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INDUCTIVE CONSTRUCTION OF THE p-ADIC ZETA
FUNCTIONS FOR NON-COMMUTATIVE p-EXTENSIONS
~ OF EXPONENT p OF TOTALLY REAL FIELDS

TAKASHI HARA

ABSTRACT. We construct the p-adic zeta function for a one-dimensional
(as a p-adic Lie extension) non-commutative p-extension Fo of a totally
real number field F such that the finite part of its Galois group G is a
p-group of exponent p. We first calculate the Whitehead groups of the
Iwasawa algebra A(G) and its canonical Ore localisation A{(G}g by using
Oliver-Taylor's theory of integral logarithms. This calculation reduces
the existence of the non-comrmutative p-adic zeta function to certain con-
gruences between abelian p-adic zeta pseudomeasures. Then we finally
verify these congruences by using Deligne-Ribet’s theory and a certain
inductive technique. As an application we shall prove a special case
of (the p-part of) the non-commutative equivariant Tamagawa number
conjecture for critical Tate motives.

0. INTRODUCTION

One of the most important topics in non-commutative Iwasawa theory
is to construct the p-adic zeta function and to verify the main conjecture,
as well asg in classical theory. Up to the present, there have been several
successful examples upon this topic for p-adic Lie extensions of totally real
number fields: the results of Jiirgen Ritter and Alfred Weiss [RW7], Kazuya
Kato [Kato], Mahesh Kakde [Kakdel] and so on. In this article, we shall
construct different type of example for certain non-commutative p-extensions
of totally real number fields.

Let p be a positive odd prime number and F a totally real number field.
Let F, be a tofally real p-adic Lie extension of F' which contains the cy-
clotomic Zy,-extension Fey. of F', and assume that only finitely many primes
of F' ramify in Fy,. For a moment we admit Iwasawa’s u = 0 conjecture to
simplify conditions (see Section 1 (Fio-3) for a general u = 0 condition). The
aim of this article is to prove the following theorem under these-conditions:

Theorem 0.1 (=Theorem 3.1). Let G denote the Galois group of Foo/F.
Then for Foo /F the p-adic zeto function &g, /F exists and the fwasawa main
conjecture is true if G is isomorphic to the direct product of a finite p-group
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2 TAKASHI HARA

G¥ of exponent p and the Galois group T' of the cyclotomic Zip-extension
Foyo/F.

We shall review the characterisation of the p-adic zeta function and the
precise statement of the non-commutative Iwasawa main conjecture in Sec-
tion 1. In the preceding paper [H], we constructed the p-adic zeta function
and verified the main conjecture when the Galois group G‘a.l(l*"o0 /F) is iso-
morphic to the pro-p group

1 ¥, F, F,
0 1 F, F,
0 0 1 K| Xt
0 0 0 I

and p is not equal to either 2 or 3. Theorem 0.1 generalises this result.

Philosophically the Iwasawa main conjecture is closely related to the spe-
cial values of L-functions (as implied by many people including Kazuya Kato,
Annette Huber-Klawitter, Guido Kings, David Burns, Matthias Flach,......};
hence the non-commutative Iwasawa main conjecture should also suggest
validity of conjectures concerning these values even in non-commutative co-
efficient cases (see also [HubKinl] and [FukKat]). In fact we may verify a
special case of (the p-part of) the equivariant Tamagawa number conjec-
ture for critical Tate motives with non-commutative coefficient combining
Theorem 0.1 with descent theory established by David Burns and Otmar
Venjakob [BurVen).

Corollary 0.2 (=Corollary 3.6). Let Fu be a p-adic Lie extension of a
totally real number field F' as in Theorem 0.1 and F' an arbitrary finite
Galois subeztension of Foo/F. Then for an arbitrary natural number v di-
visible by p — 1, the p-part of the eguivariant Tomagawa number conjecture
for Q{1 ~7) g is true (here Q(1—r)p/r = h(Spec F')(1—7) denotes the
(1 — 7)-fold Tate motive regarded as a motive over F).

This may also be regarded as an analogue of the cohomological Lichten-
baum conjecture (in special cases), which was proven by Barry Mazur and
Andrew Wiles [MazWil, Wiles] when F” is the same field as F—the Bloch-
Kato conjecture case— as the direct consequence of the main conjecture (for
commutative cases) which they verified. -

Now let us summarise the main idea to prove Theorem 0.1. Consider the
family ¢ of all pairs (U, V') such that U is an open subgroup of G containing
I' and V is the commutator subgroup of U. By classical induction theorem
of Richard Brauer [Serrel, Théorém 22|, an arbitrary Artin representation
of G is isomorphic to a Z-linear combination of representations induced by
characters of abelian groups U/V (as a virtual representation) where each
(U,V)isin §p. Let 6y and 65y, denote the composite maps

Ey(A(@)) 2 Ky(AD) <55 A(U/V),
K1 (A(G)5) 222 Ky (A(U)s) 228, A(U/V)3
for each (U, V) in §p where A(G)gs (resp. A(U)s, A(U/V)g) is the canon-

" dcal Ore localisation of the Iwasawa algebra A(G) (resp. A(U), A(U/V))
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introduced in [CFKSV, Section 2] (see also Section 1 in this article).” Set
0 = (Buy)wyvess and 0s = (Osu,v)w,v)ess-

Let Fy (resp. Fy) be the maximal subfield of Fi, fixed by U (resp. V).
Then the p-adic zeta function exists for each abelian extension Fy /Fy; Pierre
Deligne and Kenneth Alan Ribet first constructed it [DR], and by using their
results Jean-Pierre Serre reconstructed it as a unique element £ry in the
total quotient ring of A(U/V') which satisfles certain interpolation formulae
[Serre2]. Now suppose that there exists an element £ in Ki(A(G)s) which
satisfies the equation

(0.1) 05(8) = (Cuv) wviess-

Then we may verify by Brauer induction that £ satisfies an interpolation
formula which characterises § as the p-adic zeta function for Fo/F. This
observation motivates us to prove that (§u,v)w,v)cgp I contained in the
image of fg. It seems, however, to be difficult in general to characterise
the image of the theta map @g completely for the localised Iwasawa algebra
A(G)g. Therefore we shall first determine the image of the theta map @
for the (integral) Iwasawa algebra A(G), and then construct an element £
satisfying (0.1) by using this calculation and certain diagram chasing. The
strategy which we introduced here was first proposed by David Burns (and
hence we call this method Burns’ technigue in this article). We shall discuss
its details in Section 2.

Let (U, {e}) be an element in Fp such that the cardinality of the finite
part of U is at most p? (and U is hence abelian). Let Isy denote the image
of 85,17} for each of such (U, {e})’s. By virtue of Burns’ technigque, we may
reduce the condition for (§u,v)w,v)ez5 to be contained in the image of g
to the following type of congruence:

v e} = 90(§G,1G,G])(G:U)/ P mod Is i

where ¢ is the Frobenius endomorphism ¢: A(G*)s — A(T'),) induced by
the group homomorphism G®° — T'; g — ¢P. Kato, Ritter, Weiss and Kakde
verified such type of congruence when the index (G : U) exactly equals p
[Kato, RW6, Kakdel] by using the theory of Deligne and Ribet concerning
Hilbert modular forms [DR]. It seems, however, to be almost impossible to
deduce such congruences only from Deligne-Ribet’s theory when the index
(G : U) is strictly greater than p. Nevertheless in Sections 8 and 9 we shall
verify these congruences by combining Deligne-Ribet’s theory with a certain
inductive technique which was first introduced in [H].

In computation of the images of & and @5 we use theory of p-adic loga-
rithmic homomorphisms. This causes ambiguity of p-power torsion elements
in the whole calculation, and hence we have to eliminate this ambiguity as
the final step of the proof. We shall complete this step by utilising the ex-
istence of the p-adic zeta functions for Ritter-Weiss-type extensions [RW7]
and certain inductive arguments.

The detailed content of this article is as follows. We shall briefly review
the basic formulations of the non-commutative Iwasawa main conjecture in
Section 1. Then we discuss David Burns’ outstanding strategy for construe-
tion of the p-adic zeta function in Section 2. The precise statement of our
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main theorem and its application will be dealt with in Section 3. Sections 4,
5 and 6 are devoted to computation of the image of (a certain variant ¢
of) the theta map; we first construct ‘the additive theta isomorphism’ #+
in Section 4, and then translate it into the multiplicative morphism 6 by
utilising logarithmic homomorphisms in Section 6. Section 5 is the prelim-
inary section for Section 6. We study the image of the theta map g for
the localised Iwasawa algebra A(G)g in Section 7, and derive certain ‘weak
congruences’ between abelian p-adic zeta pseudomeasures in Section 8 by
applying Deligne-Ribet’s g-expansion principle [DR] and Ritter-Weiss’ ap-
proximation technigue [RW6]. In Section 9 we refine the congruences ob-
tained in the previous section by using induction, and construct the p-adic
zeta function ‘modulo p-torsion.” We shall finally eliminate ambiguity of the
p-power torsion part.

Note added in proaf.! After this article was submitted, there have been
outstanding developments of the proof of the non-commutative Iwasawa,
main conjecture for totally real number fields, which should be mentioned
here. ‘

Jiirgen Ritter and Alfred Weiss proved the ‘main conjecture’ of their equi-
variant Iwasawa theory for p-adic Lie extensions of totally real number fields
of rank one under mild conditions on the cyclotomic p-invariant [RW8].

David Burns extended the results of Ritter and Weiss for p-adic Lie ex-
tensions of totally real number fields of arbitrary rank [Burns]. In [Burns],
he also developed his patching arguments (that we call Burns’ technique
in this article) in somewhat axiomatic way, and described various applica-
tions of the main conjecture to other conjectures concerning special values
of L-functions including the equivariant Tamagawa number conjecture.

Mahesh Kakde also proved the main conjecture for arbitrary p-adic Lie
extensions of totally real number fields [Kakde3] by adopting the strategy
of Burns and Kato which is the same one as this article is based upon.
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Notation. In this article, p always denotes a positive prime number. We
denote by N the set of natural numbers (the set of strictly positive integers).

!This article is the submitted version to appear in Duke Mathematical Journal.
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We also denote by Z (resp. Zp) the ring of integers (resp. p-adic intégers).
. The symbol Q (resp. @} denotes the rational number field (resp. the p-adic
number field). For an arbitrary group G let Conj(G) denote the set of all
conjugacy classes of G. For an arbitrary pro-finite group P, we always denote
by A(P) its Iwasawa algebra over Z, and by Q(P) its [wasawa algebra over
F,. More specifically, A(P)} and §2(P) are defined by

A(P) = lim Z,[P/U}, Q(P) = lim F,[P/U]
U U

where U runs over all open normal subgroups of P. Let I" denote the commu-
tative p-adic Lie group isomorphic to Z, (corresponding to the Galois group
of the cyclotomic Z,-extension). Throughout this paper, we fix a topological
generator «y of I'. In other words, we fix Iwasawa-Serre isomorphisms

A(T) = Z,[[T7), . Q@) = Fp(T])
Y= 1+T y— 14T

where Zp[[T']] (resp. Fp[[T]]) is the formal power series ring over Z, (resp. Fp).
For an arbitrary p-adic Lie group W isomorphic to the direct product of a
finite p-group and I', WY denotes the finite part of W. We always assume
that every associative ring has a unit. The centre of an associative ring R
is denoted by Z(R). For an associative ring R, we denote by M,(R) the
ring of n x n-matrices with entries in R and by GL,(R) the multiplicative
group of M,(R). We always consider that all Grothendieck groups are addi-
tive abelian groups, whereas all Whitehead groups are mulfiplicative abelian
groups. For an arbitrary multiplicative abelian group A, let Ap.iors (resp.
Ators) denote the p-power torsion part (resp. the torsion part) of A. We set
I?l(R) = K3(R)/Ki(R)ptors for an arbitrary associative ring R. Similarly
we set A(P)X = A(P)* [A(P) s for an arbitrary pro-finite group P.

Acknowledgements. The author would like to express his sincere gratitude
to Professor Takeshi Tsuji for much fruitful discussion and many helpful
comments (especially the suggestion that we use augmentation ideals in the
translation of the additive theta isomorphism, see Section 5.1 for details). It
is also a great pleasure to acknowledge the hospitality and the stimulating re-
search environment of the Isaac Newton Institute for Mathematical Sciences
where part of this work (especially upon the application to the equivariant
Tamagawa number conjecture) was completed. Finally he would like to
thank Mahesh Kakde and anonymous referees? for valuable comments upon
the preliminary version of this article.

1. REVIEW OF NON-COMMUTATIVE [WASAWA THEORY

In this section we review the formulation of the non-commutative Iwa-
sawa main conjecture for totally real number fields following Coates, Fukaya,
Kato, Sujatha and Venjakob [CFKSV, FukKat]. We remark that Ritter and
Weiss also formulated the non-commutative Iwasawa main conjecture —the
‘main conjecture’ of eguivariant Iwasawa theory in their terminology— for
p-adic Lie extensions of rank one in somewhat different manner [RW1, RW2,

2This article is the submitted version to appear in Duke Mathematical Journal.
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RW3, RW4|. Refer to [Bass, Swan| for basic results upon (low-dimensional)
algebraic K-theory used in this section.

Let F' be a totally real number field and p a positive odd prime number.
Let Fo be a totally real p-adic Lie extension of F' satisfying the following
three conditions:

(Foo-1) the cyclotomic Zy-extension Feye of F is contained in Fio;

(Feo-2) only finitely many primes of F' ramify in Fi; _

(Fo-3) there exists a finite subextension F' of Fi,/F such that Fo,/F" is
pro-p and the Iwasawa p-invariant for its cyclotomic Zp-extension
Floye/F' equals zero. '

Fix a finite set ¥p of finite places of F' which contains all of those ramifying
in Fop. For an arbitrary algebraic extension F of F, we shall denote by ¥
the set of all finite places of £ above Xp and by £}, the union of £g and
the set of all infinite places of E. Set G = Gal(Fio/F), H = Gal(Fy/Feyc)
and I' = Gal(Feye/F). The pro-p group I is isomorphic to Z, by definition.

Let S be the subset of A(G) consisting of all elements f such that the
quotient module A(G)/A(G)f is finitely generated as a left A(H)-module.
The set S is a left and right Ore set of A(G) with no zero divisors [CFKSV,
Theorem 2.4], which is called the canonical Ore set for Foo/F (refer to
[McRob, Stenstrém| for general theory of Ore localisation). The Ore lo-
calisation A{G} — A(G)s induces the following localisation exact sequence
in algebraic K-theory (due to Weibel, Yao, Berrick and Keating [WeibYao,
BerKeat)|):

K1 (A(G)) — K1(A(G)s) 2 Ko(A(G), A(G)s) — 0.

Surjectivity of the connecting homomorphism 4 was proven in [CFKSV,
Proposition 3.4].

Let ¥PI(A(G)) denote the category of perfect complexes of finitely gen-
erated left A(G)-modules (that is, the category of complexes of finitely gen-
erated left A(G)-modules which are quasi-isomorphic to bounded complexes
of finitely generated projective left A(G)-modules), and let ¥Z=I(A(G)) de-
note the full subcategory of €T (A(G)) generated by all objects whose
cohomology groups are S-torsion left A(G)-modules. Note that the relative
‘algebraic K-group Kp(A(G),A(G)s) is identified with the abelian group
Ko(€Ff(A(G))) which we may define by modifying the construction of
Fukaya and Kato in [FukKat, Definition 1.3.14].3 Let us consider the com-
plex Cp,, /r defined by

Croo/r = RHom(RT¢(Spec Op,, 5y, Qp/Zp), Qp/Zy)

where I'q; denotes the global section functor for the étale topology and
Opm,g;w denotes the Z}m-integer ring of F. Its cohomology groups are -
calculated as follows:

Lp ifi =0,
(1.1) HY(Cpoyr) = X5, ifi=-1,
0 otherwise.

%It might be more natural to consider such identification in Waldhausen K- -theory.



INDUCTIVE CONSTRUCTION OF p-ADIC ZETA FUNCTIONS S

Here Xz, = Gal{Ms, _/Fw) is the Galois. group of the maximal abelian
pro-p extension Mz, of Fy unramified outside ¥g, . Note that Z, is an
S-torsion module since it is finitely generated as a left A(H)-module (see
[CFKSV, Proposition 2.3] for details). The Galois group Xw,_ is also an
S-torsion module by condition (Fio-3) (use the universal coefficient spec-
tral sequence and Nakayama-Azumaya-Krull’s Lemma). Therefore we may
regard Cp,_/r as an object of 55’51? e (A(G)), and by surjectivity of 8 there
exists an element fr, /r in K1(A(G)s) satisfying

(1.2) O(fru/r) = —[Cr. )

which is called a characteristic element for Fy,/F. Characteristic elements
are determined uniquely up to multiplication by elements in the image of the
canonical homomorphism K;(A(G)) — Ki(A(G)g) (due to the localisation
exact sequence). '

We next consider the p-adic zeta function for Fop/F. From now on we
fix an algebraic closure of the p-adic number field @p, and we also fix em-
beddings of the algebraic closure @ of the rational number field @ into C
—the complex number field— and @p till the end of this section. By the
argument in [CFKSV, p.p. 172-173], we may define the evaluation map

K1(A(Q)s) = Q, U {oo}; f = Flo)
for an arbifrary continuous representation p: G — GLy(O) (where @ is the
ring of integers of a certain finite extension of Q). Now let Ly, (8; Foo /F, p)
be the complex Artin L-function associated to an Artin representation p for
G (recall that p is an Artin represeritation if its image is finite) whose local,

factors at places belonging to 2 p are removed. If there exists an element
{r./r in K1(A(G)s) which satisfies the interpolation formula

(1.3) €r/P(pe") = Lyp (1l — 1 Foo [ F, p)

for an arbitrary Artin representation p of G and an arbitrary natural number
7 divisible by p — 1, we call £g_,p the p-adic zeta function for Foo/F. The
Iwasawa main conjecture for totally real number fields is then formulated as
follows: :

Conjecture 1.1. Let p, F and Foo/F be as above. Then

(1) {existence of the p-adic zeta function)

the p-adic zeta function g, p for Foo/F exists;
(2) (the Twesawa main conjecture)

the equation 0(§p, /r) = —[Cr., /r] holds.

2. BURNS’ TECHNIQUE

There exists a standard strategy to construct the p-adic zeta functions for
non-commutative extensions by ‘patching’ Serre’s p-adic zeta pseudomea-
sures for abelian extensions. It was first observed by Burns and applied
by Kato to his pioneering work [Kato] (see also [Burns]). Here we shall
introduce this outstanding technique in a little generalised way.

Throughout this section we fix embeddings of @ into C and @p‘ Let p
be a positive odd prime number, F' a totally real number field and Fo /F
a totally real p-adic Lie extension satisfying conditions (Feo-1), (Fio-2) and
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(Foo-3) in the previous section. Let G, H and T be p-adic Lie groups defined
as in Section 1.

Definition 2.1 (Brauer families). Let $5 be a family consisting of pairs
(U, V) where U is an open subgroup of G and V is that of H such that V is
normal in U and the quotient group U/V is abelian. We call 5 a Brauer
family for the group G if it satisfies the following condition (})g:
(1) an arbitrary Artin representation of G is isomorphic
to a Z-linear combination (as a virtual representation) of
induced representations Ind[G;(XU/V), where each (U, V) is an
element in §p and Xy v is a character of finite order of the
abelian group U/V.

Suppose that there exists a Brauer family §p for G. Let Oy be the

composition
N i ~

K1 (AG) — 2L, Ry (AU)), S, Ky (AU/V)) S AU/V)
for each (U,V) in §p where Nryoya@) is the norm map in algebraic
K-theory. Set ~

0= (Ouv)uviess: K1(AG) —» [ Aw/vy*.
(UanE{fB
Similarly we may construct the map?
0s = Bsuv)wyviess: K1(A(@s) = ] AUV
(UIV)EEB

for the localised Iwasawa algebra A(G)s. Then we obtain the following
commutative diagram with exact rows:

Ki{(AG)) —— K1(A(Q)s) 2 Ko(AMG), A(G)s) —— 0

[T, AUV 5, MU/V)E —— 15, KolAU/V), A(U/V)s) —0.

Let f be an arbitrary characteristic element for Fo./F (that is, an element
in K1{A(G)s) satisfying the relation (1.2)) and (fu,v)(v,v)egp its image un-
der the map f#g. Then each fyy satisfies the relation 9(fyv) = —[Cyv] by
the functoriality of the connecting homomorphism 8. Now recall that for
each pair (U, V) in §p, the p-adic zeta pseudomeasure £y y for the abelian
extension Fy/Fy exists as an element in A{U/V)3 (see [Serre2] for details)
and the Iwasawa main conjecture 8({y,v) = —[Cuy,v] holds (due to the won-
derful results of Wiles [Wiles]). Each p-adic zeta pseudomeasure &y v is
characterised by the interpolation formula

(2.1) Suv(xs") = Lsp, A —r Fv/Fy,x)

for an arbitrary character of finite order of the abelian group U/V and an
arbitrary natural number r divisible by p — 1. Let wy,v be the element de-
~ fined as fyv fy; 1, which is in fact an element in A(U//V)* by the localisation
exact sequence. Here we further consider the following assumption:

4We use the same symbol S for the canonical Ore set for Fy / Fu by abuse of notation.
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Assumption () the element (wyv)w viezs is contained

& in the image of 9.
Under Assumption (b) there exists an element w in K3 (A(QG)) which satisfies
Hw) = (wuv)wv)egs- Let € be the element in K1{A(G)s) defined as fu.
Then £ readily satisfies the following two conditions by easy diagram chasing:
(¢§-1) the equation 8(§) = —[CF,,/r] holds;
(€-2) the equation 8s(£) = (€u,v)(w,v)es, holds.
By using condition (§) g, condition (£-2) and the interpolation formulae (2.1),
we may verify that £ satisfies the interpolation formula (1.3) as follows:

£y =€ Y auvIndGxuw) (by (1))
CAGE

= H Nra(eys/atns (&) (xuyv e y*™Y
(UV)eFz

= JI &wvlawsyov  (by (&2))

(UV)esr

= I ZIsqU-nFe/Fuxup)@v  (by 2.1))
(UV)EFs

=Lz.(1-1Fo/F, > ayyInd§(xum))
(U, V)88
=Ly.(1 -1 Fx/F,p)

where p is an arbitrary Artin representation of G and r is an arbitrary
natural number divisible by p — 1. Therefore £ is the desired p-adic zeta
function for Fo/F. Furthermore (€-1) implies that £ is also a characteristic
element for Fi,/F; in other words Conjecture 1.1 holds for Fi/F.

By virtue of Burnsg’ technique, both construction of the p-adic zeta func-
tion and verification of the Iwasawa main conjecture are reduced to the
following two tasks:

e characterisation of the images of & and g;

e verification of Assumption (b).
In general, there are so many pairs in a Brauer family §p that it is hard to
compute and characterise the images of the norm maps ¢ and 5. Therefore
we shall use not only Brauer families but also Ariinien families in arguments
of the rest of this article;

Definition 2.2 (Artinian families). If a family § 4 consisting of abelian open
subgroups of G satisfies the following condition (f} 4, we call F4 an Artinian
family for the group G

(1)a an arbitrary Artin representation of G is isomorphic

to a Z[1/p|-linear combination (as a virtual representation)

of induced representations Ind§ (), where each U is an ele-

ment in F 4 and xy is a character of finite order of the abelian

group U.

Artinian families tend to contain much fewer and simpler elements than

Brauer families, by virtue of which we may often avoid hard computation.
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3. THE MAIN THEOREM AND ITS APPLICATION

3.1. The main theorem. The precise statement of the main result in this
article is as follows. Here we continuously fix embeddings @ — C and
Q Q.

Theorem 3.1 (Main theorem). Let p be a positive odd prime number, F
a totally real number field and Fy a totally real p-adic Lie extension of F
satisfying conditions (Foo-1), (Foo-2) and (Feo-3) in Section 1. Suppose thai
the Galois group of Foo/F is isomorphic fo the direct product of a finite
p-group GI of exponent p and the commutative p-adic Lie group T'. ' Then
the p-adic zeta function &g, 1p for Feof F exists uniquely up to multiplication

by an element in SK1(Zp|G’]). Moreover, the Iwasawa main conjecture
(Congecture 1.1 (2)) is true for Foo/F.

Remark 3.2. If the group SK1(Z,[G']) is a trivial group, we may establish
the uniqueness assertion of the p-adic zeta function £r, /¢ in Theorem 3.1.
However there exists finite groups G¥ for which the SK;-group SKi (Z,[G))
does not vanish (see [Oliver, Example 8.11] for instance), and it 'is easy
to show that the image of SKi1(Z,[G?]) in K1(A(G)s) never vanishes un-
less SK1(Zp[G?]) itself is trivial. Therefore as an element in Ky (A(G)g)-
the uniqueness assertion of the p-adic zeta function {g_/r does not hold
in general. Nevertheless the image of &z_/r in K1(A(G)s[1/p]) is unique
in our case since SK1(Q,[Gf]) is trivial (see for instance [Oliver, Theo-
rem 2.3]) and the natural map SK;(Z,[G']) — Ki(A(G)s[1/p]) factors
through SK1(Q,[G']).

Now let us consider an easy but interesting application of our main theo-
rem. Let BN (F,) be a multiplicative p-group defined as the subgroup of the
general linear group GLy+1(Fp) of degree N + 1 generated by all strictly
upper-triangular matrices; that is,

1 2 N N+1
1 (1 F F, ... F, F,
> o1 F, .. F,
N |o 1 F,
N+1\o 0 ... ... 0 1

Corollary 3.3. Let p be a positive odd prime number, F' a totally real num-
ber field and Foo /F a totally real p-adic Lie extension satisfying conditions
(Foo-1), (Fo-2) and (Foo-3) in Section 1. Assume also thal

() there exists a certain non-negative integer N such that the Galois group
of Fuo[F is isomorphic to the direct product of BY (F,) and the com-
mutative p-adic Lie group 1';

(ii) the prime number p is strictly greater than N.



INDUCTIVE CONSTRUCTION OF p-ADIC ZETA FUNCTIONS 11

Then the p-adic zeta function g, p for Foo [F exists ﬁniquely and the Iwa-
sawa main conjecture { Conjecture 1.1 (2)) is true for Foo/F.

Proof. For each p strictly greater than N, the exponent of BY (F,) equals p.
Therefore the claim is directly deduced from Theorem 3.1. Note that in this
case SK1(Z,]BY(Fp)]) is trivial by the results of Schneider and Venjakob
[SchVen, Proposition 4.1].5 O

Remark 3.4. The case where N is equal to 2 in Corollary 3.3 is a special case
of Kato’s Heisenberg-type extensions {Kato]. The case where N is equal to
3 is nothing but the main results of the preceding paper of the author [H].
The original motivation for this study was to generalise these results to the
cases where IV is greater than or equal to 4. It became, however, clear that
it was convenient to consider the problem under more general conditions as
i Theorem 3.1.

3.2. Application to the equivariant Tamagawa number conjecture
for critical Tate motives. In this subsection, we shall show that the p-part
of the (non-commutative) equivariant Tamagawa number conjecture for crit-
ical Tate motives follows from the Iwasawa main conjecture (Conjecture 1.1)
by applying standard descent arguments of Burns and Venjakob [BurVen).
Refer to [BurFl3| for terminologies regarding the equivariant Tamagawa
number conjecture. We often abbreviate an affine scheme Spec @ to just
Q@ if there is no risk of confusion in the following arguments.

Proposition 3.5. Let p be o positive odd prime number and I a totally real
nwmber field. Let F be a totally real p-adic Lie extension of F' satisfying
conditions (Feo-1), (Feo-2) and (Fx-3) in Section 1. Assume that Conjec-
tures 1.1 (1), (2) are true for F*°/F. Then the p-part of the equivariant
Tamagawa number conjecture for Q(1 —r)pr ) is true for an arbitrary finite
Galois subeztension F' of Feo [ F' and an arbitrary natural number v divisible
byp—1.

Note that the Tate motive Q(1 ~ r)F//F is critical in the sense of Deligne
[Delignel, Definition 1.3] since both F and F’ are totally real and r is even.
Combining this proposition with Theorem 3.1, we obtain:

Corollary 3.6. Let p, F and Foo/F be as in Proposition 3.5. Suppose that
the Galois group of Foo/F is isomorphic to the direct product of a finite
p-group G¥ of ezponent p and the commutative p-adic Lie group T'. Then
the p-part of the equivariant Tamagawa number conjecture for Q(1—r) g JF 18
true for an arbitrary finite Galois subextension F' of Fy /F' and an arbitrary
natural number v divisible by p — 1.

This corollary gives a simple but non-trivial example strongly suggesting
validity of the equivariant Tamagawa number conjecture for motives with
non-commautative coefficient. Proposition 3.5 is just the direct consequence
of the Iwasawa main conjecture and descent theory established by Burns and
Venjakob [BurVen|, and all materials used in the proof should be essentially
contained in [BurVen]|. There, however, does not seem to exist explicit

5We also remark that Oliver had already proved the triviality of SK(Z,[B*(Fy)]).
Refer to [Oliver, Proposition 12.7]. _



12 TAKASHI HARA

suggestion upon critical Tate motives there, and thus we shall give the proof
of Proposition 3.5 in the rest of this subsection. Set Gp//p = Gal(F'/F).

Remark 3.7. If we take F' = I, Proposition 3.5 is equivalent to the p-part
of the cohomologicel Lichtenbaum conjecture

_ chz,ét(OF,E}aZp(l - 7'))];1
chl,ét(OF,E},Zp(l )t

via certain specialisation (here (p(s)} is the complex Dedekind zeta function
for F' and |- |p is the p-adic valuation normalised by |p|, = 1/p). This is
directly deduced from the (classical) Iwasawa main conjecture for totally
real mumber fields verified by Wiles [Wiles]. Proposition 3.5 gives its certain
generalisation for cases with non-commutative coefficient.

Remark 3.8. If F'/Q is a finite abelian Galois extension and F is a subfield
of F', the equivariant Tamagawa number conjecture for the Tate motives
Q(m) Fr/p has been proven for an arbitrary prime number p and an arbitrary
integer m (not necessarily negative) by Burns, Greither and Flach. Refer to
[BurGrl] (for negative m and odd p), [Flach| (for negative m and arbitrary
p) and [BurFl4] (for arbitrary m and p). Independently Huber, Kings and
Itakura have also proven the Bloch-Kato conjecture [BlKat] for Dirichlet
motives —a somewhat weaker conjecture than the equivariant Tamagawa
number conjecture— by using rather different technique. See [HubKin2]
(for p # 2) and [Itakura] (for p = 2) for details.

-Remark 3.9. If F' is a totally real number field and K/F is a finite abelian
CM-extension, Burns and Greither proved the p-part of the equivariant Tam-
agawa number conjecture for the pair (Q(1-7) g/, Zp(G x/rler) under some
mild conditions on p [BurGr2, Theorem 5.2, (8)] where r is an arbitrary nat-
ural number and e, is an idempotent of Zy[G /x| defined as (14 (—1)"c)/2
{(here ¢ denotes the complex conjugation). If r is even, we may deduce the
p-part of the equivariant Tamagawa number conjecture for Q(1 — 7)pr/p
{(here F' = Kt denotes the maximal totally real subfield of K)

(31) detzls (RTaa(Om sy, Zp(l — 1)) = Lip(1 = 1) - Zy[Giye]

[Kr(1— 1),

by standard Galois descent arguments (refer to [BurGr2, p. 173] for the
definition of Ly,(1 — r)). Proposition 3.5 is a natural non-commutative
generalisation of their result; in particular the diagram (3.6) may be regarded
as a non-commutative generalisation of (3.1).

We now begin the proof of Proposition 3.5. First note that the funda-
mental line [BurFl13, (23)]

E(QQ ~r)pyr) = detgig,, ] (Kor—1(F")3) 'dEt@[IGF, (Q(1 - T)JPC’/F,B)

is trivial (here ‘det’ denotes Deligne’s determinant functor [Deligne2]) since
both the +-part of Betti realization Q(1—r)}, /r,p and the rational K-group
Kor—1(F')q are trivial (and hence the Q-dual Kgp._1(F')3 is also trivial):
this follows from the fact that F' and F' are totally real and r is even (for

JF)
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the triviality of Ko,—1(F')g we use Borel’s computation [Borell, Borel2]).
Therefore the period-regulator map [BurFI3, p. 529]

Poo: Z(Q(1 — ) pr/r)R = 1R[GF'/F]

degenerates to the identity map on the unit object 1g(g,, /7] of Deligne’s
category of virtual objects V(R{Gprp|) [Deligne2], which reduces the ra-
tionality conjecture [BurF13, Conjecture 5] to the rationality of the leading
term of the equivariant Artin L-function L*(Q(1 — r)pr/p) (which is de-
noted by L*(g(g /F]Q(l —r)pyF,0) in [BurFl3, p. 533]): this can be easily
verified by the same type of arguments as used in the proof of [Delignel,
Proposition 6.7] (use Klingen-Siegel’s theorem [Klingen, Siegel], see also [CL,
Section 1.1]).
Under the isomorphism [BrBur, Lemma 5.1]

(3.2) Ko(ZplGp/r), QplGripl) = mo(V(Zp[Griyp], QplGreyel))s

we regard (the isomorphism class of) a pair [E,a] as an element of the
relative K-group Ko(Zy[G g /r], QplGry r|) where E is a virtual object of
V(Zy|Gryr]) and a is a trivialization

a. E@p = E ®Zp Qp — 1@1?[GF’/F]

in V(@p[G’ #/r])- In order to verify the integrality conjecture [BurFl3, Con-
jecture 6], it suffices to prove that
(3.3)

o -1 * _ ,

Oplnrdgy 1, o (FHQE = 1)pr/F))

+ IdetZP[GF’/F] (RFC,ét(OF’,E;,)v Zp(1—1)), 19;%}1] =0
holds as an equation in fo(Zy[Gpr/ F],@p[G F/F)); here
rdg ¢ p* Ko(@plGryrl) — Z(Qy[Grryp])™

denotes the reduced norm map which is in fact bijective (see [CR, Theo-
rem {45.3)]},

8y: Ky(Qp[Grvyp]) = Ko(ZolGpr ), QulGreyr))
denotes the connecting homomorphism and 1910,@? denotes the scalar exten-

sion from @ to @, of the p-adic period-regulator map [BurF13, p. 526]

Bp1 B(Q — 1) pryr)@, — debg,(Gpp (RTeet(OF,zy,, Qp(1 — 7))

(vecall that E(Q(1—r)p /) is now trivial). Indeed we may easily check that
the left hand side of (3.3) is the image of TQ(Q(1—r) 5 /7, Zp|Grr/r]) defined
in [BurF13, Conjecture 6] under the canonical map induced by the embedding
Qp — @p. Note that the leading term of the equivariant Artin L-function
L*Q(1 —r)pryr) as an element in Z(Q,[Gprp])* is identified with a set of
special values of (Q,-valued) Artin L-functions (L(1—r, IpP)) peter(C /5) for
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an embedding j,: Q— @p via the Wedderburn decomposition

(3.4) Z(QGrp))* = H Q,

pE(Gpryp)

where Irr(Gp//p) denotes the set of all isomorphism classes of (Q-valued)
irreducible Artin representations of G/ p.

Proof of Proposition 3.5. Let &g ;r be the p-adic zeta function for Fio /F '
and assume that the Iwasawa main conjecture 8(ér, /r) = —[Cr,/F] is valid
(for an arbitrary embedding j,: Q < @Q,). Since RFét(OFOO,E}{m,Qp/ZP) is
identified with the injective limit of complexes R g (O L,EE?QP/ZP) for all
finite Galois subextensions L/F of F*°/F, we may easily see that Cr_/r
is isomorphic to the complex lim BRI ¢+ (Spec Or sy » &p(1))[3] by virtue of
Poitou-Tate/Artin-Verdier duality theorem. Furthermore for each L the
complex ch,ét(OL,EX, »(1)) is isomorphic to RI‘c,ét(OF,E\;',ZP[G L/F]ﬁ(l))
by Shapiro’s lemma (here Z,[G, /F]ﬂ denotes Zy[Gyp] regarded as a left
G p-module upon which an element & in Gr acts by the right multiplication
of its inverse 0—1). Hence the following equation holds in Kp(A(G), A(G)s):

e pnyr) = [lim RTc.a(Spec Or zy , Zp[G/r] (1))
L

= [RIst(Spec Opzy, A(G)(1))].

Now for each natural number r divisible by p — 1 consider the Zp-linear
map twl: A(G) — A{G) induced by ¢ — k"(o)o for o in G, which is
in fact a ring automorphism because x"(z)} is an element in the centre of
A{G). This map also induces a ring automorphism twyg . on the canonical
Ore localisation A(G)s of A(G). Moreover the composition of twg, with
the homomorphism A(G)s — Frac(A(T')} induced by the projection G — I’
coincides with the morphism @ - introduced in [CFKSV, Lemma 3.3]. Hence
the definition of the evaluation map asserts that the interpolation formula

tWe e (Er/F)(0) = Lp (1 — 7 Foo [ F, p)
holds for an arbitrary Artin representation p of G. On the other hand the
Tate twist A(G)*(1) = A(G)¥(1 —r) defines a twy -semilinear isomorphism
(due to the A{G)-module structure of A(G)¥), and hence there is a canonical
isomorphism
MG) ®n@) twy, RTcet(Opxy, AG) (1)) = RToet(Opzy, MG (1 — 1))
in the derived category of 7T (A(®)). Then we obtain

(3.5) B(tws x(§r/F)) = [Rlcet(Opzy, AGY(L—-1))]

by the functoriality of the connecting homomorphism. The descent theory of
Burns and Venjakob [BurVen, Theorem 2.2] asserts that the equation (3.5)
descends to

(3.6)

K1(Q,[Gryrl) , —% Ko(Zp|Grry5), QplGrryp))
nrdﬁl[a ](L;Ep QL —rypyr)) [ch,ét(opr,z;,,zp(l - 7))

R R .
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where L5(Q(1 — r)p/p) denotes an element corresponding to special val-
ues of Ep-truncated Artin L-functions (Lxz(1 — 7, 50)) peter(G /) Via the

Wedderburn decomposition (3.4); this is because
Z5[C /5] ®X(c) Bl oet(Orzy, MGY(1 — 1))
= ch,ét(OF’z}, Zp[Gp:/p]ﬁ(l — ?")) = ch,ét(OFf,E;’,Zp(l —_ T‘))
holds for an arbitrary finite Galois subextension F’/F of F./F and the
localisation RI‘c,ét(OFf,E}’,Zp(l — 7))g, is acyclic (essentially due to the
criticalness of Q(1 — 7) g /r; refer to [BurFl2, (9),(10)]).

The element [RFC,ét(OF’,E;, ,Zp(l - T))] in K(_) (Zp [GFI/F], Qp[GF’/F]) Ccor-
responds to —[detz, (g, /7] (R ec(O F:E\};,,Zp(l — 1)), acyc] via (3.2) where
‘acyc’ denotes the natural trivialisation induced by acyclicity of the complex
ch,ét(oFf,z}’ y@p(1 — 7)) (see Remark 3.10 for sign convention concerning

the normalisation of the relative K-group). The difference between two
trivialisations $”L and ‘acyc’ was calculated in [BurF12] as

7Q,
— 91 -1
acyc = ﬁp‘@p . H o,
vEER .
where each Q-isomorphism ¢,: V — V is defined as in [BurF11, Section 1.2]
or [FukKat, Section 2.4.2] which we regard as an element in K31(Q,[Gr/7]).
Then, by definition, the image of nrdg 5] (¢51) under the Wedderburn
P
decomposition (3.4) coincides with (Ly(1 —7, 5p0)) petrr(@p ,p)» the local fac-

tors of Artin L-functions at v. Combining this fact with the relation (3.6),
we can easily obtain the desired result (3.3). a

Remark 3.10 (sign convention). Let R be an associative ring and S a left Ore
subset of R. We let S™1R denote the left Ore localisation of R with respect
to S. In [Swan), the relative algebraic K-group Ko(R,S 'R) is defined as
a certain quotient of the free abelian group generated by all triples [P, A, @]
where each P and @ are finitely generated projective left R-modules and
A is an S~ R-isomorphism A: SR ®zr P = S"'R ®@p Q. Then we may
identify the homomorphism P — €} induced by A with & cochain complex
concentrated in terms of degree 0 and 1, and we use this identification as a
normalisation of the isomorphism between Kg(R, S™1R) and Ko(€L*(R))
(this normalisation is the same one as used in [FukKat]). In [BurVen], how-
ever, they identify Ko(R, S~1R) with mo(V (R, S~LR)) in the following man-
ner: when both Ker(A) and Coker{A) are projective, the element [P, ), Q]
in Ko(R, S~ 1R) is identified with an element in mo(V (R, S™1R)) defined as
[detR' (P) - detr(Q), detz'(N) - idgetn(@)); in other words they implicitly re-
gard P —» () as a complex concentrated in terms of degree —1 and 0. Hence
there appears difference in sign convention

Ko(65™(R) & mo(V(R,S57'R))
[C] “ —ldetg(C), acyc]
(on the other hand they adopted, in [BrBur], a different normalisation
[P,A,Q] < [detr(P)- det;;_(Q), detr(Y) - idyer=1gy):
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and therefore each element [C] in Ko{#5*T(R)) corresponds to an element
[det(C), acyc] in mo(V(R, STIR))).

4. CONSTRUCTION OF THE THETA ISOMORPHISM I —ADDITIVE
THEORY—

In the rest of this article we prove our main theorem (Theorem 3.1). In
this section we first define Artinian families F4, §4, and a Brauer family
§B (see Section 4.1 for definition), which will play important roles in the
following arguments. We then construct an additive version of the theta iso-
morphism (see Section 4.3). Later we shall translate it into a multiplicative
morphism in Section 6. We remark that Mahesh Kakde has recently estab-
lished more general construction of the additive theta isomorphism [Kakde?2]
(his construction can be applied to cases in which G7 is an arbitrary finite
p-group not necessarily of exponent p).

4.1. Artinian families §4, $4. and Brauer family Fg. Let p, F and
Foo/F be as in Theorem 3.1. Let & be the Galois group of Fo/F and
pN the order of the finite part G of & (and N is hence a non-negative
integer). The finite p-group GY acts upon the set. of all its cyclic subgroups
by conjugation. Choose a set of representatives of the orbital decomposition
under this action, and choose also a generator for each representative cyclic -
group. Let % denote the set of these fixed generators, and for each k in §
let Ug be the cyclic subgroup of G generated by h. Since the exponent of
G/ is equal to p, the degree of each U}{ exactly equals p except for Ul = {e}
(here we denote the unit of G/ by e). Let Uy be the open subgroup of &
isomorphic to the direet product of U,{ and I' for each h in §, and consider
the family of open subgroups of & consisting of all such Uy, which we denote
by T4 (we always identify U, with I').

Proposition 4.1. The fomily F4 salisfies condition (§)4. In other words,
the family 4 is an Artinian family for the group G.

Proof. The claim is direcily deduced from the classical Artin induction the-
orem (see, for example, [Serrel, Corollaire de Théoréme 15]). O

For the usage of induction in Section 9, we now introduce another Artinian
family §4. When N equals zero, we set 4. = F4 = {(I',{e})}. When
N is greater than or equal to 1, choose a central element ¢ # e in $ and
fix it (there exists such an element ¢ because G¥ is a p-group). For each

hin 5, let U{ be the abelian subgroup of Gf generated by h and ¢, and
h,c

let Up . be the open subgroup of G isomorphic to the direct product of U,{ .
and T'. Let §4,. denote the family of open subgroups of G consisting of all
elements in §4 and all Uy . (we identify both U, and U, with U;). Then
the family §4,c is also an Artinian family for G because §a . contains the
Artinian family Fa4.

We finally define ¥ as the family consisting of all pairs (U, V') such that U
is an open subgroup of G containing I" and V is the commutator subgroup
of U. Then the family §p satisfies condition (§)p by Brauer’s induction
theorem [Serrel, Théorém 22| (note that for an arbitrary finite p-group, the
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family of all its Brauer elementary subgroups coincides with that of all its
subgroups by definition); hence §p is a Brauer family.

4.2. Calculation of the images of trace homomorphisms. First recall
the definition of trace homomorphisms; for an arbitrary finite group A, let
Zp[Conj(A)] be the free Z,-module of finite rank with basis Conj(A), and
for an arbitrary pro-finite group P, let Z,[[Conj{P)]] be the projective limit
of free Zy-modules Zy[Conj(Py)] over all finite quotients Py of P.

Definition 4.2 (trace homomorphisms). Let P be an arbitrary pro-finite
group and U an arbitrary open subgroup of P. Let {a1,a2,...,as} be a
set of representatives of the left coset decomposition P/U. For an arbitrary
conjugacy class [g] of P and for each integer 1 < j < s, define 7;([g]) as

([g]) = [0 ga5]  if aflgfnj is contained in U,
0 otherwise.

Then the element Trz, ((Conj(P)]/Z,([Conj(t) ([9]) = 27521 74([g]) is determined
independently of the choice of representatives {a;}5_;. We call the induced
Zp-module homomorphism

Trz,,((Coni(P)))/Zp [Coni(t)]]) * Zp[[Conj(P)]] — Zyp[[Conj(U)]]
the trace homomorphism from Zy[[Conj(FP)]] to Zp[[Conj(U)]].

Let ¢ be the fixed central element in G¥ as in the previous subsection
and let 9?} denote the trace homomorphism Trz [conj(G)/z,(]) for each
Uin Fa. We now calcnlate each image Iy of 6’§. Let NUY denote the
normaliser of Uf in G7 for each U in § Ae- We denote by p™ the cardinality
~of NU,',’,c for each h in 9.

Calculation of Ir(= Iy,). When N is equal to zero, the Zy,-module Ip
obviously coincides with A{G} = A(T'). Now suppose that NN is greater than
or equal to 1. In this case, 83 ([g]) does not vanish if and only if g is contained
in I'. We may regard the finite part Gf as a set of representatives of the left
coset decomposition G/T', and for each «y in T', its conjugate a~'ya equals
(note that 7y is central). Therefore we have

I = p"Z,[IT))
(this equality is also valid for the case in which N equals zero).

Calculation of Iy, for h in $ except for e (N > 1). When N is equal
to 1, the Zp,-module Iy, obviously coincides with A(G) = A(Up). Hence
suppose that N is greater than or equal to 2. In this case 9;}}1 ([g]) does not
vanish if and only if g is contained in one of the conjugates of U}, and we may
therefore assume that g itself is contained in Uy without loss of generality.
The normaliser NU. ,{ acts upon U;{ by conjugation, which induces a group
antihomomorphism inn: (N U}{ JoP — Aut’.(Uf,’ve ) 2 F. Note that it is trivial
since N U}{ is a p-group. Hence for every g in Uy not contained in I, ifs
conjugate a~ga is equal to g if a is contained in N U,{ and is not contained
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in Uy otherwise. For each « in T, its conjugate a1ya always equals 7 as in
the previous case. Consequently we have

p—1

Iy, ="', [TN @ P p™ W Z,IT])
i=1

(this equality is also valid when N equals 1).

Calculation of Iy, . for & in § except for e and ¢ (N > 2). We obtain
a group antihomomorphism

inn: (NUF )% — Aut(U{ )
in the same argument as in the previous case. Since the automorphism

group Aut(U}{' o) is isomorphic to the general linear group GLa(F,) and its

cardinality is equal to p(p — 1)%(p + 1}/2, we have to consider the following
two cases: ' '

Case (a) the image of ‘inn’ is trivial;
Case (b) the image of ‘inn’ is a cyclic group of degree p.
In Case (a) it is easy to see that N. U,{ . coincides with N U,{ (in particular

the cardinality of IV U,’f . is equal to p™). Therefore we may calculate Iy,
in the same way as Iy, , and we obtain

p—1
Iy, = "LV ®© @ R M UA]

i=1
In Case (b) we may readily show by easy computation that the image of
the map ‘inn’ is generated by automorphisms induced by hic/ — hicF+7 for
each 0 < k£ < p— 1. The kernel of ‘inn’ obviously coincides with IV Uf{ , and
the cardinality of N U}{’ . 18 thus equal to p™t1l. This enables us to calculate
Iy, . as

| p—1 ‘
Iy, = PV PZy[[U)] @ D p™ PRI L+ e+ .+ FTZT].

i=1
4.3. Additive theta isomorphisms. Now set
0} = (05 vesa: Zo[[Conj(G)] = ] ZllU1]
. Ucla

and let & be the Zy-submodule of [Ji;ez, Zp[[U]] consisting of all elements
1, satisfying the following two conditions:

e (trace relation) the equation Trz (10,012, ¥r = ¥Ye holds for each
Zp|[Un]]-component g of y, (see Figure 1);
e each Z,[|U]]-component yi; of y. is contained in Iy;.

Proposition 4.3. The map ng induces an isomorphism of Zp-modules
6% : Z,|[Coni(@)]] = &.

We call the induced isomorphism 91' the additive theta isomorphism for 4.
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Zop[[Up|]

l“zpnvhn/zpur]]

Zp[T]
(= Z,[[Ue])

FiGURE 1. Trace and norm relation for §4.

Proof. It is easy to see that & contains the image of 6 by construction.

Injectivity. Take an element y from the kernel of 3;'4' and let p be an arbi-
trary Artin representation of G. Note that p is isomorphic to a Z[1/p]-linear
combination > e ayInd$xy by condition (f)4 where each xy is a char-
acter of finite order of the abelian group U. If we let x, denote the character
agsociated to the Artin representation p, we obtain an equation

Xo(w) = D avxv © Trz, jconi(G)l/2, ) (Y)
Uefa
by the explicit formula for induced characters [Serrel, Section 7.2]. This
implies that x,(y) vanishes (recall that y is an element in the kernel of 8% );
in other words, the evaluation at y of an arbitrary class function on G is
equal to zero. Therefore y itself is trivial.

Surjectivity. For an arbitrary element y, in ®, let y be the element in
Zyp|[Conj(G@)]] defined by

y=p N+ > 7 H[ya] — 27 re])
hes\{e}
(we use the bracket [ -] for the corresponding element in Z,[[Conj(G)]]). Note
that the definition of @ guarantees that y has coefficients in Z,. Then it is
not difficult at all to check that the image of ¥ under the map le' coincides
with y.. 7

Corollary 4.4. Every element y in Z,[[Conj(G)]] is completely determined
by its trace images {63 (¥) Yoez, -

Next we extend the notion of the additive theta isomorphism to the Brauer
family Fg; for each (U, V) in §p let 9$,V be the composite map

. Tz, [[Coni(G)])/Zpl[Coni(L)]] . canonical
Z,|[Conj(@)]) — 2 ENEETN, 7, [[Conj(U)]] L2222, 7 [T/ V)]

and set 0, = (Gg,{r)(U,V)EEB- ‘We define the Zj-submodule ®g of the direct
product [[;vyegz, ZpllU/V]] as the submodule consisting of all elements
(yu,v)w,viezs satisfying the following frace compatibility condition (TCC,
see Figure 2):

the equation TEFZ;,[[U/V]] JZ (U7 /V]] (yuv) = C(:I.Ilgr (yur vr) holds

for arbitrary pairs (U,V) and (U, V') in §p such that U

contains U’ and U’ contains V respectively (we denote by

cany, the canonical surjection Z[[U'/V']] — Zo[[U"/V]]);
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o Z,(l0' V")
szp[w/vum | A
Zp[[U'/ V1)

FiGURE 2. Trace compatibility condition for 5.

and the following confugacy compatibility condition (CCCH-):

the equation yyry» = ¥g(yuv) bolds if (U, V) and (U’, V")

are elements in Fg such that U/ = ¢ 'Ua and V' = ¢~ Va

hold for a certain element a in G (we denote by %, the isomor-

phism Z,[[U/V]} = Zy[{U’/V"]| induced by the conjugation

UV = U V4~ a lua).
Note that we may naturally regard §4 as a subfamily of §p (by identifying
U in F4 with the pair (U, {e}} in Fz).

Proposition 4.5. Let (yILV)(U,V)e.'s‘B be an element in g and assume that
(YU (e} Uega 5 contained in ®. Then there exists a unique element y in

Zp|[Conj(@)]] which satisfies Bg (y) = (yU,V)(U,V)esB-

Proof. Consider the following commutative diagram (we denote the canon-
ical projection by ‘proj’):

Z,[[Coni (@] —— 22— Tlyesn ZollU/V]]
lproj
Zy[[Conj(G)]] f; i [Lvez, ZolU]]-

A

Then proj((yu,v)w.v)cgs) is contained in @ by assumption, and thus there
exits a unique element y in Zp[[Conj(G)]] which corresponds to the ele-
ment proj((yuv)w,vicss) vie the additive theta isomorphism 6§ for F4
(Proposition 4.3). We have to show that 05(y) coincides with Wv)wviess:
-and for this purpose it suffices to show that ‘proj’ induces an injection on
®p (note that the element (Gé,v(y))(U,V)eEB obviously satisfies both (TCC)
and (CCC+) by construction; hence 8£(y) is also an element in &g). Let
(2uv)w,v)czs be an element in $5 satisfying the following equation:

(4.1) proj{(zuv)wyviess) = (2o (e})vess =0

We shall prove that zyy = 0 holds for each (U,V) in §p by induction on
the cardinality of U/. First note that zy (e} = 0 holds for (U, {e}) if the
cardinality of Uf is less than or equal to p (use (4.1) and the conjugacy
compatibility condition (CCC+)). Now let (U, V') be an element in §g such
that the degree of U/ is equal to p* for certain & greater than or equal to 2
and set W = U/ /V/. Then the abelian group W is isomorphic to (Z/pZ)®?
for a certain natural number d less than or equal to & (due to the structure
theorem of finite abelian groups). Moreover we may assume that d is greater
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than or equal to 2.9 Since the element zyy is represented as a A(I')-linear
combination EweW aqyt, 1t suffices to prove that a,, equals zero for every w
in W. Take an arbitrary element z of degree p in W, and let Umf denote the
inverse image of (x)—the cyclic subgroup of W generated by z— under the
canonical surjection U/ — W. Obviously the cardinality of Ul is strictly less .
than p®. If we set U, = Uf x T, we may explicitly calculate the image of 2y
under the trace map from Zy[[U/V]] to Zp[[Us/V]] as Y4 p*lagz’. On
the other hand the element 2y, v, is equal to zero by induction hypothesis
(here V; denotes the commutator subgroup of Uy). Therefore a,: = 0 holds
for each 1 by (TCC). Replacing z appropriately, we may verify that a,, =0
holds for every w in W, O

* 5. PRELIMINARIES FOR LOGARITHMIC TRANSLATION

This section is devoted to technical preliminaries for arguments in Sec-
tion 6.

5.1. Augmentation theory. For each (U, V') in §p, let aug; - denote the
augmentation map from A(U/V} to A(T") (namely it is a ring homomorphism
induced by the projection U/V' — T), and let augyy: HU/V) — Q(F)
be its reduction modulo p. Let ¢: A(G) — A(I") denote ‘the Frobenius
endomorphism’ on A(G) defined as the composition

AG) 258 AT 5 AT

where augg; is the canonical angmentation map and ¢p is the Frobenius en-
domorphism on A(T') induced by y — 4?. Let 6y denote the composition of
the norm map Nrp(g)/a@w) with the canonical map K3 (A(U)) — A(U/V)*.

The author is grateful to Takeshi Tsuji for presenting the following useful
proposition to him.

Proposition 5.1. Let (U, V) be an element in §p and Jyy the kernel of
the composite map

AUV ZE2Y, Ay 2292, (T,

Then the element w(z) (G m’ﬂgy(:ﬂ) is contained in 14+ Jyy for each x in
K (A(@)) if U is a proper subgroup of G. In other words, the congruence
buv(z) = p(x) VP mod Jyy holds unless U coincides with G.

Before the proof we remark that the image of an element z in K; (A(G))
under the map fy 1 can be calculated as follows: since the Iwasawa algebra
A(G) is regarded as a left free A(U)-module of rank r = (G : U), the ‘right
multiplication by 2’ map is represented by an invertible matrix A4, with
entries in A(U).” The element @y (x) then coincides with the determinant
of the image of A, under the canonical map GL-(A(U)) — GL.(A(U/V)).

Proof. The claim is equivalent to the following Proposition 5.2 since both
A(G) and A(U/V) are p-adically complete. O

bwe may easily verify that the cardinality of V¥ is always less than or equal to p*~2
by induction on the cardinality of U/7.

"By abuse of notation, we use the same symbol z for an arbitrary lift of z to A(G)*.



22 ‘ TAKASII HARA

Let @: Q(G) — Q(I') denote the Frobenius endomorphism on Q{G) de-
fined as ¢ ®z, Fp and let dy,v denote the composition of the norm map
Nrg(@)/aq) With the canonical map K7 (Q(U}) — U/ V)*.

Proposition 5.2. Let Jyy be the kemel of the augmentation map
QUv) 229, qn).

Then the element defined as @(z)~(@UVP8y () is conteined in 1 + Juv
for each z in K1(S4G))

Remark 5.3. Proposition 5.2 is valid even if U coincides with G (indeed
@(z) can be described as a p-th power of a certain element, see the proof of.
Proposition 5.2). However there exists an obstruction for taking the projec-
tive limit if the exponent (G : U)/p of w(zx) is not integral. Therefore the
case where U coincides with G remains as an exception to Proposition 5.1.

Proposition 5.2 is deduced from the following elementary lemma in mod-
ular representation theory.

Lemma 5.4. Let K be a field of positive characteristic p, A a finite p-group
and V a finite dimensional representation space of A over K. Let aug’ de-
~ note the canonical augmentation map K[A] — K. Take a natural number n
such that p® is greater than the K -dimension of V.. Then for each z in K[A],
the action of P upon V coincides with the multiplication by aug(z)?" . In
particular the equation o3 = aug(z)!® holds.

Proof. Let d be the K-dimension of V. The group ring K[A] is a local ring
whose maximal ideal is the augmentation ideal since K is of characteristic p
and A is a p-group. Therefore the only simple K[A]-module {up to isomor-
phisms) is K endowed with trivial A-action, and moreover there exists a
Jordan-Schreier composition series

V=22 2Vi2Vu1={0}

such that each quotient space V;/V;i, is isomorphic to K. Take an arbi-
trary element e; in V; not contained in Vj4q for each 1 < i < d. Then
{e1,ea....,eq4} forms a basis of V over K, with respect to which the action
of x is represented by an upper triangular matrix all of whose diagonal com-
ponents are equal to aug(z). This implies the first claim. The second claim
is directly deduced from the first one (take n as the p-order of A and apply
the claim to the regular representation V' = K[A]). O

Proof of Proposition 5.2. Identify the modulo p Iwasawa algebra Q{U/V)
with the group ring Q(T)[U¥/Vf], and let K be the fractional field of }(I').
Then we may naturally regard each ¢ in Q(U/V) as an element in KUY /V 1],
and therefore the equation

(5.1) AUV _ agg (I VD)

holds by Lemma 5.4. Now let z be an arbitrary element in 2(G)*, and set
z = aug;(z) and y = zz~!. Then we obtain augq(y) = 1 and

(5.2) B(x) = O(y)0(2)
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by definition (here we denote the map §UV by 6 to simplify the notation).

Since z is an element in £{I") (and hence z is contained in the centre of
(@), the image of 2 under the norm map @ coincides with 2(GU) by direct
calculation. On the other hand we may calculate @(z) as follows:

(6.3)  @lz) = p(y)p(z) = platge())p(2) = 2% (use Augq(y) = 1).

Hence the equation @(z)~(GUVPg(z) = A(y) holds by (5.2) and (5.3). More-
over (5.1) implies that ypN is equal to mg(y)pN = 1, and therefore é(y)PN
is also trivial. The same argument as above derives a similar equation
§(y)”[Uf/ v = ng,v(é(y))”(m/ V), and consequently the equation

- = N = N
augy, v (0(y))" =6(y)" =

holds. Since Q(I') is a domain (recall that QT') is isomorphic to the formal

power series ring Fp[[T7]]}, the last equation implies that &Tg;, (8(y)) itself

is trivial; in other words @(y) is contained in 1 -+ Jy . O

The last paragraph of the proof implies that 8y (y) is contained in 14
Jyy if y is an element in A(G) satisfying augq (y) = 1 mod p. By replacing
G and U appropriately, we obtain the following useful corollary:

Corollary 5.5. Let (U, V) be an element in §p such that U does not contain
a non-trivial ceniral element c. Then the norm map Nrywux(o/vi/aw/v)
induces a group homomorphism from 1 - Jyy v to 1+ Jyv.

Remark 5.6. Both 1+ Jyyxv and 1+ Jyy are actually multiplicative
groups; see Proposition 5.7 for details.

5.2. Logarithmic theory. Let us study the p-adic logarithm on 1+ Jy v
for each (U, V) in §p, as well as those on 1 + Iy for each U in §a.c.

Proposition 5.7. For each (U, V) in §g, let Juy be as in Proposition 5.1.
Then
(1) the subset 14+ Jyy of A(U/V) is a multiplicative subgroup of A{(U/V)*;
(2) for each y in Jyy, the logarithm log(l + y) = Yoo (=1)""ly™/m
converges p-adically in A(U/V) @z, Qp;
(3) the kernel (resp. image) of the induced homomorphism
log: 14 Jyy — A(U/V) ®z, Qp

is up(A(U/V)) (resp. is contained in A(U/V)) where pp(A(U/V)) de-
notes the multiplicative subg’roup of A(U/V)* consisting of all p-power
roots of unity.
Proof. Define &gy : QU/V) — Q(I') similarly to the previous subsection,
and let Jy,v be the kernel of augy;y. Since Q(U/V) is commutative, we have
: p
F= >, Br= >, B=| D, %) =@EE@)F=
ueUf v e ucUf Vs uelUf /v’
for an element § = > s v Jutt in Juv (each gy is an element in Q(T)).
Therefore y? is contained in pA(U/V) for each y in Jyv.
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(1) By the above remark, (1+ )~ =Y. (—y)™ converges p-adically in
1+ Jyv foreach 1+yin 1+ Jyy.

(2) In a similar way the element y™ is contained in p™/PIA(U/V') for each
y in Jy v (for a real number z, we denote by [x] the largest integer not
greater than z), and hence the claim holds.

(3) If we take an element x = 1 4 y from 1 + Jy v, we may calculate as
#? =1+ % =1 where £ = 1+ § is the image of z in 1+ Jyy. This
implies that zP is an element in 14+pA{U/V) since the p-adic exponential
map and the p-adic logarithmic map define an isomorphism between
pA(U/V) and 1+ pA(U/V) in general (recall that p is odd). Therefore
plog z(= log aP) is contained in pA(U/V), or equivalently log(1+Jy,y ) is
contained in A(U/V'). Furthermore if we assume that logz = 0 holds for
z in 1+ Jyv, we obtain P = 1 by the above calculation, which implies
that z is an element in p,{A(U/V)). Conversely logz vanishes for an
arbitrary element z in g, (A{U/V)) since A(U/V) is free of p-torsion.

O

Lemma 5.8. For each U in§a,, let Iy be the Zy-submodule of A(U) defined

as in Section 3. Then I [2, is contained in Iyy. Moreover,

(1) when N is greater than or equal to 1, the Zy-module It is contained in
Jr = pA(T); ‘

(2) when N is greater than or equal to 2, the Zp-module Iy, is contained
in pA{Un) (hence also in Jy,) for each b in H \ {e}, and there exist
canonical inclusions pPW _l)IUh c Ifj:‘l C pk(nh_l)l'yh for an arbitrary
natural number k;

(3) when N is greater than or equal to 3, the Zp-module Iy, . 15 contained
in pA(Upc) (hence also in Jy, ) for each h in §\ {e,c} satisfying the
condition of Case (a), and p*WV _Q)IUh’c - Igfﬂ c p"’(“h_z)l';;rhlc holds for
an arbitrary natural number k; '

(4) when N is greater than or equal to 3, the Zp-module Iy, , is contained
in Ju, . for each h in 9\ {e,c} satisfying the condition of Case (b), and
there exist canonical inclusions pk(N _2)I§h . - I{}:i C pk(”h’l)I[%h . for
an arbilrary nolurel number k. ' ’ ’

Proof. The fivst claim is easily checked by direct calculation.

(1) Obvious from the exact description of It (see Section 4.3).

(2) If h is contained in the centre of G/, the equation nj = N clearly holds.
Otherwise NV U;{ has to contain the centre of GY, and therefore ny, is at
least 2. In both cases Iy, is contained in pA(U). The last claim is
obvious from the explicit description of Iy, .

(3) Recall that §N U,}; . = P holds in Case (a). Let 5’,{ denote the quotient
group U,{, o Uf. If h (the image of h in D_T}{ ) is contained in the centre
of Gf = Gf /Uér , the normaliser of [_f,{ obviously coincides with G,
which implies that ny is equal to N. Otherwise there exists a non-
trivial element @ in the centre of Gf. Let @ be its lift to G, then the
finite subgroup of Gf generated by ¢, h and ¢ is contained in N U,{ » by
construction. This implies that ny is.at least 3. In both cases we ,ma,y
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conclude that Iy, , is contained in PA(Unc). The last claim is obvious
from the explicit description of Iy, ..
(4) First note that 2 < np < N — 1 holds since the cardinality of N U}{ e

(which is less than or equal to p™) is equal to p™71. By using this fact,
we may exactly calculate as

1§, = "WV + P 1 e+ -+ FTHZ[T)

p—1
o @Fk(nh—l)—lhi(l +c+---+ Cp_l)zp[[r]]

i=1
~ for each k greater than or equal to 2. The claim holds by this calculation.
' (]

Proposition 5.9. Let U be an element in §a,c and assume that U does not

coincide with G. Then

(1) the subset 1+ Iy of A(U) is a multiplicative subgroup of A(U)*;

(2) for each y in Iy, the logarithm log(1 +y) = Yoo (—=1)™ 'y™/m con-
verges p-adically in Iyr; :

(3) the p-adic logarithmic homomorphism induces an isomorphism between
1+ Iy and Iy.

Proof. The claims of (1) and (2) follow from Lemma 5.8 (use the fact that
y?" /p™ is contained in Iy for each y in Iy if p is odd). For (3), first note that
1"'15 is a multiplicative subgroup of 14y and the p-adic logarithm induces
a homomorphism from 1 -+ I["} to I, {j for each natural number &k (similarly
to (1) and (2)). Moreover the Iyy-adic topology on Iy coincides with the
p-adic topology by Lemma 5.8. Therefore it suffices to show that the p-adic
logarithm induces an isomorphism ‘

log: 1+ IE/1+ IS S IE/IE L1 4y y

for each natural number k. Let y be an element in If,. We have ounly to
show that y#" /p™ is contained in I§+1 for each m > 1, or equivalently,
p‘mIE-pm is contained in If,"'l for every k and m. We may verify it by direct

calculation.?
O

Remark 5.10. Suppose that N equals either 0,1 or 2. Then the Artinian
family § 4, contains the whole group G by definition. The Zp-module Iz
obviously coincides with A(G), and thus the p-adic logarithm never con-
verges on 1+ Ig. We remark that the Z,-module Ig = A(G) is the only
exception to our logarithmic theory discussed in this subsection.

6. CONSTRUCTION OF THE THETA ISOMORPHISM II —TRANSLATION—

In this section we shall construct the multiplicative theta isomorphism by
using the facts studied in Section 5.

8In this calculation we use the fact that p is greater than 2.
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6.1. The multiplicative theta isomorphism. Let (U,V) be an element
in§g. We use the notion ‘z = 'ymod 7’ for elements z and y in A(U/V)*
such that zy~! is contained in 1+J —the image of 147 under the canonical
surjection A(U/V)* — A(U/V)*— if J is a Zp-submodule of A(I//V) such
that 14 7 is a multiplicative subgroup of A(U/V)*. Let ¥’ denote the sub-
group of H(U,V)esg A(U/V)* consisting of all elements n, = (v )wviess
satisfying the following three conditions:
e (norm compatibility condition, NCC)
the equation Nr ¢y vy/awejvy(uy) = cany, (g v) holds for (U, V)
and (U, V') in §p such that U contains U’ and U’ contains V re-
spectively (here cany,’ is the canonical map A(U'/V') — A(U'/V));
¢ (conjugacy compatibility condition, CCC)
the equation v = Ya(nyyv) holds for (U, V) and (U', V') in §p
such that U’ = a~'0Ua and V' = a~'Va hold for a certain element
a in G (we denote by 1, the isomorphism A(U/V)* = A(U'/V*)X
induced by the conjugation U/V — U’'/V';u — ¢ lua);
e (congruence C()ndltlon)
the congruence ny v = (nab)(G:U)/ P mod Jy,v holds for (U, V) in §p
except for (G, |G, G]) where 9,1, denotes the K(G"‘b)x—component of
e (see the previous section for the definition of Jyyy/).

Let ¥ (resp. \ic) be the subgroup of ¥’ consisting of all elements e in W
satisfying the following additional congruence condition (see Section 4 for
the definition of Iy):

¢ (additional congruence condition)

the congruence ny = w(nab)(G:U)/pr’rI(;aIU holds for each U in §a

(resp. Fa,c). ‘
Remark 6.1. When N equals either 0, 1 or 2, we regard the additional
congruence condition for the total group G as the trivial condition (in other
words, we do not impose any congruence condition upon G). Therefore we
have only to consider an element (U, V) in §g (resp. U in Fac) such that U
is a proper subgroup of G in arguments concerning congruence conditions.

Remark 6.2. For each U in S, we may easily check that the ideal Jy
contains fyy unless U coincides with G by using the explicit description of
Irr given in Section 4.2; in particular ¥, is a subgroup of ¥.

Let @y be as in Section 5.1 and set 8 = (QU,V)(U,V)emg: then the map @
induces a group homomorphism §: K (A(G)) — Hwvyess AUV)X.

Proposition 6.3. The multiplicative group ¥ coincides with U,. Moreover
the map 8 induces on isomorphism
b: Ki(AG) ST (=1,)

In order to prove Proposition 6.3, it suffices to verify surjectivity of
K(A(®) — T and injectivity of K(A(G)) — U, (see Remark 6.2). The
arguments to verily these two claims will occupy the rest of this section.
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6.2. Integral logarithmic homomorphism. We now introduce the inte-
gral logarithmic homomorphisms; for an arbitrary finite p-group A, Oliver
and Taylor defined a homomorphism of abelian groups (called the integral
logarithm)

Tat K1(Zp[A]) = Zp[Conj(A)]; =+ log(x) — p™ ¢ (log(z))

where ¢ is ‘the Frobenius correspondence’ on Z,Conj(A)] characterised by

90( > a{d}[d])= > aldl.

[#eConj(A} [#leConj(A)

The integral logarithmic homomorphisms are compatible with group homo-
morphisms; that is, the diagram

(6.1) K1 (ZpA)) —2> Z,[Conj(A)]

f*l lf*

Ki(ZplA') £ Z,[Conj(A)]

commutes for an arbitrary homomorphism f: A — A’ of finite p-groups
(the symbol fi denotes the homomorphism of K-groups induced by f). It
is known that the sequence

(62) 1= K1 (Zp[A)/K1(Zo[Al)sors ~2+ Tp[Conj(A)] 225 A®® 1

is exact where wa is the homomorphism of abelian groups defined by

WA ( Z a[d][d]) = H d°ldl
[d]€Conj(A) [d]€Conj{A)
(here we denote by d the image of [d] in A®"). Refer to [Oliver, OT] for
details of properties of integral logarithms.

Now consider the case G = Gf x I': let us apply the exact sequence (6.2)
to the finite p-group G(™ = G x T/T?" for each natural number n. The
structure of the torsion part of Ki(Zp[G™]) has been well studied in [H,
Section 4.4]; in fact, it is described as

(63)  Ki(ZolG™rors 2 pp-1(Zp) x G x Ky (2,[G))

by Wall’s theorem [Wall, Theorem 4.1] where pip—1(Z,) denotes the subgroup
of Z} consisting of all (p — 1)-th roots of unity. By taking the projective
limit,? we obtain the following exact sequence (note that the projective limit
lim_ K1(Zy [G™)]) actually coincides with K1(A(G)); see [FukKat, Proposi-
tion 1.5.1]):

(6.4)

1 K1 (A(G))/ lim K3 (Z[G™ iors ~ Zp[[Conj(G)]] £S5 G — 1.

98ince Ki(Zp[ Gt )/ Ki(Zo G htors — K1(Zp[G™]) /K1 (Zp[G™])iors is surjec-
tive, the exact sequence (6.2) for projective systems with respect to {G(“)}REN satisfies
so-called Mittag-Leffler condition. Therefore we may take the projective limit,



- 28 TAKASHI HARA

‘Moreover (6.3) implies that the projective limit lir_nn K (Z,,[(_}’("’*)])tors is iso-

morphic to the direct product pp—1(Z,) X G® x SK;(Z,[G7]). We may,
therefore, identify the p-torsion part Ki(A(G))p-tors of the Whitehead group
K1 (A(G)) with Gf*® x SK;(Z,[GF]) (recall that SK;1(Z,[G']) is a finite
p-group [Wall, Theorem 2.5]).

We remark that the p-th power Frobenius endomorphism g — ¢ is well
defined on G in our case since the exponent of G¥ equals p. We use the same
symbol ¢ for the Frobenius endomorphism on G, and then it obviously in-
duces the Frobenius correspondence on Z,{[[Conj(&)]]. Note that the notion
¢ introduced here is compatible with the one defined in Section 5.

6.3. The group ‘If contains the image of 6. In this subsection we prove
that ¥, contains the i image of # (and hence ¥ also does by Remark 6. 1).

Lemma 6.4. The mulliplicative group T’ contains the image of 9.

Proof. The element (5U,V(n))(g,v)e;§3 satisfies both (NCC) and (CCC) for
each 7 in K1(A(G)) by the basic properties of norm maps in algebraic
K-theory. Moreover the congruence éU,V(ﬂ) = (p(éab(n))(G‘U)/pﬁBElJUy
holds unless U coincides with G by Proposition 5.1 (we denote by 6,1 the
‘homomorphism Ki(A(G)) — A(G2P)* induced by the abelianisation map;
note that w(f,y (7)) obviously coincides with @(7) by definition). O

By virtue of Lemma 6.4 we have onlg to verify the following proposition
to show that W, contains the image of 8.

Proposition 6.5. Let 7 be an element in K (A(G)). Then the congruence
8 () = w(Ban () C VP mod Iy holds for each U in Fa.

The following lemma relates norm maps in algebraic & -theory to trace
homomeorphisms defined in Section 4.2 via p-adic logarithms.

Lemma 6.6 (compatibility lemma). Let (U, V) and (U7, V') be elements in
$p such that U contains U'. Then the following diagram commutes:

K1 (A(U)) —=E @,{[Coni(U)]]

Nra@) sawr) l lﬁQp[[Cﬂﬂj(U)]]/Qp[ICDHJ(U')]]
K1 {(A(U")) e Qp[[Conj(U]].

Proof. We may prove that the diagram commutes for each finite quotient
U®™ = Uf xT/TP" and U™ = U/ x T/T?" by the same argument as that
in [H, Lemma 4.7). Hence the claim holds if we take the projective limit. O

Proof of Proposition 6.5. We may assume that U does not coincide with
G without loss of generality (see Remark 6.1). Let 8y, (resp. 8) be the
homomorphism K1(A(G)) — A(G#)* (resp. Zy[[Conj(F)]] — Z,[[G*]])
induced by the abelianisation map G — G%. Then we may easily check
that the following diagram commutes for each (U V)in §p:
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@P®Zp9:b

Q{[Coni(G)]] QI
(65) o) [
Q[[Coni(@)] > QlIU/V])

»

Qp ®Zp ezj-,v

Note that @(Ban (1))~ V)P (n) is contained in 1+ Jy; for each U in Fa
because (gU,V(T)))(U,V}e&B is an element in ¥’ (Lemma 6.4). Then Proposi-

tion 5.7 (3) asserts that the element log (i (fap (1))~ GVMP8,(n)) is contained
in A(U). On the other hand, we may calculate as

(6.6)
65y 0 Ta(n) = (@ ®z, 65ry,) (log(m) — (Qp ®z, 65y (0 0(log(1)))
— log(Buy () — (G;U) o (log(0as (1))
fu,v(n)
= log w(ﬂabl(jn‘;)(@”’/p

for each (U, V) in Fg (the first equality is nothing but the definition of the
integral logarithm and the second follows from Lemma 6.6 and (6.5)).1° In
particular log(s(8ap (1))~ CUY/P8y(n)) is contained in Jyy for each U in Fac
by definition. Recall that for each U in § 4 the p-adic logarithm is injective
onl-+ J; (Proposition 5.7) and it induces an isomorphism between 1 + Ia
and Iy (Proposition 5.9 (3)) unless U coincides with G. Therefore we may
conclude that @ (8 (1))~ EY)/Pgy(n) is contained in 1 + Ij;, which implies
the desired additional congruence for U. O

By Lemma 6.4 and Proposition 6.5, we may conclude that ¥ (resp. ‘:I-’c)
containg the image of 8; in other words, # induces a homomorphism

6: Ki(AMG) =T (resp. T.).

6.4. Proof of the bijectivity of 8. We shall verify the bijectivity of the
above induced map & in this subsection.

Proposition 6.7. The homomorphism 6: K1 (A(@R)) — T, is injective.

Proof. Take an arbitrary element from the kernel of & and let n denote its
lift to K1(A(G)). Then BE'I_,V oT'¢(7) vanishes for each (U, V) in Fp by (6.6).
Hence Tg(n) coincides with zero since 6% is injective (Proposition 4.5);
equivalently the element 7 is contained in the kernel of the integral loga-
rithm I';. Combining this fact with Wall’s theorem (see [Wall, Theorem 4.1]
and (6.3)), we may regard i as an element in p,_1(Zp) X G** x SK1(Z,[G¥]).
Furthermore the abelianisation map 8,, induces the canonical projection

10For the abelianisation 8y, = 8¢,(c,G), We use the notation log(ip(n) ~1/P8.n(n)) for an
element defined as I'g,, (fan (7)) = log(fan(n)) — p~  log(w(@an{m))) by abuse of notation.
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from pp—1(Zp) x G* x SK1(Z,[G']) onto pp_1(Z,) x G2 when it is re-
stricted to the kernel of I'g. Since éab(n) vanishes by assumption, the ele-
ment 77 is contained in G*»f x SK; (Z,[G/]}, and in particular 7 is a p-torsion
element. This implies that the image of 5 in K1 (A(G)) is trivial. O

Proposition 6.8. The homomorphism 6: K1(AMG)) — T is surjective.

Let 7, be an element in T. Since 7e is in particular contained in g , the
element log((nan) ™ CYPyy;3) can be defined as an element in A(U/V)
for each (U, V) in §p (Proposition 5.7 (2} and the definition of the integral
logarithm for G2b).

Lemma 6.9. The element (log(cp(nab)_(G:U)/pny,v))(U,V)egs is contained
in ®g. Moreover (log(s,o(nab)_(G‘U)/P?]U))UE;,»A is contained in ®.

Proof. Set yuy = log{w(nas) YV Pyy ) for each (U, V) in §p. Then we
may easily verify that (yu,v)(uv)ez,, satisfies both (TCC) and (CCC+) (due
to (NCC), (CCC) and Lemma 6.6). Hence (yuv)wv)ecz, is contained in
®5. Moreover @(np)~ (@Y Py is contained in 1+ I{, for each U in %4
by additional congruence condition, and thus yy = log((p(nab)—(Gﬂ)/an)
is contained in Iy by Proposition 5.9. This implies that (yy)yez, is an
element in ®.

Proof of Proposition 6.8. First note that there exists a unique element y

in Zp[[Conj(G)]] which satisfies 8% (y) = (log(p(ab) " C Py v)) wvyess
by Proposition 4.5 and Lemma 6.9. In particular the equation

1
(8.7) % (y) = 10g7a — —¢(10g ab) = oy, (M)
holds. Then we may calculate as

Wa (y) = Web © G:b(y) = Weab O rGab (??ab) =1
where the first equality directly follows from the definition of wg and ween
{see Section 6.2), the second follows from (6.7) and the last follows from
(6.4). The exact sequence (6.4) also, asserts that there exists an element 7/
in K1(A{G)}) which satisfies I'g(#'} = y. Furthermore we obtain

Laa (Ban(n') = 6, 0 To(n) = 04,(y) = T (yab)
by using (6.7). Since the kernel of I'gas is identified with u,—1(Z,) x G2 by
the theorem of Higman [Higman)|, there exists an element 7 in j,) (Z) X G®>

such that the equation Ban (7" )7 = nap holds. Set n = n'T. By construction,
the abelianisation f.,(n) of n coincides with #,p and

nuy Ou,v (n)
o (nap ) UMP (Bap (7)) GOV

holds for each (U, V) in §p except for (G, [G, G]) (the first equality is due to
the construction of y and the last is due to (6.6)). Then 8y, (n) coincides
with 7y because the p-adic logarithm induces an injection on 1 + J;I’V

log = Oy (y) = 8y o To(n) = log -

(Proposition 5.7); in other words the image of 7 under the map f coincides
with 7., which asserts that 6: K;(A(G)) — U is surjective. 0
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7. LOCALISED VERSION

In this section we study ‘the localised theta map;’ more precisely, let
@su,v be the composition of the norm map Nry(g)g/aw)s With the canon-
ical homomorphism K1 (A(U)g) — A(U/V)3 for each (U, V) in Fp and set
0s = (Os,u,v )(,v)ez,- 1t is obvious that f¢ induces a group homomorphism
bg: Ky (AG)s) — H (UV)eEn (U/ V)5. We shall study the image of fs.

Let A(T')(; denote the localisation of the Iwasawa algebra A(T) with
respect to the prime ideal pA(T), and let R denote its p-adic completion
A(I‘)?p) for simplicity. We remark that for each finite p-group A, the localised

Iwasawa algebra A{A x I')s is identified with a group ring A(T)(,[A] under
the identification A(A x I'} & A(T')[A] (see [CFKSV, Lemma 2.1]). Now for
each (U,V) in §g, let Jgu,v (resp. Jyyy,) be the kernel of the composition

AU/V)s SEEE AT gy — AD) ) /PAD) )
(resp. R[UY/VY) augmentation, p R/pR).
Then we may easily verify that the intersection of J;,V and A(U/V)g (resp.
Jsp v and A(U/VY)) coincides with Js v (resp. Jyy) under the identi-
fication A(U/V)s = A(T),[Uf/V/]. Since the group ring R[Uf/V/] i
p-adically complete, the p-adic logarithm converges on 1+ Ji; 1, and induces
an injection log: (1 —!—JB,V)~-—> R[UY/Vf] unless U coincides with G (can be
verified similarly to Proposition 5.7). Let \ig be the subgroup of the direct
product [ yyez, AU/V)g consisting of all elements 7g,s satisfying norm

compatibility condition (NCC)g, conjugacy compatibility condition (CCC)g
and the following congruence for each (U, V) in §g except for (G, [G, G]):!!

15,0y = ©(05,a0) TP mod Js v

].:‘_et Tg {resp. ‘ig,c) be the subgroup of E’fs consisting of all elements 75, in
% satisfying the following additional congruence condition:
¢ (additional congruence condition)

the congruence 75 = ¢(7s, ab ) Ep mod IS v holds for each U in
Fa (resp. Fac) where Igy is the A(T) (p)-module defined as Iy @)

A(T) ).
The group ¥g . is a subgroup of Tg (as W, is that of ¥; see also Remark 6.1).

Lemma 7.1. The intersection of I, and A(U)s (resp. Isy and A(U)) co-
incides with Igy (resp. Iy).

Proof. We shall only prove the claim Igy N A(U) = Iy (the other one is
verified by much simpler calculation). The Z,-module Iy is obviously con-
tained in the intersection Igy N A{U) by construction. Note that Igy is
a free A(T)(p)-submodule of A(U)s each of whose generators is obtained as
a finite sum of {pu}ocjcnuers (See the explicit description of Iy given
in Section 4.2). Hence an arbitrary element in Igy N A(U) is described

11We may naturally extend both (NCC) and (CCC) to the localised versions (NCQC)s
and {CCC)s in an obvious manner.
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as a A(T)p) N A(T)[p~!]-linear combination of generators of Igy, which
implies that the intersection Igy N A{U} is contained in Iy (observe that
AT NAT)[p™] coincides with A(I") and generators of Ig; over A(T) (p)
coincide with those of Iy over A(T)).

Proposition 7.2. Both 11"5 and 133,0 contain the image of fs.

Sketch of the proof. Let g be an arbitrary element in Kl(A( )s). By the
same argument as that in the proof of Lemma 6.4, we may verify that lI!’
contains the image of #g. Then the element (,o(ﬂs,ab(ng))_(G’U)/pBSMV(nS)
(which we denote by ’?fe,U,V in the following} is contained in 1 + Jgpv
for (U, V) in g except for (G,[G,G]) by congruence condition, and it is
regarded as an element in 1+ Ja,v in a natural way. Hence we may define
logng 17y as an element in R[UT/VF]. On the other hand we may easily
show that for each U in §4, the image of the trace map Trgjconjasy/a[U7]
coincides with the RE-module IE} defined as Iy ®,(ry B (here we assume that
U does not coincide with &; see Remark 6.1). Moreover the image of ng
under the composite map Trgiconiiat))/r /) ° L RGs 18 caleulated as logng
by simple calculation similar to (6.6) where I'p s is the integral logarithm
K1 (R[Gf]) — R[Conj(GY)] with coefficient in R (see [H, Section 1.1 and
Remark 5.2]}. This implies that logny is contained in I; for each U
in Fae, and therefore we obtain 51 (ns) = cp(és,ab(ns))(G’U)/prEa—:lIs,U
by the logarithmic isomorphism 1+ I; —» Ia (readily verified in the same
manner as Proposition 5.9) and the relation I; NAU)s = Isy (Lemma 7.1).

Consequently (BSUV(TIS))(U V)ezp 18 contained in II'SC (and hence in ‘Il,g)
|

Proposition 7.3. The intersection of Tg (resp \Ilg ¢) and the direct product
[wv)ess A(UJV)* coincides with U (= T,).

Proof. Use relations Igy N A(U) Iy for each U in §a, (Lemma 7.1) and
Jsuv NAU/V) = Jyyv for each (U, V) in §5. O

8. WEAK CONGRUENCES BETWEEN ABELIAN p-ADIC ZETA FUNCTIONS

In this section we study properties of the p-adic zeta pseudomeasures for
extensions corresponding to certain abelian subquotients of G —especially
congruences which they satisfy. In the rest of this article, we fiz embeddings

Q—=CaadQ—qQ,

8.1. Weak Congruences. For each (U, V) in §p, let &y v denote Serre’s
p-adic zeta pseudomeasure for the abelian extension FV/FU (which is an
element in A(U/V)3).

Lemma 8.1. The element (§uv)wviezs ™ [lwviezs AU/ V)5 satisfies
both norm compatibility condition (NCC)g and conjugacy compatibility con-
dition (CCC)g n Section 7.



INDUCTIVE CONSTRUCTION OF p-ADIC ZETA FUNCTIONS 33

Proof. Let (U, V) and (U, V') be elements in g such that U contains U’
and U’ contains V respectively. Then we may easily verify that

Nrpwvysaw s (£ () = F(Indf (o))

holds for an arbitrary element f in A(U/V)§ and an arbitrary continuous
p-adic character p of the abelian group U'/V (due to the definition of the
evaluation map). Hence for an arbitrary character x of finite order of U’ /V.
and an arbitrary natural number r divisible by p— 1, the following equation
holds by the interpolation property (2.1) of £y v:

Nrawvys/aw v)s Eov)(xs") = &y (Indg (x<"))
| = Ly, (1 — r; By /Fy, Ind (x))
= LZFU! (1 -n FV/FU’:X) = gU',V(X&T)'

Then uniqueness of the abelian p-adic zeta pseudomeasures for Fy /Fyr as-
serts that the norm image Nra vyg/awe/vys(§uv) of €uy coincides with
Eurv. The eguation cang' (€gr,v+) = & v is also straightforward to verify,
and therefore (§u,v)(v)ez, satisfies (NCC)g. By a similar formal argu-
ment we may also prove that (§u,v)(w,v)eg, satisfies (CCC)s, but we omit
the details. O

Therefore if (§,v ), v)eg, satisfies both congruence condition and addi-
tional congruence condition, we may conclude that (€uv)w.v)ezy is con-
tained in E's,c {(hence also in {qus) It seems, however, to be difficult to
prove the desired congruences for {€u,v }w ez, directly. In the rest of
this section we shall prove the following weak congruences by using Deligne-
Ribet’s theory concerning Hilbert modular forms [DR] (especially using the
g-expansion principle). '

Proposition 8.2 (weak congruences). Let (U, V') be an element in Fg such
that U does not coincide with G, then there exists an element cyy in A(I‘)(’;)
and the congruence

(8.1) ¢uy =cyy modJsyy
holds. If U is an element in §a., the congruence
(8-2) v =cy IEBHIQ,U

also holds where If; is the image of the trace map from Zp[[Conj(NU)]| to
Zy[[U]] and Igy; is its scalar extension Ity @4 ry AT )
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Remark 8.3. We may obtain an explicit description of each Ij; by easy cal-
culation similar to that in Section 4.2 as follows:

It = pNz, ([T

Iy, = o™ Zp[[U4]) for b in 5\ {e},
I!Uh,c = nh—ZZp[[Uh,c]] for h in 6 \ {e, ¢} satisfying (Case-1),
p—1
Iy, . = P (U] @ D per 2R (14 & + - + P [[T])
i=1

for i in 9 \ {e, ¢} satisfying (Case-2).

Each Ij; (resp. I .fs,U) obviously contains Iy (resp. Is ). Moreover the p-adic
logarithm induces an isomorphism between 1 + Ij; and Ij; (resp. between

14+ () and (I;) where (14;) is defined as I/, ® A(r)yR) by the same argument
as that in the proof of Proposition 5.9.

8.2. Ritter-Weiss®’ approximation technique. In their work concerning
the ‘main conjecture’ of equivariant Iwasawa theory, Ritter and Weiss ap-
proximated p-adic zeta pseudomeasures by using special values of partial
zeta functions, and derived certain congruences between p-adic zeta pseu-
domeasures [RW6]. In this section we shall derive sufficient condition for
Proposition 8.2 to hold by applying their approximation technique. Fix an
element (U,V) in §p such that U does not coincide with G, and let W
denote the quotient group U/V (which is abelian by definition). For an
arbitrary open subgroup Y of W, we define the natural number m(l{) by
kPL(U) = 14+ p™Z, where k is the p-adic cyclotomic character. Then we
obtain an isomorphism

83) - LW lm o Z, W/ Oz,
U<W: open

(see [RW6, Lemma 1] for details).

Definition 8.4 (partial zeta function). Let € be a C-valued locally constant
function on W. If £ is constant on an open subgroup U of W, we may
identify € with a C-linear combination ) ey £(z)8® where 6@ is ‘the

Dirac delta function at z’ (that is, §(*)(w) equals 1 if w is in the coset
a,nd 0 otherwise). Then we define the (X, -truncated) partial zeta function

C 7 / Fy (s,8) for Fy/Fy with respect to the locally constant function € as

ZEEW/L( .r-:(:n) / 7y (S s,6@)) where C Py 1, (8,6 (2)) is defined as the Dirichlet,
series

Fur :r: ,5(‘17) F F, .
(e (5, 6) = 3 (((Xfé)f @)

0#£aCO Fp integral ideal prime to & Fyy

(the symbol (Fy /Fy, —) denotes the Artin symbol for the abelian extension
Fy/Fy and Mua denotes the absolute norm of the ideal a). It is meromor-
phically continued to the whole complex plane C.
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For an arbitrary natural number & divisible by p — 1 and an arbitrary
element w in W, set

w Z b
B rry (L= E,8) = (b (1= Kye) = 5(w) g, (1 — Ky )

which is a p-adic rational number due to the results of Klingen and Siegel
[Klingen, Siegel] (we denote by &, the translation of £ by w; in other words
£y is defined by &, (w') = e(ww’)).

Proposition 8.5 (approximation lemma). Let U be an arbitrary open nor-
mal subgroup of W. Then for each k divisible by p — 1 and each w in
W, the image of the element (1 — w)éy,y under the canonical surjection
Zp[W]) — Zp[W/U] /p™ DL, (WU is described as

> AY (1 k6P)k(z) . modp™®).,
zeW /il

Proof. See [RW6, Proposition 2]. O

Let 7 be a natural number and NU the normaliser of U/. Then the quotient
group NU/U acts upon W/T'? by conjugation (recall that T¥ is abelian).
For each coset y of W/I'"', let (NU/U), denote the isotropy subgroup of
NU/U at y under this action.

Proposition 8.6 (sufficient condition}. Let (U,V) be an element in Fp
except for (G,[G,G]). Then the congruence (8.1) holds if the congruence

(8.4) 21— k60 =0 mod{(NU/U),Z,

holds for an arbitrary elementw in T, an arbitrary natural number k divisible
by p—1 and an arbitrary cosety of W/T? not contained inT". IfU = (U, {e})
is an element in Fac and does not coincide with G, the congruence (8.4)
also gives sufficient condition for the congruence (8.2) to hold.

Proof. Apply the approximation lemma (Proposition 8.5) to the element
(1 — w)éy,v- Then its image under the canonical surjection from Z,[[W]]

onto Zy[W/T#]/pm™(T pj}Zp [W/T?] is described as

(8.5) ST AL g (- & 6D)k(y) ry mod g™
) yew/re!

for an arbitrary natural number & divisible by p — 1. Let y be a coset of
W/TP not contained in T, and consider the NU/U-orbital sum in (8.5)
containing the term associated to y. We may calculate it by applying (8.4)
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as follows:12

E AQFU‘V/FU(l - k,6(a_lya))ﬁ(ﬁ_1ya)_ka_lya
ce(NU/UY/(NU/U)y

=AY, 1m, (1= k, 6@k (y)~* > o lyo
FE(NU/INHNU/U),

= §(NU/U), > o lyo mod §{(NU/U),.
aE(NU/U)/(NU/U )y

If we set

Py = {(NU/U)y > o~ yo,
cE(NU/U)/(NUJU)y

the element augyy(Fy) = HIVU/U)augyy (y) is obviously divisible by p
(note that the normaliser of U is strictly greater than U since U i3 a
proper open subgroup of the pro-p group G). This calculation implies that

P, is an element in Jyyv ®A(p)_Zp[I‘/1"pj ] /pm(rpj). If U is an element in
$4,c it is also obvious that F, is no other than the image of y under the
trace map from Zp[[Conj(NU)]] to Zy[[U]]. Therefore P, is contained in

I, ®Ar) ZP[I‘/I"pj]/pm(FpJ). Clearly A?V/Fv(l — k,5(y))fi(y)_ky is an el-

ement in Z,[I'/T%] /pm(rpj) if ¥ is a coset contained in I', and hence we
may show by taking the projective limit that the element (1 —w)&y v (resp.
(1 —w)&y for U in Fa,c) is contained in A(F}+ Jy,v (resp. A(T')+1};). Since
1—w is an invertible element in A(U/V)g, we obtain the desired congruences
(8.1) and (8.2). O

8.3. Deligne-Ribet’s theory of Hilbert modular forms. We briefly
summarise the theory of Deligne and Ribet concerning Hilbert modular
forms [DR] in this subsection, which we shall use in verification of suffi-
cient condition (8.4). _

Let K be a totally real number field of degree r and K/K an abelian
totally real p-adic Lie extension. Let @ be the different of A . and ¥ a
finite set of prime ideals of K. Assume that ¥ containg all primes which
ramify in Ko, (we fix such a finite set & throughout the following argument).
We denocte by by the Hilbert upper-half space associated to K defined as
{r € K®C | Im(r) >» 0}. For an even natural number k, we define the
action of GLa(K)*—subgroup of GLa(K) consisting of all matrices with
totally positive determinants— upon the set of C-valued functions on bz by

art + b
cr+d

(Fli (2 2))(7‘) = N(ad — bc)k/éN'(C'r + d)"kF( )

where A/: K ® C — C denotes the usual norm map.

12%¢ need the fact that w commutes with each ¢ in N U/U to guarantee the equality
u -1 u
A%, r, (L -k, 8t ya)) =AF, (1 —k, 5(y))-
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Definition 8.7 (Hilbert modular forms). Let f be an integral ideal of O
all of whose prime factors are contained in ¥ and set

Tool(§) = {(g Z) e SLz(K) | a,de 1+f,be'i)‘1,ce f@}

Then o Hilbert modular form F' of (parallel) weight k on Too(f) is defined as
a holomorphic function F: hx — C which is fixed by the action of Ipo(f)
(namely F|xM = F holds for an arbitrary element M in Dgy(f)).13

Let Af? denote the finite adéle ring of K. Then SLy(AL) is decomposed as
Too(§)-SLa(K) by the strong approximation theorem (we denote by T'go(f) the
topological closure of To(f) in SLo(ASP)). We define the action of SLo(AS?)
upon the set of all C-valued functions on b by F|pM = F|pMgr,,(x) where
Mgr, (k) is the SLy(K)-factor of M in SLy(AfP). For a finite idéle o of K
and a Hilbert modular form F' of weight & on Igy(f), set '

. a 0
nem (s ).

Then F, has a Fourler series expansion

Fo=cl0,0)+ Y. clmo)dy, o =exp@nyv/—ITrgq(pr))
pEOE 130

which we call the g-expansion of F' at the cusp determined by o. Especially,
the g-expansion of F' at the cusp oo (determined by 1) is called the standard
g-expansion of I'. Deligne and Ribet proved the following deep theorem
concerning the integrality of coefficients appearing in the g-expansion of a
Hilbert modular form.

Theorem 8.8 ([DR, Theorem (0.2)]). Let Fy be o Hilbert modular form
of weight k on Ty(f). Assume that oll coefficients of the g-ezpansion of
Fy at an arbitrary cusp are rational numbers, and assume also that Fy is
equal to zero for all but finitely many k. Set F(a) = 3 50Ny, kP for
a finite idéle a of K whose p-th component we denote by o. Then if the
g-ezpansion of F(7y) has all its coefficients in p’Z, for a certain finite idéle
v end a certain integer 7, the g-expansion of F(a) for an arbitrary finite
idéle o also has all its coefficients in p/Z,.

The following corollary—so-called the g-ezpansion principle— plays the
most important role in verification of sufficient condition (8.4).

Corollary 8.9 (g-expansion principle). Let Fy, and & (a) be as in Theo-
rem 8.8 and j an integer. Suppose that the g-expansion of F () has all its
non-constant coefficients in pjz(p) for a certain finite idéle v. Then for ar-
bitrary two distinct finite idéles o and 3, the difference between the constant
terms of the g-ezpansions of % (a) and F(B) is also contained in pr(p).

Proof. Just apply Theorem 8.8 to # () — ¢(0,v) and & (8) — ¢(0,7) where
¢(0,7) is the constant term of the g-expansion of #(vy). See also [DR,
Corollary (0.3)]. O

131f K is the rational number field Q, we assume that F is holomorphic at the cusp co.
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Finally we introduce the Hilbert-FEisenstein series attached to a locally
constant C-valued function £ on Gal(K/K).

Theorem 8.10 (Hilbert-Eisénstein series). Let £ be a locally constant func-
tion on Gal(Ku/K) and k an even natural number. Then there exists an
integral ideal § of Ok all of whose prime factors are contained in X, and
there exists o Hilbert modular form Gy of weight k on Too(f) (which is
called the Hilbert-Eisenstein series of weight & attached to ) whose stan-
dard g-ezpansion is given by

27CE (l-ke+ ) S e(@k(att ] g
UED 130 \ u€alCOy prime to T
(we use the notation e(a) and x(a) for elements defined as e((Kw/K, a))
and k{(Koo/K,n)) respectively where (Koo /K, —) denotes the Artin symbol
for the abelion estension Ko/K). The g-expansion of Gi. ot the cusp
determined by a finite idéle o is given by
(8.6)

N((@)F 277K il = ke + D > (s | gk
HEOK \pEealC Ok
a0 prime to ©
where () is the ideal generated by o and a is an element in Gal(K/K)
defined as (Koo/K, (0)a™1).

For details, see [DR, Theorem (6.1}].

‘8.4, Proof of sufficient conditions. In the rest of this section we shall
verify sufficient condition (8.4). This part is a subtle generalisation of the
argument in [H, Section 6.6]. Let j be a sufficiently large integer and y a
coset of W/T? not contained in I'. Choose an integral ideal § of Oy, such
that the Hilbert-Eisenstein series Gy, s¢) over g, is defined on L'oo(fOr, )-
Then it is easy to see that the restriction & = G 5 |5 Fay of Gk’a(y) to Dryy
is also a Hilbert modular form of weight p™Uk on [gy(f) where p™ is the
cardinality of the quotient group NU/U. The g-expansion of ¢ is directly
calculated as

_ ‘ E —_ d’g
AT (k604 Y Zc:O 59 (6)(6) ! | g
veEOr, \ vEbBE O,
v 0 “\prime to Sr;

where qgl(v? denotes exp(2mv/—1Trpy,, /o(Trmy sy (#)7)). Note that the
quotient group NU /U naturally acts upon the set of all pairs (b, /) such that
b is a non-zero integral ideal of O, prime to X, and v is a totally positive
element in b. First suppose that the isotropy subgroup (NU/U) ) is triv-
ial. Then we can easily calculate the NU/U-orbital sum in the g-expansion

of & containing the term associated to (b,v) ag follows:

—1 tr{z™ -1 —1 te{r
Pl e o7 M DI L O P D
ceNUU ee(NUSU)/ (NU/U)y
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(use the obvious formula Trpy, /pyy (V7)) = Trpy, g (V)

Next suppose that the isotropy subgroup (NU/U),,) is not trivial. Let
Flp,) be the fixed subfield of Fy; by (NU/U) ) and Fooy" the fixed sub-
field of Fi, by the commutator subgroup of NUyy, 5. Then (b, v) is fixed by
the action of Gal(Fy/Fiy,)), and hence v is an element in Fiy . and there
exists a non-zero integral ideal a of OF“’,U} such that aOp, coincides with b.

For such (a, v}, the equation
6W(b) = 89 ((Fy /Fy,a0p,)) = ¥ o Ver(FEI™ / Flo,y 0)) = 0

holds because the image of the Verlagerung homomorphism is contained in
I (indeed the Verlagerung coincides with the ngy-th power of the Frobenius
endomorphism ™ if the finite part of the Galois group is of exponent p;
see [H, Lemma 4.3] for details) but ¥ is not contained in T

The above calculation implies that ¢ has all its non-constant coefficients
in §(NU/U)yZy). Take a finite idele -y such that (Fy/Fy, (v)v~1) coincides
with w. Then by Deligne-Ribet’s g-expansion principle (Corollary 8.9) the
constant term of ¥ — % (y) is also contained in §(NU/U)yZ(y), which we may
calculate as 2~ 1FuQ A% rry (1 — k, 60} (use the explicit formula (8.6) for

the g-expansion of #(v)). Therefore sufficient condition (8.4) holds (recall
that 2 is invertible in Z,) since p is odd).

9. INDUCTIVE CONSTRUCTION OF THE p-ADIC ZETA FUNCTIONS
v

‘We shall complete the proof of our main theorem {Theorem 3.1). We first
construct the p-adic zeta function ‘modulo p-torsion’ for Fo/F, and then
eliminate ambiguity of the p-torsion part.

9.1. Choice of the central element c. In order to let induction work
effectively, we have to choose a ‘good’ central element ¢ which is used in
the construction of the Arfinian family F4 . (see Section 4.1). The following
elementary lemma implies how to choose such a ‘good’ central element.

Lemma 9.1. Let A be a finite p-group of exponent p and ¢ a non-trivial
central element in A. If ¢ is not contained in the commutator subgroup of
A, the p-group A is isomorphic to the direct product of the eyclic group (c)
generated by ¢ and the quotient group AJ{c}.

Proof. By the structure theorem of finite abelian groups, the abelianisation
A?P of A is decomposed as the direct product of the image of the cyclic group
(c) and a certain finite abelian p-group H of exponent p. Let H denote the
inverse image of H under the abelianisation map A — A?P. Then one may
easily verify that H and {c) generate A. The intersection of H and {¢} is
obviously trivial, and H commutes with elements in (¢} since ¢ is central. O

This lemma implies that there exists a non-trivial central element ¢ which
is contained in the commutator subgroup of G¥ if G is not, abelian. We may
assume that G is non-commutative without loss of generality (abelian cases
are just the results of Deligne, Ribet and Wiles), and thus we may always find
a non-trivial central element contained in [G, G]. In the following argument
we take a non-trivial central element ¢ from the commutator subgroup of G
and fix it. Let F, denote the maximal subfield of Fy, fixed by (c).
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9.2. Construction of the p-adic zeta function ‘modulo p-torsion’. In
this subsection we construct the p-adic zeta function ‘modulo p-torsion’ for
Foo/F, by mimicking Burns’ technique (see Section 2). First consider the
following commutative diagram with exact rows:

K1 (A(G)) ——— K1(A(G)s) 2 Ko(A(G), A(G)s) ————0

al l | 1m

g MU/VY e [T, AU/V)E s [ Ko(A(U/V), AU/ V)5) —0.

Let f be an arbitrary characteristic element for Fo,/F (see Section 1) and
set 85(f) = (fu,v)wy)ezs- For each (U,V) in §p let wy,v be the element
defined as &y v f(},%,, which is contained in A(U/V)* by an argument simi-
lar to Burns’ technique. Let @y denote the image of wyy in K(U /V)x
Since both (fu,v)wyviezs and (§u,v)wv)ess satisly conditions (NCC)g and
(CCC)s (see Proposition 7.2 and Lemma 8.1), the element (¥uv ) v)ezs
also satisfies (NCC) and (CCC). Moreover there exists an element dy7 i (resp.
dy) in A(T) E;J , such that the congruence

(9.1) dpy =dpy modJsyy  (resp. Wy =dy mod Igy)

holds for each (U, V') in §g except for (G, [G,G]) (resp. for each U in Fa.
except for G) by Proposition 7.2 and Proposition 8.2, We remark that these
congruences are not sufficient to prove that (Wuyv}w,vyegy 15 contained in

¥ (or equivalently in ¥,).

Remark 9.2. Unfortunately the congruences (9.1) hold not in A(U/V) (resp.
A(U)) but in A(U/V)g (resp. A(U)s). Nevertheless we may obtain the
integral congruences (9.5) later by ‘eliminating dUV and dy.' The author
would like to thank Mahesh Kakde for pointing out wrong arguments around
these phenomena in the preliminary version of this article.

Theorem 8.3 (strong congruences modulo p-torsion). The congruence
Wy = @) FUP mod Jyy  (resp. By = o(@as) FUVP mod Iy)

holds for each (U,V') in Fp except for (G,[G,GY) (resp. for each U in Fa,
except for G).

Proof. Recall that the non-negative integer N is defined by §G¥ = pV. We
shall prove the claim by induction on N. We first assume that  is abelian.
Then the element (£y,(5}) (v {e})ezx 18 in fact contained in the image of fs
(use the existence of the p-adic zeta pseudomeasure for Fi,/F), and hence
(€U {e})(U{e})e5 Satisfies desired congruence condition and additional con-
gruence condition. This implies that (Wy (e}) W {e})ez, also satisfies them.
In particular the cases where N equals either 0, 1 or 2 are done. Therefore
we assume that N is greater than or equal to 3 and & is non-commutative
in the following argument.

Now let (U, V) (resp. U) be an element in §g (resp. §a,) such that U
contains the fixed central element ¢ chosen as in Section 9.1. Set G = G/{c},
U =U/{c) and V = V{(c)/(c) respectively. Clearly the set of all such (T, V)
is a Brauer family §g for G, and the set of [, = Upc/{c) for all hin § is
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an Artinian family F4 for G. We may easily see that the following diagram
commutes because U contains ¢:

K1 (A(G)s) — K1(A(G)s)
Nraa)g/atg l lNTA(é)s/A(B)S
AU A(D)s.

Note that the image of £y under the quotient map A(U/V)} — A(T/V)%
coincides with the p-adic zeta pseudomeasure &g iy for Fyy/Fy (easily fol-
lows from its interpolation property). Hence we may apply the induction
hypothesis to the image @ ¢ of @y,v.in A(T/V)*; in other words, we may
assume that the congruences
9.2) gy = @) " modJpp, @y = (@) PP mod Iy
hold for each (I, V) in Fp except for (G,[G,G]) and for each T in 4 if
we define J;5  and Iy analogously to Jyy and Iyy. On the other hand we
may readily verify that the matural surjection A{(U/V) — A(U/V) maps
Juyv to Jgy and Iy to Iy respectively (use the definition of Jyy and
the explicit description of Iy). Let I’ﬁ denote the image of the trace map
Trz, [iconj(VOY)|/Z,(07]) for €ach U in §a, and let Jgpy (resp. Ifg,ﬁ) denote
the scalar extension Jg ¢ ®ar) M) (tesp. I ®ar) A(T) (). Then we
obtain the congruences
{9.3) 'rf)g,v = (;J:U,V IE;& JS,G’,V! 'Lf)g = JU rEchIQﬂ
by applying the canonical surjection A(U/V) — A(T/V) to (9.1) (recall that
I .';‘,L‘F contains Ig 7). The congruences (9.2) and (9.32 i_mply that for (U, V)
in §p except for (G, |G, G]) the element go(tﬁab)_(G’U)/PdU,v is contained
in 1+ J;ﬁ 7 N A(F)(’;}, which coincides with 1 -+ pA(I‘)'Ep) by definition.
Furthermore for U in F4. the element (p(tﬁab)_(éﬂ)/pgy is contained in
(1+15 5.)~ﬂ A(I‘)E; y» which coincides with 1 + p”h_EA(I")Ep) by the explicit
description of I » (the integer ¢ is defined to be 2 for (Case-1) and 1 for
(Case-2)). Obviously @(ily,) coincides with () and (G : U) equals
(G : U) by construction, and therefore the congruences
duy = (@) P mod  pA(T) ),

dy = (Wap) C/? mod ™ A(T) ).
hold. Combining (9.4) with (9.1), we obtain the following congruences:
(9.5) wyy = go(tﬂab)(G:U)/p I’I?O_a JU,V, Wy = tp(’tf)ab)(G:U)/p fﬁBﬁI{,

The former congruence is no other than the desired one. The latter one
for U, is also the desired one because I{LT.: coincides with Ir;, by definition.
Now consider the latter congruence for Uy .. Note that U, is a proper:
subgroup of G since we now assume that N is greater than or equal to 3.

(9.4)

14

Mgince both i,y (resp. Wy} and w(w.b) CUH? are contained in A{U//V)*, the con-
gruence (9.5) actually holds in A(U/V') (resp. in A(U}) and we may remove the sub-index
5 from the congruence. This is the ‘eliminating d’ procedure mentioned in Remark 9.2.
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Since log(go('t}')ab)"pN_atﬁUh:c) is contained in Iy, by (9.5), it is explicitly
described as :

p=-1
W
log ¢ Z ™ a;¢ + (terms containing h)
o(Wap ) i=0 ‘

where each g; is an element in A(T). Furthermore the equation
W,

log —— —
So(wa.b)pN ?

Tez, /2, (v (108 ——— =5 (~ )pw 7) ZP”"_EH

holds by (TCC) and Lemma 6.6. The first expression of the above equation
is contained in Iy, = p™V~1Z,[[U;]] as we have already remarked, and hence
there exists an element &; in A(T') such that p™ ~**q; coincides with p’¥~1b;
for each i. We may thus conclude that log(go(ﬁjab)‘PNfaﬁJUh’c) is contained
in Iy, .. This implies the desired congruence for Uy, . because the logarithm
induces an injection on 1 + J;h‘c (Proposition 5.7) and an isomorphism

between 1+ I;h . and Iy, . (Proposition 5.9).

Next let (U, V) be an element in §p such that U does not contain the
fixed central element ¢. We claim that I/ X (¢} does not coincide with G;
indeed if it does, the commutator subgroup of G automatically coincides
with V' which does not contain ¢. This is contradiction since we choose such
¢ as contained in |G, G| in Section 9.1. Now we apply the above argument
to the pair (U X (¢}, V) and obtain the congruence

- - s 2 -
Wyx{e),v = {p('wab)(G'U)/p mod JUX {e),V

(use the obvious relation (G : U x {¢}) = (G : U)/p). By using (NCC) and
the fact that @(,),) is contained in the centre of A(U x {¢))*, we have

Nraws o)/ v)/awyvy(@(@an) " COP by 0 o) = o(@a) = COPayy.

On the other hand the left hand side of the above equation is contained in

1+ JE,V by Corollary 5.5. The desired congruence thus holds for (U, V).
Finally let U be an element in 4 and assume that h does not co-

incide with ¢. By the same argument as above, we may conclude that

(p('tf)ab)_pN_2’JJUh is contained in 1 -+ Ji} On the other hand the element
©(Wap) 2"y Wy, , 18 contained in 1 -i-IU by the above argument. Now the
compatibility lemma (Lemma 6.6) enables us to calculate as follows:

ﬁ}Uh,c _ ’J‘?Uh,c
Tz, (i, ol /Zpl0a) {108 B ) = log(Nra(w, .y/AWs) (—(p(@ah)p,v_a )
Wy,
= log ———Lmr.,
(W )P N2

The Zy-module 'I’rzgp[[Uh c]] J2.[Un)|{Uy ) 18 contained in I, by definition,

and thus log(@(@an) -" th) is also contained in Ij;,. The desired con-
gruence now holds for Uy, because the p-adic logarithm induces an injection
onl-+ JU,, (Proposition 5.7) and an isomorphism between 1 + IU,, and Iy,
(Proposition 5.9). _ O
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By virtue of Theorem 9.3, we may conclude that (@y,v)yv)ezp is an el-
ement in T.. Hence there exists a unique element @ in K1(A(G)) such that
8(@) = (dyv)wv)ezp holds (Proposition 6.7 and Proposition 6.8). Take
an arbitrary lift of @ to K1{A(G)) and set £ = fi. Then by construction,
we may easily check that £ satisfies the following two properties:

(£-1) the equation 8(€) = —[Cr,,/#) holds;
(€-2) there exists an element 77y in AU/ V) sors for each (U, V) in Fp such
that the equation 95(6) = (EU,V"U,V)(U,V)EEB holds.

By using ()4 and (£-2), we may show that there exists a p-power root of
unity ¢, such that the equation £(pKT) = CorLzp(1—1; Foo/F, p) holds for
an arbitrary Artin representation g of G and an arbitrary natural number
r divisible by p— 1. Roughly speaking, the element £ is the p-adic zeta
function ‘modulo p-torsion’ for Fio/F which interpolates special values of
complex Artin I-functions up to multiplication by a p-power root of unity.

9.3. Refinement of the p-torsion part. We shall finally modify £ and
reconstruct the p-adic zeta function € for F /F without any ambiguity
of p-torsion elements. The author strongly believes that our argument to
remove ambiguity of the p-forsion part is based upon essentially the same
gpirits as ‘the torsion congruence method’ used by Jiirgen Ritter and Alfred
Weiss [RW5]. We shall, however, adopt somewhat different formalism from
theirs.

Let € be the p-adic zeta function ‘modulo p-torsion’ for Fug /F and set
wy = Euvlspy(E)! for each (U, V) in 5. Then myy is a p-torsion
element by definition. Moreover 7y is an element in A(U/V)* by the
same argument as Burns’ technique. Since the p-torsion part of K1(A(G))
is identified with G¥*P x SK (Z,[G¥]) and that of A(G*®)* is identified with
G¥2b respectively (see Section 6.2), we may naturally regard the p-torsion
element 7., = &ands.ab (5) ~! as an element in K3(A(G))ptors- Set £ = Tabt.-
Then g,.5(£) = £ obviously holds by construction.

Theorem 9.4. The equation 8syv(€) = §uy holds for each (U, V) in §p.

If the claim is verified, we may conclude that £ satisfies the interpolation
formula {(1.3) without any ambiguity by Brauer induction (see Section 2).
Therefore £ is no other than the ‘true’ p-adic zeta function for Fo /F.

We shall prove Theorem 9.4 by induction on N. First assume that G is
abelian. Then the obvious equation § = 0g,5(£) = &up implies that £ is
actually the p-adic zeta function for Fo/F. In particular the cases in which
N equals either 0,1 or 2 are done.

Now suppose that N is strictly greater than 2 and & is non-commutative.
Let ¢ be a non-trivial central element in G chosen as in Section 9.1 and
set G = G/{c). We denote by £ the image of £ under the canonical map
K1{A(GR)s) — Ki1(A(G)s). Then the element £ is the p-adic zeta function
‘modulo p-torsion’ for Fi, /F by construction. Furthermore the following
diagram commutes since ¢ is contained in the commutator subgroup of G
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(here Q_S,ab denotes the abelianisation map for A(@)g):

Sab

K1(A(G)s) —— A(G™)3

canonical l

K(AG)s) = AG™)3-
S,ab
This asserts that 85 ap(£) = & holds, and we may thus s apply the induction
hypothesis to £; in other words we may assume that £ is the ‘true’ p-adic
zeta function for Fyy/F. Now take an arbitrary pair (U, V) in §5.

(Case-1). Suppose that ¢ is contained in V. Let U and V denote the
quotient groups U/{c) and V/(c) respectively. Let 857 ¢ be the compo-
sition of the norm map Nry¢g),/a(7ys With the canonical homomorphism
K1(A(D)s) — AU/V)%. Then it is clear that U/V coincides with U/V
and the theta maps sy and fgy; ¢ are compatible. Hence we obtain

QS,U,V(f) = gS,('I,V(f) fU v =&uy

which is the desired result (the last equality follows from the fact that Fyy /Fi
is the completely same extension as Fy /Fy).

(Case-2). Suppose that ¢ is contained in U but not contained in V. Let U’
be an open subgroup of G which contains U as a subgroup of index p (and U
is hence normal in ). Let V’ denote the commutator subgroup of U’. We
claim that we may assume without loss of generality that 85z (&) = §v v
holds; indeed the desired equation holds if V” contains ¢ by (Ca.se—l) Assume
that V’ does not contain ¢. Then the pair (U},11} = (U’, V') also satisfies
the condition of {Case-2), and recursively we may obtain a sequence of pairs
{(Ui, Vi) }iezs, such that (Ug, Vo) is equal to (U, V) and Uiy contains U as
its normal subgroup of index p (here each V; is the commutator subgroup
of U;}. Hence there exists a natural number # such that V,, does not contain
¢ but V41 contains ¢ (recall the assumption that the commutator subgroup
of G contains c¢}. Now it suffices to replace (U, V') with (Uy, V,,) and (U7, V")
with (Un41, Vat1) respectively.

The key to remove ambiguity of the p-torsion part is the fact that the
p-adic zeta function §y v exists uniguely for the p-adic Lie extension Fy [ Fyy
by applying the following result of Ritter and Weiss [RW7] to Fy,/Fy;'®

Theorem 9.5. Let p be a positive odd prime number and F a totally real
number field. Let Iy, be a totally real p-adic Lie extension of F satisfying
conditions (Foo-1), (Foo-2) and (Fuo-3) in Section 1. Suppose that the Galois
group G of Fo/F is a one-dimensional pro-p p-adic Lie group and has an
abelian open normal subgroup A of index p. Then the p-adic zeta function
§ro/F for Foo[F' exists uniquely as an element in K1(A(G)g).

Let canyry denote the canonical map Ki(A(U")s) — EKi(A(TV/V)s).
Note that the element canyr v o Nra(g)g/a(v7)s (€) is the p-adic zeta function
‘modulo p-torsion’ for Fyy /Fy» by the interpolation property, and hence there

15We remark that we may also prove Theorem 9.5 by arguments based upon Burns’
technique similar to those of this article.



INDUCTIVE CONSTRUCTION OF p-ADIC ZETA FUNCTIONS 45

exists an element 7 in U7 /V'? such that canyyy © Nry(g)g/a(w)s(€) coin-
cides with 7§p,y (here we remark that the p-torsion part of Ki(A(U'/V))
coincides with (U'f /v ¥y = U'f jv'f because SKi(Z,[U'f /V 7)) is trivial
by [Oliver, Theorem 8.10]). Then easy calculation verifies that the equation

€yt = O,y (€) = canyy o cangry o Nraays/aws ()
= can{y (réyr v} = €y

holds where cany, : K1(A(U’/V)s) — A(U’/V')} denotes the canonical ho-
momorphism. This implies that 7 is trivial. On the other hand, the norm
relation Nty vy /awyvys (Eorv) = v,y holds since §yr v is the p-adic zeta
function for Fy /Fyr. Therefore we obtain the desired equation

Os,u,v(§) = Nraw vys/awvys © canyr v © Nraayg/awns (€)
= Nrarvysawvys (o v) = Euv
{Case-3). Suppose that ¢ is contained in neither U nor V. In this case the

pair (U x {c}, V') satisfies the condition of {Case-2}, and thus the equation
05,5 x(cy,v (€) = Eux(e,v holds. Then by using the commutative diagram

Os.uxic).v
———

K1 (A(@)s) AU x (¢} /V)3

\ lNTA(Ux () /V)g/AU/VIg
Gsuv

AUV,
we obtain -

8s,0,v (&) = Nrawx(ey/vys/awvys © Osoxic,v(€}
= NrpWx(e/V)s/AW0V)s EUxia,v) = Euv,

which is the desired result.l®

REFERENCES

[Bass] Bass, H., Algebraic K-theory, Benjamin (1968).

[BerKeat] Berrick, A. J., and Keating, M. E., The localization sequence in K-theory,
K-Theory, 9 (1995) 577-589.

[BlKat] Bloch, 8., and Kato, K., L-functions end Temagawas numbers of motives, The
Grothendieck Festschrift, Vol. I, Progr. Math., 86 (1990) 333-400.

[Borell] Borel, A., Stable real cohomology of arithmetic groups, Amn. Sci., ENS 7 (1974)
235-272.

[Borel2] Borel, A., Cohomologie de SL. et valeurs de fonctions zéte auz points entiers,
Ann. Sc. Norm. Sup. Pisa 4 {(1977) 613-636.

[BrBur] Breuning, M., and Burns, D., Additivity of Euler characteristics in relative alge-
braic K-groups, Homology, Homotopy Appl., T (2005) 11-36.

[Burns] Burns, D., On main conjectures in non-commutative Iwasawe theory and related
congeetures, preprint (2010).

{BurF11] Burns, D., and Flach, M., Motivic L-functions and Galois module structures,
Math. Ann., 305 {1996) 65-102.

16We may derive the desired result for {Case-3) even if we only assume that
Os,Ux(ey.v (£) = ¢’Eux (e, holds for certain j (which we may verify by the arguments
similar to (Case-1)); hence the essentially difficult part in the proof of Theorem 9.4 is
just {Case-2). Note that NrA(Ux(c)/V)sjA(U/V)S(Cj) coincides with (¢/)? = 1 because ¢/
is contained in the centre of AU x {c}/V)3.



46 TAKASHI HARA

[BurF12] Burns, D., and Flach, M., On Galois siructure invariants associated to Tate
motives, Amer. J. Math., 120 (1998) 1343-1397.

[BurF13] Burns, D., and Flach, M., Tamagawa numbers for motives with {non-
commmautative) coefficients, Doc. Math., 6 (2001) 501-570.

[BurFl4] Burns, D., and Flach, M., On the equiveriant Tamagawa number conjecture for
Tate motives II, Doc. Math., Extra Volume: John H. Coates’ Sixtieth Birthday
(2006) 165-209.

[BurGrl] Burns, D., and Greither, C., On the equivariant Tamegows number conjecture
for Tate motives, Invent. Math., 153 (2003) 303-358.

[BurGr2] Burns, D., and Greither, C., Equivariani Weierstrass preparation and values of
L-functions al negative integers, Doc. Math., Extra Volume: Kazuya Kato’s Fiftieth
Birthday (2003) 157-185.

[BurVen] Burns, D., and Venjakob, O., On descent theory and main conjectures in non-
commutative Jwasawa theory, to appear in J. Inst. Math. Jessieu.

[CFKSV] Coates, J., Fukaya, T., Kato, K., Sujatha, R., and Venjakob, O., The GL:
main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst.
Hautes Btudes Sci., 101 (2005) 163-208.

[CL] Coates, J., and Lichtenbaum, S., On £-adic zeta functions, Ann. of Math. (2) 98
{1973} 498-550.

[CR] Curtis, C. W., and Reiner, [., Methods of representation theory with applications to
finite groups and orders, Vol. I and II, Wiley, New York (1987).

[Delignel] Deligne, P., Valeurs de fonctions L et périodes d'intégrales, in: Automorphic
forms, representations and L-functions, Proc. Sympos. Pure. Math., XXXIT1, Part 2
(1979) 313-346.

[Deligne2] Deligne, P., Le déterminant de lo cohomologie, in: Current trends in arithmeti-
col algebraic geometry (Arcata, Calif., 1085) Contemp., Math., 67, Amer. Math.
Soc. Providence, RI (1987} 93-177.

[DR] Deligne, P., and Ribet, K. A., Values of abelian L-functions af negative integers over
totally real fields, Invent. Math., 59 (1980) 227-286.

[FerWash] Ferrero, B., and Washington, L. C., The Twesawa invariant p, vanishes for
abelian number fields, Ann. of Math., 109 (1979) 377-395.

[Flach] Flach, M., On the cyclotomicmain conjecture for the prime 2, preprint, to appear
in J. Reine Angew. Math.

[FukKat] Fukaya, T., and Kato, K., A formulation of conjectures on p-aedic zeta functions
in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical
Society, Vol. XII, 1-85, Amer. Math. Soc. Transl. Ser. 2, 219, Amer. Math. Soc.,
Providence, RT {20086).

[H] Hara, T., Jwesawa theory of totally real fields for cerfein non-commutalive
p-extensions, J. Number theory, 130, Issue 4 {2010) 1068-1097.

[Higman] Higman, G., The units of group rings, Proc. London Math. Soc. {2} 46 (1940)
231-248.

[FubKinl] Huber, A., and Kings, G., Equivariant Bloch-Kato conjecture and non-gbelian
fwasawa main conjecture, Proceedings of the International Congress of Mathemati-
cians, Vol. II (Beijing 2002) 149-162.

[HubKin2] Huber, A., and Kings, G., Bloch-Kato conjecture and Main Conjecture of Twa-
sewa theory for Dirichlet characters, Duke Math. J., 119 (2003) 393-464.

[takura] Itakura, K., Tamagawa Number Conjecture of Bloch-Kato for Dirichlet motives
at the prime 2, preprint (2005).

[Kakdel] Kakde, M., Proof of the main conjecture of noncommutative Twesawa theory for
totally real number fields in certain cases, preprint, arXiv:0802,2272v2 [math.NT]
(2008) to appear in J. Alg. Geom.

[Kakde2] Kakde, M., Ki of some non-commutalive group rings, preprint,
arXiv:1003.3772v1 [math .NT] (2010).

[Kakde3] Kakde, M., The main conjecture of Iwesawa theory for totally real fields,
preprint, arXiv:1008.0142v1 [math.NT] (2010).

[Kato] Kato, K., Iwasawa theory of totally real fields for Galois extensions of Heisenberg
type, preprint.



INDUCTIVE CONSTRUCTION OF p-ADIC ZETA FUNCTIONS 47

[Klingen] Klingen, H., Uber die Werte der Dedekindschen Zetafunktion, Math. Ann., 145
(1961/1962) 265-272.

[MazWil] Mazur, B., and Wiles, A., Class fields of abelian extensions of Q, Invent. Math.,
76, no. 2 (1984) 179-330.

[McRob] McConnell, J. C., and Robson, J. C., Noncommutative Noetherian Rings, Grad-
uate Studies in Math., 30, American Mathematical Society (1987).

[Oliver] Oliver, R., Whitehead groups of finite groups, London Mathematical Society Lec-
ture Note Series, 132 (1988) Cambridge Univ. Press.

[OT] Oliver, R., and Taylor, L. R., Logarithmié descriptions of Whitehead groups end
class groups for p-groups, Mem. Amer. Math. Soc., 76 (1988} no. 392.

[RW1] Ritter, J., and Weiss, A., Toward equivariant Iwasawa theory I, Manuscripta
Math., 109 {2002) 131-146.

[RW2] Ritter, J., and Weiss, A., Toward equivariant fwasawa theory II, Indag. Math.
(N.S.) 15 (2004) 549-572.

{RW3] Ritter, J., and Weiss, A., Toward equivarient Iwasewa theory: 11, Math. Ann.,
336 (2006) 2749, )

[RW4] Ritter, J., and Weiss, A., Toward equivariant Iwasowa theory: IV, Homology, Ho-
motopy Appl., 7 (2005) 155-171.

[RW5] Ritter, J., and Weiss, A., Non-abelian pseudomeasures and congruences befween
abelian hwasawea L-functions, Pure Appl. Math. Q., 4 (2008) no. 4, part 1, 1085-1106.

[RW86] Ritter, J., and Weiss, A., Congruences between abelmn nseudomeasures, Math. Res.
Lett., 15 (2008) no. 4, 715-725.

[RWT] R1tter, J., and Weiss, A., Fauivariant Twasawa theory: en ezample, Doc. Math.,

3 (2008) 117—129.

[RW8] Ritter, J., and Weiss, A., On the ‘main conjecture’ of equivariant Twasawa theory,
preprint, arXiv:1004.2578v2 [math.2010] (2010).

[SchVen] Schneider, P., and Venjekob, O., A splitting for K1 of completed group rings,
preprint, arX¥iv:1006.1493v1 [matk.NT] (2010).

[Serrel] Serre, J.-P., Représentations linéaires des groupes finis, Hermann {1967).

[Serre2] Serre, J.-P., Sur le résidu de lo fonclion zéta p-adigue d'un corps de nombres,
C. R. Acad. Sc1 , Paris, 287 (1978) série A, 183-188.

[Siegel] Siegel, C. L., Dber die Fourierschen Koeffizienten von M odulformen, Nachr. Akad.
Wiss. Gottmgen Math.—Phys. K. II, 3 (1970) 15-56.

[Stenstrom] Stenstrom, B., Rings of Quotients, Springer-Verlag, New York—Heidelberg
(1975).

[Swan] Swan, R. G., Algebroic K-theory, Lecture Notes in Mathematics, 76, Springer-
Verlag, Berlin—-New York (1968).

[Wall] Wall, C. T. C., Norms of unifs in group rings, Proc. London Math. Soc. {3) 29
(1974) 593-632.

[WeibYao] Weibel, C., and Yao, D., Localization for the K-theory of noncommutative
rings, in: Algebraic K-theory, commutative algebra, and algebreic geometry (Santa
Margherita Ligure, 1989) Contemp. Math., 126, Amer. Math. Soc., Providence, RI
(1992) 219-230.

[Wiles] Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. Second
Ser., 131 (1990) no.3, 493-540.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, 81
KomaBa 3-CHOME, MEGURO-KU, TOKYO, 153-8914, JAPAN
E-mail address: thara®ms.u-tokyo.ac.jp -



