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Abstract

We show that any Weyl module for a current algebra has a filtration
such that each successive quotient is isomorphic to some Demazure mod-
ule. We also prove that the weight sum of the path model for a tensor
product of level zero fundamental representations are egual to a sum of
the characters of Demazure modules. Moreover, we show that appearing
Demazure modules in these two objects coincide exactly. Though these
results are previously known in the simply laced case, they are new in the
non-simply laced case.

1 Introduction

In this article, we study finite dimensional representations of a current algebra
and crystals for a quantum affine algebra. First, we begin with an introduction
of the results concerning finite dimensional representations of a current algebra.

Let g be a complex simple Lie algebra. The study of finite dimensional
representations of its current algebra Cg = g ® Clt], together with that of a loop
algebra g ® C[t,t7!], has been the subjects of many articles. For example, see
[1, 3, 4, 5, 6, 8].

Among finite dimensional representations of a current algebra, Weyl modules
are especially important. The notion of a Weyl module was originally introduced
in [5] for a loop algebra as a module having some universal property, and defined
similarly for a current algebra in [4]. Let P} denote the set of dominant integral
weights of g. We denote by W (A} the Weyl module for Cg associated to A € P,..
Here, we make one remark. It is known that W(A) has a Z-graded structure.
In this article, we shall study W{\) with this Z-graded structure, and hence we
consider W () as a Cgg(= Cg @ Cd}-module, where d is the degree operator.

There are other important finite dimensional Cgg-modules called Demazure
modules. Let b be a Borel subalgebra of g, and let b = b + CK + Cd + g @ tC[¢]
be the Borel subalgebra of the affine Lie algebra g, where K is the canonical
central element. A Demazure module is, by definition, a b-module generated by
an extremal weight vector of an irreducible highest weight g-module. Among
the Demazure modules, we are mainly interested in Cgg-stable ones, which are
denoted by D(£, A)[m] for some £ € Zwy, A € Py, m € Z (for a precise definition,
see the subsection 3.2).

~ In [8], the following remarkable result was proved: if g is simply laced, the
Weyl module W () is isomorphic to the Demazure module D(1, A)[0]. (In [8],
the authors gave a Cg-module isomorphism between these modules, but it is
easily seen that this isomorphism is in fact a Cgg-module isomorphism). Using



this result, several corollaries about the Weyl module in simply laced case were
obtained in [8]. '

Then, it is natural to ask what happens in the non-simply laced case. As
stated in [8], a similar result does not hold any longer in the non-simply laced
case. :

In this article, we generalize the above result for a non-simply laced g. As-
sume that g is non-simply laced. To state our result, we prepare some notation.
Fix a Cartan subalgebra k of g, and let A be the root system of g. We denote
by A®! the root subsystem of A generated by short simple roots, and let g be
the simple Lie subalgebra of g corresponding to A®®, Put h*® = § N g*®, which
is a Cartan subalgebra of g, and put C gfth = g @ C[t] ® Cd. Since we need to
consider Demazure modules for both g and g, we denote a Demazure module
- for g by D(¢, v)[m], where v is a dominant integral weight of g*». Let P
denote the set of dominant integral weights of g*". We define a positive integer
r by

e 2 if g is of type B, C, or Fy,
" 13 ifgis of type Ga.

For A € Py, we denote by A € P.. the image of A under the canonical
projection h* — (h8)*. Using a result of Joseph in [16], we can show that
D1(1,3)[0] has a Cg5P-module filtration 0 = Dy € Dy C -+- C Dy = D1, X)[0]
such that each subquotient D;/D;_; is isomorphic to D*(r,;)[m;] for some
v; € Py and m; € Zyo. We define a map g, : (5°2)* — b* by a;|ym = o for
a € A, We put M = A —in(}), and j; = ien () + X for each 1 < ¢ < k. Then
we can show the following theorem, which is proved in Theorem 9.3:

-Theorem A. The Weyl module W{A) has a Cgg-module filiration 0 = Wy C
Wh C - C Wi, = W()) such that each subguotient W;/W;_, is isomorphic to
the Demazure module D(1, p;)[m;].

When a Weyl module is isomorphic to a Demazure module, the successive
quotient of a trivial filtration is of course isomorphic to a Demazure module.
Hence, this result is a sort of generalization of the result in the simply laced
case. .

We should remark that we need some results on the crystal theory to prove
Theorem A. In fact, we can show without using any crystal theory that the
Weyl module has a filiration such that each subquotient is a quotient of the
Demazure module. However, it is in the final section that we prove that they
are isomorphic to the Demazure modules, since we need some results on crystals
to prove this statement.

 Theorem A gives a lot of information about Weyl modules for non-simply
laced g. Let w; denote the fundamental weight of g. Then, as shown in (8] in
the simply laced case, we can easily obtain the following corollary from Theorem
A, which is proved in Corollary 9.5:

Corollary A. Let A € Py.
() If A= >,ef Miwi, then

dim W) = [ dim W(m:)*.

el -



(ii) Let M,...,Ax € Py be elements satisfying X = Ay + -+ + Ap. Then for
arbitrary pairwise distinct complex numbers c1,. .., cx, we have

WA =W (A, *-- - x W(Ae)e,
as Cgg-modules. :

We should explain some notation in {ii). The notation = denotes the fusion
product introduced in [6], and ¢1,...,c, are parameters used to define the fu-
sion product. The statement (i) implies the dimension conjecture of the Weyl
module, which is conjectured in [5]. The statement (ii), which easily follows
from (i), shows that the fusion product of Weyl modules is associative and in-
dependent of the parameters ¢y, ...,¢,. This statement was conjectured in [6]
for more general modules for Cg. It should be remarked that it is known that
the corollary (i) can be proved using the global basis theory. (The proof is not
written in any literature, but a brief sketch of this proof can be found in the
introduction of [8]). Our approach is quite different from this proof.

Moreover, we can obtain from Theorem A the Z-graded characters of Weyl
modules. From this result, we can find some connection between Weyl modules
and the classically restricted one-dimensional sums, which are polynomials de-
fined in the crystal theory. We state this result after giving the introduction of
our results in the crystal theory.

Next, we introduce our theorem in the crystal theory. Let U,(g) be the
quantum affine algebra associated to g, and U} (g) be the one without the degree
operator. Crystals we mainly study in this article are realized by path models,
which are originally introduced by Littelmann in [23, 24]. Let P-denote the
integral weight lattice of g. A path with welght in P is, by definition, a piecewise
linear, continuous map 7 : [0,1] — R ®z P such that 7(0) = 0 and (1) € P.
Let P denote the set of paths with weight in P, , which was shown to have a

U,(B)-crystal structure by Littelmann. Let A € P be a level zero weight that
is dominant integral for g, and let Bo(A) be the connected component of P
containing the straight line path m : m\(t) = tA. Put pcl = ﬁ/ Z3§ where §
is the indivisible null root. By projecting Be(A)} to R ®z ﬁcl, we can obtain a
finite U (§)-crystal, which is denoted by B(A)a. Naito and Sagaki have verified
in [27, 28] that this B())y is isomorphic to the tensor product of the crystal
bases of level zero fundamental Ué(ﬁ)-representations, which is introduced by
Kashiwara in [20].

Here, we make one remark By definition, elements in B(\).; have only ﬁcl—
we1ghts, but we define P—we1ghts on these elements using the degree function
introduced in {30]. These P-welghts are important for our theorem.

Demazure modules have counterparts in the crystal theory. Let B(A) be
the crystal basis of the irreducible highest weight U, (g)-module with highest
weight A. Similarly as the classical case, a Demazure module is defined for
U,(9) as a submodule of an irreducible highest weight module. Then for each
Demazure module, Kashiwara defined in [18] a subset of B{A) called a Demazure
crystal, and he proved that there exists strong connection between a Demazure
module and the corresponding Demazure crystal. For example, the character
of a Demazure module coincides with the weight sum of the corresponding
Demazure crystal. We denote by B(£, A)[m] the Demazure crystal corresponding
to (the quantized version of} D(£, A)[m].



Now, we state our second main theorem, which is proved in Theorem 9.4. Let
#i (1 <4 < k) be the dominant integral weights defined just above Theorem A.
We denote by by the highest weight element of B(A), and by Ag the fundamental
weight associated with the additional node of the extended Dynkin diagram of -

g:

Theorem B. B(Ag) ® B(N)a is isomorphic as a Uy(@)-crystal to the direct
- sum of crystal bases of irreducible highest weight U, (g)-modules Moreover, the
restriction of the given isomorphism on by, @ B(M). preserves the P-weights,
and the image of bp, ® B(A)a coincides with [], ;< B(1, pi)[ma].

In order to prove this theorem, we show the following proposition in advance
(which corresponds to Corollary 6.8 and Proposition 7.6):

Proposition. Let A be an arbitrary dominant integral weight of g.

(i) B(A) @Bo()) 4s isomorphic as a Uy(B)-crystal to the direct sum of the crystal
bases of irreducible highest weight U,(g)-modules.

(ii) Under the isomorphism given in (1), the image of by ® Bo(A) coincides with
the disjoint union of some Demazure crystals.

Since it is known that, at least in some cases, Bp(\) is related to the crystal
basis of some level zero extremal weight U, (g)—modules (28, 29]), t.hls proposi-
tion itself seems important and interesting.

It was proved in [4] that the Z-graded multiplicity of W(\) is equal to the
Kostka polynomial when g = sl,,. From Theorem A and B, we can obtain a
generalization of this result. Let 1 = (41,...,%,) be an arbitrary sequence of
indices of simple roots of g, and let B; = B(w;, Ja ® * - - @ B3, ). Then we can
define a classically restricted one-dimensional sum X (B, g; ¢) for each € Py,
and it is known that X(B;, g;¢ 1) is equal to a Kostka polynomial in the sl,-
case ([31]). Using Theorem A, B and the result in [30], we show the following
in Corollary 9.7

Corollary B. We have for some constant C' € Z that

Z (W ‘U))q =4 X(]Bin‘-l';q_l)’

nEZ>g

where Vg(p) denotes the irreducible g-module with highest weight p, and we
denote by (W(A\)n @ Vu(u)) the multiplicity of Vy{u) in the subspace of W(X)
with degree n. : '

The plan of this article is as follows. In Section 2, we fix basic notation
used in the article. In Section 3, we review some results on finite dimensional
representations of a current algebra, almost of which have been already known.
Section 4 is the main part in the first half of this article. We give defining
relations of the Demazure module of level 1, and we show using this defining
relations the existence of a filtration on the Weyl module whose subquotients
are quotients of the Demazure modules. -

In Section 5, we review the theory of path models. In Section 6, we show
that B(A)@Bg{A) is isomorphic to the direct sum of the crystal bases of highest
weight modules, and in Section 7, we show that the image of by & By(A) under
this isomorphism coincides with the disjoint union of Demazure crystals. In the



final part of Section 7, we show that B(A) ® B{)\)a also has similar properties.
In particular, by, ® B(A)a decomposes to the disjoint union of some Demazure
crystals. In Section 8, we study this decomposition of by, ® B{A). in more
detail.

Then in Sectmn 9, we show the Theorem A and B, and also show Corollary
A and B.

Index of notation

 We provide for the reader’s convenience a brief index of the notation which
is used repeatedly in this paper:

Section 2: g, b, b, A, Ay, II, o4, I, &, bt e, v, Sas €as fos €, fn Mgy ( )a v,
Qi Q+’qu P+?W Seey iy Wo, T:V(A) 97K d, []:b A 6 H
I A,, P P+’ W cg’ ng, hd’ Hsh Ish Ash Ash Qsh Qsh Wsh hSh -
QSha n?l?, ﬁSh: CQSh: CQ ? hSh: b ’\ ""sh$ P P-I-, ( ) U’(g), Uq(ﬁsh)a
Uy (@), My, wty, chy, Ps.

Section 3.1: W(A).

Section 3.2: V(A), V,,{A), D(4, A)[m], D, A).

Section 3.3: WL x-- -« WE.

Section 4.1: M*.

Section 4.3: V4{A), V, w(A), =, (M : D(£, X\)[m]).

Section 4.4: D8(¢,1)[m], < on Z[h]. _

Section 5.1: [aa b]1 P, (E’E)i H»:T1 my, Pint, €, fi, 0, wt, &;, @i, S;, Sw, T1 * T2,

IB]_ * Bz.
Section 5.2: C(b), mx, Bo(A), B(A), ba, B, ¢l, Py, 7, cl(xr), B(A)e1, Wylws),
B(W, ().

Section 5.3: u(7), «(n), da, ia, T, Deg(n), wt

Section 6.1: WJ

Section 6.2: ]Bg()\)

Section 7.1: F;(C .7"((3), B(A).

Section 7.2: IA

Section 7.3: B(A)4.

Section 8.1: B(¢, )\)[m] K.

Section 8.2 gsh aO , sh Wsh Ish Psh IPsh Ppsh ~sh Fsh H:.sh,n-, mgh,ar, ]th ()\)

mt.’ i

2 Notation and elementary lemmas

In this section, we fix the notation used in this article. Let g be a complex simple
Lie algebra. We fix a Cartan subalgebra b in g and a Borel subalgebra b D §.
Let A C h* denote the root system of g, and by A, and A_ we denote the set
of positive roots and negative roots corresponding to b respectively. Denote by
Il = {e1,...,a,} the set of simple roots, and by I = {1,...,n} its index set.
Let # be the highest root of A. For o = >, n;05 € A, we define the height of o
by ht @ = 3, n;, and we denote the coroot of a by oV € b.

Denote the root space associated with &« € A by g,. For each a € Ay,



i
we fix ey € o and fu € g-q such that [eq, fo] = @V, and we abbreviate
e; =en,, Ji = fa;- Let
i = (D fa-

achy

Let (, ) be the unique non-degenerate invariant symmetric bilinear form on
g normalized by (6Y,8Y) = 2, and let v : B — h* be the linear isomorphism
defined by the restriction of { , } to h. We define a bilinear form on h* by
(»=1(x*),»~1(x)), which is also denoted by (, ). Note that we have (4,0) = 2.
In this article, we say & € A is a long root if (o, a) = (8,8)(= 2), and a short
root otherwise. Note that all roots are long if g is simply laced.

Let @ = 3, Zay; be the root lattice of g, and let Q4 = 3, Znoa; C Q. We
denote by w; the fundamental weight corresponding to ;. Let P =3 . Zw; be
the weight lattice of g, and let P, = } . Z>ow; be the set of dominant weights.
Let W be the Weyl group of g. For o € A, we denote by s, € W the reflection
associated with o, and we abbreviate s; = s, for ¢ € I. We denote by wyp the
longest element of Ww.

When g is non-simply laced, by r we denote the number 2 - {square length
of a short root) ™!, and we put r = 1 when g is simply laced. Then we have

1 if g is simply laced,
r=1¢2 ifgisof type Bn,Cn, Fi, (1)
3 if g is of type Ga.

For A € Py, we denote by V() the irreducible g-module with highest weight
A. The following lemma, is well-known:

Lemma 2.1. Letv € V3(A) be a highest weight vector. Then V() is generated
by v with the defining relations:

nv =0, hv=/{)h, fi('\’a!)"'l.v =90

forhehandi€l.

Let § be the non-twisted affine Lie algebra corresponding to the extended
Dynkin diagram of g:

I=99Ctt e CK ¢ Cd,

where K denotes the canonical central element and d is the degree operator.
The Lie bracket of g is given by

[z @t +a1 K + bid, y @ t" + a2 K + bad]
= [z, y] @™ + nb1y @ 1" — mbez @ t™ + My, —n (T, Y) K

—
—~

We naturally consider g as a Lie subalgebra of g. The Cartan subalgebra h C g
and the Borel subalgebra ) C g are as follows:

T=hOCK@Cd, b=boCKaCddgaiC[.

Denote by A the root system of g. Considering A naturally as a subset of A
we can write A = {a+sd|acAscZiU{sé|secZ\{0}}, where d € B* is



a unique element satisfying {6, + CK) =0, {§,d) = 1. The set of simple roots
of A are denoted by = {ap,01,...,0,} where qp = § — 0. We denot_e by
T={o,1,. n} its index set.

Let {Ag, ARl C b* be the fundemental weights corresponding to I,
P=3, et LA + Z§ be the welght lattice, and B, = > icTZzol; + Z4 the set
of dommant weights. For A € P the level of A is defined by the mteger (A, K.
Let W be the Weyl group of § genera,ted by simple reflections s; (i € T ) and we

see W naturally as a subgroup of . We denote the Bruhat order on W by <.
We define Lie subalgebras of § by

Cg=p®Ct]Cg Cga=CgdCdCFT.

We write by = h & Cd C E We usually consider b* and b as subspaces of H*
canonically to be compatible with the decompeosition h = h & CK @ Cd. Note
that under this identification ; is an element of b* satisfying

(w,-,a;-’) = 6,-:,- for jel, (w,,CKGBCd) =0,

and P is a subgroup of P.
In this article, we need to consider the subset of II consisting of short simple
roots:
b — {&; € TT | oy is short}.

Note that II*h = § if g is simply laced. Let I*"* = {i € I | o; € II*"} be its index
set, and let
sh =AnN Z ZO::‘.

igfsh
Let At = ASEN AL, and let
| = Z Zox;, jf‘ = Z Loy, Wb = (s5; | i € PN C W.
igIeh icIeh
Later we need the following elementary lemma:
Lemma 2.2. [fa € AL\ A and w € W™, then wa € Ay \ A follows.

Proof. If we write o = 3 ;. nicy;, there exists some j € I\ I°® such that n; > 0.
For k € I, the coefficient of sper = a— (@, &) Yoy, on o is 1y > 0, which implies
spa € Ay \ Ash, O
Put h%h = Dicrn Cay C b, and denote the simple Lie subalgebra corre-
sponding to AS® by gt
sh _ bsh ® @ Oa-

acAsh

Let n3t = D.c Ash Ba- Note that the type of g*" is as follows:

{0}  if g is simply laced,
Ay if g is of type B,,,Ga,
Ao if g is of type Fy,
A,_, if gis of type C,.



Let §°" be the non-twisted affine Lie algebra corresponding to the extended
Dynkin diagram of g*", and we consider g°*® naturally as a Lie subalgebra of g.
Also we denote

Cg™ =g @ Cl CF™, Cod =CpoCdCF"

and 5 = §* @ CK @ Cd, b3 = b @ Cd.
Throughout this article, we denote by ) the projection image of A € h* under
the canonical projection §* — (I‘)Sh)* and we fix one splitting of this projection:

let i, denote the linear map (f]s")* — f]* defined by
ish(m-) =q; fori e ISh, -'ish(KO) = Ag, ’ish(g) =4.
We write- o _
P={A|AeP}= ZZE@, Py = ZZZ(]ﬁi.
icIsh i€l
We denote by U,(g) the quantum affine algebra associated with § over C(g),

and by Uy(g) the quantum affine algebra without the degree operator. Let
U, (") and U; (") denote the ones associated with §=.

Let H be one of the vector spaces E, ha, b, H"‘h, b and kM. For an H-module
M and A € H*, we denote the weight space of M with weight A by

My={veM|hv={_\hjviorhe H},

and if M = @,y M, we say M is an H-weight module. We denote the set .
of H-weights by wtg(M) = {\ € H* | M) # 0}. If M is an finite dimensional
H-weight module, we define

chy M = ) (dim My)e(),
AcH*

where e(A) are formal basis elements of the group algebra C[H*] with multipli-
cation defined by e(A)e(u) = e(A + p). For a subset § C H*, we denote by Pg
the linear map C[H*] — C[H*] defined by

e()) ifAeS,

Ps(e(N) = {0 if A ¢ S.

The map i : bSh)* — B* induces naturally a linear map C[(I]Sh) | — (C[l] I,
which we denote by iz, too. The following lemma is used later:

Lemma 2.3. Let A € §*, and assume that M is ¢ h-weight Cg-module generated
by v € My and v is annihilated by n, @ C[t] @ h @ tC[t]. Then W =U (CgSh)
satisfies

Py g chy M = chy W = e(A— 'Esh(A))'ﬁshChbsh W.

Proof. Put nl =37 A\ am go- Then we have n_ = n® @ nl, and we have |

M=Un_oC[t]).v
= U™ @ Clt])w+ U™ @ CEHUW. @ Cit])4v
=W + U™ @ CU(n_ @ C[t]);..v,



where U{n__ ® C[t])+ is the augmentation ideal. It is obvious that wty (W) C
A— @, and

wy (U(ns_h ® CltHU(n. @ C[t])+.v) N —-QM =0

Hence, the first equality follows. The second equality follows from the following
fact, which is easily checked: if u € A—Q%, we have p = igy () +{A—isn(X)). O

3 Weyl modules and Demazure modules

3.1 Weyl modules

In this article, we consider the following Cgs-module:

Definition 3.1. For A € Py, the Cgg-module W(A) is the module generated by
an element v with the relations:

0, @CRtlo =0, h@t°w=48oMh)vfor heEh,s€Zsg, dv=0, (2)

and v
FRE 0 forie L

We call W(\) the Wey! module for Cgy associated with A € P,

Remark 3.2. W{)) is a Z-graded version of the Weyl module for Cg introduced
in (4], 8]. Indeed, it is easily seen that W() is cyclic as a Cg-module and the
defining relations of W{A) as a Cg-module are

ny @C[tlv =0, h®t*'.v=23{h)vfor h€h,s € Zx,

and
f_(f\,a}’)+1

w=0friel,
which is the ones of the Weyl module for Cg defined in these articles.
The following theorem follows from [4, Theorem 1.2.2]:

Theorem 3.3. For X € P, the Weyl module W () is finite dimensional. More-
over, any finite dimensional Cgg-module generated by an element v satisfying
the relations (2) is a quotient of W(A).

3.2 Defnazure modules

We denote by V(A) the irreducible highest weight §-module with highest weight
A € Py . Recall that for any w € W we have dim V{(A},,n = 1.

Definition 3.4. For w W, the b-module
Vio(A) = U(B).V (A)wa = U[@L).V (A)wa
is called the Demazure submodule of V(A) associated with w.

Remark 3.5. Note that V3,{(A) = Vi (A) if wA =w'Al



Since f;.V{A)wa = 0 follows if and only if {wA,a)) < 0, we can see that
Vw(A) is fi-stable if and only if (wA, o)) < 0. In this article, we are mainly
interested in the Demazure modules which are g-stable. From the above ob-
servation, V,,(A) is g-stable if and only if (wA,aY} < 0 for all ¢ € I, which is
equivalent to that wA € —Py + £Ag + Z4§, where £ is the level of A. For sim-
plicity, we use the following alternative notation: Let A € P, € Zwg,m € Z.
There exists a unique A € ﬁ+ such that weA+ fAg+mé € WA. For an element
w € W such that wA = woA + fAg + mé, we write

D, N)[m] = Vio(A),

which is a Cgg ®CK-module as stated above. We usually consider only the Cg4-
module structure of D(4, A)[m]. For any A € P; and m € Z, we have V(A} &
V(A + md) as g ® C[t,t~ 1] & CK-modules. Therefore, the Cg-module structure
of D(£, A)[m] is independent of m. We denote this Cg-module isomorphism class
simply by D(£, A). ,

D(¢, \) and D(£, A)[m] have descriptions in terms of generators and relations
as follows:

Proposition 3.6. (i) D(£, )) is isomorphic as a Cg-module to the cyclic module
generated by an element v with relations:

n; @Cltlv =0, h@t v = d0{\, l}v for h € §,5 € Zyo, @)
and fory € A, and 5 € Z>o,

max{O, (’\1 "YV) - ES} ""f’y is longﬂ

to)feratly = 0 where ky , = 4
(f8¢) v WHETE By max{0, (A, vV} —rés} if v is short )

(r is the number defined in (1)).
(ii) D¢, A)[m] is isomorphic as a Cgg-module to the cyclic module generated by
an element v with relations (3), (4) and d.v = mu.

Proof. (ii) follows easily from (i), and (i) can be proved by the same way as [8,
Corollary 1] using
2
—(A+ Ao+ M8, (=7 + 56)¥) = (A + fAg -+ mb, " (T%K)

28s
(v )

= ()\1 ’YV> -

O
The following theorem is a reformulation of [8, Theorem 7] for our setting:

Theorem 3.7. Assume that g is simply laced. Then the Weyl module W () is
tsomorphic to D(1, A)[0] as Cgg-module.

" Proof. Note that the notation “D(£,AV)” in [8] coincides with D(¢, &v(AY)} in
our notation. Since #(AY) = X in the simply laced case, [8, Theorem 7| says
that W(A) = D(1, A} as Cg-modules. Then W(A) = D(1, A)[0] as Cgg-modules
obviously holds. O

10



Later, we need the following lemma:

Lemma 3.8. Assume that g is of type A,. Then for any £ € Zog and i€ I,
DL, ;) is isomorphic to Vy(w:) as ¢ g-module.

Proof. Although this lemma can be shown directly from the definition, we prove
this using Proposition 3.6. Since g is of type A,, we have {w;,¥¥) =0o0r 1 for
all v € A,.. From this and Proposition 3.6, the generator v € D(£, ;) satisfies
fr ® tC[t}.v = 0 for all v € A, which implies

D¢, w;) = U(Ca).v=Ul(g).v.

Since v satisfies the defining relations of V;(w;) in Lemma 2.1, D{¢,w;) is a g-
module quotient of V;(w;). Since D{¢,w;) is non-trivial, the lemma, follows. O

3.3 Fusion product

We briefly recall the definition of fusion products of Cg-modules introduced in
[6] and some facts on them.

Let W be a Cg-module. For e € C, we define a Cg-module W, by the pullback
@i W, where ¢, is an automorphism of Cg defined by z & i* —  ® (£ + a)*.
[J(Cg) has a natural grading such that

G*(U(Cy)) = {X e U(Cg) | 14, X] = sX},
from which we define a natural filtration on U{Cg) by

Fo(U(Cg)) = P G (U (Cy))-

p<s

Let now W be a cyclic Cg-module with a cyclic vector w. Denote by W; the
subspace F*(U(Cg)).w of W, and denote the associated Cg-module by gr(W):

gr(W) = P Wa/ Wy,

>0

where we put W_; = 0.

Now we recall the definition of fusion products. Let W',...,W* be Z-
graded cyclic finite dimensional Cg-modules with eyclic vectors wq,...,wy, and
let ¢1, ..., ¢i be pairwise distinct complex numbers. As shown in [6], T/Vcl1 ®---
W is a cyclic U(Cg)-module generated by wq ® - -+ @ wy.

Definition 3.9 ([6]). The Cg-module

‘VVclJ **Wcﬁ =gr(Wcl1 ®®Wc’1)
is called the fusion product.

Remark 3.10. Put X = W) ®--- @ WE. By letting d act on X,/X,_1 by a
scalar s, we sometimes consider W, *---* W£ as a Cgy-module.

11



Lemma 3.11. (i)

chy W, % xWE = [] chy W
1<i<k

(ii) Let Ay,..., € Py, and let X = Ay +-+-+Xg. Then there erists a surjective
Cga-module homomorphism from W(A) to D(1, A1)g, * -+ % D{1, Ag)ey -

(iii) If g is simply laced, the surjection in (ii) 43 an isomorphism.

' Proof. Since WY %---x WE is isomorphic to W! ®--- ® W* as a g-module, (i)
follows. We can show (ii) by the same way as (8, Lemma 5] From Theorem 3.7
and (8, Theorem 8}, (iii) follows . ) g

4 Filtrations on the Weyl modules

4.1 The defining relations of the Demazure modules

The goal of this section is to show that the Weyl module admits a filtration
whose subquotients are surjective images of Demazure modules. To do this,
however, the defining relations of D(£, A) given in Proposition 3.6 is insufficient,
and we need to reduce the relations in the case £ = 1. This and the next
subsections are devoted to prove that D(1, A} has the following refined version
of the defining relations:

Proposition 4.1. For A € Py, D(1,}) is isomorphic as o Cg-module to the
cyclic module generated by an element v with the following relations:

(D1) ny @C[t}w =0,

(D2) h®@t*.v = ds0{\, hyv for h € b, s € Zxo,

(D3) Ay —0 foriel,

(D4) (f, ® to)ymax{0Qr)=rs}+l oy = Q for y € A, s € Zo.

This proposition obviously implies the following coroliary:

Corollary 4.2. For A € Py and m € Z, D(1,))[m] is isomorphic as a Cgy-
module to the cyclic module generaied by an element v with the relations (ID1)-
(D4) and d.v = mw.

If g is simply laced, the relations in Proposition 4.1 are just the relations of
the Weyl module W () (see Remark 3.2 for the defining relations of W () as
a Cg-module). Hence, in this case, the proposition follows from Theorem 3.7.
Thus, to the end of the proof of the proposition, we assume that g is non-simply
laced.

We denote by M* the cyclic Cg-module generated by an element v with the
relations (D1)—-(D4). By Proposition 3.6, to show the above proposition we need
to show that v € M? satisfies

max{0, (\,vY) — s} i+ is long,
max{0, (A, vY) —rs} if v is short

(fy ® Yol g = 0 where k, s = { (5)

for all vy € Ay and s € Zyo. We show the equation (5) by separating the proof
into several cases. First, the following case is elementary:

12



Lemma 4.3. For v €Ay and s =0, (5) follows.

Proof. From (D1)-(D3), we can see that U(g).v € M? is a g-module quotient
of V4(A). Hence sly-theory implies the lemma. O

_ The preof of the following case uses the same argument with the one used
in the proof of [8, Theorem 7):

Lemma 4.4. When +y is a long root, (5) follows for all s € Z>g.
Proof. Take a Lie subalgebra

sloy =Ce, ®Cy" & Cf, Cg

which is isomorphic to slp, and let Csly ., = sy, ® C[t]. Let N = U(Csly).v.
Note that v satisfies the relations

ey ®CHlu=0, 4 ®t'w=7do(\v)v, f.f,)"”'v)"'l.v =0,

which is the defining relations of the Weyl module W.,({A,vV)} for Csly, (see
Remark 3.2). Here, we identify the weight lattice of sly , with Z. Hence, N is
a quotient of this Weyl module W, ({\,~"}). By Theorem 3.7, W, {{A\,v")) is
isomorphic to Csly 4-Demazure module D, (1, {A,v"}). In particular, v satisfies
the defining relations of D.,(1, {\,v")} stated in Proposition 3.6, which contain

the relations
(fy @ ¢5)maxORAT =81 5 — g

for all s € Zxo. O

Before starting the proof of remaining cases, we prepare an elementary
lemma:

Lemma 4.5. Assume that the rank of g is 2, that is dimb = 2, and let II =
{a,B8}. Let N be a U(n_)-module, and we assume that an element v € N

satisfies
fflteu=0, fiflu=0

for some a,b € Zyy. Then for v € Ay such that v¥ = nia¥ + noBY, we have
fn1a+n2b+1 v=10
g . .
Proof. Let w, and wg denote the fundamental weights corresponding to ¢ and

- B respectively, and let g = aw, + bwg. The following isomorphism as Un_)-
modules is well-known:

V(i) 2U M) /UG )(CFE +CFF).

Therefore, there exists a U{n_)-module homomorphism from Vy(u} to N which
maps a highest weight vector to v. Since a highest weight vector of V(1) satisfies
the relation for ~, so does v. : O

It remains to prove that the equation (5) follows for short v € A,. In the
rest of this subsection, we prove that this statement is true if g is of type B,,C,
or Iy, and we prove the statement in Go case in the next subsection. Note that
if g is of type B,, C or Fy, we have r = 2.
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Lemma 4.6. Assume that g is of type Bn,Cn or Fy. If vy € AL\ AP isa
short root, there exists a short root @ € Ay and a long root B € A, such that

v=a+p. _
Proof. We prove by induction on htvy. Put
' S={accA,|a¢AP, oisshort},

and take arbitrary v € §. Since v € Y ;o7 Zyoa; and (v,7) > 0, there exists
some i € I such that (y,;) > 0. Since v ¢ II*" and v is short, we have v ¢ I,
in particular 7 # o;. Then, we have {vy,)) =1 since 7 is short, and therefore
we have vy = s;{7y) +a;. Note that s;(-y) is a short root. If ¢; is long, this implies
the lemma. Assume that o; € II*". Then by Lemma 2.2, we have s;(7) € S.
Since ht s;{-y} < ht~, by the induction hypothesis there exist short a € A, and
long # € A such that s;(v) = e+ 8. If « = o, we have v = § + 2, which
contradicts that -+ is short. Hence we have a 7 «;, which implies s;{a) € A4,
and then v = s;(a) + s;(0) implies the lemma. O

Now, we complete the proof of Proposition 4.1 for g of type By, C,, or Fy:

Proposition 4.7. Assume that g is of type By, Cy, or Fy. Then (5) follows for
all shorty € A, and s € Zxp.

Proof. We have to show that
(fy @ oy} 4 (6)

We show this by induction on hi-y. If hty = 1, this trivially follows from (D4)
since v € 1", Assume ht+ > 1. We can also assume that -y ¢ Af,!‘. By Lemma
4.6, there exist short & € Ay and long § € A, such that y =« + 5. Put

a=(Aav), b=()\BY).

Now, fix arbitrary s € Z»g, and put ¢ = min{¥, s}, p = s — ¢. By the induction
hypothesis, we have
(fo @ tPymex{0a=2¥1 4 = g, | Y

and we have from Lemma 4.4 that
(fp@t)y o =0. (8)

It is easily checked that the root subsystem (Za + Z8) N A is the root system
of type B with a basis {®, 8}. Hence, the Lie subalgebra

Cla®t? +Cfs @2+ Cfy ®tPT! + Chagrp ® 279 C Cg

is isomorphic to the nilradical of the Borel subalgebra of so5 (simple Lie algebra

of type Bz). Since v¥ = ¥ + 23V, we have from Lemma 4.5, (7) and (8) that

(f’y ® tp+q)max{O,a-2p}+2(b4q}+1.,U =0

Since (A, 4Y) = a 4-2b and s = p -} ¢, it is easily checked that this equation is
equivalent to (6). O
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4.2 Proof for the type G,

In this subsection, we assume g is of type G3. We denote by « the short simple
root and by £ the long simple root. Note that

Ay = {a,B,a + B,2a + f,3a + 8,3a + 28).

Let w,,wg be the corresponding fundamental weights.
By Lemma 4.4, to complete the proof of Proposition 4.1 for g, we need to
show the equation (5) for v = a + 5, 2a+ 3. The first one is casy:

Lemma 4.8. Fory=a+ [ and s € Zxg, (5) follows.

Proof. This proof is similar to the cne given in Proposition 4.7, and we shall
only give the sketch of it. Assume that A = aw, + bwg with a,b € Z»g. Since
(e + B)Y = " + 38", what we have to show is that v € M* satisfies

(fa—i-ﬁ ® ta)max{o,a+3b—3a}+1_,u =0 (9)
for all s € Zy¢. Fix arbitrary s € Zyq, and put ¢ = min{b, s}, p = s — g. Since
(fo @ tP)ymaxi®a=3p}+1 o — 0 and (f5 @ 19)*~ 1y =0

follow, we have from Lemma 4.5 that

(Farp ® tPHaymax{0a—3pH30-a+1 5 _ o

Then this equation is equivalent to (9). ad

It remains to prove (5) for v = 2a.+ 8. The proof in this case is a relatively
heavy task. Throughout the rest of this subsection, to simplify the notation
we abbreviate X @ ¢* for X € g as Xt*, and also abbreviate max{k, k2} as

{ki, b2}
For a,b € Z>q, we define a subspace I, of U(Cg) by

I p = 0 Clt] +H1CH + Cla¥ —a) +C(BY —b) + 3 C(fut®) (@31 L O+,
320

Note that U(Cg)l, is the left ideal generated by the relations in Proposition
4.1 with A = aw, + bwg. We shall prove the equation

(faarpt®) 020303810 € U (Cg)lap (10}

foralla,b € Zsp and s € Z>0, which is equivalent to (5) with A = aw, +bwg and
v = 2c + . In the following proof, we use repeatedly the fact that X € U(Cyq)
annihilates v € M? if and only if X ¢ U(Cg)I,, without any mention.

Before starting the proof of (10}, we prepare two lemmas:

Lemma 4.9. For 51,50 € L3, we have

(f20+‘8t231+52)2{0,&—331}+3{0,b—32}+1 c U(Cg)Ia,b-
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Proof. By Lemma 4.4, we have
(fpte2) 1002241 € U(Ch) L.
Then since 7Y = 2a" 4 38Y, we have from Lemma 4.5 that
( f2a+ﬁt2s1+sz )2{0,0—331 }3{0,b—s2}+1
c U(Cg)(C(fat“‘l){0’“"3“’1}"'1 +C(fﬁt32){0,b—sz}+1) C U(Co)ap-
d

Lemma 4.10. Let {e,h, f} be the Chevalley basis of sly, and let a € Zy¢ and
£ € Zno. We define a Lie subalgebra a of Cslp = slp @ C[¢] by

a = etC[t] + RC[t] + fC[t],
and let I be a subspace of U(a) defined by

I = etClt] + htClt] + C(h — a) + >_ C(f2°)(0e—fe1+1,
820
Then we have for all p € Zyg and s € Zsp that
e?(ft2){0e~ta+1 ¢ ()] + U(Csly)e.

Proof. Applying an involution on Csi defined by et® o ft*f, htF — —ht*,
we prove the following statement which is equivalent to the lemma: put o' =
FEC[t] + hC[t] + eC[t] and

I' = fiC[] -+ hC[t] -+ C(h+ a) + > _ Clet®){0e—teb+t,
s>0

Then we have for all p € Z5¢ and s € Z3p that
FPet®) {01 ¢ (a4 U(Csly) f.

Fix arbitrary p and s. Since U(Csly) = U(a') ® U(Csla) f, there exists X €
U(Csly) such that
f;p(ets){o,a—fs}+1 —Xf e U(al)'

Consider the ;f;-Demazure module V,,(A) such that wA = €Ay — aw, and let
Vya be a nonzero vector in Vi, (A)wa. By [8, Theorem 1], the U(a')-annihilator
of wya is Anng(gryvywa = U(a’)I’. Then since

(fp(ets){ﬂ,a—ﬂs}+1 _ Xf).,va -0,
we have fP(et*)}{0e—%}+1 _ X f € U(a")I'. _ O

We fix arbitrary b € Zso, and we prove the equation (10) for fixed b by
induction on a € Zx¢. To begin the induction, we first prove (10} for a = 0,1, 2.
(i) When a = 0, Lemma 4.9 with s; =0, s, = s implies (10).

(ii) Assume g = 1. If 5 < b, Lemma 4.9 with s; = 0,52 = s implies (10).
s > b+ 2, Lemma 4.9 with s; = 1,82 = 5 — 2 implies (10). Let s =b+ 1. By
Lemma 4.4 and {w, + bwg, (3a+ 8)Y) = b+ 1, we have

Frarpt™™ € U(Co)l1p-
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Then (10) follows since
[e&’f3a+ﬁtb+1] = eozf3a+ﬁtb+1 - f3a+ﬁtb+lea € U(Cg) 11

(iii) Assume a = 2. If s # b+ 1, we can show (10} by the same way as (ii). Let
s =b+ 1. By Lemma 4.4 and 4.8, we have

(frotst™")? € U(Co)Tap and forpt™ € U(Cg)lzp.
Then (10) follows from the following calculation:

U(Cg)Iz,b aeczz (f30t+.3tb+1 )2 = By (.f3c¢+ﬁtb+1)2ea + 2[em f3a+ﬂtb+1]2
+ 2f3a-@-ﬁtb+1 [eou f3a+,ﬂtb+1]ﬁa + 2.f3a+,6tb+1a-d (ea)2 (f3a+ﬁtb+1 )

From the above results, to proceed the induction it suffices to show that the
equation (10) for given a,b € Zx»g and all s € Z» imply the following equation:

(faaspt? )02+ FR=3sk41 £ OV 4 4 for all s € Zo.
Define a Lie spbalgebra a of Cg by

a=n.ClH+5CH+ > e t"=IC,

TEAL

where w is the fundamental coweight corresponding to «, that is, an element
in b satisfying (o, @) = 1, (8, @2} = 0, and define a Lie subalgebra a4 of Cg

by .
g = Z (Ceq,‘ﬁs.
rEALN{B)
0<s<{y, @)

Notethat Cg=a® ag. Let [ ;’b be a subspace of I, ; defined by

I:z,b =Igp N U(a)

= 3 et OCH] + htClt] + Cla” — a) + C(BY — b)
YEAL

+ Zc(fats){ﬂ,a—3s}+l + (Cfg-l-l-

520
Now we show the following lemma, which is crucial to proceed the induction:

Lemma 4.11.
U{Cg)ap € Ula), , ® U(Cg)ap.

Proof. Set '
I=Iy, I'=1I,, J=U(a)I'®U(Cg)a.

Since U(Cg) = U(a)U(ap) and U(a)J = J, it suffices to show that U(ag)l C J.
First, we prove that

I = n, C[t] + htC[f] + Cla” — a) + C(8Y —b)
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satisfies U(ap)Jy € J, which is equivalent to that for any k > 0 and a sequence
X1,-.., X € ag, we have X; --- XpI) € J. We prove a stronger result that

X1 Xl CI'N L) ©U(Ch)ao (11)

by induction on k. If & = 0, this follows since ) = (I' N 1I1) @ ap. We can easily
check that
ad(ag)f1 € n Clt] € (I' N L) @ ay,

and hence if k > 0, we have
Xy Xy € Xy oo X 1 X + Xy -0+ X (ad(Xe) 1)
C Xy - Xpa(I' NI+ U(Cy)ag.

This together with the induction hypothesis implies (11).
Next we prove U(ng) fgﬂ C J. Since ff;"'l e I, it suffices to show that

Ulag)+ fg"'l C J, where U(ap}, denotes the augmentation ideal. The h-weight
set of U(ag)+ fg"'l with respect to the adjoint action obviously satisfies
why (U(a0)+f5") € Zsoo + Z6. (12)

Since ag ® Cfg is a Lie subalgebra and U(ay ® Cfp) = C[fg] @ C[fs]U(ag)+,
{12) implies by weight consideration that

Ulao)+f5+" C C[f5]U(a0)+ C .

Let

L= Zc(fats){o,a—h}-:-l_
>0

Since I = I +C fg"‘l + I3, to complete the lemma it suffices to show that
Ulag)Ilz C J. To do this, we put

h= Y  Cet’,
vEA L\ e B}
0Zs<{r,m2)

and we first prove that Ufag)sls C U(Cg)n, C[t]. Note that ap =-af & Ceq.
The h-weight set of U(af)4I2 with respect to the adjoint action satisfies

why (U(c))+-I2) C Zax + ZonoB- (13)
Put n{® = 2 ovea\{a} Bv- Since foClt] & n{*Cft] is a Lie subalgebra and
U(foClt @ n{VClt]) = U(foClE)) ® U(£CEDU IR
_(13) implies by weight consideration that
Ulh)+12 € U(£CINU (L) € UCo)n Tl
Then since Lemma 4.10 with £ = 3 implies Cle,]f2 C J, we have

Ulap)Iz € Clea)lz + Clea|U(ap}+ I
CJ+U{Cgn, Clt| CJ+U(Ca)y T J.
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Now, we show the following proposition, which completes the proof of Propo-
sition 4.1:

Proposition 4.12. {(10) follows for all 6,b € Z>y and 5 € Zx.
Proof. As stated above, it suffices to show that if

(f2a+ﬁt3){0,2a+3b—-3s}+1 c U(Cg)Ia,b (14)
follows for given a,b € Z»p and all 5 € Z>p, then we have
(fza_z_ﬁtS){0,2(a-§-3)+3bw35}+1 e U(cg)Ia+3,b (15)

for all 5 € Z>o.
Since U(Cg) = U(a) ® U(Cg)ap, (14) and Lemma 4.11 implies

(faoapt®) 0283 @ U(Co) Loy NU(0) S U (), (16)

for all s > 0. Define a C-linear map & : a — U(Cyp) by
Bleyth) = eyt PFR), B(£,tF) = £tF T for y € Ay,
®(aVtk) = aVt® — 36k, B(BVEY) = BVeE.
It is easily checked that @ satisfies B([X7, X3]) = [B(X1), B{X>)] for X1, X; € a.
Hence @ induces a C-algebra homomorphism U(a) — U/(Cg), which we also
denote by ®. Applying ® to (16), we have 7
(f2a+ﬁt8+2){0’2(a+3)+3b_3(3+2)}+1 e @(U(a)I;,b) C U(CE)@(I;,b)
C U(Cg)(n+C[t] + htC[t] + Cla¥ — (a+3)) +C(BY —b)

+ Z C(fatS'l'l){O,(a']'S) -'3(84‘1)}-"1 + ({:f5+1) g U(CH)Ia+3,b,
s3>0

and hence we have the equation (15) for s > 2. Since (15) for s = 0 follows from
Lemma 4.3, it remains only to prove (15) for s = 1, that is, the equation

(f2atpt)22FH € U(Co)layap-

If b > 1, Lernma 4.9 with 81 = 0, 82 = 1 implies this. Assume b = 0, and put
N =U(Cg)/U(Ca)llats,0,

which is a quotient of the Weyl module W((a + 3)w,) and hence a finite di-
mensional Cg-module. Let 1 € N be the image of 1. It suffices to show that
(faa+st)?*+41 = 0. Since the h-weight of (fantst)?*** 1.1 is —(a + 1), and

{(2c + B, —(a+ 1w, = —2a — 2,
if we can show that _
et (Faarst)?* 41 =0,

then (fan+gt)?*+2.1 = 0 also follows from slp-theory. By 9, Lemma 7.1, we
have

et (frarst)® ™ IE > Clraipt™ frasst™ L
s1+s2=2a+4

- Using the equation (15) for 5 > 2, we can prove that the right hand sideis 0. O
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4.3 Quantized Demazure modules and Joseph’s results

The quantized version of the Demazure modules also can be defined in a similar
manner as the classical case. For A € P, we denote by V,(A) the irreducible
highest weight U/ (g)-module with highest weight A. Similarly as the classical
case, we have dimgg) Vo(A)ua = 1 for all w € W. We denote by U,(ny) the
positive part of U,(g).

Definition 4.13. We call Vg ,(A) = Uy(f4).Vy(A)wa the quantized Demazure
submodule of V,(A) associated with w.

Joseph posed in [14, §5.8] a question which asks if the tensor product of a
one-dimensional Demazure module by an arbitrary Demazure module admits a
filtration whose subquotients are isomorphic to the Demazure modules. Polo
[32] and Mathieu [26] gave the positive answer to this question in the case of
semisimple Lie algebras, and Joseph [16} himself gave the positive answer in
the case of the quantized enveloping algebras associated with simply laced Kac-
Moody Lie algebras. Here, we briefly recall the Joseph’s result since we use
the result later. Although his result is applicable to any quantized enveloping
algebras assoclated with simply laced Kac-Moody Lie algebras, we concentrate
only on affine case here.

Let A = Z[g,q7 1), let UZ(f,.) and UZ(g) be the A-forms of U, (f1) and U,(5)
respectively, and denote by T the Cartan part of Uf(.’g‘). (for precise definitions,
see [16, §2.2]). We denote by Uf(ﬁ) the subring of UZ(§) generated by UZ(,)
and T. For w € ’W?, let u,,a be a nonzero element of weight wA in Vi (A), and
let

V;fw (A) = Uf(ﬁ-l—)'uw!\%

which is obviously a U,:Z(E)—rriodule. Taking the classical limit, we have
C®aVE,(A) 2V, (0),

where A acts on € by letting ¢ act by 1. Joseph has proved the following
theorem:

Theorem 4.14 ([16, Theorem 5.22]). Assume that g is simply laced, and let
AN € Pyw e W. Then a UZ(b)-submodule us ®4 VE (A} of Vo(A) ®c(q
V4(A') has a Uéz(?;) -module filtration

0=Y,CY) C--- C Yy =uy ®4 V5 (A)
such that each subquotient Y;/Y;_1 satisfies
Y/ quiys (AY) for some A* € ﬁ_,.,yi cW.
Remark 4.15. (i) In [16, Theorem 5.22], a given Kac-Moody Lie algebra is
assumed to be simply laced, and this condition excludes the case where § is

of type Ag_l). In Joseph's proof, however, this condition is only used in [16,
Lemma 3.14] to apply a positivity result of Lusztig. We can check that the

proof of this positivity result in [25, §22.1.7] is also applicable to A&l) without
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any modification, and hence the above theorem is true for any simply laced g.
(ii) [16, Theorem 5.22] states only that the above filtration is a UZ(f4}-module

filtration. However, it is easily seen that this is a Utiz (E)-module filtration since
each Y; is defined by an A-span of some weight vectors {[16, §5.7]}.

Taking the classical limit, the following result is obtained:

Corollary 4.16. Assume that g is simply laced. For £ > £, D{L, A\)[m] has a
Coq-module filtration

_ 0=DyC Dy C--- C Dy =D, A)[m]
. such thaet each subguotient D;/D;_, satisfies
D;/D;_ 1 2D, ﬂi)[mi] for some p; € Py,m; € Zom.

Proof. We prove this statement for &' = £-- 1. The'results for general £ can be
obtained by applying this case repeatedly. Take A’ € P+ and w € W so that

wA’ = wo + £Ag + m§. By Theorem 4.14, up, ® VE, (A') has a qu( J-module
filtration 0 =Yy CY; € -+- C Yy = up, ® V,fw(A’) such that

Yi/Yioy = qu;y‘_ (A} for some A* € ﬁ+,yi eW.
Put D; =C ®,4 Y;. Then we have
" Dy = C®a (ua, ®a VE,(A) = Ca, @c Vin(A') = Cy, ®c DL, N)[m),

where C,, denotes a 1-dimensional b-module spanned by a vector of weight Ay
on which Ty acts trivially. Since all ¥; and ¥; /Yi_1 are free A-modules ([16,
§5.7]), Ca, ® D(£,2)[m] has a b-module filiration

OZDO ng g e ng‘:CAo ®D(£1/\)[m]ﬂ

and each subquotient satisfies D;/D;_; = V,, (A%}. Obviously, each A? is of level
£+ 1. By [16, Theorem 5.9], there exists for each 1 < i < k a UZ(g)-submodule
Z; of Va(A) @g(q) Vo(A') such that

Y =2Z; N (ua, ®a V w(A’))

Then since Ca, ®c P, A)[m] is a Cgg ® CK-module, we can see that each
D; is also a Cgg @ CK-module, and so is D;/D;_,. Hence, each D;/D;_, is
isomorphic to D(£ + 1, u;)[m;] for some p; € Py, m; € Z. Each m; obviously
satisfies m; € Zs., since wty , DL, A)[m] € A — Q4+ + Z>,,8. Now, since Cy,
is a trivial Cgg-module, we obtain the corollary by restricting these results to
Cga- O

We define a partial order < on P. + Z§ by A + m1d < A2 + mad if
A2 — A € Q4 and mq = ma. Since D4, A)[m] is U(n. @ C[t])-cyclic, if
A+ myé € wty, D(E, A}[m], then Ay +m16 < A+ md follows. This implies that
{chg, D{£, A}[m] | A € Py.,m € Z} are linearly independent for each £ € Zsq.

When a bg-weight Cgg-module M has a filtration 0 = Dy € Dy C --- C
Dy = M such that

D;/D;_y 2D, u;)[m;] for some py; € Py,m; € Z
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for ﬁed £ € Z~y, we define
(M : D(E, M)[m]) = #{¢| Di/Di-1 = D(¢,A)[m]},

which is independent of the choice of a filtration from the linearly independence
of the characters.

4.4 Filtrations on the Weyl modules

In this subsection, we assume that g is non-simply laced. Here, we need to
consider the Demazure modules for both g and g*. Hence, we denote the C "
Demazure module by D*'(£, ) and the Cgst-Demazure module by D(2, v) [m]
where v € P, £ € Zsgp, and m € Z. .

Lemma 4.17. Let v be the generator of W(}) in Definition 8.1, and let W =
U(Cg).wv C W(X). Then W is isomorphic to D(1,X)[0] as a Cg P -module.

Proof. By Corollary 4.2, D®t(1,2)[0] is isomorphic to the cyclic Cg3-module
generated by an element v" with relations:

nPQCIo =0, het'w = 6o(X,hp forh e b, FOHM Y —0fori e I

From these relations, we can check that there exists a surjective homomorphism
@ : D1, X)[0] — W of Cgsl-modules. We need to show that ¢ is injective.
In this proof, by V(u) for p € Py we denote the Cgg-module defined by the
extension of V,(u) by letting g ® tC[f] @ Cd act by 0. Write A in the form
A =3 e Miw; where A; € Zyo, and put p =3, A;. Let ¢i,...,¢, be pairwise
distinct complex numbers, and define a Cg-module Wy by

Wy =V(wg)e, *--- % V(wl)cAl ® - x V(wy) * -k Viwn)e,,

Cp—in+1

where each V(w;)} occurs A; times. By the same way as [8, Lemma 5], we
can show that there exists a surjective homomorphism ¥ : W{(A) — Wy of
Cg-modules. Tt suffices to show that the Cg®t-module homomorphism ) o ¢ :
D (1, A)[0] — W is injective. By Lemmma 2.3 and Lemma 3.11 (i), we have

chy (Im o 7) = Pr_qpehy W3 = Pr_p [T ey Vi
i€l
and using wtyV(w;) C w; — 4., we have -
Py_gyp T cby V(miy = H(Pwi_QTchb V(w))™
el il |

We have from Lemma 2.3 that P, _gmchy V(w;) = chy U(g®").v;, where v; is
a nonzero highest weight vector of V(w,) and we can easily see that

Voen(z;) ifie b
U sh -4 = V a _i - 8 !
(87) i = Voon (1) {vgs,,(O) if i ¢ I

as g*P-modules. From these equations, we have

dim(Im 4 o ¢) H dim Vi (:)
fesh
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On the other hand, we have that
dimD*(1L,X) = [ dim DR, @) = ] dim Vp (7)™,
."E[sh iEIsh

where the first equality follows from (7, Theorem 1}, and the second follows from
Lemma 3.8. Hence we have dim(Im o ¢) = dim D*®(1, X}, which implies that
3 o ¢ is injective. O

Let_)( € P;. Using Corollary 4.16, we can take 2 Cg¥f-module filtration of
D (1,A)[0): 0= D C Dy C -+ C Dy = D™(1, A)[0] such that

D;/D;_y = DM (r,1;)[my] for some v; € Py, my; € L.

Now, using this filtration, we show the following proposition, which is the main
result of the first half of this article:

Proposition 4.18. Let p; = isn(t4) + (A — ien(A)) for each 1 < i < k. Then
the Weyl module W (X} has a Cgq-module filtration0=Wo C W1 C--- C W, =
W(A) such that each subquotient W;/W;_, is a quotient of D(L, p;)[ml.

Proof. By Lemma 4.17, W(X) 2 W = U{(Cgit).v has a Cg5’-module filiration
0=Xp CX; C--- C Xj =W such that

Xi/_X-_]_ o 'DSh('f‘, V-i)[mi]. (17)

For each 1 < i < k, take z; € X; so that the image on X;/X;_; coincides with
the generator in Proposition 3.6 under the isomorphism (17). We can assume
that each z; is a h*"-weight vector of weight v; + m;d. Then each z; satisfies

l‘lf']_'l ® C[t].:l:,' Cc X;_1, f]Sh ® tC[t].:L',; g Xi_1, ha; = (1/,' -+ m,-:-S', h):r:,- for h € héh,
and for v € A and s € Zso,
(f‘T ® ts)“‘a"{o’(”i-’l‘v)“‘""’}“.:n,- € X1 V

First, we show that each ; is a h-weight vector of weight ;. Set (h)! = {h €
b | (h,h1) = 0 for hy € h*!}, which obviously satisfies h = h*h @ (h**)* and
[(h2)+, Cg3h] = 0. Then, since z; € U(Cg%).v, we have

hoz; = (A, hyx; for ke (1)L,
On the other hand, we can easily check from the definition of iy, that {15, R) =
(A R) for b € (5%} and {u;, h) = (v, h) for A € h**. Hence, we have checked
that z; is a h-weight vector of weight y;. Now, let W; = U(Cgy).X; for each i

and let Wy = 0. Then W, = W()) is obvious. Let Z; be the image of z; on
W;/W;_1. Since

U(Cga)-xi + Wi1 = U(Cga)-(Co:s + Xio1) = U(Cga)- Xz = Wi,

to show the proposition, it ?ufﬁces to show that each T; satisfies the defining
relations of D(1, p;)[m;] in Corollary 4.2. From the relations which z; satisfies,
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we can see that T; is a weight vector of weight u; +m;d, and satisfies (D4) since
we have {u;, ) = {v1,7) for v € AS®. To show (D1), it suffices to show that

ey @t°.2; =0 for vy € AL\ AD 5 € Zs,, (18)

which follows since the h-weight of e, @ t°.7; Is p; +v € A — Q% 4+ and hence
pi +v ¢ A — Q4. Then (D3) follows since W;/W;_1 is finite dimensional. To
show (D2), it suffices to show that

) (M) @ tC[t].z: = 0, (19)
‘which follows since z; € U{CgP).w and [(h)L @ tC[t],Cg] = 0. O

Remark 4.19. In Section 9, we show that the subquotients of the given filtra-
tion on W(A) are actually isomorphic to the Demazure modules.

For F,Fp € Zh}], we write Fy < Fp if Fo — F1 € Zxo[h}]. The above
proposition implies the following corollary:

Corollary 4.20. Let A € Py, and we set N = A—isn(X). Then we have
chy, W) S D (DF(L,N)0]: D (r,v)[m])ehy, DL, dan(v) + N)[ml].
vEP L, meEZso
Before ending this section, we show the following lemma that we need later:
Lemma 4.21. Let A € Py.,m € Z, and we set X' = X\ — i, (A). Then we have
P_qurzschy, D(L, A)[m] = e(Nighchyan D (r, A)[m].

Proof. Let v be the generator of D(1, A)[m] in Corollary 4.2, and let D’ =
U(Cg).v. Similarly as Lemma 2.3, we have

Py_qab1zschs, D(1, M)[m] = (X )isnchysn D".

From proposition 3.6, we can see that D' is a quotient of D (r,X)[m] as a
Cgf’i"—module. Hence, we have

Py-qeprzshn, D1, N)[m] < e(X Yinchysn D (r, X)[m].

‘We show the opposite inequality. It is enough to show in the case m = 0. Here,
we use the notation in the proof of Proposition 4.18. Similarly as (18) and {19),
we can show for each 1 < 7 < k that

e, X;=0forye Ay \ A%, (b ®ClH].X, =0,

which implies

Wi =U(Cga). X; = U(n_ ® C[t]). X;,

where we set n =B, ca_\am 8y. From this, we have that
X,', n Wi_.]. = X.i N (U(I’ll_ @ C[t])XzA]_) = Xi#lq
and hence we have

U{CoM) @ = Xi/ Xs N Wiy = X/ Xi 1 =2 DM (1 14) [,
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where Z; is the image of z; on W;/W;_;. Similarly as Lemma 2.3, we have

Py_qsp1zsthy, Wi/ Wiy = chy, U(Cg3) T

= e(p; — Gon (7;) Yisnchygn D™ (7, v3) ).
It is easily checked that y; — éen(7;) = A — isn(}). Hence, we have
Py _gupz5¢hin, DL, i){mi) = e(XYisnchyg DG v)[mi],  (20)
gince W;/W;_, is a quotient of D(1, p;)[m;]. From
> chyen D™(r, 1) [ma] = chya D (L, X)[0],
1<i<k

we can easily see that there exists some j such that v; = X and m; = 0. Hence,
we have _
P_grszschy, D(1, N)[0] > e(X)isnchygn D¥(r, X)[0]

by (20). O

| 5 Path models

In this section, we review the theory of path models originally introduced by
Littelmann [23], [24] (this theory can be applied to any Kac-Moody algebras, but
we state only in affine case here). We do not review the definition of (abstract)
crystals, but we refer the reader to [13, §4.5)].

5.1 Definition of path models

For a,b € R with a < b, we set [a,b] = {t € R| a <t < b}. A path with weight
in P is, by definition, a pleceW1se linear, continnous map 7 : [0,1] — IJR =Rz P
such that 7(0) = 0,7(1) € P. We denote by P the set of all paths with weight
in P. For 1,72, we define m; +m € P by (71 + m2)(£) = m1(£) + ma(t).

Remark 5.1. In [23] and [24], paths are considered modulo reparametrization.
In this article, however, we do not do this since there is no need to do so. Indeed,
it can be checked that all results in [23] and [24] used in this article still hold in
this setting.

Let m € P. A pair (g, 0) of a sequence g : py, s, ..., un of elements of Eﬁ
and a sequence g : 0 =gy < g1 < +++ < oy = 1 of real numbers is called an
expression of # € P if the following equation holds:

7{t) = Z {opr — Opr—1 )ty + (£ — 0p=1)ity fort € [op-1,0p], 1<p<N,
p'=1

In this case, we write # = (y, 7).
For = € P and i € T, we define HF : [0,1] — R and mT € R by

HE () = (n(8), oY), mf = min{H7(5) | £ € [0,1]}. (21)
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We denote by Pj,; the subset of P consisting of paths 7 such that m] is a
nonpositive integer for all i € T

Littelmann has defined root operators &, f; (i € I) on P in [23] and [24]. (In
these articles, root operators are denoted by e, fo). Here, for simplicity, we
recall the actions of them only on elements of Pj, which are enough for this
article since all the paths we consider are contained in Piy. For m € Piny and
i € I, we define ;7 as follows: if mf = 0, then we define &7 = 0, where O is an
additional element corresponding to ‘0’ in the theory of crystals. If m < -1,
then we define ;7 € P by

(t) for ¢ € [0, %0),
(Em)(t) = ¢ w(to) + si(m(t) — w(ty)) for t € [to,ta],
w(t) +a; for ¢ € [t1,1],

where we set
ty = min{t € [0,1] | BT (t) = mf},
to = max{t € [0,4] | H (¢) = m] + 1}.

Similarly, we define fyw € PU {0} as follows: if H (1) = m7, then fir = 0. If
HT(1} > mT -+ 1, then we define f;w by

w(t) for ¢t € [0, %],
(Fir)(t) =  wlto) + si(m(t) — w(te)) for t € [tn, 1],
Tr(t) - y; fort € [t;, 1],

where we set

to = max{t € [0,1] | H (t) =mT},
t1 = min{t € [to, 1] | Hf {£) = m] +1}.

We set wt(m) = n(1) € P for w € Piy, and we define &; : Py — Z>o and
i Py — Zyo forie I by -

g(w) = max{k & Z>y ] éf"ﬂ' %+ 0}, (p,'(’ﬂ') = max{k € Z>o | ﬁ:c?l. # 0}.
Then the following theorem follows from [24, §2]:

Theorem 5.2. Let B be a subset of Pin such thot &B C BU {0}, fiBCBU{0}
for alli € 1. Then B, together with the root operators &, fi fori e T and
 the maps wt,;,; for i € I, becomes a U,(§)-crystal ([13, Definition 4.5.1]).
Moreover, we have

gi{m) = —m7, @i(r)=H(1)—m]. (22)

The following lemima is easily checked from the definition of the root opera-
tors.

Lemma 5.3, Letm € Py, % € f, and let 0 < u £ 1 be a real number.
(i) If m satisfies HF (t) > m] + 1 for all t € [0, u], then we have

ém(t) =x(t) foralltec(0,u]
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(if) Let M € Zyp. If w satisfies
' HE(t) > —M for all t € [0,u] and HF (v) = —M,
then we have _
fin(t) ==(t) for allt € [0,u].

“Let B C Py be a subset such that &B € BU {0}, /B C BU {0} for all
i & I. For each i € I, we define S; : B — B by

e ifi={n(1),0)) >0,
Si(m) = {a.— x ifl={m(1),aY) <0.

k3
_The following theorem is verified in 24, Theorem 8.1]:

Theorem 5.4. The map s; — S; on the simple reflections in W extends to a
unique group action of W onB:wr— 8y.
Lemma 5.5. Let 7 € B and i € I, and assume that HT 45 non-decreasing or
non-increasing. Then S;(m) satisfies

Si(m)(t) = 8i(m(t)) for allt € [0,1].

Proof. Assume that H] is non-decreasing. Then we have p;(7) = HF (1) € Zx¢
by (22). Put M = ¢;(x), and for k € {0,..., M} we define oy € [0,1] by

or = max{u € [0,1] | HF (t) = k}.

Then we have 0 < 09 < 07 < --+ < opr = 1, and we can show inductively from
the definition of f; that

- _ s,;(?'l‘('(f)) for t e [01 o'k]a
Fr(t) = {w(t) ~ke; for t € [o, 1).

Hence, we have fMr(t) = s;(n(t)) for all £ € [0,1]. When HY is non-increasing,
we can show the lemma similarly. O

Now, we recall the definition of a concatenation of paths in P {cf. [24, §1]).
For my, 13 € P, we define a concatenation m 73 € P by :

1 (2£) ifte{0,3],.
m(l) -+ m(2t 1) iftel} 1]

(my * w2)(¢) {

It is obvious that if my, g € Py, then myxmy € Pyy,. For notational convenience,
weset Oxw=mwx0=0forany 7 &€ P.

Lemma 5.6 (24, Lemma 2.7]). For my, w2 € Py andi € f, we have

5 (e ) — (Eimi) xma  if wi(m) > ei(ma),
Ei{my xm2) {TTI * (Bima) i wi(m) < &y(ma), (23)

and _ :
(fim) *ma  if () > ei(ma),

m* (fime)  if wi(m1) < eslma). (24)

Filmy * ma) = {
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This lemma implies the following:

Proposition 5.7. Let B;,B; be subsets of Pine such that &B; C B; U {0},
FfiB; CB;U{0) forallieT (j=1,2). Set

By « By :{Tl'l * Mo ] m € By, EBg}.

Then &:(By * B2) C (By +B) U {0} and f;(B; #Bs) C (B1 *B2) U{0} follow for
allic f, and By * By is isomorphic to By @ By (for o tensor product of crystals,
see [13, Definition 4.5.3]) as a Uy(@)-crystal, where the isomorphism is given by
Ty kT = T @ T, .

Lemma 5.8. Let By1,B, be as in the above proposition, and let my € By, w5 € Bo.
There exists some p € Z>g such that

é’f"‘l (71 * wa) = (Eim1) * (Ew2) and &lmy # 0.

Proof. From (23), we can see that p = max{0,e;{ma) ~ @i(m1)} satisfies the
lemma. N

5.2 Relations between crystal bases and path models

The crystal bases ([13, Definition 4.2.3]) of U, (g)-modules and I/} (g)-modules
are typical and very important examples of crystals. In this subsection, we
review some realizations of crystal bases using the path models.

We prepare some notation. For a Ug(g)-crystal B and an element b € B, we
denote by C'(b) the connected component of B containing b, that is, the subset of
B consisting of elements obtained from b by applying &’s and f;’s ( € D } several
times. Note that C(b) is a connected U,(g)-crystal. For A € P, we denote by
m the straight line path my(£) = A, and we write

Bo(A) = C(ma)-

It is known that Bo()) C P for all A € P (24, Lemma 4.5 (d) and Corollary
2]). It is easily seen from the definition of the root operators that for any
= (1,...,un; &) € Bo(A), we have p; € WA forall 1 <j<N.

It is well-known that the irreducible highest weight U, (g)-module V;(A) with
highest weight A € .5_{_ has a crystal basis, which we denote by B(A). By bp we
denote the highest weight element of B(A). From the construction of B(A) ([13,
Chapter 5]), we have that ’

BA) = {Foy - Fuba |5 2 0,in € TH\ {0}, o)

and

{(beB(A) | &b=0forallic I} ={bs}. (26)

Theorem 5.9. Let A g 13+.
(1) ([24, §7]) If 7 € P satisfies mf =0 for alli € T and w(l) = A, then we have
C(7) C Pint, and there exists a unique U,(g)-crystal isomorphism from C(x) to
Bo(A) which maps m to 7.
(ii) ([19], [15]) There exists a unique Uy(g)-crystel isomorphism from By(A) to
B(A) which maps wp to by.
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Corollary 5.10. If # € P satisfies mI =0 for alli € T and w(l)=Ac¢€ P,
then there exists a unique Uy(g)-crystal isomorphism from C(7) to B(A) which
maps m to by.

Remark 5.11. It is known that By(A) with A € P, coincides with the set B(A)
of all Lakshmibai-Seshadri paths (LS paths, for short) of shape A ([24]). We do
not recall the definition of LS paths here, since we do not need it in this article.

‘We write Pcl P/ZS and we denote the canonical projection P Pcl by
cl. Note that B, is the weight lattice of U7 (g) A path with weight in Pcl is a
piecewise linear, continuous map 7 : [0,1] —+ R®z B, such that 70)=0,n(1) €
Pcl Let [P, denote the set consisting of paths with weight in Pc] For £ € Pcl,
we denote by ne € Py the straight line path n¢(t) = t£. We define an expression
of 1) € Py similarly as that for a path with weight in P.

For m € P, we define cl(n) € Py by

(l(m))(E) = el(m(t)) fort e [0,1].
Let A € P.(C P), and let
B(A)a = {cl{r) | 7 € Bo(N)},

which is known to be a finite set. Note that 5o,y = cl(m) € B(A)a. Now, we
define a U} (g)-crystal structure on B(\)c). Define a weight map wt : B(A)g — B,
by wt(n) = 7(1), and define root operators &, f; : B(A)a — B(N)a U {0} for
ieT by : . - _
&(cl(m)) = cl(&(x)), filcl(m)) = cl(fe(m)),

where ¢l(0) is understood as 0. We also define g; : B(A)a — Zyo and ¢; :
B(A)a — Zyo for i € T by e;(cl(n)) = ei(x), @i(cl{m)} = ¢;(m). Then these
maps are all well-defined, and B{)\). together with these maps becomes a finite
U, (g)-crystal ([28, §3.3]).

Remark 5.12. For A € P, Bp(A) does not necessarily coincide with the set
B(A) of all LS paths of shape A. However, it is known that the set {cl(w) | 7 €

A)} coincides with B{\)q defined above ([29, Lemma 4.5 (1)]). This is why
we use the notation ‘B{A)q’ in stead of ‘Bo(M)a’

In [20, §5.2], Kashiwara has introduced a finite dimensional irreducible in-
tegrable U, (g)-module W, (w;} for each ¢ € I called a level zero fundamental
representation, and has proved that it has a crystal basis. We denote this crystal
basis of Wy{w;) by B(W,(=:)).

- Naito and Sagaki have verified the following facts:

Theorem 5.13. (i) ([27, Theorem 3.2]) Let A = Y, Miwo; € Py with \; €
Zo- Then there exists a unigue isomorphism of Uy(@)-crystals from B(X)a to
Ricr B(w,)®’\‘ (which does not depend on the choice of the ordering of the ten-
sor factors).

(ii} ([28, Corollary of Theorem 1}) For all i € I, B(w;)a is isomorphic to
B(Wy(w:)) as a U, (g)-crystal.
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5.3 Degree function on B(\)qy

Let m e P. If 7 = {p1,...,pN;0), we call 4, e R@g P the initial direction of
7 (which does not depend on the choice of an expression), and we denote the
initial direction of 7 by ¢{m). The initial direction of n € Py is defined similarly,
and denoted by..{n). Note that ¢{cl(w)) = cl(¢(7)) follows.

For A € Py, let dy be the nonnegative integer satisfying

WAN (A + Z6) = A -+ drZ6.

Then we have . _
WA =W+ d,Z4. (27)

Lemma 5.14. Let A € Py.
(i) For any 7 € Bo(A), we have wt(m) € A — Q4 + Z3.
(ii) For any 1 € B(A)a), we have wi(n) € cl(A — Q).

Proof. By the definition of Bo{)), wt(7) € A4-3, 7 Za; = A+-Q-+-Z8. Let m =
(41, --, 4n; o) be an expression of 7. Since u; € WACWIZSC A—Q4+ZS
for each j, we have that

N
wt(m) = > (0p — op1)itp EA— Y Roa; + RS
p=1 iel
Hence, (i) follows. Then (ii) is obvious from (i). : a

Lemma 5.15. Letn € B(A)a.
(i) For arbitrary m € Bo(A) Ncl™(n), we have

Bo(A) Nl ™ (n) = {m + mha,s | k € Z}.
(ii) Let p € WA be an element satisfying cl(p) = (n). Then there exists a
unique element ™ € Bo(X) Ncl™ (n) such that o(7) = p.

Proof. (i) has been proved in [27, Lemma 4.5]. To prove (ii), let =’ € By(A) N
cl™}(n) be an arbitrary element. From (i),

Bo(\) Nl (n) = {7’ + mea,s | k € Z}.

Since cl(e(n’)} = «{n) = cl{) and o(x’) € WA, from (27) there exists some s € Z
such that v(#’) = p + sd)d. Now, it is obvious that 7’ — 744, is the unique
element in By () Ncl™'(n) whose initial direction is u. O

Now, we recall the definition of the degree function on B(A)g (A € Py)
introduced in [30]. Let i : Py — P be the map uniquely determined by

conditions
cloig(§) =&, ialf) € P+ ZAo

for ¢ € Py. Forp e B{)\)a, we denote by 7, the element in Bo(A) N cl™ (n)
such that u(m,;) € WA, which is unique by Lemma 5.15 (ii). Then we define
Deg(n) € Z by an integer satisfying

my(1) = da o n(1} — dDeg(n},
and call Deg(r) the degree of . By [30, Lemma 3.1.1], Deg(n) < 0 for all
ne B(A)cl.
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Remark 5.16. The main theorem in [30] says that the degree function on B(A)q
where A = ) ;. \yw; can be identified with the energy function (see [11], [12])
on @,y B(Wq(w:))®* up to some constant through the isomorphism given in
Theorem 5.13.

For i € B(A)q1, we define
wt5(7) 1= wt{my) = ia o wi(y) — 8Deg(n) € P,

and we call wts(7) the P-weight of 7.

Remark 5.17. By the definition of m,, we have
{ma |1 € B(X)a} = {m € Bo(}) | o(x) € P}

Hence, we have

S oewtpm) = Y e(wtm))= Y e(wi(m).
nEB(A}ar HEB(AN)a _ T(e:goe(;)

Lemma 5.18. Let n € B(A)a. In the following equations, mg is understood as
0.

(i) If i € I, we have &y = e,y and firg = T

(ii) If & # 0, then we have fom, = T

Proof. (1) By the definition of the roct operator, we have
t{&;7n) = t(my) o s58(7y),

which implies ¢(&;m,} € WA. Since cl(&r,) = écl(r,) = &n, we have &, =
Tgn by definition. The proof of f,-'frn = 7f,, is similar. (i) If fon = 0, (ii)
follows since fon = cl( fo':rn). Assume fgn # 0. Then we have fg:rr,, # 0, and we
also have gm, 7 0 by the assumption. Hence we have from {23, Lemma 5.3]
that .

t{forry) = t(my) € WA

Since cl(forr,) = fon, we have fg'.n',, = mz . by definition. a

6 Decomposition of B(A) ® By(A)

Throughout this section, we assume that A £ ﬁ+ \Zé and A € P, and we
show that B(A) @ By(X) is isomorphic to the direct sum of the crystal bases of
irreducible highest weight U, (g}-modules. This result is motivated by the tensor
product rule in [24] (see also [10}).

6.1 Technical lemmas

Here, we prepare several technical lemmas.
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Lemma 6.1. Let u be a real number such that 0.< u < 1, and assume that
7 € Bo(A) satisfies

HF () > —{A, ) forallte[0,u), i€l : (28)
(i) For anyic T such that €i{ma * m) # 0, we have & # 0 and
gm(t) ==(t) forallt e (0,4 (29)

(ii) For any sequence i1,. .., of elements of T such that €iy -+ Ei (ma*T) £ 0,
we have é;, -+ €, 7# 0 and

€, e, m(t) =m(t) for allt € [0,u].

Proof. It suffices only to show (i) since we can prove (ii) inductively from (i).
The statement &7 # 0 follows since otherwise we have &;(ms * 7) = 0. From
Ei(wa =) # 0, we have m]**™ < —1, which implies from the definition of the
concatenation that m¥ < —(A, Y} — 1. Then Lemma 5.3 (i) together with the
assumption (28) implies (29). O
Lemma 6.2. There exist a positive integer N and a sequence of real numbers
g:0=09 <01 <--< oy =1 such that any © € Bo(A) has o unigue
expression in the form (u1,...,un; o) with p; € WA

Proof. For each 1 € B{)\)q, take N, € Zyp and a sequence g" : 0 = o] < 0] <

see a}{,ﬂ == 1 so that , has an expression in the form (p1,...,pn,;2"). Now,
we define g : 0 = gy < 91 < --- < oy = 1 by the unique sequence such that

{o0,....on}= U {"gv-'aa?v,,}‘

nEB{A)a

We prove that these N and g satisfy the statement of the lemma. Let m; € Bo(A)
be an arbitrary element, and let 7 = cl(w1). Then 7, has an expression in the

form (p1,..., N, ;™). By Lemma 5.15, there exists some s & Z such that
Ty = Ty, + Tsays, and then we have my = (p + sdpd, ..., pN, + sdrd;c™).
Define a sequence pf, .. ., 5y of elements of WA by

#g = l4; + sdyd if 0’;?1_1 <o < 0’;’1.

Then we can easily see that m = (p], ..., #y; €}, Uniqueness of an expression is
obvious. ]

If asequence o : 0 =0g < -+- < oy = 1 satisfies the condition of this lemma,
we say that ¢ is sufficiently fine for A.

Remark 6.3. Assume that ¢ is sufficiently fine for A. Then for any = € Bg()\),
it is obvious that the function H7T(f) is strictly increasing, strictly decreasing,
or constant on each [o,,0p41].

Lemma 6.4. Assume that g:0=o0p <--- < on' =1 is sufficiently fine for A.
Then for any © € Bo(A),i € I and M € Zyg, we have

max{u € [0,1] | H () > —M for allt € [0,u]} € {00,01,..., 0N}
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Proof. Set
ug = max{u € [0,1] | H(t) > —M for all ¢t € [0,u]},

and assume that ug ¢ {00,01,...,0n}. If mJ > —M, we have up = 1 = o,
and hence mI < —M — 1 follows. Let p € {0,...,N — 1} be the number such
that ¢, < 1y < ¢p21. By the definition of uy and the assumption that g is
sufficiently fine, we have that

ng(o'p) > —M, Hf(uo) = —M and Hf(ap+1) < —M.
Let ¢ = —M — m7. Then we have from (22) that
' mf‘r“ <—M—1forr<qand m¥™ = —M.

Then since HT (t) > —M for all ¢ € [0, ug], we can show inductively from Lemma
5.3 (i) that
éim(t) =n(t) forallt e [0,ug].

Hence, we have Hf i (op) > —M and Hf g"(u,g) = —M_. On the other hand, we

g? 51
have H;*"(op41) > —M since m;*" = —M, which contradicts the assumption
that ¢ is sufficiently fine. O

For a subset J of f, we denote by WJ the subgroup of W generated by simple
reflections {s; [ ¢ € J}. It is well-known that W is a finite subgroup if J is
proper.

Lemma 6.5. Let J be a proper subset of T. Then Jor any 7 € Bo(N), the set
{8, -+ &i,m|s >0, ix € J}\ {0} is finite.

Proof. Assume that g : 0 =0 < -+ < oy =1 is sufficiently fine for A, and let
(415~ -, tiv; &) be the expression of =. By the definition of root operators and
the sufficiently fineness of g, we can see that

(&, ---&,m| 520, i € J}\ {0} C {(wrps1, ..., wnpn;0) | w; € Wyl,

and right hand side is a finite set since W, is finite. A

Lemma 6.6. For any 7 € Bo()) and u € [0,1], a subset {i € T | HF(u) =
—{A, o)} of I is proper.

Proof. Let (p1,.- ., ts;¢) be an expression of m. Recall that if o,_1 < u < 0y,
we have }

m(u) = Z (o — opr—1 )ty + (4 — Tp1) -
1<p*<p—1
Since p; € Wi=Wi+ d\Z&, we have that (u;, K) =0forall1 <j <s, and
hence we have {w(u),K) = 0. On the other hand, we have (A, K) > 0 from
A€ P \Zdsince K € 37, 7 Zsoc ({17, §6]). Ience {m(u)+ A, K) > 0 follows,
which implies that (w(u)-+A, )} > 0 for some i € T since K € YoierZsoay. O
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6.2 Decomposition of B(A) ® By(A)

We set
Bo(M) = {r &€ Bo(A) | m¥ > —{A, o)) for all i € T}.

Note that A + mo(1) € By for g € ]Bg()\)“.
Proposition 6.7. We have

BO(A) * BQ(A) = @ C(’JTA * ‘ﬂ'g).
ﬂ'DEBo(A)A

Proof. If mg € Bo(A)A, mp * mp satisfies mJ**™ =0for alli € f, which implies
by Corollary 5.10 that there exists a U,{g)-crystal isomorphism from C{m *mg)
to B(A+mo(1)) that maps ma * 7o t0 batyro(1)- From this isomorphism and (26),
we have that

{meClapxmp) |[Emr=0forallie T} = {ma * 7o},
which implies that a sum U;roeBo o4 B(ma # 7o) is disjoint, and we have
Bo(A)*Bo(N) 2 P  Clma +m0).
mEBy (M)A

We need to show the opposite containment, and this is equivalent to the fol-
lowing statement: for any w1 € Bo(A) and w3 € Bp()), there exists a sequence
1,- - ., of elements of I such that

&i, -8, (M #72) = mp * My for some 7 € By(N)2.

By Lemma 5.8, we can see that there exists a sequence j, ..., s of elements of
T such that

&), -+ Ej,(m1 ¥ mp) = mwp x 7y for some 75 € By(D\).

Hence it suffices to prove that for any m € Bo(A), there exists a Sequence
1,...,% of clements of T such that

é,‘,l .. ‘éik (TI‘A * ?1'2) =1Tp % for some m € Bo(/\)A.

Letg:l=0op <o <---<ony=1bea Suﬂiciently fine sequence for A\. By
Lemma 6.4, there exists some 0 < pg < N such that

0po = max{u € [0,1] | () > —(A, o)) for t € [0,4], i e I}.

We show the above statement by the descending induction on pp. If pp = N,
then we have ms € Bg(A)?, and there is nothing to prove. Assume py < N, and
set

J={iel [ HIQ(JPQ) = _(A’a';/)}v

which is a proper subset of T by Lemma. 6.6. We have that

{éil-'-éia(’lrl\*ﬂg) | s> G,ik c J}\{O}
' Cwp*{€;, -8, ma[s20,ir € J}\ {0},
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and since the right hand side is a finite set by Lemma 6.5, the left hand side is
also finite. Hence, we can see by weight consideration that there exists

wp %y € {&;, --- &, (ma * M) | 8 > 0,ix € J}\ {0}

such that
Eilmaxmy)=0forallie J (30)

Note that we have from Lemma 6.1 (ii) and the definition of py that
m5(t) = me(t) for all ¢ € [0, op,)- (31)
Let 0 < pj < N be an integer such that

oy, = max{u € [0,1] | ngé(t) > —(A, o)) fort € [0,4], i€ T}.

For i € J, we have m™*™ = 0 by (30), which implies that H™(£) > —(A, o)
for all ¢ € [0,1]. On the other hand, if i € I\ J, we have from (31) and the
definition of J that

H(t) > —(A, oY) for all ¢ € [0, 0p,] and HI?(6p) > —(A, ).

Hence we have p}) > po, and this together with the induction hypothesis com-
pletes the proof. O

The above proposition, together with Proposition 5.7, Theorem 5.9 and
Corollary 5.10, implies the following corollary, which is some sort of general-
ization of [10, Theorem 1.6], in which g == sy and A = mw;.

Corollary 6.8. We have

BA) @B S P B(A+m(1)

TaEBa{A)A

as U, (g)-crystals, where the given isomorphism maps each by ®@mo € by ®Bo(A)*
to bA-I-n'o(l) S B(A + WU(]'))

Note that we have shown the following fact in the proof of proposition 6.7,
which is needed again in the next section:

Lemma 6.9. Assume that g :0 =0y < -+~ < on = 1 is sufficiently fine for A
and m € Bo(A). Let 0 < pg < N be an integer such that

Opo = max{u € [0,1] | HF2(t) > —(A, o) for all t € [0,4),i € I},

and assume po < N. Let J = {i € T | H™(0p,) = —(A, af)}. Then there exists
7h € Bo(A) such that

A * 7y € {&;y - &, (mp x ) | s > 0,4 € J}\ {0}

and py > po, where py denotes the integer such that

oy = maxfu € (0,1] | H () > —(A,a)) for allt € 0,u),i € T}
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7 Relations among the Demazure crystals, By(\)
and B(A)y

7.1 Demazure crystals -

For a U,(§)-crystal B and a subset C C B, we define a subset F;C of Bforie T
by
and for a sequence i:i1,1s,..., iy of elements of T, we define FC by

j:ic = f:ij_f:ig " 'ﬂmc-

For notational convenience, we set FpC = C, and Fib = Fi{b} for b € B.
Let Ac Py, we W, and let w=s;, ---s;, be areduced expression.

Proposition 7.1 ([18]). The subset Fi, ;. .ba C B(A) is independent of the
choice of a reduced expression of w.

We denote this subset of B(A) by B, (A). It is known that B,,(A) has the
following properties:

Proposition 7.2 ([18]). (i) For any i € I, we have &8, (A) C B, (A) U {0}.

(i) We have
chy Vi(A) = Z e{wt(b)).
bEBy{A)
Definition 7.3. We call the subset B,,(A) C B(A) the Demazure crystal asso-

ciated with A and w. (Note that B, (A) does not have a structure of a Uy(g)-
crystal).

Lemma 7.4. (i) For anyi € I and w € W, we have

Bs.w(A)  if siw > w,

FiBa(A) = {BW(A) if s;w < w.

(ii} For an arbitrary sequence i: i1,..., iy, of elements of I, there ewists some
w € W such that Fiby = By (M),

Proof. Tf s;w > w, (i} follows from the definition. If s;w < w, then w has a
reduced expression in the form w = s;s;, -+ - 55, by the exchange condition ([17,
Lemma 3.11]}, and hence (i) follows since

FiBu(A) = FiFiji,imbt = Fijrojmba = Bu(A).
Then (ii) can be shown inductively from (i). O

Propositiog 7.5. Let J be a proper subset of f, and let 1 : 11,...,im be a
sequence of I. We assume thaet there exists some 1 <m’ < m such that i € J
foralll1 <k <m' and s;, ---5;_, is a reduced expression of the longest element

of WJ. Then there exists some element w € W satisfying Fiba = By (A) and
{whA, oY) <0 for i€ J. Moreover, this Demazure erystol B, (A) satisfies

fiBuw(A) C Bu(A)U {0} for allie J. (32)
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Proof. 1t suffices to show that there exists w € W such that
s;w < w for all ¢ € J and Fiby = B, (A).

Indeed if this is true, since s;w < w if and only if w'ay is a negative root of A
([17, Lemma 3.11]}, we have that

(wA, oy = (A, wla)) <0forie ],

and (32) also follows from Lemma 7.4 (i). We show by the descending induction
on k that there exists an element wy, € W for each 1 < k < m/ +1 satisfying the
following two conditions: wy, satisfies 7, ;..ba = Buw,(A), and has a reduced
expression in the form '

Wy = Si -+ 8i,, 85, <+ 85 for some [ € Zxg, j1,...,Ji €L

Note that this statement for & = 1 implies the above assertion. The statement
for K =m’ + 1 follows from Lemma 7.4 (ii) since the second condition is trivial
in this case. Assume k < m'. By the induction hypothesis, wy; has a reduced
expression in the form wy41 = 8i, - i, 85 - 85 I 8, Wes1 > Weay, then
we have

-ﬁk,---.im ba = -FikBWkw (A) = Bsa,,wkﬂ (A)

by Lemma 7.4 (i), and Lence wy = s;,wiy1 satisfles the above conditions.
Assume that s;, w11 < wey1. Then by the exchange condition, there exists
some k 4- 1 < p < m’ such that

Fip Sipgn "7 Fip_1 T Sigeqn T Sip
or there exists some 1 < ¢ <[ such that
Sig Sy i Si1 7 gy T Sigga T 56,055 7 8y

However, since s;, -+ - 5:,, is a reduced expression, the first case cannot occur.
Hence the second case occurs, and

W1 = SipSiper "SS5 0 8ig1 8001 T S
is a reduced expression of wg,1. Moreover, we have

-Fi bA = -’F;;;Bwkﬂ (A‘) = B';Uk-}-l (A)

kyeeesim

by Lemma 7.4 (i). Hence wy, = wy..1 satisfes the above conditions.

7.2 Demazure crystal decomposition of by ® Bg(A)

Throughout the rest of this section, we assume that A € ﬁ+ \Z§, A € Py and
a sequence of real numbers g : 0 = g9 < --- <oy =11s sufficiently fine for A.
For A, we denote by I the subset of I defined by -

Tn={ie Tl (hay)=0}

This subsection is devoted to show the following proposition. The proof is
carried out in the similar line as [22, Proposition 12].
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Proposition 7.6. For each mp € Bp(\)*, there exists some wy, € W such that
the image of a subset by @ Bo(A\) in B(A) @ Bo(\) under the isomorphism given
in Corollary 6.8 coincides with the disjoint union of the Demazure erystals

1 B, (A+m(1)

moEBp (M)A
Moreover, each wn, satisfies (way(A+ (1)), @Y} <0 for alli € Ip.
First we show the following lemma:

Lemma 7.7. Let 0 < u < 1 be a real number, J be a subset of f, and let
T & Bo(A) be a path satisfying for all i € J that

HT () > —(A, o)) for all t € [0,u] and Hf (u) = —{A, o). (33)
(i) For i € J such that f;(m % w) # 0, we have 7
filma =) = ma * fiw and fin(t) = n(t) for allt € [0,u].

(ii) For a sequence i1,...,%s of elements of J such that fi, -« fi,(wa *m) # 0,
we have

fii ' "fik(ﬂi\*ﬁ) =Tp * (fu e flkﬂ—) and fh "'fikﬂ(t) :"T(t) fordlte [0,u]

Proof. Tt suffices only to show (i) since (ii) can be proved inductively from this.
The statement f;(mwa * ) = my * (f;7) follows from (24) since we have from (22)
that ‘

@i(ma) = (A, o) and ei(m) = —mi > (A, &),

" where the second inequality follows from (33), and fim(¢) = w(¢) for all ¢ € [0, u]
O

follows from Lemma 5.3 (ii} and (33).

We define a sequence in, of elements of T for each mo € Bo(M)A as follows.
Fix mg € Bp(A)A. For 0 < p < N — 1, we set

JP={ieT| H*(op) = —(A, o)}

Note that J? is a proper subset by Lemma 6.6, and hence W_;p is finite. For each
0 < p < N — 1 such that J? # @, we fix a sequence i? : ¢},...,7%, of elements

p
of J¥ so that s ... sz, ) is a reduced expression of the longest element of W».

If J? = (}, we set i” = ), and we define a sequence i, by i%,i!,...,i¥ 1. The
following lemma is essential for the proof of Proposition 7.6:

Lemma 7.8. Formg € Bo( M)A, we have
Clmp xmo) N (ma * Bo(A)) = F, (74 * 7o).

Proof. For 0 < p < N —1, we set iZP = iP,iP¥1 . i¥1, and we set i2V = .
First, we show the containment 2. Let

Bo(A)? = {7 € Bo(\) | w(t) = mo(¢) for all t € [0,0,]}
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for 0 < p € N, and we show by the descending induction on p that
wa *Bo( AP 2 Fiop(ma * 70 ), '
which for p = 0 implies the desired containment. If p = N, there is nothing
to prove. Assume p < N — 1. By the induction hypothesis, we have my *
Bo(M)PF! D Fizpsa(ma * mp). For m € By(\)P+, we have that HF (t) = H™(t)
for all £ € [0, 0p41], 7 € I. Hence, in particular, we have for all ¢ € J? that
HF (§) 2 —(A,aY) for all t € [0,0,] and HF () = —(A,aY).
These equations and Lemma 7.7 (ii) imply that for any sequence iy,...,1, of
elements of J? satisfying f;, - - fi, (%A * 7) # 0, we have
Fo oo Fma s m) =max (Fiy oo fium)
and ~ .
fiy oo Fi,w(t) = 7w(t) = mo(t) for all t € [0, 0p).

Hence, we have

Fizn(ma + o) C Fin(ma * Bo(APH1) = ma + FieBo(A)P! C 7 # By(M)P.

Now, we show the opposite containment C. For arbitrary = € Bo(A), we
denote by po(n) € {0,..., N} the integer satisfying

po(my = max{u € [0,1] | HF(t) > —(A,aY) for all t € [0,u],% € T}.

Let 7 be an arbitrary path in Bo()) such that mp * m € C(ma * mp), and we
show by the descending induction on po(7) that mp * T € Fizpeem (A *x 7g). If
po(w) = N, then &{(my # %) = 0 follows for all i € T, which implies = = m since
a * Mo is the unique element in C(mp * 7o) satisfying this condition. Assume
that po(m) < N. By Lemma 6.9, there exists «’ € Bp(A) such that

masw € {8, -8, (ma %) | s> 0,d € JPOEY (34)
and po(7') > po(x). By the induction hypothesis, we have

A * T € Fiopoenty (T %Mo) € Fizpotm) (Ta * o).
Since C{ma * 7o) = B(A -+ mp(1)), we have for all i € J7°(7) that

FiFizpatm (Ta % 0) C Fizpotm (Ta * 10} U {0}
by Proposition 7.5. Hence, we have from (34) that
TART E {ﬁl ---fis('rrA x7') | s> 0,ix € Jp"(")} C Fizppem (A * 70).
1

Proof of Proposition 7.6. For my € Bp(A)*, Lemma 7.8 implies that the image
of C(ba ® mp) N (ba ® Bo{A\)) under the isomorphism given in Corollary 6.8
is Fi, ba+mp(). Then by Proposition 7.5, there exists an element w,, € W
satisfying .
Fi Oatmo(1) = Buug, (A + mo(1)),

and (we{A +m(1)), oY) <Oforallie JO = Ix. Now, the proposition follows
since
ba@Bo(A) = [ C(ba ®@mo)(ba ®Bo(N).
o EBo(A)A ’
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7.3 Demazure crystal decomposition of by @ B(\),
First, we remark an elementary fact about crystals: '

Remark 7.9. Let B be a Uy(g)-crystal with a weight map wt: B — P. Then
we can canonically consider B. as a U, (g)-crystal by replacing the weight map

withclowt: B — 18.:1-
Similarly as Bo(A)*, we define B(A)4 by
B)A = {7 € BOWa | (nt), o)) = —(A, ) for all £ € [0,1],4 € T}
Then it is easily checked that
BoW* = [T < (o) nBo(N). (35)
0 €B(A)

For a Uy(g)-crystal B and b € B, in the same way as a U (@)-crystal, we denote
by C(b) the connected component of B containing & .

Lemma 7.10. Let g € B(\)A. Then for any mo € 1™ (70) NBo()) € Bo(M)2,
the map id®@cl: B{A) ®Bo(A) — B(A) @ B{(A\)a induces a Uy(g)-crystal isomor-
phism from C(by ® 7g) to C(bpy @ mg)-

Proof. By the deﬁgition of cl : P — [Py in the subsection 5.2, we can see that
id @ ¢l preserves a P -weight, £;, ;, and commutes with root operators. Hence,
it suffices to show that the induced map is bijective. The surjectivity is obvious.

We show the injectivity. Let b € B(A) and 5 € B(A)g be arbitrary elements
such that b®n € C(bs ® np), and assume that 71, w2 € Bo(A) satisfy

b®m; € C(ba @ mp) and cl{m;) =17

for § = 1,2. By Lemma 5.15 (i}, there exists k € Z such that o = m + Tpa, 4.
By C(ba ®mo) =2 B(A+mp(1)), there exists a sequence 41, .. .,%; of elements of T
such that &;, ---&;, (b®m) = by & mp, and then it is easily seen (cf. [28, Lemma
3.3.1)) that

€ - &, (b@m2) =&, - €, (b® (M1 + Thass)) = ba @ (W0 + Thdys)-

Hence bp ® (M + ga,s) € C(ba ® 7o), which together with (26) implies & = 0.
Therefore, we have m; = m, and the injectivity follows. O

Recall that we have

BA)oBo(N) = € Cloa®mo)

wpERB (A}

by Proposition 6.7. Applying id ® ¢l to this equation, we have from (35) that

BA)@BNa= €D Cba@m). (36)
mEB(AY

Now, we can obtain some results about a decomposition of B(A) @ B(A), and
ba ® B(A)a. Take an arbitrary 7% € cl™!(no) N Bo(A) for each no € B(M)A.
Then the following proposition follows:
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Proposition 7.11. (i) We have

BA)@BNa> P BA+r™(1)
B

as U}(§)-crystals, where the given isomorphism maps each by ®1o € by @ B(A))
to bA-i-?r""ﬂ (8] S B(A + Tl'm_’(].)).

(ii) Under the isomorphism given in (i), the image of the subset by @ B(A)aq
coincides with the disjoint union of the Demazure crystals

H B, (A 77 (1)) for some wy, € W.
mEB{AY]
Moreover, each wy, satisfies (o (A +710(1)),0Y) <0 for alli € TA-

Proof. (i) follows from (36) since for each np € B(A}Y, we have from Lemma
7.10 and Corollary 6.8 that

Clba @mo) 22 C(ba @ ™) = B(A +7™(1))

as U, (@)-crystals, and (ii) also follows from these isomorphisms and Proposition
7.6. O

8 Study on the decomposition of by, ® B(A)q

8.1 Preliminaries about the weight sum of B(\)q

In the previous section, we have seen that by @ B(\)y coincides with the disjoint
union of some Demagzure crystals. In this section, we study in more detail this
result with A = Ay. R .

First, we prepare some notation. Let A € P, and w € W be elements
satisfying wA = woA + €Ag + md for some A € Py, L € Zog,m € Z. Then we
use the following notation which is compatible with that of modules:

B¢, A\)[m] = B (A).

Note that we have from Proposition 7.2 (ii) that

che DL Nm = > e(wi(b)). (37)

bEB(E,\)[m]

Let A€ Prand np € IB()\)CA]". Then we have 7,y € ¢l™ (59} ﬁBO(A), where
Tino 1S defined in the subsection 5.3. Hence from Proposition 7.11, we obtain a
U4(g)-crystal isomorphism

K BA) @BNa S D B(Ag + 1wy (1))
M0 EB(A)A°
which is uniquely determined by x(ba, ® M) = bAn+7T,m(1) for all g € IB(/\).‘?]“.
Lemma 8.1. For each n € B(A)a, we have

wto k(ba, @n) = wt(m,) + Ao = Wtﬁ("?) + Ao.
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Proof- The second equality follows from the definition of the P-weight of 1.
We show the first one. By (36), there exists some 1y € B(A)f:‘l” such that
ba, ® 7 € C(ba, ®70). Recall that & is defined by the composition of a U (@)-
crystal isomorphism from C(bs, ® 1o) to Cba, ® ), which we denote by &’
here, with a U,{g)-crystal isomorphism from C(ba, ® my,) to B(Ag + 7y (1)).
Hence, it suffices to show that

l“jl(bi‘\o @n) = by @ my.

Recall that &'(ba, ®ng) = bp, ®y,. Since there exists a sequence iy, .. ., ix such
that ba, ®7 = fi, -+ - i (bA, ®70), the above equation can be proved inductively

from the following assertion: if p and z € T satisfies f; (ba, ®7) = ba, ® fin, then
we have fi(ba, ® ) = b,\o ® m,,- This assertion easily follows from Lemma
5.18. [

By Proposition 7.11 (ii), x{ba, @ B(A)a) is the disjoint union of some De-
mazure crystals in the form B,,(A’) such that the level of A’ is 1 and (wA’, o)) <
0 for all i € I, which can be written as B(1, u)[n] for some p € P, and n € Z.

In conclusion, we have the following:

Propos;ition 8.2. Let A € P;. Then there erists sequences i1,...,e € Py
and ny,...,ne € Z such that

K{ba ®B(Na) = [ B(L, 1y)lnyl.
1<j<e
Moreover, we have wt o k{ba, ® 7) = wt(n) + Ao.
Corollary 8.3.
> elwhsm) = Y chy, D(1, p5)lnl.
7EB(A)a 1<5<¢8

If g is simply laced, we can easily determine 4;’s and n;’s in Corollary 8.3
from a result in [8]:

Proposition 8.4. If g is simply laced, then we have
> e(wta(n) = chy, D(1, M[0].

HEB(A) a1 )
Proof. From (8, Proposition 3|, we have x(ba, ® B{A)a) = B(1, A)[m] for some
m € Z. By definition, we have my,,,, = 7\, which implies wt o k(ba, ® 7a(r)) =
A + Ap by Proposition 8.2. Since ngxy € B(A)q, this equation means that
" B(1, \)[m] contains an element with weight A + Ay, which forces m = 0. d

If g is non-simply laced, the decomposition can be more complicated, and
it seems hard to determine p;’'s and n;’s by straightforward calculations. In
the fundamental weight case, however, we can obtain the following proposition
using the result in [21] and Theorem 5.13.

Proposition 8.5. For general g, we have for each i € I that

> elwtp(n)) = chy, DL, wi)[0].

7E€B(w4)al
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Proof. Since B{zo;)q is isomorphic to B{W,(w;)) by Theorem 5.13 (i), we can
see from [21, Corollary 4.8} that k{ba, ®B(w;)a) = B(1, ;) [m] for some m € Z.
The rest of the proof is same as Proposition 8.4. O

Corollary 8.6. If A =3, ; hiw; € Py, then we have

> elpowt(n)) = [ chy D(L, @)™,

nEB(N)g il

where p denotes the canonicel projection ﬁcl — P.

Proof. From the above proposition, we have

Z e(p o wit(n)) = chy D(1, w;)

NEB(™;)ct

for each i € I. Then the corollary follows since B{A\)a = ®;c;B(w:)3™ by
Theorem 5.13 {i). ‘ O

From the next subsection, we begin to determine u;’s and n;’s in the non-
simply laced case using the Demazure crystals for U, (§°).

8.2 Path models for U,(§*")

In the rest of this section, we assume that g is non-simply laced, and we apply
the theory of path models for U,(g""). Here, we fix some notation, which are
used throughout the rest of this section. '
Let 68 € A, denote the highest root in A, and let ot = 6 — ¢°* € A,
whmh corresponds to a simple root of g° . Note that (MY =rK— (GSh)V Let
b e denote the reflection associated with of?, and we denote by Weh the
subgroup of W generated by {si2} U {s; |i € ISh} Set I*t = {0} U I*®, and

Ph = N 7w+ 2Ry + 73 C (B)"

igfsh

Note that s§* acts on Pt by sih(v) = v — (v, ()Y for v € P and s; for
i € I°M also acts similarly.

Let P be the set of paths with weight in P*", and define B5" similarly as

Pint. As described in the subsection 5.1, we can define root operators associated

to i € I*" on Pk using the above actions of simple reflections. To distinguish
them from &; and fi, we denote them by &" and ff* (i € I*h). The maps
wt: PSh — P and g, ; 1 PR — Zsg for 4 € I°" are defined similarly. Then

Theorem 5.2 implies the following:

Proposition 8.7. Let B C PS". be a subset such that &'B C B U {0} and

int

F'BCBU{0} forallic b, Then B, together with the root operators &0, f5h
for i € I and the maps wt, £;,1;, becomes a U,(g*")-crystal.

We denote by H™" and mi™" for = € P, and 4 € *" the counterparts of
HT " and m}" respectively. For v € P!, let 7, denocte the straight line path:
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7,(t) = tv, and we denote by Bi"(v) the connected component containing =,
which is a U, (g"")-crystal.

_ Since g is simply laced, the following lemma follows from Proposition 8.4
and Remark 5.17:

Lemma 8.8. Letv € Py. Then we have

Z e(wt(m)) = chyan D (1, 1)[0)].

TEB (1)
(r)EP
8.3 Identity on the weight sum of B(\)y

This subsection is devoted to the proof of the following proposition:

Proposition 8.9. Let A € Py, and set X' = A —ig,(A). Then we have

> e(wts(m)) = (X Yisnchyn D*(1, R)[0].
NEB(M)a
wis(nEA—-QP+Z5

Remark 8.10. In the final part of this article, we show the equation
chy, W(A) = > e(wtz(n)).
NEB(A)a

Note that the above proposition is compatible with this result and Proposition
4.17.

First, we prepare a technical lemma:

Lemma 8.11. There exist an element T € W and an element j € I°" satisfying
the following two conditions:

(l) T(aj) = a.(s)h,
(ii) 7 has an expression T = 8y, ... 81, such that

8y e 8ip_, () ¢ {a+ ki |ae A ke Z} (38)
Joralll<L <M.

Proof. Here, we give 7 € W, an expression of 7, and j € I® for each type of g
using the numbering of index for simple roots in [17, §4]:

o Type Bg: Let 7 = sg—18¢—2 - 2505182 --8¢—1 and j = L.
In this case, of® = og + oy + 200 + 203 + -+ + 2051 + g

o Type Cp: Let 7 = sps4_1 - 8150 and j = L.
In this case, of® = g + o1 +- - + .

o Type Fy: Let 7 = 308358182535450p5152 and 7 = 3.
In this case, a‘ah = g + 201 + 3os + 3z + oy

o Type Go: Let 7 = 51525081 and j = 2.
In this case, _aﬁh = cvg + 20v1 + g,

44



Though it is a little troublesome work, we can check directly that these elements
actually satisfy the conditions (for informations of the root systems, for example -
see [2, Ch. VI. §4]). Note that if o, is a long root, the condition (38) is trivial
since the right hand side consists of short roots. Using this fact, we can reduce
a bit the amount of calculations. [}

Now, we begin the proof of the proposition. Write A = 3 ., hyw; € Py
with A; € Zyg. For 7 € Bgh(X), we define a piecewise linear, continuous map
ien(m) 1 [0,1] » P ®@g R by igy(m)(t) = ien (w(£)) for ¢ € [0,1], and let 7a be a
straight line path: my (¢) = tX. Note that {a;, A') = 0 for all ¢ € I*". Now, we
define @) for r € BP(X) by

P(7) = den () + s
The following lemina is essential for the proof of the above proposition.

Lemma 8.12. We have (%) € By(X) for all m € B(N).

It is easily seen that p(ms) = mx € Bo()\). Hence, by the definition of B{F(}),
it suffices to show the following lemma:

Lemma 8.13. Assume that = € B§P()) satisfies p(w) € Bo()\). Then for each

i € I the following statements hold.
(i) If €Sh’ﬂ' # 0, then p(€"7) € Bo(A).
(i) If fSh’ﬂ' # 0, then o(fihr) € Bo(A).

Proof. We show only (i). The proof of (ii) is similar.

claim 1. For w € W and v € P, we have ig (wr) = wign ().

Tt suffices to show that iwn(siv) = Siisn(v) for i € It and ig(s§tv) =
sPisn(v). Let i € I°". Since o) € b, we have (v,a}) = {isn(v),o}). Then
this together with the fact s, () = ¢y implies ign{s;) = 8;4sn (). We can also
prove igy(s§Pv) = siigy(¢/) in the same way.

claim 2. If i € I, then we have i, (6 (n)} = &;(éen(7)). {Though ésh{x) may

not be contained in Py, we define &;(4sn(7)) by the same way described in the
subsection 5.1).

We have
PO ) = G (n(®)), o) = (m(t),0Y) = HM(8) for t € [0,1],
Then claim 2 follows from the definition of the root operators and claim 1.

claim 3. If i € I*®, then (i) follows.

We have H:"“(”) (8) = H=™+™ gince (M, o)) = 0. Then by the definition
of &;, we can check that &;isp{(m) + ma = &;(isn(m) + 7a). Now, we have from
claim 2 that

D(EMT) = i (EP ) + v = Eifan(T) + T = Eildan(m) +ma) = Exp(m) € Bo(N).
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It remains to show the case ¢ = 0. Let (¢1,...,vn; o) be an expression of 7,
where v; € WX, For each 1 < k < N, we can take wy € W= and py, € Z such
that v = weA + prd by (27).
claim 4. We have (7)) = (wn A +mé, ..., wnx)+pnd; o).

For each 1 < k< N, we have

ish (WA + prd) + X = wrish(X) + ped -+ N = wi (Gsn(X) + X') + pud = wed + picd,

which implies claim 4.

We set ux = wpA +ppd for L <k < N. We put

t; = min{t € [0,1] | th’w(t) = mgh,w )
to = max{t € [0,41] | H3"™ (£) = m§™™ 4 1}.
By replacing o if need, we can assume that g,¢1 € {¢9,---,0n5}. Take go,q1 €

{0,...,N} so that ¢, = tg and g4, = £;. Then by the definition of & and an
expression, we have

~sh, sh sh .
BT = (1,0, 59 Vgot1s-++180 Vg1 Vagr 41, - - -, UN T )-

Since ien (s3Pre) + A = s (ign(vr) + X'), we have that
‘p(ésﬂh’r) = (p'l! Ve !“00!38}1qu0+13 LR | sghru’!h’”m+11 LR JU‘N;Q)' (39)

Let T € W and 4 € I'® be elements satisfying Lemma 8.11, and let 7 = s;, - - - 51,
be an expression satisfying the condition (ii). In the following proof, by wn’ for
w € W and 7’ € P we denote the path defined by wn’(t) = w(x'(t)).

claim 5. We have

S-r—l(p(ﬂ-) = T'"l{p(?'l') = (T_Inu'ls . :T_I#N;Q)’
where the action 5,1 is defined in Theorem 5.4.

Set 7, =84, -+-8;, for L <L <M, and 19 = id. We show by induction on
L that
8,-10(m) =77 (7).
The case L = 0 is trivial. Assume that L > 1, and assume that Sr;i 1(p(‘.'r) =
771 (r). By the condition (ii), we have for some 8 € A\ A" and ¢ € Z that
Tr—106, = 3+ £4. Then, we have for each 1 <k < N that

(Tgil.“'k! aYL) = (A’wEITL—la::IL) = (A! (wglﬂ)\,)'

By Lemma 2.2,if § € A.,.\Af'lf‘, then we have wglﬁ cA,foralll <k < N, and
hence the last term is nonnegative for all k. On the other hand, if 8 € A_\ A",
then we have w;c'l,ﬁ’ € A_ for all k, and hence the last term is nonpositive for

-1
all k. Therefore, we have that the function H: :“ﬁp(ﬂ) is non-decreasing or non-
increasing, and then Lemma 5.5 completes the proof of the claim.
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Now, the following claim completes the proof of lemma 8.13 {i):

claim 6. We have.p(&'1) = S,.8;5. —1<p(1r) € Bo(A)-
Since () = isn(m) + mar and (N, (g?)Y) = 0, we have {p(m)(£), (cgh)V) =
H3M™(¢) for all £ € {0,1]. Hence we have
min{(p(m)(®), (e§")") |t € [0, 1]} =m§™", (40)
and _ 1
" minft € [0,1] | {p(m)(2), (05")Y) = mg""} = t1 = 0y,
max{t € {0,#1] | {p(m)(£), (Cﬂsh V)= Sh T+ 1} =1 = og.
By the condition (i}, we have
(r~hp(m) (), o) = {p(m)(2), (ef")") for all ¢ € [0, 1].
Yo(m) _

(41)

Then we have m}

mi™ from this equation and (40), and we also have
from (41) that ‘

-1 -1
mln{t S [O, ].] | H; () = m;— l'P(ﬂ-)} =t = Tg1s
-1 -1
max{t € [0,61] | HY 7 =m] #™ £ 1} =tp = og.
Hence, we have from claim 5 that
EJST“NP(W) = éj(T_lnu'la v :T_l.u'N;g.)
= (Tulp‘la see ’Tﬂlnu'qo: sz_IJut;ro+1: v SjT_lﬂan_lnuql+1a o ,THI#N;Q..)-
= (T_lp'la s 7T_lnu'qo: T_ls?)hru'qo-I-l’ S T_lsﬁh!-‘ql > T_lf"'qu+1’ e T_lnu'N;gL

where the last equality follows from the condition (i}. Then similarly as claim
5, we can show that

S e:.1 ‘1‘19(77) (nu']-! v o1 Hgas sgh“t,‘m-‘rl: AR sghnu’91:#g1+1r vy F'N;Q)!
which is equal to (&) by (39). O
As stated above, Lemma 8.12 follows from Lemma 8.13. By Lemma 8.8, we
have : _
> elwi(w)) = chys D™(1, X)[0}.
nEBIP (X}
(w)eP

Since wt{iw(m)) = isn(w) (1) + X = fen(wt{w)) + N, this equation implies that
Z e(wt(p(m)}) = e(x)ishChhzh PSh(]-aX)[O]-

~ERP(R)
L(m)EP

On the other hand, as stated in Remark 5.17, we have

> elwtp(m)= > e(wt(x)).

NEB(N)a 7' €Bo ()
(" YeP

Hence, the following lemma completes the proof of Proposition 8.9.
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Lemma 8.14. The map @ induces a bijection
{r e BN [o(m) e P} 5 {x' € Bo(N) | (') € P,wt('fr') EA— Qfﬁ‘ + Z§}.

Proof. Using Lemma 8.12, we can easily check that the image of the left hand
side is contained in the right hand side, and this map is obviously injective.
Hence, it suffices to show that the number of elements of these sets are same.
As stated in Remark 5.17,

{7 €Bo(N) | e(#’) € P} = {my | 9 €B(N)a}

holds. Hence the number of elements of the right hand side of the lemma is
equal to that of elements of the set {n € B(X)a | wi() € (A — @$)}. By
Corollary 8.6, we have

> e(powt(n)) = Py_qgun H chy D(1, @;)™,
nEB(A)al iel
wi(n)Ecl(A—QF)

where p denotes the canonical projection ﬁcl — P, and since wtyD(1,w;) C
w; — &+, the right hand side of the above equation is equal to

Aq
[T (Pui-mechy ’D(l,wi)) .
i€l o .
By Lemma 4.21, we have

Pw;—Qj{‘Chb D(l, ‘CU,') = e(w,- — ish('ﬁ"i))ishchbah sh ('r, 'ﬁ'?"i),
and from Lemma 3.8, we have that

dim Vi (5;)  if i € I,

- she. =y —
dim D**(r, ;) {1 i

In conclusion, we can see from these eciua.tions that
#{n'.€ Bo()) | (') € Pwt(n) € A= QF + 28} = [ dim Vyu (@)™
‘jesh
On the other hand, we have
#{r e BN | ufx) € P} = dim D"(1, X}

= ] dmD*@, @)™ = [] dimVa(@)™,
igIsh ielsh

where the first equality follows from Lemma 8.8, the second follows from [7,
Theorem 13, and the last one follows from Lemma 3.8. Hence, we completes the
proof. O
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8.4 Lower bound for the weight sum of B())q

Recall that, by Corollary 4.16, D*1(1,3)[0] has a Cg5'-module filtration 0 =
Dy C Dy C--- C Dy =D%(1,2)[0] such that

D;/D;_, =D (r, v;)[m;] for some v; € Py, m; € Zzo.

On the other hand, by Corollary 8.3, there exist a sequence p, . - ., tig of elements

of Py and a sequence ng,...,ne of integers such that
> elwtpm) = Y chy, D®, ;)0
7€B(Na - 158

Now, we state the following proposition, which is the main result in this section:

Proposition 8.15. Let X = A — ig(}). There exists a sequence ji,..., 5, of
pairwise distinct elements of {1,...,£} such that pj;, = ten(vi}+ X andny, =m;
forl <i<k.

Proof, Let ajl_l = D icran Z>0T;, and we define a partial order <s, on P, +7Zs
by 1 +p18 <en vh+pad if th—v € QT and p; > pa. This partial order satisfies
that, if o] + pmd € Wths&hDSh(f, v4)[p2], then we have v -+ P18 =g v + pad. Let
G = v; +myd for each 1 < i < k. By changing the numbering, we can assume
that the sequence (3, ...,(x satisfies that, if ¢; >.n (5, then i < j. We show
by induction on %' that there exists a sequence j1,...,jw of pairwise distinct
elements of {1,...,£} such that p;, = i (3} + A and n;, = m;. Thecase k' =0
is trivial. Assume 0 < k' < k. By the induction hypothesis, we have

K -1
> e(wtpm) — D chy, D(1,den () + X)[mi]
NEB(A)et i=1

= > chy, D(Lpy)lny)
j%{jll“'}jk’—l}

Denote by F the element of Z[h3] in the both sides of the above equation. We
have from Proposition 8.9 and Lemma 4.21 that -

i=1

E-1 )
PA—Q{E‘-I—ZEF = C(A’)Z’Sh Chhih ‘DSh(l,X)[O]— Z Chbzh 'DSh(T‘, Vi)[mf,])
' (42)

k
= e{\ Yish (Z chyan D (r, r/t-)[mi]) .

=k

Define a subset S C (h3)* by

k
S = {¢ € (h5")* | the coefficient of e(¢) in Z chyen D (r, v;}[m;] is nonzgero}.
i=kt
From the assumption on (3, ..., (y, We can see that (pr = v 4+my 3 is maximal

~ in § with respect to the partial order <.,. Then, since v4 —1] € @T if and only

'
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if (4 (¥4) + X) — (Gan(2]) + X') € Q% for v{,v4 € P, we have from (42) that
ish{€ir) + A is maximal with respect to <X in the set

£ € X — Q%" + Z§ | the coefficient of e(£) in F is nonzero}.
+

Then, since {£ € b | the coefficient of e(£) in F is nonzero} € A — Q4 + Zd
by Lemma 5.14 (ii), we can see that i (Cr) + A is a maximal element in
this set. Now, from the weight consideration, there exists some j5* € {1,...,£}\
{F1s++ -+ Jrr—1} such that g 4+n6 = i, ((er)+A', which completes the proof. O

Corollary 8.16. Let A € Py, and we set N = X —ign(X). Then we have
> ewtsm) = Y. (DL DR )DL den(v) + X)ml.
nEB{A)a V€F+,mEZZQ

Remark 8.17. In the next section, we show that the left hand side and the
right hand side in the above inequality are equal.

9 Main theorem and corollaries

To prove the main theorem, we need the following lemma:
. Lemma 9.1. For A € Py, we have
dim W (A) > #B(Na.
Proof. Write A =3 ;. ; Mt with A; € Z>g. The inequality follows since
dimW() = [] dim DL, wi)* = [[#B(ws)a)™ = #B(Na,
i€l el

where the, first inequality follows from Lemma 3.11 (ii), the second equality
follows from Proposition 8.5, and the third follows from Thecrem 5.13 (i). O

Now, we state the main theorems in this article. The following theorem is
easily follows from Corollary 4.20, Corollary 8.16, and the above lemma:

Theorem 9.2. Assume that g is non-simply laced. Let A € Py, and set X' =
A —isn(A). Then we have

chy, W) = D> e(wtp(n)
NEB(M)al
= Z (D11, N)[0] : DB (r, v)[m])chy, DL, sn(r) + N )[m].
ue-ﬁ+,mezzo

When g is non-simply laced, the Demazure module D (1, 0)[0] has a Cg3-
module filtration 0 = Dg € Dy € -+ C Dy, such that

D;/D;_y = D™ (v, 14)[my)] for some v; € Py,m; € Zxg

by Corollary 4.16. Then we set p; = 7en(v:) + (A — isn(A)) for each 1 < i < k.
When g is simply laced, we set k=1, p3 = A and m = 0. Now, we obtain the
following result on the structure of the Weyl module for-the current algebra:
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Theorem 9.3. The Weyl module W(A) has a Cgg-module filtration 0 = Wy C
Wy € --- € W, = W(A) such that each subquotient W;/W;_, is isomorphic to
the Demazure module D(1, y;)[my]. -

Proof. The theorem in the simply laced case is just Thecrem 3.7. Proposition
4.18 together with Theorem 9.2 implies this theorem in the non-simply laced
case. . O

On the other hand, in the crysta.l theory, we have the following theorem:

Theorem 9.4. There exists o Uy(g)-crystal isomorphism

£:BA)®B(Na— @  B(Ao+mm(1))

na€B(A)®
such that the restriction of & on ba, @ B({A)a preserves the ﬁ—wez’ghts, and we
have
K(bso @ BNa) = [ B, pa)lmal.
i<i<k

Proof. The theorem in the simply laced case follows from Proposition 8.2 and
Proposition 8.4. On the other hand, the theorem in the non-simply laced case
follows from Proposition 8.2 and Theorem 9.2. ' O

Next, we introduce two corollaries which easily follow from our main the-
orerns. The following one has been verified in the simply laced case in [8,
Proposition 1, Corollary 4].

Corollary 9.5. Let A€ Py.
(1) If A= 3 er M, then
el

(i) Let A1,...,Ax € Py be elements satisfying A = A + -+ + Ax. Then for
arbitrary pairwise distinct complex numbers ¢y, ..., ck, we have

W(A) = W(’\l)cl Hoerk W(Ak)ck
as Cgq-modules.

Proof. We need only to show in the non-simply laced case. By Theorem 9.2 and
Theorem 5.13 (i), we have

dim W () = #B(Na = [ [(#B(w:)a)™ = [ [ dim W(w:)™,
iel el

and (i} follows. By the same way as [8, Lemma. 5], we can check that W (A )., *
-+« % W(A)., satisfies the defining relations of W (A}, and hence there exists a
surjective homomorphism from W(A) to WM ), #- -+ % W{Ag)e.. From (i}, this

surjection is an isomorphism. O
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Before stating the next corollary, we prepare some notation. For a Cgg-
module M and ¢ € C, we set M, = {v € M | dv = cv}, which is obviously
a g-module. For a finite dimensional g-module N and g € Py, we denote by
(N : V3(1r)) the multiplicity of V(u) in N. )

In [30], an expression of the classically Testricted one-dimensional sums
(1dsums for short) in terms of paths has been given. Here, we briefly recall
the result. For the precise definitions of energy functions and classically re-
stricted 1dsums, we refer the reader to [12, 11]. Let i = (4;,42,...,%) be a
sequence of elements of I, and put

B; = B(w;, Ja @ B{ws, )a ® - - @ B(wy, )a.

We denote by Dj the energy function defined on B; (for definition, see [30, §4.1]),
which is a function from B; to Z. Then, for an element u € Py, the classically -
restricted 1dsum X (B, p; q) is defined by

XBiumg= ». ¢>O
beBR;
&;b=0 (jEI)
- we(B)=cl(u)

Remark 9.6. In [12] and [11], classically restricted ldsums are defined on

the tensor products of Kirillov-Reshetikhin crystals B*° indexed by ¢ € I and
8 € Z»y. Asnoted in {30, §5.1], B(w;)a =2 B(W,(w;)) is the Kirillov-Reshetikhin
crystal B5® with s = 1.
By [30, Corollary 5.1.1], we have for some constant C € Z that
S ¢ = O X (B, pi9). (43)
neEB(A)al

gn=0 (jei}

7(1)=cl{u)
The second corollary is as follows:
Corollary 9.7. Let A€ Py, andlet p; € Py andm; € Z for 1 i< k be the

elements given just below Theorem 9.2. Then for any sequence 1 = (41,...,1)
such. that A = 2153'53 w;; and u € Py, we have for some constant C' € Z that

D W Volg™ = Do Y (O m)imida : Va())g”
n€éxg 1<i<kn€Zyo
= ¢“X (B, ")
Proof. The first equality is obvious from Theorem 9.3. Let Dy(1, p;)m;] be the
quantized Demazure module whose classical limit is D(1, p;)[m;], and let V(1)

be the irreducible U,(g)-module whose classical limit is V, (1), where Uy(g) is
the quantized enveloping algebra associated with g. Then we have

(DL, i) lmaln = V(1) = (Dg(L, pa)lmiln = Vo(u)),

where Dy(1, p;)[m;], is defined similarly. Since B(1, u;)[m;] is a Ug{g)-crystal
basis of Dy(1, ;) [m;], we have

(Dy(L, pi)[mi)n = Volp))
= #{b € B(1, p;)[my] | &0 =0 for j € I, wt(b) = p+ Ao + nd}.
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Hence the second term in the corollary is equal to

) T g,

1<i<k  bEB(,ui)lmi]
&;b=0 (iel}
wh(b)ep-+Ao+Z8
‘We can easily see that
7' € {n €B(Na | &m=0for j € I, n(1) = cl(u), Deg(n) =n}
if and only if

K(bao @) € ] {6 € B(L ps)[md] | &b =0 fox j € I, wi(b) = pu+ Ag — ns},
1<i<k

where & is the U,:, (g)-crystal isomorphism given in Theorem 9.4. Hence, we have

that
Z Z g Vi) — Z g~ Des(n)
1<i<k  beB(1,u:)[m;) nEB(A)a
&5b=0 (FEI) gm=0 (§EI)
wt(b)eut+Ao+EE n{1)=cl(1}
which together with (43) implies the second equality. O
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