-Takesaki theory. Now let S be a linear

map on L∞(Ω) satisfying conditions (1)− (3) (with M = L∞(Ω) there), then T = I ⊗ S

is a linear map on M verifying the same conditions (with M = L∞(Ω)⊗N there). From

Theorem 2.1, for any a ∈ L1(Ω, Lp+(N ;ψ1)) and any λ > 0, and any n ∈ N, there exists

a projection en ∈M such that

enSr(a)en ≤ λenden for all r ∈ {0, 1, ..., n},

and

φ2(1− en) ≤
2

λ

∫
adψ2,

where Sr(a) =
1
r+1

∑r
k=0 I ⊗ Sk(a), d = dφ2

dψ2
is the spatial derivative and 1 is the identity

of M . Furthermore, for any a ∈ L1(Ω, Lp+(N ;ψ1)), there exists a projection e ∈ M such

that for any r ∈ N, ∫
eSr(a)edψ2 ≤ 4λ, and φ2(1− e) ≤ 2

λ

∫
adψ2.

Example 2.3. Let M be a von Neumann algebra with a normal faithful state φ, and let

N be any von Neumann subalgebra of M . The generalized conditional expectation ε :

M → N relative to φ defined by Accardi-Cecchini is given as ε(x) = JNPNJπφ(x)JPNJN

for any x ∈ M (see [1]). If we regard ε to be a linear map from M to M , ε satisfies

conditions (1)− (3). Therefore, Theorem 2.1 implies that for any a ∈ L1
+(M ;ψ) and any

λ > 0, and any n ∈ N, there exists a projection en ∈M such that

enSr(a)en ≤ λenden for all r ∈ {0, 1, ..., n},

and

φ(1− en) ≤
2

λ

∫
adψ,
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where Sr(a) =
1
r+1

∑r
k=0 T

k(a), d = dφ
dψ

is the spatial derivative and 1 is the identity of

M . Furthermore, for any a ∈ L1
+(M ;ψ), there exists a projection e ∈ M such that for

any r ∈ N, ∫
eSr(a)edψ ≤ 4λ, and φ(1− e) ≤ 2

λ

∫
adψ.

If N is globally invariant under the modular automorphism group σφt , then ε will be the

conditional expectation in the sense of [27], i.e., a projection of norm one. As a projection

is idempotent, we have enε(a)en ≤ λenden and
∫
eε(a)edψ ≤ 4λ in this case.

Example 2.4. Let {(Mi, φi)}i∈I be a family of von Neumann algebras, and assume each

algebra admits a normal faithful state φi. Let (M,φ) = ∗i∈I(Mi, φi) be the von Neumann

algebra reduced free product (see [20]), and hence φ is a normal faithful state on M . Put

M◦
i = {x ∈Mi|φi(x) = 0}, then Mi = C1Mi

⊕M◦
i , and let Ti :Mi →Mi be defined by

Ti|C1Mi
= idC1Mi

and Ti|M◦
i
= exp(−1)idM◦

i
,

and {Ti}i∈I defines a positive linear map T on M by free product, and T is uniquely

determined by its action on monomials:

T (x1x2 · · · xn) = Ti1(x1)Ti2(x2) · · · Tin(xn) = exp(−n)x1x2 · · · xn,

for any x1, x2, · · ·, xn with xk ∈ M◦
ik

and i1 ̸= i2 ̸= · · · ≠ in. The map T is called the

free product of the family {Ti}i∈I . Then T satisfies conditions (1) − (3) with respect to

M since each Ti satisfies conditions (1)− (3) with respect to Mi. Hence T extends to be

a positive linear map on L1(M ;ψ) and by Theorem 2.1, for any a ∈ L1
+(M ;ψ) and any

λ > 0, and any n ∈ N, there exists a projection en ∈M such that

enSr(a)en ≤ λenden for all r ∈ {0, 1, ..., n},

and

φ(1− en) ≤
2

λ

∫
adψ,

where Sr(a) =
1
r+1

∑r
k=0 T

k(a), d = dφ
dψ

is the spatial derivative and 1 is the identity of

M . Furthermore, for any a ∈ L1
+(M ;ψ), there exists a projection e ∈M such that∫

eSr(a)edψ ≤ 4λ, for any r ∈ N, and φ(1− e) ≤ 2

λ

∫
adψ.
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niques on noncommutative Lp-spaces through e-mail correspondence, and they kindly

pointed out mistakes in the previous version of this paper. And he also thanks for Pro-

fessor N.Ozawa and Professor Y.Ogata and other ones in their group, since he benefited

greatly from seminars and discussions in the group. Finally, his thanks go to Mr. Zhao

in his research room, for much help from Mr. Zhao.

References

[1] L. Accardi, C. Cecchini, Conditional expectations in von Neumann algebras and a

theorem of Takesaki, J. Funct. Anal. 45 (1982) 245-273. MR0647075(84j:46088)

[2] H. Araki, T. Masuda, Positive cones and Lp-spaces for von Neumann algebras, Publ.

Res. Inst. Math. Sci. 18 (1982) 759-831. MR0677270(84h:46082)
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[5] H. A. Carteret, D. R. Terno, K. Życzkowski, Dynamics beyond completely positive

maps: some properties and applications, Phys. Rev. A 77 (2008) 042113.1-042113.8.

MR2491057(2010d:82072)

[6] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35(1980)

153-164. MR0561983(81g:46083)

[7] N. Dunford, J. T. Schwartz, Linear Operators, I, General Theory, in: Applied Math-

ematics, Vol. 7, Interscience Publishers, Inc., New York, 1958. MR0117523(22:8302)

[8] T. Fack, H. Kosaki, Generalized s-numbers of τ -measurable operators, Pacific J.

Math. 123(1986) 269-300. MR0840845(87h:46122)

20



[9] U. Haagerup. Lp-spaces associated with an arbitrary von Neumann algebra, In:
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