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DEFORMATION OF TORUS EQUIVARIANT SPECTRAL
TRIPLES
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ABSTRACT. We describe a way to deform spectral triples with a torus action
and a deformation parameter given by a skew symmetric matrix, motivated by
deformation of manifolds by Connes-Landi and Connes—Duboi-Violette. Such
deformations are shown to have naturally isomorphic K'-theoretic invariants
independent of the deformation parameter.
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1. INTRODUCTION

Let M be a compact smooth Riemannian manifold endowed with a smooth action
of the 2-torus T? = (R/Z)2. Connes and Landi [8] defined isospectral deformations
Mpa of M parametrized by a deformation parameter 8 € R/Z as objects in the
framework of noncommutative geometry.

The algebra C*(Mjy) of “smooth functions over Mp” is, as a linear space, given
by the space C*°(AM) of smooth functions over M, but endowed with a deformed

product

frog= ewie(mn'—m'n) fg

when f is a T%-eigenvector of weight (m,n) € Z? in C°°(M) and g is a one of weight
(m/,n'). In'the case where M = T? and the action is given by the translation of
T? on itself, one obtains the well-known noncommutative torus T2 whose function
algebra is generated by two unitaries © and v subject to the relation uv = >y,
They also showed that the notion of metric (or spin) geometry of M continue
to make sense over the deformed space Mjy. These are given by representations
of C°(Mp) on Hilbert spaces accompanied by unbounded self adjoint operators of
compact resolvent which satisfy a certain regularity condition on commutators.
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The above construction was generalized to the spectral triples admitting action
of an arbitrary dimensional torus and a skew symmetric matrix as the deforma-
tion parameter by Connes and Dubois-Violette [7]. The Connes—Dubois-Violette-
deformation can be regarded as an adaptation of the deformation quantization for
the actions of R™ on C*-algebras studied by Rieffel [20, 21]. The spectral triples
defined this way are known to preserve several regularity of the original one. For
example they become “compact quantum metric spaces” in the sense of Rieffel [22],
ag proved by Li [12].

It turns out that this construction can be easily generalized to any spectral triple
(A, H, D) admitting a smooth action of T? with respect to which the “Dirac type”
operator D is equivariant. In such a case we obtain a deformed algebra .4y and
a new spectral triple given by H and D over Ay exactly as in the case of smooth
Riemannian manifolds. The C*-algebraic closure of Ag is a particular case of the
deformation considered by Rieffel [21], where such a deformation is shown to have
the same K-group as the original C*-algebra.

One problem that arises after such deformation is to compute the pairing of the
Chern—Connes character (or, more general eyclic cocycles) of the new spectral triple
with the K-group of the deformed algebra. In the case of noncommutative torus
']I‘g, Connes [3, 5] made an explicit calculation of the periodic cyclic cohomology
group and its pairing with the Ky-group in terms of the connections of projective
modules as classified by Rieffel [18].

In this paper we show that 1) any é-deformation has periodic cyclic cohomology
groups isomorphic to the ones of the original algebra, which is compatible with the
K-theory isomorphism (Corollary 13), and that 2} the possible values of the pairing
between the K-group and the character of the deformed spectral remnains the same
(Theorem 3), somewhat generalizing the above computations for ']I'g to the general
M.

In the course of the proof of the invariance of Chern—-Connes characters, we
describe the image of the invariant cyclic cocycles under the isomorphism between
periodic cyclic cohomology groups due to Elliott, Natsume, and Nest [10]. As a
byproduct we obtain a simple description (Theorem 2) of the phenomenon such as

(H‘”, KUG(T5)> =Z+0Z

where 71 denotes the gauge invariant trace on C(T3). Note that the above formula
is sensitive to the value of deformation parameter § in contrast to Chern—Connes
character of the equivariant spectral triples.

Acknowledgement. The author would like to thank Y. Kawahigashi for his continu-
ing support throughout the research. He is also grateful to S. Neshveyev, N. Higson,
E. Blanchard, G. Skandalis, and T. Natsume for their insightful suggestions at var-
ious occasions. He also benefited from conversations with R. Tomatsu, N. Ozawa,
R. Ponge, M. Pichot, C. Oikonomides, T. Fukaya, S. Oguni, Y. Ueda, and many
others.

2. PRELIMINARIES

In this section we give a basic definition and related constructions of the Connes—
Landi deformation of a spectral triple endowed with an action by the 2-torus.
Throughout this paper we consider regular spectral triples [11,17] with an additional
assumption on the smoothness of the torus action.

Let (A, H, D) be an even spectral triple. It means that H = H'® H! is a graded
Hilbert space, A is a #-subalgebra of the algebra of the bounded even operators
B(H®Y@® B(H') on H, and D is an odd unbounded self-adjoint operator on H such
that [D, a] is bounded and a(l + D?)~Y/2 is compact for any a € A.
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Let & denote the derivation T+ [|D|,T] on B(H). Recall that {4, H, D) is
said to be regular when A+ [D, A] is contained in N§° ; dom §*. Let A denote the
operator norm closure of .4 in B(H)}. The completion .45 of A with respect to the
seminorms ||§¥(—)|| and ||6*([D, -])|| for & € N = {0,1,...} is a subalgebra of A
stable under holomorphic functional calculus [17, Proposition 16].

Let o be an action of T? on A by *-automorphisms. In the following we assume
that it is strongly smooth with respect to the Fréchet topology on A, ie. for
any a € A, the map t — m(a) is smooth with respect to the seminorms on A
mentioned above. We also assume that o; is spatially implemented on H by a
strongly continuous even unitary representation U;: T? — U(H) x U(H!) on H
satisfying

(1) oy(a) = Ady, (a), Ady,(D)=D

for any t € T? and a € A. This implies that ¢ is isometric with respect to the
seminorms on .4 mentioned above:

) 8502 (@)]| = [|6* (@] 651D, oe(a)]}]| = [|8* (12; a))} -
Put Ut(l) = Up,0y and Ut(z) = Ug,y- For 1 = 1,2, let h; denote the generator
_ o ¢
he = i S

of Ut(’:) and put o'gi) = Ad, @ |4. When a € A and a € N?, we write [, a)‘®) for
i
the iterated operation

Lh17... ,[h£,Lh2’... ,[h%,a]]]]

' g

@1 X ez X

The action Ady on B(H) preserves A and defines an extension of o on A. It
follows that the extended action on A is again strongly continuous because A is
dense in A, & is strongly continuous on 4 with respect to the operator norm, and
Ady is isometric on A. By abuse of notation we let ¢ denote this action on A.

Let A be the subalgebra of As consisting of the elements a such that the
map t — o¢(a) admit arbitrary order of higher derivatives in 45. By the strong
continuity of o and (2), the element

op(a) = fT Foa)a

is contained in A% for any smooth function f on T2 and any a € As. The algebra,
A is contained in .4 by the smoothness assumption on o. Moreover .A™ can be
characterized as the closure of 4 with respect to the seminorms

(3) Veala) = 6 @) + | (1D, (b, )

for k € N and a = (o, ) € N2 _
Let A™" denote the closure of A% with respect to the norm Eksm,l o] <n Vha
It is the joint domain of the closures of the densely defined closable maps

a s 8% ([h, a](@),  am 65((D, [h,a]))

on A for k < m and |a| < n.

The algebra A™™ is closed under holomorphic functional calculus inside A. This
follows from an argument analogous to the proof of [6, Lemma 8.ce.2]: if A is unital,
it is enough to show that (1 — a)~! € A whenever a € A and ||a|| < 1. Under this
assumption the partial sums >, . a® converge to (1 —a)~! inside A as &k goes to
infinity. Put N = k -+ |a| and let > -y cnn2™ be the Taylor series expansion of
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the derivative of order N of (1 — z)™! around x = 0. Then one has some constant
I} which depends only on &, o, and a satisfying

| (1h,a71)|| < Dewo al*= .

Let us indicate the computation for the case of £ = 1 and o = (1, 0). One has

n—1
5(ha,a™) = 3 a((ha, al)a
=0

n—2n—2-|
+30 37 (@)™ ke, ala™ 2™ 4 6' [y, da™ (@)™ A,
=0 m=0
which implies '

18([P1. &™) < (nl|6([R1, a))]l llall -+ nln — 1) [|6@)] I[P all]) [l 2.
By ¢2.n_2 = n{n — 1), one has ||§([h1,a™])|| < Dean_a|la]|™ 2 for the chaice of
D = ||§([r1, a) |l llell + [16(a) [} | [R1, @] -

It follows that the series 3 _ya™ is absolutely convergent with respect to the
seminorm ¥4 . This implies (1 — a)~! € A™" as required. Since A can be
identified with Npew penA™", it follows that the algebra A is also stable under
holomorphic functional calculus inside A. Nonunital case reduces to the unital case
via unitization as in the proof of [17, Proposition 16]. '

Remark 1. When we define the algebra .4%, the functions t — o,(a) for a € 4™
were only assumed to have their derivatives of arbitrary order in .45 with respect
to the operator norm topology. From this assumption it actually follows that there
exist derivatives of oy(a) with respect to the seminorms ||6%(=)|| +||6*([D, —]) || for
k<N

Indeed, for ¢ = 1,2, we know that 8;0:(a) exists with respect to the operator
norm, equals [k, 04(a)], and belongs A;. For any k € N the operator 6%([h;, o:(a)])
is bounded and equals [h;, o (6% (a))]. Now, one has

5 (0(a)) = 65(a) + f * 6% (fha, o (@)])dr + I * 5 ({hs, o@D (a)])ds,
0 0

which shows 8:6%(0¢(a)) = 6*([h2, 0¢(a)]). Thus the map o;(a)-is differentiable by
ds2 with respect to the seminorm ||5’°(—) ||, and that its partial derivative is equal to
[ha, o¢(a)]. With an analogous argument one has 8,0:(a) = [h1, 0+(a)] with respect
to this seminorm. .

By induction on the order |a| of differentiation, one obtains that the higher order
derivatives of oy{a) exist with respect to the seminorm ||5’°(—)|| and agree with the
ones with respect to the operator norm. The case for the seminorms ||*([D, —])|
for k € N is similar.

By the stability under holomorphic functional calculus, the change of algebras
from Ajs to A* does not affect the Ko-group (which is isomorphic to K¢(A)) and
they have the same K-cycle given by H and D. In the rest of the paper we assume
that A = A%,

The Hilbert space H decomposes into the direct sum of eigenspaces H,, , with
weights in T2 ~ Z?2 characterized by

é— c Hm,n o Uté- — eZ‘J‘ri(mt1+nt2)§

for t = (t1,%2) € T2
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Similarly, let B(H)p,» denote the subspace of B(H) consisting of the operators
T satisfying Ady, (T") = e2™(mti+nt2)T When T is a bounded operator on H, put

4) Tmin = /T e Pmimikniz) Ady, (T)du(z),

where p is the normalized Haar measure on T2. Thus if T is any element of B(H),
the operator T, , above belongs to B(H)p n- Let B(H)a, denote the algebraic
direct sum @ m, n)ez2 B(H )m,n. It is identified with the subspace of B(H) consisting
of the operators T where Ty, = 0 except for finitely many (m,n) € Z2. Finally
put

Agin =AﬂB(H)ﬁn, Agnn =AﬂB(H)ﬁn.

Definition 1. Let # be an arbitrary real number and (m,n) € Z* . Given any
operator T in B(H )m n, we define a new bounded operator T on H by

T(G)&- — eﬂiﬂ(mn’—m’n)Té;
for £ € Hipy nry. We extend this to the operators in B (H)gn by putting T =
> Tion

Let W denote the unitary operator on H given by the scalar mult1p11cat10n by
2riltmn’—m'n)8 o f . When T' € B(H)um,n, one has

(5) 76 = TW,
We also have (T®))* = (T*)(®) and

T@® @) = gmilmn’—m'm)8(1g)(®)
when T' € B(H)pmpn and § € B(H)p .

Remark 2. We adopted a presentation of T() which is slightly different from the one
given by Connes and Landi in [8]. Let V be the unitary operator on H characterized
by V& = e“iem'nff for £ € Hiypr vy, and ¢ be the linear transformation of B(H)an
characterized by ¢(T) = e"™¥™T when T € B(H)., 5. Then we have

V¢(T) () V*f 27ru9m'n TEa
which agrees with their definition of the deformation.

Lemma 1. Let T be ¢ bounded operator on H. Suppose that the map t — Ady, (T)
admits the derivatives up to the fourth order in B(H) with respect to the weak

operator topology. Then the infinite sum 3, e T#i ), is ahsolutely convergent
to a bounded operator T'®) with respect to the operator norm.

Proof. For i =1,2, let §; denote the partial differentiation in the direction of ¢; for
functions F(#;,t2) defined on T2. Let (m, n) be any element of Z2. We claim that
the bounded operator S = 81 Ady, (T'}|;—(0,9) Satisfies Spmn = 2mimTin 5. Indeed,
when £ € Hyyr e and 17 € Hpper v, we have

<AdU§1) (T)f,’l]) - (T&, T]) B e27r'12('rn."—1'n')s -1
S L)

{T&,n) .

. The left hand side converges to {S€, 7} as s — 0, while the right hand side converges
to 2mi(m"” — m') (T€,n). Hence we have the equality

e—21r'i(mt1+ntg) (Ad Ut(S)é., 77) = 21ri(m” _ ml)e—2ri(ﬁmtz+ﬁt2) (T&" 77) ,
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where M = —m —m/ +m” and # = —n — n’ + n”. This implies
2mi{m” — m') (T m=m"—m' n=n"—n
(Sm,né-s 7?) = ( ) ( ~ 77) ( . T )
0 (otherwise).

This agrees with the value of 2wim (T, n€, 7). Hence the bounded operators Sy p
and 2mimT,, , agree on the linear span of the H,, , for (m/,n’} in H. Since this
subspace is dense in H, we have established the claim.

Iterating the argument above, we obtain

((8F + 83)° Adu, (T),_ g o) ymm = 167 (m® + 0%’ Tn,n

for any {m,n) € Z2. Since the correspondence T'— Ty,  is a contraction, we have
L
1674 (m? + n?)
for any (m,n) € Z2\ {(0,0)}. Now, the assertion of Lemma follows from the fact
that (m? + n?)~2 is summable on Z? and that HT,SE),,,H = |Tim,=|l by (5)- a

| Tmll < (@ + 08)° Adu (D), _ o)

Lemma 2. The subspace Ag C B(H) of the operators a® for a € A is closed
under multiplication.

Proof. Let a and b be arbitrary elements of .A. We then have

(¢
(6) a(e) b(G) — Z ewiﬂ(mn’—m’n) afm,nbm’,n’ .
{m,n).(m’,n')€2?

In order to show that the series in the the right hand side defines an element of
A = A, we must show that it is uniformly convergent with respect to all the
seminorms vy, for k € N and o € N2.

By induction on k and |«|, one obtains the constants C'f;g‘" indexed by k,l € N
and o, 8 € N2 which satisfy
F(ma¥ @)= 3 Ol a) )6 (A, b))
I<k,fLa :
for any elements a’,b’ € A. Let us fix k € N and o € N? now. Then, for any

1 <k and B < @, the functions o,(6'([h, a]®)) and o¢(6'(jk, B]®)) admit bounded
derivatives in ¢ € T2 of order 4. Hence the infinite series

> & (hamal®)
{(m,n)eZ?

is absolutely convergent in operator norm by Lemma 1. Consequently the infinite
series

Z 51([""1 am,n] @ )5k_t ([ha bm’,n’] (a_ﬂ))
(m,n),(m ;0! )EE2
is also absolutely convergent, which implies the convergence of
> S (b ] ) (R b ] ).
(mm}),(m' n')eZ?
Combining this for all the indices I < k and 8 < @, one obtains the convergence of
the right hand side of (6) with respect to the seminorm ||§¥([h, —])(*))|| on A. We

also have the convergence of that with respect to the seminorm ||8%([D, [k, —]@])|
by a similar argument. This proves the assertion of Lemma.
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Definition 2. Let A, H,D,o and U be as above and 6 be an arbitrary real num-
ber. The algebra A of the operators al®) for @ € A is called the Connes—Landi
deformation of A. The operator norm closure Ap of Ay inside B(H) is called the
Connes—Landi deformation of A.

Remark 3. Let A be a C*-algebra, ¢ an action of R™ on A, and J a skew symmetric
matrix of size d. Rieffel [20] defined a deformed product

axgbh= f o ju(@)oy (b)dudy

on the o-smooth part A% of A by means of oscillatory integral. In our setting, the
action ¢ of the 2-torus induces an action of R? via the surjection R? — T2. For J,
consider the following the 2 x 2 skew symmetric matrix {c.f. [20, Example 10.2])

o =(3 )

Note that A becomes a dense subalgebra of A* under our assumption. The corre-
spondence a — al?) gives a representation of (A, x 5} on H. Thus the C*-algebraic
closure of (A%, x ) is isomorphic to Ag. Hence the representation of the latter on
H as in Definition 2 gives a representation of (A%, x ;) on the graded Hilbert space
H as even operators together with a K-cycle given by D.

In the remaining of the section we show that (Ag, D, Ady,) satisfies the same
conditions assumed for (A, D, ;). Note that the action Ady, on Ay corresponds-
to o on A via the isomorphism o!® <+ @ as linear spaces.

Lemma 3. For anya € A, 0 € R, k €N, and o € N?, the operators 6*([h, at®](*)
and §([D, [h, D)) are bounded.

Proof. Applying Lemma 1 to T' = §%([h, a](*)}, one has the absolute convergence
of X §8([h, a] M)iﬁ?n. From the equality 6*([h, a]{"‘)),(g?n = 5k([h,a523n] (@)} it
follows that the densely defined operator 8% ([h,a®](®)} with domain dom |D|* N
O(m.n)ezz Hm,n agrees with the restriction of 6¥([k, a](®)){). Hence one has a'® ¢

dom §%([h, —](®)). An similar argument holds for §%([D, [h, a®]@®)). O

Lemma 4. For any a € A and 8 € R, the operator a®(1 + D?)~1/2 on H is
compuct.

Proof. Fix {m,n) € Z2. Applying (5) to the compact operator am, (1 + D?)~¥2,
one obtains that ag?n(l + D?)~1/2 is compact. Then applying Lemma 1 to the
operator a(l + D?}~1/2 it follows that
@ N —-1/2 _ 1 @) (1. n2y-1/2
a® (14 D% i > o+ D%
|m|,|n| <N

is also compact. ]

Proposition 5. The triple (Ap, H, D) is'an even regular spectral triple. The action
Ady, on Ag by T? is smooth and Ag is complete with respect to the seminorms vy o
forkeNanda e N.

Proof. Lemmas 3 and 4 imply that (Ag, H, D) is a regular spectral triple and that
the restriction of Ady, on Ay is smooth.

Let (aia))keN be a Cauchy sequence in Ag with respect to the seminorms 1 4,
convergent to a bounded operator S on H. Then the map ¢ — Ady, (S) is smooth
on T2, Hence we have a bounded operator $(-%) on H by Lemma 1. It remains to
show that SC-9 € Aj;, since that will imply § = (S(-9)®) ¢ 4,.
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Let m € N and a € N2, Asin the proof of Lemma 1, there is a universal constant
C such that '

|57 (6~ af?)91)

] <C ”Adm (6™ ([h, i — o))

C4(T?)
for any k, &', Thus we obtain

H’Sm([h,ak — aw] @) D — o).

‘ < C’lg}lagcti Vmn,ator (G, — Gy

There is also a similar estimate for ||§™{[D, a; — aw]}||. Hence the sequence (ax)x
in A is a Cauchy sequence for the seminorms v o, which is convergent to S(—%).
This shows S{-9 e A4;. O

Remark 4. By the completeness of Ap with respect to the seminorms vy, the
newly obtained spectral triple (Ag, H, D) again satisfies 4 = AJ. Hence one
can form (Ag)g for yet another deformation parameter ¢, which is identified with
Agig. We also have Ay = A.

Erample 1. Let A be the algebra C®(T?) of smooth functions over the 2-torus,
H = L3(T?, 1)%? and
D= 0 idh + O
ith — O 0

Consider the action of T2 on A and H given by translation. Then the spectral
triple (4, H, 1) is regular and satisfies A = A®. Given a real parameter 6, the
corresponding regular Connes—Landi deformation 4y is precisely the algebra of
Laurent series with rapid decay coefficients over the two unitaries % and v subject
to the relation uv = ¢*™Pyu,

3. K-THEORY OF CONNES—LANDI DEFORMATIQN

‘We keep the notations A, A, o, Ag and Ay of the previous section. As noted in
Remark 3, Ap is isomorphic to the deformation algebra of A defined by Rieffel [20].
In a subsequent paper [21] he showed that Ay has the isomorphic K-group as A by
means of iterated action by Euclidean spaces. In this section we elaborate a similar
crossed product construction in order to show that Ay and .4 have isomorphic
periodic cyelic cohomology groups and that this isomorphism is compatible with
the one between the K-groups.

Let ~ denote the gauge action of T? on C(T%) given by

,Yt(ua,vb) — e2m‘(t1a+£2b)ua,vb.
From this we obtain the diagonal product action ¢ @y of T2 on the minimal tensor
v
product A ®min C(T2).

Proposition 6. The algebra Ay is isomorphic to the fived point subalgebra of
A ®min C(T2) with respect to the diagonal action o ® 7y of T2.

Proof. When a € A is a T?-eigenvector of weight (m,n), the element ¢ @ u~™v"™
is in the fixed point algebra (A ®min C(T%))°®7. The map
f: Ag N B(H)gn = (AQumin C(T3))7®7,a®) — e~ g @ =My~

becomes a *-homomorphism.

Let a be any element of .A. By the estimate of Lemma 1, one has the absolute
convergence of the series 3, . e” ™™ na,,  @u~™v ™™ inside (A @min C(T3))7®".
Hence f extends to a *-homomorphism from Ag into (A ®min C(T2))°®” by putting

f(a(ﬂ)) — Z e—n’imneam,n & u—My ™,
(m,n)€Z2
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Since Ay is stable under holomorphic functional calculus in As by Remark 4, the
spectral radius of a'® in 4, is the same as that in Ag. Hence f is a contraction
with respect to the operator norm and extends to a *-homomorphism of Ag into
(A ®min C(TS))G@?_

We first prove that f is injective by contradiction. Suppose that z is a nonzero
positive element in the ideal ker f of Ag. On one hand we have f(zo0) = 20,0®1 # 0
because g ¢ is given by [ oy(z)dp(t) whose integrand remains nonzero positive for
any t. On the other hand, f is equivariant with respect to the action Ady, on Ay
and o ®1 on (A @min C(T%))°®". Hence the ideal ker f is invariant under Ady, and
Z(n,0) € ker f. This is a contradiction, hence f is injective.

Next we prove the surjectivity of f. Let F denote the linear span of the elements
of the form a®@u~™v~", where (m,n) € Z* and @ € ANB(H)mn. By construction
E is contained in the image of f. Since any homomorphism between C*-algebras
has a closed image, it is enough to show that F is dense in (A ®min C(T2))7®7.

Note that if a sequence (ax)xey in A converges to a T?-eigenvector a of weight
(m,n) in A, so does the sequence ({@x )m,n)ren. Hence for any T?-eigenvector g € A
of weight (m, n), the element a @ u~™v™" lies in the closure of E.

Given any element 2 in (A @i, C(T2))°®7, the eigen-decomposition with respect
to the action ¢ ® 1 gives us the T2-eigenvectors {@mn) (m,nyeze satisfying

i ® " = ) [ (5,0 1) (@)t
'][‘2

Let cfn’n be the sequence of finitely supported coefficients on Z? defined by

) |([mk+m]><[n,k—|—n])r1(0 k] x [0 k]) mzzi
cyn 5
" k
By the Fejér kernel argument as in [2] (see also [1, Theorem 3.1]), the sequence

k —m,,~7n
E cgn,)nam,n RdU TV
(m,n)€Z2

for k € N converges to x in norm as k goes to infinity. This shows that E is dense
in (A ®min C(T%))°®", O

Let LY(T?, 4; ¢) denote the algebra of A-valued measurable integrable functions
on T2, endowed with the twisted convolution product (f * g); = [ fs05(gt-s)ds.
For i = 1,2, let o be the automorphism of T? x, A which is dual to o™, Then
the crossed product Z x -5 T? x, A by 0(® can be described as the C*-algebraic

closure of the normed #-algebra of the Laurent polynomials Y, fxv* where v is a
unitary element and the coefficients fi, are in L1(T?, A; o). The product structure
is given by the twisted convolution

S bt xS gt = 3 fra® (ga)umHn.
mEZ neZ m,ngZ
The algebra Z X -5 ’JI‘ X, A admits the following two automorphisms of interest.
The first one () is given by
;HS(Z fro?) = Z‘;(T)(fk)vk,
kCE kEZ
and the second one oy is given by

ae(z fk'vk) — Ze2rik9fk7)k-

kEZ kEZ
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Let (0(1) ag) denote an automorphism of Z x gz T X, A given by the composition
of these two automorphisms.

Lemma 7. The algebra Ag is strongly Morita equivalent to Zx oy ank o) T3, A.

Proof. We know that the action ¢ ® < is saturated in the sense of Rieffel, by
applying [15, Proposition 7.1.9] with @ € A and b € C*(T?)y in its statement. It
follows that (A ®min C(T2))T* is strongly Morita equivalent to T2 x (A @min C(T2))
via a bimodule given as a closure of A ®mn, C(T3) [15, Proposition 7.1.3]. Hence
we have the strong Morita equivalence between Ag and T? X (A ®min C(T2)) b
Proposition 6.

The latter algebra is generated by the integrals [ dtfeU: of unitaries Uy for ¢t €
T? integrated with coefficient functions f in L'(T%, A ®min C(T%)). By a proper
bookkeeping about the integration of the Uy, we may think of that algebra as being
generated by the unitaries {U});er2, 4, and the two unitaries u and v satisfying

Ady, {a) = o¢(a) Ady, (u™) = e¥mimaitnizlymyn
(@, u™™] =0 wyu* = 2"y
for any t € T2 and (m,n) € Z%. These relations are precisely the ones satisfied by
the generators of Z x —; a0 Zx =5 -~ T2 X 5 A. Hence the algebras T2 i (A Qmin C(T3))

and Z X TS o A X 55 5 T2 Ko A are isomorphic to each other. : Ol

By abuse of notation, let 0‘9 (3) denote the automorphism of T,y A characterized
- by
o8 (£ =05 (£) (f € LM(T, A0),t €M),
Then we let (o‘(l) 0'(2)) denote the automorphlsm of T x 1) A given by the compo-
sition of oI and cr

Lemma 8. The algebra Ayp is strongly Morita equivalent to Z X -5 @ T X, A.

(1),c

Proof. Let b ) be the delta function at (0,6) € T2, The integral

V= f F NI
teT?

which makes sense as an element in the multiplier algebra of T? x, A, can be
identified with the unitary operator Ué ). Seen as an element in the multiplier
algebra of Z X -z ’]1‘ g A, it is characterized by the relations

{(8) V.fuF = 032)(9)0 : ' FrohV = 2RI gy

for any f € L1(T?, A), where g denotes the function (t1,%2) — f(f1,f2 — ).
Then V is (o1}, o) invariant, which means that there is an isomorphism between
the crossed products of Z x — T X, A by Z, one associated to the automorphism

(cr(l}, cg) and the other assomated to Ady o(c! 1),a9).
Now, one computes

Ady 06D o ag(fvF) = Ady (™™ ho*) = 682 (R)oF,

where h(t1,t2) = €*™*1 f(¢1,t2). Hence the automorphism Ady o(m,ag) is equal
s (2

to the composition of o{1) and Gy
crossed products as

ZK;(T)Q TD(o(ijK TKU(z}A ZD( [Q)TMUu)ZD( TKa(z)A
¥

. Thus we have an isomorphism between the



DEFORMATION OF TORUS EQUIVARIANT SPECTRAL TRIPLES 11

The right hand side can be also expressed as
(9) Z D( ']F M (2 Z l>( (2) T X 2(1) A

By Takesaki—Takai dua.lity [23], one has the 1somorphlsm
(10) K®min Z X —= D o Ty A~ZE X =5 5 L X Z X =55 o0 T %y A

This proves the assertion of Lemimna. O

Remark 5. One may avoid the use of delta function and multiplier algebra in the
above proof by simply considering the automorphism Ady and working out the
isomorphism between the crossed algebras “by hand” using the relations of (8).

Remark 6. Put X = Zx o5 (2 Tk, ) A. The strong Morita equivalence of Lemma
oltog

8 can be described in terms of the following X-Agp-bimodule.

By choosing a projection € of rank 1 in K, one embeds X into the crossed product
algebra of (9) by the composition of z — e ® z and the isomorphism of (10). One
may choose e so that the embedding is given by W: z — 37, uf fo(t), where up
is is the unitary element implementing the action ¢® on T K ¢y X, and f,(t) is
the function of T into X defined by

t— / Zmins gﬁ_t(m)ds

Thus, when © € X satisfies (> (z) = ™9tz one has ¥(z) = uy * 2§, where z§x
denotes the element in T x X represented by the function ¢ — 2"ty of T into X.
Combining ¥ with the isomorphism of Lemma 8 between the algebra of (9) and

Y=Zr><a(), Zx 'JI‘ Mg A,

one obtains an embedding ¥ of X into Y. Suppose that z, is an element of A that
satisfies o2 (z,) = €3z, Let 2%z, denote the function of T into A given by the
function t — e?™*g, and u the implementing unitary of the action (o(1), aém) on
T x A. If z € X is represented by w'z*z,, one has

(11) U'(z) = ety s8ul b,

By Proposition 6, A ®min C(Ta) has a structure of right C*-A4s module with an
Ag-valued inner product

{@,y) = (/ (o ®7): xy)dt)

The completion F of A @min (Tg) with respect to this inner product becomes
a Y-Ap-bimodule by Lemma 8, which implements the strong Morita equivalence
between the two algebras.

The projection e is represented as the operator w323 on A®min C(T3). By
eY'e = ¥(X}, the space £ = eF has a structure of X-Ap-bimodule via ¥, The
operators coming from Z x T x A on £ are precisely the Ag-compact operators.
Hence we obtain

Z X 55 (2)']I‘l><a(1;A Endf, (€) ~ K Qumin Ag-

Let & be the subspace of £ linearly spammed by the elements wiws ® z for

n,0 € N and x € Ay, satisfying crt(z) (z) = e®>™*@x_ For the convenience of notation
we regard £y as a subspace of £2Z ® Ag, via the correspondence wiwg Rz — §, @z,
Then the restriction of the Ag-valued inner product to &g is given by

(6.&: & L) 5_7' @ b(m’,’n‘)) = dk—m,j—m’ (a*b)(e)-
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When z € A is a homogeneous element with respect to the action ¢®, and

k.7 € Z, the operator w{z{”z on & preserves the subspace &. Its action can be

described as follows:

(12) a’m,'n-dk ®-b(m’,n’) = & ® ab,
; ®b (f=-k+m),
13 1.0 @ by =
(13) 70k ® O {O {otherwise),
(14) w6k ® b = €78y @B,

where Gm,n,bm,» denote any elements of A with weight (m,n) for ¢, the element
#% € C*T is represented by the function t - ¢*"%%, and w is the generating unitary
of Z.

Let (o"a_) ) aé?) denote the action of R on R X, A given by

(@D, 050)rF)s = €700 814 (f)-
Proposition 9. The algebra Ag is strongly Morita equivalent to RiX = o) R, )
o ’aﬂf.
A.

Proof. Recall that when B is a C*-algebra and o is an automorphism of B, the
mapping cone My B of « is defined to be the algebra of continuous functions from
R to B satisfying f(t + 1) = a(f(t)) for t € R. It admits a natural action & by R
called the suspension flow defined by (&sf): = f(€ + 5). The algebras R x5z M. B
and Z x4 B are strongly Morita equivalent.

When 8 is an action of T on a C*-algebra B’, let Sp denote the action of R
given by § and the natural surjection R —+ T. Then the crossed product R xz B’ is
isomorphic to the mapping cone of the autormorphism [;‘ of T x 3 B’. Moreover the
dual action B of R on R x gz A corresponds to the suspension flow.

Next, the mapping cone of (0(1),052)) on T X A is isomorphic to R x_u) A.
Indeed, the ‘untwisting map’

T:Rxom A= Mg onTxow A, (0 =05 (f)

is an isomorphism between the two algebras.
Combining the above arguments, it follows that there is an isomorphism between

R X, A and M eyl (2))'11‘ Kz A which conjugates the action ((;55,0‘5?) of R

on R x, m 4 on the former and the suspension flow on the latter. Hence the

crossed product R x — 7T 2 R X, A is isomorphic to R x M( @, (2))(T My Ay

which is strongly Morlta, equivalent to Z x (T o T 1y A. Now the assertion of
»Tg

)
Proposition follows from Lemma 8. O

Corollary 10 ([21]). The K-groups of A and Ap are naturally isomorphic to each
other.

Proof. By Proposition 9, the K-group of Ag can be identified with that of Rx -
ot

R &, q) A. By Connes-Thom isomorphism [4], the latter is naturally isomorphic to
the K-group of R 1y A with the charge of parity in the degree. Since this object
is independent of 8, we have established the claim. O

3.1. Smooth KK-equivalence. Now we turn to the smooth analogue of the above
KK-equivalence between the Connes-Landi deformations of C*-algebras in the pre-
vious section. The point is that the strong Morita equivalence of Lemma 8 restricts
to an isomorphism between the rapid decay infinite matrix algebra with coefficients
in Ag and the “smooth” crossed product Z X sz T X0 A

L}
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We first collect the definitions of the relevant smooth algebras. Let T A
denote the algebra given by the linear space C°(T;.4) of the .A-valued smooth
functions endowed with the convolution product twisted by o). This algebra has
seminorms given by the seminorms vy, on A for K € N and o € N? and the
derivations of higher order with respect to the real variable on T = R/Z,

Next, let Z Xz ) T Xz A denote the algebra of sequences (fu)nez in
T ;03 A which are rapid decay with respect to the aforementloned seminorms,

endowed with the convolution product twisted by (cr(l) c@(6)). We have the
inclusions

T K (1) AcT K 1) A, Z D(a.(1)g(2)(5) T X (1) ACEZ l><3(1)0(z){9) T K (1) A,

of these Fréchet algebras into the corresponding C*-algebras.
Let K°° denote the algebra of the rapid decay matrices on Z: it consists of the
matrices {a;,;)i,jez satisfying

k
\/1+’52+j2 aij—>0 (ZJ—>OO)

for k € N. The algebra K™ becomes a Fréchet algebra with respect to the family

of (semi-)norms
me((05)i5ez) = max /1 +4% + 7 o,

. for any k € N. The projective tensor product X® & Ay is identified with the algebra
of the Agy-valued matrices which are rapid decay with respect to the seminorms on
Ag [16, Corollary 2.4].

Proposition 11. The Fréchet algebras 7. X =5 o T x,m A and KX & Ay are
isomorphic to each other via the correspondences

(15) Z D( ) (2) T Ng(l) A = unf( ) = ku"f(t) (l, m)g,mez

t (8)
= ( fT ] e2m{ma—(n+m—l)s)o(3_t,(n—z)g) (f (t))dtds)

and
(16) /-O'él) (a) Z e~ 2mmtymit <1 al® € Ay,
T mEL
(17) ylo—mog=2mimos ¢ g 0 = O(1p,mo) (L m) € K.
Here the terms on the left hand side denote elements in Z XD o @ T x40 A while

the ones on the right hand side denote Ap-valued matrices in IC°°. & Ag.

Proof. These formulae determine well-defined linear maps between the two algebras
by the assumption on the smoothness of ¢ and the description of the smooth crossed
products above.

On the other hand, the multiplicativity in the assertion follows from the bimodule
£ described in Remark 6. We indicate the case for {15) in the following.

We may take a “basis” (8, ®1)rez of £ over the right action of Ay. Suppose that
f € C®(T; A) is a function of the form ¢ — e*>™#q for some integer [ and a € A4 of
weight (m,n') for . On one hand we have

82ri9nnr5k+n ®Ra (k =1 — l)
TF(t).6,®1 =
uwI(0)-5: @ {0 (otherwise).

On the other hand we have

e2q.-i6nn’5k+n ®a = (5k—m+n & 1).(e2w1'9{(m—k—n)'rt'+nn'}a) ()]
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Hence u™f(t) represents a operator which moves the {m -- [)-th base to the (n —1I)-
th base multiplied by **'q(®). Thus we need to show that the formula (15)
applied to our choice of f gives €2 o(@)g, _, (', m’). Now, when I’ and m’
are arbitrary integers,

kunf(l,, m!) — / eZ‘J‘ri(m't—(n+m'_t')3)J(s_t’(ﬂ_l,)a) (f(t))dtds

T2

= / e2mi{m t—{n+m’ =) s+ (s—t)m+(n—1")0n"+it} 2y 1
T2

3 e2rifin—t")n’ (l +m —m=0m—-n—m'+1'= 0)
"o (otherwise).
In the nontrivial case of { +m' —m=0and m—n—-m/+I' =0one has I’ =n —

and {n — )n' = In, which is the desired relation. The rest is proved in a similar
way. : [

There is a continuous analogue of Proposition 11. Let K3 denote the algebra of
the compact operators on L*(R) whose integral kernel belong to the Schwartz class
on R?. The projective tensor product X & Ag is identified with the algebra of the
Ag-valued integral kernels 7(x,y) which satisfy

max (2™ + ™) (0 + ) I(@w)| < o0

for any m,n,mt and n/ in N.
Let S*(R; A, o) be the convolution algebra of the A-valued Schwartz functions

with respect to the action ¢. The action (g(1), ag)) restricts to a smooth action on
this algebra, hence we may take the convolution algebra

5" (R; S* (R 4,01, (o0, o))
of the 8*(R; A, o}-valued Schwartz functions. Let R x 5 6 R ) A denote
this algebra. We write f(¢,7) for a typical element of this algebra, where for any
fixed 7, the function ¢ — f(¢,7) is in S*(R; A4, o).
Proposition 12. The Fréchet algebras R x o R X, A and KR & Ay are
isomorphic. The correspondence between these two algebras are given by

Rx As"é? R X (1) A3 ft’-r — ka,T(A,[_L) =

sy
. S (6)
(/1;2 & ’rrl(,ui—('i"l'pu-_ )S)J(s—t,(‘r—l\)e) (ft’,,.)dtdsd‘i') 1

and

= / ol (k(\, p))e 22w grdrdp 1 k(A 1) € K © Ap.
R

Corollary 13. There is a notural isomorphism ®g: HP*(A) — HP*(Ay) between
the periodic cyclic cohomology groups which is compatible with the identification of
the K-groups of Corollary 10.

Proof. On the one hand, by a result of Elliott, Natsume, and Nest [10, Theorem
6.2], one has natural isomorphisms

HP*(R X =55 ) R %o A) = HP*"Y (R w0y A) = HP*(A)

gy
compatible with the Connes—Thom isomorphism K, (Rx 5 o RK, 1) A) ~ K, (A4).
[~ ,O'ﬂt

On the other hand, by Proposition 12, one has HP*(R x 5T @) R X, A) =
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HP*(Ag) by the stability of HP* for X ® — [10, Theorem 4.3]. Combining these
we have the assertion. d

Remark 7. Although we need the above continuous crossed product presentation
of K ® Ay later in order to investigate the deformation of cyclic cocycles, the
periodic cyclic cohomology isomorphism of Corollary 13 can be deduced from the
algebra isomorphism of Proposition 11 and the Pimsner—Voiculescu type 6-term ex-
act sequence for periodic cyclic cohomology groups of the smooth crossed products
by Z due to Nest [14].

4, PRESERVATION OF DIMENSION SPECTRUM UNDER DEFORMATION

We keep the notations A, H, D, o, U, and the assumptions about them as in the
previous sections. In general the regularity of the spectral triple is not guaranteed
to be preserved under a deformiation as in the case of Podled sphere studied by
Neshveyev and Tuset [13]. We show that the regularity is well preserved in the case
of Connes-Landi deformation.

Let B be the algebra generated by 6%(a) for a € A+[D, A] and &k € N. Similarly,
let By denote the algebra generated by §¥(A4y + [D, . Ag]) for k € N.

Now suppose that D is n-sumimable for some positive integer n. Given a bounded
operator T on H, the function

{r(s) = Tx(T'|D|™)

is called the zett function associated to T". This function is a priori holomorphic
in the region {z € C|R(z) > n}. If the functions of the form (r for T ¢ B admit
meromorphic extension to the whole plane C, the dimension spectrum of (A, H, D)
is defined to be the collection of the poles of the analytic continuation of these
functions [9]. ' '

Theorem 1. Suppose that the zeta functions (r for T € B admit meromorphic
extensions to C. Then the dimension spectrum of the spectral triple (Ap,H, D) is
equal to that of (A, H,D) for any 8.

Proof. The elements of the algebra B satisfy the assumption of Lemma 1. Moreover,
one has §%(a)® = §*(al®) for any k¥ € N and a € A by the proof of Lemma 3.
There is also an analogous identity involving [D,a] for a € A.

Applying Lemma 2 to the algebra B, it follows that the set X = {T{G) | T e B}
is closed under multiplication. Since X contains §*(A4 + [D,.A]} as a subspace for
any & € N, By is contained in X. Repeating this argument once again for Ag and
(Ag)—g = A, it follows that the algebra By is the collection of the operators of the
form T for T ¢ B. '

Since D commutes with Uy, the function (r(s) only depends on Tig ) for any

bounded operator T on H. By the equality T((g,)o) = Tip,0), we have (pw (s) =

{r(5). This shows that the dimension spectrum of (A, H, D} is the same as that
of (A, H, ). d

5. DEFORMATION OF INVARIANT CYCLIC COCYCLES

In the rest of the paper we analyze the pairing of the cyclic cocycles and the
K-groups of Ay. As a conseguence of the constructions so far, we obtain the Chern—
Connes character of the spectral triple (Ag, I, D) when the original spectral triple
{4, H, D) is finitely summable. These cocycles on different algebras .4y for varying
value of & can be put in the context of the cyclic cocycles which are invariant under
the torus action. It turns out that there is a correspondence between the invariant
cyclic cocycles on A and the ones on .4y, We shall compare this correspondence
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" with the Connes—Thom isomorphisms of periodic cyclic cohomology groups as in
" Corollary 13.

We start with a review of the isomorphism #,: HC*(A4) — HC”H(]R Xg A
of {10]. Let A be a Fréchet #-algebra which is dense and closed under holomorphic
functional calculus inside a C*-algebra A. Let ¢ be a smooth action of B on A.

Recall that closed graded traces on graded differential algebras containing A
in the degree 0 give cyclic cocycles on A [5, Section IL.1]. Conversely any cyclic
n~cocycle can be represented as a closed graded trace on the universal differential
graded algebra (A) = @Q(A),, (where Q(A)p = A and Q(A),, = A®" g A®nF]
for n > 0) over A.

Suppose that Q is a graded differential algebra containing .A in degree 0 and ¢
is a a closed graded trace of degree n. By abuse of notation, we let ¢ denote the
corresponding cyclic n-cocycle on A. We shall denote this graded trace by ¢ by
abuse of notation. We assume that the action ¢ extends to an action ¢ on 2, and
that the differentiation on © is equivariant with respect to ¢ (for example. Q(.A)
satisfies these assumptions).

Let S*R be the convolution algebra of the Schwartz class functions on R and
E the direct sum Q(S*R)s @ 2(S*R)1. We construct a differential graded algebra
structure on Q ® F containing R x, .4 in the degree 0 as follows.

First the space Q& Eg can be identified with R x, Q = S*(R,Q; ). There is a
derivation d: Q& Ey — Q ® FE given by

dw® ) = (dw) ® f + (—1)%vy @ df

for any homogeneous element w € €.
Next on £ & By, the differentiation is defined by d(w ® fdg) = (dw) ® fdg. The
1-forms in Q(S*R); act on Q@ E by

dflweg)=dflweg) - fdwdg).

These operations, together with the product structure on €2, defines a structure of
a graded differential algebra on Q& E.

Then we define a closed graded trace #aqb on . ®E; =80,%5*(R)@S*(R) as
follows:

(18) #oots) =2mi [ ” ]0 $(0aF(—t,t))dsd.

This correspondence of ¢ to #,¢ is compatible with the Connes~Thom isomorphism
G, KA = Ko 1R x, A [10, Theorem 6.2].
Let ¢ be a g-invariant eyclic n-cocycle aver A, which means

¢(f0,...,fn) = qS(o‘t(fO),...,O't(fn)) (Vt S R)
Note that under this assumption, the right hand side of (18) reduces to

(10) o f_ " to(f(—t,1))dt.

There are two cyclic cocycles associated to ¢ and ¢ as follows.
First, let X denote the generator

. doi(a)
X(a) = P—)O di
of . We then obtain a new cyclic n 4 1-cocycle ix ¢ [6, Section 3.6.8] by

’ n+1
?:qu)(aodal s dan_,_l) = Z(—l)j¢(aoda1 cee X(aj) T dan+1).
j=1 '
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Second, noting that the convolution algebra of the A-valued rapid decay func-
tions S*(R; A} is identified with R x, .A, we obtain the dual cocycle ¢ over R <, A
by '

35t =

Zimety=0

¢(fg,af7to(ft11):-- ‘1azj<ntj(f1?ﬂ))

for f7 € &*(R; A).

We identify HP*(R x5 R %, A} with HP*(A) via the Takesaki-Takai duality type
isomorphism [10, Lemma 2.8 and Theorem 4.3]. Regarding these constructions one
has the following generalization of [10, Proposition 3.11].

Lemma 14. Let o and § be smooth actions of R on a Fréchet algebra A. Suppose
that there is an c-cocyele ub satisfying By = Ad,z 0. When & is a eyclic cocycle on
A which is invariant under both a and B, we have the equality

[ixa¢] = lixs9)
in HP*(A), where X4 (resp. Xg) is the generator of a (resp. 38).

Proof. By Connes’s 2x 2-matrix trick, we obtain an action &{o, u.) of R on Ma(Rx s

Rx,.A) by 7
Tl Ti12 | eelzn) ar(mi)ug
Blar tn)s ([ To1 T D T we{zey) ﬁt(mgg)t } '

The generator of this action can be written as

(20) Y([mn “12D=[ Xa(z11) XA(E12)—$12h]’

T21 T2 hxoy + Xa(zar) Xp(xan)

where h is the generator

of u; which is in the multiplier algebra of A.
The cyclic cocycle ¢ ® Tras, on Ma(A) is invariant under ®(o,u,). Thus the
derivation Y determines a cyclic n + 1-cocycle ¢ = iy (¢ ® Trag, ) on My(A4).
There are two embeddings of A into Ms(A), given by

ne=|5 ). ww-y 0.

The pullback HC*(M2(A))}) — HC"(A) by these two homomorphisms in eyclic co-
homology becormne the same map.

Finally, the pullback of ¢ by ¥, is ix,¢ while the one by ¥; is ix,¢. Hence
these two cocycles determine the same class in the cyclic cohomology group. 0O

Proposition 15. Let ¢ be a o-invariant n-cocycle over .fl The class of the cyclic
(n+1)-cocycle ix ¢ in HC"F1(A) agrees with that of #5¢.

Proof. Let by, ..., b1 be elements of Rx, A and fy, - . ., fuya be functions in S*R.
For each 0 < § <n+ 1, b; ® f; represents the element in A ® E which correspond

tot— bj_}'}(t) € §(R; A). We then consider the element

w = (bo ® fo)d(by ® f1) - d(bnt1 ® fri1)

of Q& E.
Each term in the above formula can be expanded as d(b; @ f;) = db; ® f;+b; @df;.
In the product of these, the terms containing more than one df;’s vanish. Moreover
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the value of #5¢ depends only on the components of w in Q, ® E,. Hence #gqﬂi(w)
can be expressed as

(21) Z?’ﬂ"i/ ijqa(’r]j(to,...,fn+1))£j(t0,...,tn+1)dt0'"dtn,

4=1 Sn41=0
where
N5 (t0y -+ Eng1) = bobis (db1) -+ G5, (b5) -+ - Fs, (dbnt1),
Eiltos - tn1) = folto) - i+ Fraa(tnaa)dfi(t),
sp=1to+ -+t
Note that the derivation X f(£) = ¢f(t) on S*(R;R  .A) is the generator of the
double dual action &: R ~ R x4 R %, A The j-th term of (21) is equal to

$(bo ® fo)d(b1 @ f1)--- X (b; ® f3) -+~ dlbnt1 & Fay1)-
Collecting these terms we obtain the equality

(22) #od(w) = iz d(w).

This shows that the cocycle #,¢ agrees with i X—r,f: :

Let % be the action of R on R x4z R %, A which corresponds to Tdx @ on
K& & A. There is a one-parameter unitary u; such that the double dual action &
is cocycle conjugate to o° by the formula &, = Ad,, oc?.

Note that ¢ is identified to the cyclic cocycle ¢ @ Tr on A& K. Hence we may.

apply Lemma 14 and obtain that [ix¢] = [i an(w)] in the periodic cyclic cohomol-
ogy. Combined with (22), we obtain the equality [ix¢] = [#5¢] in HC*(R xR x,
A). O

Now we go back to an even regular spectral triple (A, H, D) with an action of
T? satisfying A = .4 as in the previous sections. Note that we have the estimates

d* (@) a
Yo (—%;tkﬁ) = Vot {a)

for k € N and o € N2, where o = (o + k,2) or & = (@1, a2 + k) corresponding
to the cases i = 1,2. Hence the actions ¢(¥ are smooth on A® = A in the sense
above,

Let ¢ be a cyclic n-cocycle on A which is invariant under o. Then we obtain
the dual cocycle ¢ over the crossed product TAK o) 4 which is invariant under the

action (a(l), g‘gQ))_ Thus we obtain a cocycle qAS on Z X =G @ T, % A
a

The cocycle ¢ induces a one ¢(® on Ay via the embedding of Ay into a corner
of
Koo ®A9 ~ 7 D(a—_(‘l-)’o_gz) To.(l) x A

We record the formula for ¢® for a € A:

(/]
23) @@, .a® = S H((@0)memes bmais)s - Blrmaita))
Mg+ -t1ma =0,
o+, =0

where by 1) = €70 2a<k Mk (g 1 . In the particular case of n = 0, ¢ is
given by a trace on .4 and ¢{?) is given by the corresponding trace

¢(e) (a(s)) = ¢(a(0,0)) = ¢(a)

on Ag.
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‘With an analogous process we obtain another cyclic cocycle on R G R
at

A from a o-invariant cocycle by taking dual twice, which we still denote by ¢ by
abuse of notation. This abuse of notation is justified because we have

¢ = Tr®¢,

where in the left hand side the dual operations are taken over the crossed products
by R, while in the right hand side they are taken over the actions of T and Z. The
term Tr ®— stands for the correspondence of the cyclic cocycles over Z x Py e
o
Tgey X A to the ones over R X 35 (2 R X1y A by means of the natural strong
o ’G-ﬂﬁ
Morita equivalence between these algebras (c.f. the proof of Proposition 9).
For i = 1,2, let X; denote the generator [h;, —| of the one-parameter group ¢
on A

Theorem 2. Let ¢ be a c-invdriant cyclic n-cocycle on A. Then the cyclic n-
cocyele ¢©) on Ag corresponds to the nonhomogeneous cyclic cocycle

(24) ¢' + 9iX1iX2¢

on A under the natural isomorphism of Corollary 13.

Proof. 1t is enough to check that the cyclic n-cocycle ¢ on R 5 @ R X A
o ,O'ot
corresponds to the one of (24} on A via the Connes—Thom isomorphisms in IP*.
The action (¢(1),65) of R on R X, A is generated by the derivation

do@
6O (f), = sfs + pdor (fs)
dt
Letk)?; denote the generator of the dual action oM. The equation above shows
that 6 = X7 + 6X,. ApplyingAProposition 15 to ¢ and '(0'(1),0((,?)), we obtain
that the cyclic cocycle # (mquﬁ on B X 4 is in the same class as the cocycle

@'5(9]& = ?,_,?i(,a -+ 9?:X2¢3.

The first term ig; & agrees with # . ¢ as was the case for (22). Hence this term
corresponds to the cocycle ¢ on A. o

For the second term, one has ix,¢ = ix,é. This n + l-cocycle on R Mg A
corresponds to the n--2-cocycle ix, ix, @ on A again by Proposition 15. Combining
these two, one obtains the assertion of Theorem. O

Ezomple 2. Let M be a compact sinooth manifold, endowed with a smooth action o
of T%. Then M admits a Riemannian metric which is invariant under o. The algebra
C(M) of the smooth functions on M, the de Rham complex *(M) graded by
the degree of forms, the operator d + d* densely defined on H = L?(Q*{M)), and
the induced representation of T# on C*°(M) and H satisfy the assumptions of this
paper.

The volume form dv on M is invariant under ¢ and it defines an invariant trace
T: f =+ [, fdv on C(M). Let X; denote the vector fields on M generating o; for
i = 1,2. By Theorem 2, the map Ko(CMs) — C induced by the trace () on CMy
corresponds to the map K°(M) — C induced by the current

f+¢%dg" Adg® fM F+8(g° (dg*, X1} (dg*, X2) — (dg", Xo) (dg?, X1 ))dv.
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When E is a vector bundle over M, the above map on the class of E in K0(M)
gives the number

/ ch(E) A (dv + Bix, ix,dv) = vol(M) rk(E) + 0 / CL(E) Aixyix, dv.
M M

5.1. Chern—Connes character of deformed triple. We have a representation
of Z X35 2 T Aon (Z)QH by
oithay

Gk ®aé (a€ Amn & € Hy o = —k+m+m')
0 (otherwise)

(25)  ad @€ = {

and uby @ = 205, 1 @ £ for any £ € I, ,, where u and 27g are as in the last
part of Remark 6. :

Note that )C(Ezz) ®min Ag admits a representation on £2(Z)® H determined by
the natural representation of Ap on H. In the following we make a more detailed
analysis of the strong Morita equivalence given by Proposition 9 and Remark 6 in
relation to the unbounded selfadjoint operator D.

Proposition 16. There is e unitary operator V' on £2(Z)® H satisfying V*(1 ®
D)W =1®D and

VHZ x 5, T Ko AV = K(*Z) Qmin As.
Moreover the ebove equality restricts to the subalgebras Z x 5B, 6 T x,m A and
K® & Ag.
Proof. Let V denote the unitary operator on £2(Z)® H determined by
VE @& =6 n

for any k € Z and £ € Hp . :
The unitary V' implements the identification of (15). When a € A, , and £ €
Hpon, we have

V*2aVe, @ ¢ = V29ae™ g, 2 ¢

B eQ‘rr'qu(p—k)-i-pnak_p ® af (l +k-—p= 0)

o (otherwise).
This is the effect of e2™¥e_; . v ®a® € K(£2Z) ®pmin Ap on & ® £, Where ey,
denotes the matrix element &g — 6, k0m on £2Z for any (m,n) € Z2.

Similarly one has V*wV = v ® 1, where v is the unitary operator §; — 81 on
#2Z. Hence we obtain the inclusion

VHZ % 555 o T %o AV C K(0*Z) @unin Ap.
One can also show that V (K(£22) @min Ag}V* C Z 5,00 T Xom A, c.f. (16),
(17). a
By Proposition 16, we have
(Z X Do T k0 A, 1® D] = Ady{[Ady«{Z k;(ﬁ,agz) T X 13 A), Ady- (1 ® D))
_ ' = Ady ([K= & A, 1 D). '
Hence the elements of Z x 5T 6 T & 1y A have bounded commutators with 1 ®D
on {%(Z)® H. In particular,
(26) (Z x 55 o0 T How A, F(Z)®H, 19 D)

is a spectral triple.
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. Suppose that the triple (A4, I, D) is n-sumnmable (0 < n € 2N). Then the
character ’

chp(fo,-- - fa) = Tra(vfolBs f1] -+ [F o) (F=D|DI™)

of this triple is a cyclic n-cocycle which is invariant under o.
The isomorphism of Proposition 11 induces an isomorphism

HP(AQ) -7 HP(Z D(';(‘B,ggz) T K (1) .A)

On one hand, Proposition 16 implies that the image of ch( 4,z p) under this iso-

morphism is equal to the character of the triple (26). On the other hand, the

construction of the representation of Z X 55 (2 T 015 A on £2(Z) ® H implies the
oMoy

the following description of the Chern—Connes character.
Lemma 17. The character of the spectral triple (26) over Z X =5y 2 T X,y A is
o ,0'8
equal to ch—(:_;D).
Proof. Let kg, ., kn, be integers and fy,. .., fy be elements of T ) .4. Then one
has
Trg(u™ fol B u™ fi] -« [Fu fa]) =
unless 2 i=o ks = 0, cf. (14). This implies that the character of (26) is equal to

the dual Of Ch(Tb(u(l}A,fz(Z) ® H,l@D)
It is routine to check that

——

herx 4228 H18D) = N4,8,D)
directory from the definition (25) of the representation of T X ,u) .4 on £2(Z)® H. -
Combining the above two, we obtain the assertion of Lemma. ]

Remark 8. As a consequence of Lemma 17, or directly from the formula (23), the
cocycle chéiz, m,p) over Ag agrees with chi 4, m,p).
Theorem 3. Let (A, H, D) be an even reqular spectral triple endowed with a smooth
action of T? satisfying A = A>. Then the Chern—Connes characters of (Ag, H, D)
and (A, H, D) induce the same maps on Ko(Ag) via the isomorphism of Corollary
10.
Proof. ‘Put ¢ = chp. By Remark 8, the character of D over Ag corresponds to
the cocycle ¢ on R 5 o2 R ¥ A. As in the proof of Theorem 2, this cocycle
72 N Qt R R

corresponds to the cocycle i ¢ + fix, ¢ on R x A.

Given an action o of R on a C*-algebra B, let &, denote the Connes—Thom

isomorphism K,B — K,11(R xo B). Let y be any element of K;(R x A}, Then
one has

% -1 S L. Lo "
<¢, (2:,,0) (y)> = (ig;$+0ix.b,v) = (igsd v} + 0 (ix.dyy).
Since qnﬁ is equal to a character of. a spectral triple, its pairing with any element in
Ky(R K 515,502 R x 413 A) must be an integer. Hence <2X b,y > +6 <z’xz . y> must

stay inside Z regardless of the value of &, which implies <z X2¢, ) =0.
Let Z: Ko(Ao) = Ko(Rx 55 _ R 1) A) be the isomorphism given by Propo--
195y .
sition 9. For any element x € Ky(Ag), one has

(chp,2) = ($,2() = (ig:4, P5,05(@)) = (chp, B @ 5, 0 F(3))
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Since =+ B ) @;{30(2)5(3:) is the natural isomorphism Kp(Ag) — Ko{A4), one
at
obtains the assertion of Theorem. O

6. DEFORMATION FROM ACTIONS OF HIGHER DIMENSIONAL TORI

In this section we generalize the construction of the previous sections to the case
of the actions by the torus T™ of even dimension and the deformation parameter .J
in the space of the skew symmetric matrices of size n. As in [20], some part of it
makes sense for the actions of Euclidean spaces R™.

Let n be a positive integer, o an action of R® on a C*-algebra A, and .J a skew
symmetric matrix of size n. Then we have a deformed algebra A; as in Remark 3.

As a particular case of this construction, one may consider the case of A =
Co(R™) and o is given by the translation. Then A; is by n families (u})?, of
unitaries each of which is parametrized by t € R, satisfying

s,.8 __ 8+ St —8 _ dwistd; .t
U U = U, U U, =€ 1.

For general A and ¢, Rieffel [20] showed that A is isomorphic to the ‘generalized
fixed point algebra’ (A ®@min Co{R) /)R of [19] with respect to the tensor product
action of o and the ‘gauge action’ on Co(R)s. It follows that there is a strong
Morita equivalence between Ay and R™ x (A ®min Co(R)s) where the action of B™
on A ®min Co(R)y is given by the tensor product of ¢ and the ‘gauge action’ on
Co(R) ;.

Put By = R" %, A. For 1 < k < n, let us inductively construct actions oy of R
on By_1 and algebras

By ZRKak Bk_1=Rl><ak---]RD<al]Rn D(UA.

For each 7, we let u} be the 1-parameter unitary group implementing the action
a;j. Thus By_; is generated by R x, A and the unitaries uf,...,u}_, for t € R.
Then the action ay is determined by

az (uz) — 64Wi8t'}k'juj;
for j < k, and of(z) = (;fq";ja(:c) for z € R x5 A.
" Lemma 18. The algebra R™ % { A ®@min Co(R) ) is isomorphic to the iterated crossed
product ’
(27) B, =RKg, - RKxy R? x, A
Proof. Let (v!)%, be the generating unitaries of C*(IR™), identified to a subalgebra
of R x, A. Then the algebra (27) is generated by the elements which are generated
by the integrable functions from R?" into A via the correspondence

f € LY (R*™ A) — 2

3 t i
=/, FlE1y .oy tny 81,000, S0t o vimugt - - dEy - - dEgdsy - - - dsy,.
]Rn

If fo is an integrable function on R® and ¢ is an element of A, we can consider
an element

Tafo =a®/2 Foltiy .. ta)ull - ubndty - dt,
]Rn.

of A ®min Co{R™)s. Then, if f; is another integrable function on R™, we obtain the
element,

Ya,fofr = f Za,fof1(51, .-, Sn)oY" - vrdsy - ds,
RTI.
Oof R™ X (A ®min Co(R™)s). Let b denote the function
b(tl, N ,tn, S130 00y Sn) = afo(tl, e ,fin)f]_(sl, . ,Sn)
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from R?® into A. Then the correspondence y, ,.5, — 2 induces the desired iso-
morphism. O

Let 4 be a o-invariant subalgebra of A endowed with a Fréchet topology with
respect to which the restriction of ¢ is smooth. On one hand we can take

Ay = (AR S(R™) )R",

On the other hand we can construct subalgebras By, of By, for each k by taking the
elements which are represented by the Schwartz class functions from R™** into A.
The above Lemma shows that there is an tsomorphism

HP* (A7) = HP* (B x4, _1---R Ko R x4 A).

By composing this with the iteration of Elliott—-Natsume-Nest isomorphisms, we
obtain an isomorphism .

T*: HP*(A4;) —» HP*(A),
which is compatible with the natural isomorphism ¥ in K-theory.

Let ¢ be a cyclic cocycle on A which is invariant under . We apply successive
application of the dual cocycle operations as follows: To¢ = ¢® is the dual cocycle
on By, and T¢ = Tm is the cocycle on By, which is dual to 7;_1¢ with respect
to the action ay. In this way we obtain a cocycle T, ¢ on the algebra (27). Through
the strong Morita equivalence, we also obtain a cocycle on A7, which is denoted by
&. . '

For each 1 < ¢ < n, let X; denote the generator of @,

Theorem 4. Let ¢ be a cyclic cocycle on A which is invariant under 0. Then the
cocycle ¢ on A; corresponds to the one

(28) ¢+ E :2Ji,jixi~in¢ + E : 4Ji1,iz J‘is,’i;ixil T:Xiz Ii‘Xia fiX{4 ¢
i<y 11 < 2,13 <iq
i9<Cig
+ E : sziz,’iz T Jizm—lyizmixil Tt iXsqus
1<, iam—1<iam
[ VeI 1Y,

on A under the isomorphism U*, where m is the largest integer not exceeding n/2.
g

Proof. We ‘untwist R-crossed products’ from the cocycle T, ¢ to (28) by induction
on n using Lemms. 14 and 15. The case for n = 2 is exactly Theorem 2.

Now, let n be an arbitrary positive integer and suppose that Theorem was proved
for n — 1. The action &, on B,_; is cocycle conjugate to the one

B =S ot oth(f) (F e ST, ).

By assumption T},_1¢ is also invariant under 8. Let X, be the generator of the

dua) action o). By Lemma 14 and Proposition 15, the cocycle T,¢ corresponds
to the cocycle

(29) ix. Tno16+ > 2J5mix,Tno16
i<n
on B,_; under the Elliott—Natsume—Nest isomorphism with respect to ay,.

Let Bj) denote the crossed product R"~! X (o, on-ny A We can construct
actions aj, and algebras By, = R xo Bj for 1 <k < n -1 exactly as in the case
for ap and Br. Then B,_1 can be identified with R x y B,_;. Similar to the
construction of Tx¢, we also have cyclic cocycles T}, on By, for each &k by successive
application of the dual cocycle operation.
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The first term ¢ T,—1¢ of (29) corresponds to the cocycle T}, ;¢ on By _; by
argument in the third paragraph in the proof of Theorem (2). The rest of the terms
corresponds to the cocycle

D 2imixsixn, D16 =Ta 1 > 2Jjnix,ix, ¢

j<n ji<n
on B}, _; again by Proposition 15. Combining these, {29) corresponds to the cyclic
cocycle

Ty | ¢+ ) 2T5mix,ix, ¢
i<n
on BB _,.
We note that B],_, is obtained by the iterated crossed construction for the skew
symmetric matrix JO = (J; ;)14 j<n—1 of size 7 — 1. By induction hypothesis, we
obtain the assertion of Theorem for n. ‘ O

Remark 9. One has the anticommutativity ixiv¢ = —iyix¢d for any commut-
ing derivations X and Y which are generators of actions preserving ¢. Con-
sequently, if one has is, = 45 among (i1,...,%s) for some j # j/, the term
Jirsia  Jign 1 e iy ixs,, ¢ I (28) vamshes It also follows that the formula
(28) is invariant under the conjugation by an orthogonal matrix.

6.1. Deformation of T™-equivariant spectral triples. As before, let J be a
skew symmetric matrix of size n. Suppose that the action ¢ is given as a one by
T%. For example, if A is the function algebra C(T") over the n-torus and ¢ is the
translation action, the deformed algebra C({T™)} is generated by n unitaries (u;)%,
satisfying the relation

uiug = e iy,
Then there is the ‘gauge’ action vy of T" on C(T") ;.

For genersal algebra A with an action o of T™, the deformed algebra A; can
be identified with the fixed point algebra (4 ®@min C(T™) ;)T with respect to the
action ¢ & .

In the rest of this section we assume that (A, H, D) is a regular spectral triple
and the action ¢ is given by an action of T". We assume that there is a unitary
representation U of T™ satisfying (1) and that o satisfies smoothness condition
A = A (see the part right after Remark 1). We then obtain that the algebras T™ x
(A& C(T™);) and A; are strongly Morita equivalent via an argument analogous
to Propositions 11 and 12.

Let L2(T%) be the Hilbert space obtained from the GNS-construction for the
algebra C’(']I‘”) o and its unique gauge invariant trace. Then the algebra B =
A ®@min C(T™); is represented on the Hilbert space H = H ® L*(T%), and the
commutator of D = D ® Idgz(ye) with any element of B = ARC®(T™); is
bounded. There is a natural unitary representation I': T ~ L? (T%) which satisfies
Adr, (z) = (=) for any z € C(T");. Hence one has

(30) (0 ®@7)e(z) = Adwen),(z) (z € B).

Moreover the operator D commutes with (I ® T'); for ¢ € T™.

Let Hy be the subspace of H which consists of the invariant vectors under the
representation 7 @ . Then HU is preserved under the action of the fixed point
algebra Ay = BT by (30). As Dis Adygr-invariant, it also restricts to Hy. Hence
one obtains new spectral triple

(31) (As, Dl g,, Ho)-
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This operation generalizes the construction of the deformation of Riemannian man-
ifolds endowed with an action of T" by Connes-Dubois-Violette [7].

As a consequence of Theorem 4, we obtain the following invariance of the pairing
" of the Chern character for the different values of .J.

Theorem 5. Let ¢ be the character of the spectral triple (31) and = be any element
in Ko(Ay). Then one has

{#,7) = (ch(a,p,m), ¥(z))

for the element U(x) € Ko(A) corresponding to x under the natural isomorphism
in the K-theory. :

Proof. The cocycle ¢ is equal to chiy p ) as in Lemma 17. By Theorem 4, ¢
corresponds to the cocycle chia p, zy +1s on A, where ¢ is a cyclic cocycle which
continuously depends on J. By the property

(cha,p,m +s, B(@)) = ($,2) € Z,

we obtain the equalify in the assertion. O

7. CONCLUDING REMARKS

Remark 10. In the proof of Theorems 3 and 4, we saw that the cyclic cocycles of
the form ix, ---ix,,. chp on A pairs trivially with Kqo(A). It is very likely that
these cocycle are trivial in HP?(A).

Note that this phenomenon is specific to the character of K-cycles admitting
a unitary representation U; of T? satisfying (1). Otherwise ix,éx, chp can pair
nontrivially with K(A). For example, the trace 7 on T? given by the Haar integral
is the character of a 2-summable even spectral triple over C®(T?) and it satisfies
(ixl’ixz‘r, KOT2) = Z.

Remark 11. After a major portion of the results in this paper was obtained, the
author has learned from N. Higson that the invariance of the index pairing as stated
in Theorem 3 can be obtained in a purely C*-algebraic framework as follows.

Let R act on the C*-algebra R X (1) A ®min C[0,1] by (;Eﬁ, Cl'g)) on the copy of
R x 1y A at the fiber over § £ [0,1]. Then the resulting crossed product algebra
X=Rx (R X (1) A Smin O[O, 1])
act on the Hilbert space L?(R)® H ® L2([0, 1]) determined by the representation of
RK - R Aon L*(RY® H “over the fiber 6” as described in the beginning
a ’O-Dﬂ

of Section 5.1.

The pointwise multiplication representation of C[0,1] on L2[0,1] induces an rep-
resentation of C[0,1] on L?(R)® H® L%([0,1]) as X-endomorphisms. Then one
obtains an element

a=(L*R)®HQL[0,1]), 112y ® D ® 112(p0,1p)) € KK(X,C[0,1)).
The evaluation at & € [0, 1] induces KK-equivalences
evg: R x (R %, 0) A®min C[0,1]) ~xx R X 00D R % o A,
evg: C[0,1] =gk C. '

These KK-equivalences intertwine o and the element of K°(A4g) given by D, while
_ the composition evpoev, ! gives the natural isomorphism between Ko(4s) and
Ko(A).
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