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Introduction

One of the most fundamental problems in statistical physics is to derive a macro-
scopic evolutional equation describing natural phenomena like the dynamics of flu-
ids from a complicated interacting system of microscopic objects such as atoms or
molecules. This microscopic system has a large number of degrees of freedom, and
called a large scale interacting system. On the basis of stochastic analysis, some
scaling limits for the large scale interacting systems have been extensively studied
to establish a mathematical foundation of statistical physics. Hydrodynamic limit
is the most typical and important one among them, in which the averaging caused
by the local equilibrium plays an essential role. It is a limiting procedure in an ad-
equate space-time scaling, which enables us to derive a partial differential equation
describing a macroscopic evolution from a stochastic process describing a microscopic
evolution. The limiting equation is called a hydrodynamic equation. The equilib-
rium fluctuation is also one of such limiting procedures under a space-time scaling.
It enables us to derive a stochastic differential equation which describe macroscopic
time dependent fluctuation around the hydrodynamic limit starting from an equilib-
rium state. From the viewpoint of the probability theory, the hydrodynamic limit is
a law of large numbers for macroscopic parameters and the equilibrium fluctuation .
is a central limit theorem for them.

A large scale interacting system which satisfies the so-called gradient condition
is said to be gradient. As for reversible gradient models, the hydrodynamic limit and
the equilibrium fluctuation are proved in principle using the entropy method intro-
duced by Guo, Papanicolou and Varadhan in [11] or the relative entropy method by
Yau in [29]. To apply these methods to general (nongradient) models, Varadhan pro-
posed a clever method called gradient replacement in [26], which has actually been
applied to many nongradient models (e.g. [21, 15, 10,28, 16]). This method, how-
ever, requires several model-dependent estimates, there are still many open problems
related to scaling limits for nongradient models. In this thesis, we study scaling lim-
its for three types of nongradient models, which are interesting from physical points



of view but have their respective difficulties of applying Varadhan’s method.

In Chapter 1, we introduce a new class of nonreversible and nongradient lattice
gas models and prove the hydrodynamic limit for this model under the diffusive
space-time scaling. The hydrodynamic equation is a certain nonlinear diffusion
equation and its diffusion coeflicient is characterized by a variational formula.

The hydrodynamic limit for a nonreversible and nongradient system under the
diffusive scaling is first proved by Xu in [28] where the hydrodynamic behavior
of a one-dimensional mean-zero zero-range process is studied. Later, Komoriya
proved the hydrodynamic limit for a mean-zero exclusion process in [16]. A crucial
step for extending the entropy method first developed for reversible systems to
nonreversible systems consists in controlling the asymmetric part of the generator
by the symmetric one. This is related to the so-called sector condition. In [28,
27, 25], some versions of the sector condition are proved using the idea called loop
decomposition first introduced in [28]. The idea depends deeply on the mean-zero
property of random walks considered there. In this thesis, we do not use loop
decomposition, and instead we use the parity of the system to show a version of
the sector condition. This new method can be applied to Hamiltonian systems, and
indeed we use this in Chapter 2.

We are interested in this model not only because it is nonreversible and non-
gradient but also because it can be considered as an intermediate between two
well-studied lattice gas models, namely the totally asymmetric exclusion process
(TASEP)} and the simple symmetric exclusion process (SSEP).

The model considered here is characterized by a positive real number v which
represents the strength of eternal forces of the system. If v takes 0, the system
evolves as same as TASEP. On the other hand, if -y takes co heuristically, the system
evolves as same as SSEP where the hydrodynamic equation under the diffusive
scaling is the heat equation with a constant diffusion coefficient 1/2. From this
point of view, we study the asymptotic behavior of the diffusion coefficient of the
hydrodynamic equation as «y goes to 0 or oo and obtain some results which show that
the asymptotic behavior of the diffusion coefficient is consistent with the asymptotic
behavior of the microscopic evolution.

In Chapter 2, we consider a chain of anharmonic oscillators with a stochastic
perturbation preserving total energy. We study a fluctuation of a spatial distribution
of energy at equilibrium and prove the equilibrium fluctuation under the diffusive
space-time scaling. The limit fluctuation process is governed by a generalized sta-
tionary Ornstein-Uhlenbeck process, whose covariances are given by a variational



formula. Chapter 2 is based on a joint work with Professor Stefano Olla.

The derivation of the diffusion equation for a macroscopic evolution of energy
through a diffusive space-time scaling limit from a microscopic Hamilton dynamics,
is one of the most important problem in non-equilibrium statistical mechanics (]5]).
The main difficulty of this problem relates to the origin of the diffusive behavior
in classical physics. One dimensional chains of oscillators have been used as simple
models for this study. As deterministic dynamics lacks good ergodicity properties,
the derivation of macroscopic evolution equations from Hamilton systems has not
been justified mathematically so far. Therefore, stochastically perturbed Hamilton
systems have been considered instead. But since these systems are usually nonre-
versible and nongradient, it is still difficult to prove scaling limits for these systems
under diffusive scaling by Varadhan’s method. In this thesis, we overcome this diffi-
culty by using the method developed in Chapter 1 and obtain the diffusive behavior
of energy.

In Chapter 3, we consider a multi-species generalization of the symmetric simple
exclusion process in homogeneous and non-homogeneous hypercubes of Z¢. We
show some estimates of the spectral gap (the absolute value of the second largest
eigenvalue of the generator), which plays an important role in the proof of the
hydrodynamic limit for nongradient models. Chapter 3 is based on a joint work
with Professor Yukio Nagahata.

The spectral gap has been estimated in recent works by Caputo in [6] and by
Dermoune and Heinrich in [8] for non-homogeneous multi-color exclusion processes,
in which the multi-color particles evolve in accordance with the identical dynamics.
A distinctive feature of the multi-color exclusion process is that the spectral gap
depends on the density of vacant sites, which is not the case for the one-species
simple exclusion process. In particular, the spectral gap vanishes as the density of
vacant sites approaches 0. This degeneracy of the spectral gap was first shown by
Quastel in [21] for the simple exclusion process with color, which was introduced
by himself. In [6] and [8], the non-homogeneous multi-color exclusion process was
considered and they estimated the dependence of the spectral gap on the density of
vacant sites in detail.

The aim of our study is to extend the previous results to a multi-species ex-
clusion process. Namely, we consider a system of several species of particles having
their own dynamics, or precisely, their own jump rates and jump ranges. In phys-
ical point of view, it is a system of several constituents having physically different
properties. In our model, the hyperplanes of configurations with given numbers of



particles of each species are not necessarily irreducible. We give a sufficient condi-
tion of the dynamics to make them irreducible. Also, assuming the irreducibility of
them, we show that the spectral gap is bounded from below by Cpg/n? where pg is
a density of vacant sites, n is the length of each side of a latiice space and C is a
positive constant independent of n and pp.

. This paper is organized as follows: In Chapter 1, we prove the hydrodynamic
limit for exclusion processes with velocity. In Chapter 2, we prove the equilibrium
fluctuation for a chain of anharmonic oscillators with a stochastic perturbation. In
Chapter 3, we give detailed estimates of the spectral gap for multi-species exclusion
processes.
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Chapter 1

Hydrodynamic limit for exclusion
processes with velocity

1.1 Introduction

One of the main open problems in nonequilibrium statistical physics is the derivation
of diffusion equations from the microscopic Hamiltonian dynamics. The main diffi-
culty of this problem relates to the origin of diffusivity in classical physics. One way
to approach the problem is through the entropy method introduced by Varadhan
[26], but because of the lack of analytic tools, it is difficult to apply this method for
nonreversible and nongradient Hamiltonian systems under diffusive scaling. There-
fore, as a first step, in the present paper, we study the hydrodynamic limit for
nonreversible and nongradient lattice gas models under diffusive scaling.

The model we consider is a system of particles with velocity on the
one-dimensional discrete lattice Z under the constraint that at most one particle
can occupy each site. A set of possible velocities is {1, —1} and the state space
of the process is {1,0,—1}2. Its elements (called configurations) are denoted by
w = (w(z),z € Z) with w(z) =0 or 1 or —1 depending on whether z € Z is empty
or occupied by a particle with velocity 1 or a particle with velocity —1, respectively.
A particle at site z with velocity 1 (resp. —1) waits for an exponential time at rate
one and then jumps to z+1 (resp. £—1) provided the site is not occupied. If the site
is occupied by a particle with velocity 1 (resp. —1), then the jump is suppressed. On
the other hand, if the site is occupied by a particle with velocity —1 (resp. 1), then
the particle at = collides to the particle at = + 1 {resp. z — 1), namely the particle
cannot jump to 41 but instead the velocities of these two particles are exchanged.
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The changes of velocities also happen due to random external factors. The sign of
velocity of each particle flips {(from 1 to —1 or from —1 to 1) with exponential law
with a positive constant rate «. Flips of the sign of each particle’s velocity happen
independently of each other. Moreover, jumps or collisions of each particle and flips

of the sign of each particle’s velocity are all independent.

It is easy to see that the number of particles is a unique conserved quantity for
such process. We prove the hydrodynamic limit for the density of particles and ob-
tain a variational formula for the diffusion coefficient of the hydrodynamic equation,
assuming the continuity of the diffusion coefficient. The only assumption required
for an initial condition is that a law of large numbers holds for the distribution of
the density of particles. In particular, the macroscopic evolution of the density of
particles does not depend on the distribution of the initial velocities of particles, but
only on the distribution of the initial position of particles.

The hydrodynamic limit for a nonreversible and nongradient system is first con-
sidered in [28] where the hydrodynamic behavior of a one-dimensional mean-zero
zero-range process is studied. Later, Komoriya studied the hydrodynamic behavior
of a mean-zero exclusion process in [16]. A crucial step for extending the entropy
method first developed for reversible systems to nonreversible systems consists in
controlling the asymmetric part of the generator by the symmetric one. This is
related to the so-called sector condition. In [28], [27] and [25], some versions of the
sector condition are proved using the idea called loop decomposition first introduced
in [28]. The idea depends deeply on the mean-zero property of random walks con-
sidered there. In the present paper, we do not use loop decomposition, and instead
we use the parity of the system to show a version of the sector condition. This new
method can be applied to Hamiltonian systems.

We are interested in the model defined above not only because it is nonreversible
and nongradient but also because it can be considered as an intermediate between
the totally asymmetric exclusion process (TASEP) and the simple symmetric exclu-
sion process (SSEP). If we consider the case with v = 0 and the initial condition
satisfying that the velocities of all particles are same (e.g. 1), the system evolves as
same as TASEP. In this situation, since there is a transport in the system, we have
to consider the hyperbolic space-time scaling instead of the diffusive scaling to know
the time evolution of the density of particles. On the other hand, if we consider the
model with v = co heuristically, each particle jumps to right or left with probabil-



ity 1/2 under the exclusive constraint after exponential waiting time with rate one.
Therefore the system evolves as same as SSEP where the density of particles evolves
according to the heat equation with a constant diffusion coefficient 1/2 under the
diffusive scaling. From this point of view, we study the asymptotic behavior of the
diffusion coefficient of our model as v goes to 0 or oo and obtain some results which
show that the asymptotic behavior of the diffusion coefficient is consistent with the
asymptotic behavior of the evolution of the model. Specifically, we show that the
diffusion coefficient, denoted by D7(p) as a function of the density of particles p,
is strictly bigger that 1/2 for all positive v and p € [0,1], and it converges to 1/2
as v goes to oo for all p € [0,1]. We also show that D¥(p) = O(%) as -y goes to 0
for p € [0,1). On the other hand, for p = 1, we show that D¥(p) < O(%). The
difference of the order between p € [0,1) and p = 1 implies that p = 1 has some
special property. Actually, we can transform a configuration of our model with full
density (i.e. every site is occupied by a particle) to a configuration of the usual
exclusion process by corresponding a site occupied by a particle with velocity 1 to
an occupied site and a site occupied by a particle with velocity —1 to a vacant site.
By this transformation, we obtain an exclusion process where a particle jumps only
to one direction with a Glauber term at rate v at each site. Therefore, as v goes to
0, we obtain TASEP as a limit again formally. In [24], we study a high-dimensional
version of the model we consider here and show that in the case d > 3, the diffusion
coefficient D7(p) of the hydrodynamic equation goes to co for p € [0,1) but remains
finite for p = 1 as «y goes to 0. Especially, we conjecture that lim,o D7(1) relates to
the diffusion coefficient for TASEP, which is well studied and diverges for d = 1,2
but remains finite for d > 3 (see e.g. [18], [19]) .

This chapter is organized as follows: In Section 1.2 we introduce our model
and state main results. In Section 1.3, we give the proof of Theorem 1.1, which is
divided into several subsections. The proof of a version of the sector condition is in
Subsection 1.3.4 and the detailed estimates of the diffusion coefficient are obtained
in Subsections 1.3.5 and 1.3.6. In Section 1.4 we give a spectral gap estimate. In
Section 1.5, we characterize the class of closed forms.



1.2 Model and results

The exclusion process with velocity we consider is a Markov process w; on a config-
uration Spaée xv = {—1,0,1}"¥, where Ty = (Z/NZ) is a one-dimensional discrete
torus. To avoid technical things, we work on a space with the periodic boundary
condition. The dynamics is defined by means of an infinitesimal generator L}, acting
on functions f: yy — R as

= D {LIf@) + L7 fw) +7LLf (@)},

€T

where
L3 f(w) = Ypunj {f (W) = F(w)],
Ly f{@) = Lpey{f (™)) = f{w)},
and
L3 f(w) = Yuppoy U (0%) = f(w)}.

In the above formula, w® and w™¥ € ¥ stand for

w, if z#z,y, e
Ty o :_ Jw. iz,
w,' =<w, fz=z, Wy = .
. -w, iHfz=u,
wy ifz =y,

respectively. We shall use the notation 7, = 1y, -0} so that the variable n € {0, 1}~

denotes the configuration of occupied sites associated to w.

The process is invariant with respect to the following one—parameter family of

translation invariant product measures v,.

Definition 1.1. For each fized p € [0,1], let v, be a product measure on xn with
marginal given by

vo{w, =1} = g, Vo{lwz =0} =1-p and v{w,=-1}= g
for all x € Ty.

The index p stands for the density of particles, namely E,, [n] = p. We will
abuse the same notation v, for the product measures on the configuration spaces yx
or x = {—1,0,1}%, namely on the torus or on the infinite lattice. The expectation
with respect to v, will be sometimes denoted by

ff wivy(dw) = ([},

10



From the definition, our model is nonreversible with respect to the measure v,.

By the simple computations, we obtain that

(LR F)w) = S AL2* Fw) + Lo fw) + 7LLF W),

€Ty

where L}" stands for the adjoint operator of L}, with respect to v,,
N N P

Ly f(w) = L=y {F (™) = flw)},

and
Ly Fw) = L= {F (0™ = Fw)}.
Denote by LY;° the symmetric part of LY, and by L4 the anti-symmetric part of Ll

(LF N = D> L& 1 F@) + L2 fw)}, (Lifiw) =Y Lif(w
z€Twn €Ty
where
L0 £0) = 5 (Uinamy + Lo T @) — F)}
and

L21() = gal{f@™*) = @)} = {f(*) = f)}]..
Note that L4 does not depend on 7.

Here and after, we call § a cylinder function on yx if f depends on the configura-
tions only through a finite set of coordinates.

For any 2 € Z and cylinder functions f, g, let us define Dy z41(v,; f, g)
Dm:rJrl(yp:f) D (V,mf: ) and D (Vpu f) by

Dm,:n+1(up; f: g) = (_(L;:::z-l-l)f? g)p: D:c,x-f-l(yp; f) : :z,:chl(Vp; f: f)}

Dm(Vp;fag) = ( (L )f:g)p and Dy (Vp: ) ::D:c(yp;f:f):

where (-, ), stands for the inner product in L%(v,}. The reversibility of L&, and

3+
LY implies

Dyrss(05 £,8) = (Vs /) (Vaerng)ly
and 1
Dalvps f,9) = 5((VaF)(Vag)ho

where

vm,z+1f = 1{n;=1}{f(w$’m+1) - f(w)}

11



and
Vaof = L=} {f (&%) — f(w)}-
Let 7, be the shift operator acting on the set A C Z and cylinder functions f as

well as configurations w as follows:
A =2+ A, (Tow)z = wzy, and wf(w)= f(nw) for z,z€Z.

For every cylinder function g : x — R, consider the formal sum
Ly = Z Tad
=€l

which does not make sense but for which

Vol = 1{nu=1}{Pg(WD’1) — Dy(w)}

and
Vol'y 1= 1{n0=1}{Pg(w°) —~Tg(w)}
are well defined.

We are now in a position to define the diffusion coefficient. For each p € (0, 1),
the diffusion coefficient of the hydrodynamic equation for the exclusion processes
with velocity D7{p) is given as

- 11
2.1 DY = =4 — ] . .
(12.1) (p) "2 X0 jf supiDoa (Vi T'y) + ¥Po(v5i T'y)

- 2<W6A,11 - LAf: Fg)p - Do,l(Vp; Fg) - ’)/Dg(up; I‘g)]

where Cp is a subspace of cylinder functions defined in Subsection 1.3.2 below and
W¢, is a cylinder function defined in (1.3.2) below. Note that (Wgh — LAf, Ty, is
well defined by the definition of Cp. In this formula x(p) stands for the so-called
static compressibility which in our case is equal to

x(0) = (m3}e — (mo)2 = p(1 — p).

According to the later argument, we can show that D7(p) is continuous in
p € [0,1) without any assumption, but to prove Theorem 1.1, we assume a little
stronger condition that D7(p) is continuous in p € [0, 1] thfoughout the paper. Note
that it can be also shown that D7(p) is Lipshitz continuous in ¥ > 0, though it is
not necessary for the proofs of our main theorems.

12



For a probability measure N on xn, we denote by P,~ the distribution on the
path space D(Ry, xn) of the Markov process w(t) = {w,(t),z € Ty} with generator
N2LY,, which is accelerated by a factor N2, and the initial measure 1. Hereafter
E,~ stands for the expectation with respect to Pyw.

With these notations our main results are stated as follows:

Theorem 1.1. Let (™) n>1 be a sequence of probability measures on xn such that
the corresponding initial density fields satisfy

im 1l 3 Ome— [ Cmud > 5= 0

N—=oo
€T

for every 6 > 0, every continuous function G : T — R and some measurable function
po: T —[0,1]. Then, for every t > 0,

limsupIPuN Z G’( (£ — /G p(t,u)du| > 6§ =0

N—oo $E'E'N

for every & > 0 and every continuous function G : T — R, where p(t,u) is the
unique weak solution of the following nonlinear parabolic equation:

e} Op -
=_—4iD7 -
Moreover, for each p € (0,1) and v > 0, D¥(p) satisfies the inequality:
11— 2 p |
2. St P e i< 42 2F
(1.2.3) 57 5, D(p) 2+ 7o

Corollary 1.1.1. By (1.2.8), we obtain

1
limsup D7(p) = hmmf D(p) = 1 +—
p—0 2 2‘_},

which proves that DV(p) is continuous at p = 0. Also, we have

liirtl)D"’(p) =00 for pe0,1) and lim D7(p) = 1 for pe [0,1]
¥

F—ro0 2

where the second formula for p =1 means

1
lim liminf D"{p} = lim limsup D7(p) = 5

T—oo  p—l Y00 psl

precisely.

13



Theorem 1.2. For each v > 0,

limsup D7 (p) < 1-}- 1
p—1 =3 2 + 2/ + 2

In particular, limsup, ,, DV(p) < O(%) as v goes to 0.

Remark 1.1. Since we work on the one-dimensional torus, to prove the uniqueness
of weak solutions of the Cauchy problem (1.2.2), we can apply the proof of Theorem
A.2.4.4 in [14] straightforwardly. '

1.3 Proofs of the main theorems

The strategy of the proof is as follows. First, in Subsection 1.3.1, we reduce the
problem stated in the theorem to the replacement of the current by a gradient, and
give the proof of Theorem 1.1. Second, in Subsection 1.3.2, with the usual non-
gradient method we prove that the computation of a central limit theorem variance
associated to the symmetric part of the generator is sufficient for the proof of this
replacement and show a variational formula. for this central limit theorem variance.
These two steps are essentially the same as given for the generalized exclusion process
in [14], which is based on the method first established by Varadhan in [26]. The
main argument of this part is obtaining the estimate of the spectral gap and the
characterization of the closed forms, which are presented in Sections 1.4 and 1.5.
Then, in Subsection 1.3.3, we obtain the decomposition of a Hilbert space equipped
with the inner product defined by the central limit theorem variances. Here, we
use the sector condition in the sense of this Hilbert norm (1.5.8), which is shown
in Subsection 1.3.4. In Subsection 1.3.5, we obtain two variational formula for the
diffusion coefficient and its estimates from above and below. Finally, in Subsection
1.3.6, we give the proof of Theorem 1.2.

1.3.1 Replacement of the current by a gradient

We start with considering a class of martingales associated with the empirical mea-
sure. We take T' > 0 arbitrarily and fix it in the rest of this section. For each smooth
function H : T — R, let MEN(t) = MH(t) be the martingale defined by

t
M) = (1) = () 1) = [ NI, E)s,
0

14



where ;¥ stands for the empirical measure associated with 5(t), namely

(13.1) N (du) = Z Ne(t)82 (du), Qg t<T, uweT,

nE€T

and (¥, f) stands for the integration of f with respect to 7).

A simple computation shows that the expected value of the quadratic variation
of M¥(t) vanishes as N 1 oo, and therefore by Doob’s inequality, for every § > 0,
we have
11111 P.[ sup [MHE(t)| > 8] =0.

0KE<T
A spatial summation by parts permits to rewrite the martingale M (t) as
ME@) = (N, HY — («) H / E N HY) (= -erO 1{ws)ds,
z€Tpr

where Wy 1(w) = Wg, (w) + Wi, (w) represents the instantaneous current from 0 to
1 with

(132) W) =5m-m), Weh(®)= 3@ —m) + el —m)

and &Y H represents the discrete derivative of H:

e !

(O H) (5 ) = NIH(

Here, W (resp.Wg}) is the instantancous current from 0 to 1 associated to the

symmetric {resp. anti-symmetric) part of the generator respectively.

Next we show that the current W ; can be decomposed into a linear combination
of the gradient m — n and a function in the range of the generator L}: Wy +
D7(p)m — mo] = LLF for a certain cylinder function f and the function D7(p) that
depends on the density defined by (1.2.1), see Theorem 1.3 and Corollary 1.3.1 for
more precise statement.

For positive integers I, N, a function H in C?*(T) and a cylinder function f on
x, let
Xi(Hw)y= > H( )Trvff (w),
€T N

where
Vi(w) = Woa(w) + D70 (0))[7'(1) — 7/(0)] —~ LEf(w),

15



and

!
Ty.
mie) = (21+1 D My weTy
|ly—=|<!
Theorem 1.3. Fiz p € (0,1) arbitrarily. Then, for every function H in C*(T), we
have

1
inf lim sup hmsup:r\—r-logEVN [exp{N|f XNEN (H,w(s))ds|}] =0

feC  e50 Nooo

where C stands for the set of cylinder functions on .

The proof of Theorem 1.3 is postponed to the rest of this section. This theorem
implies the following corollary. For a positive integer { and a function H in C?(T),
let

Ynu(H,w) =" H(x {W:c s+1(w) + D7 (@)l (2 + 1) — 7' (@)]}.

z€T N

Corollary 1.3.1. For every function H in C2(T),

T

limsuplimsupE“NH/ Ynen(H,w(s))ds|] = 0.
=0 N—=oo o]

To prove this corollary, we can follow the argument in the proof of Corollary

7.1.2 in [14] straightforwardly. In particular, the L}f term is negligible. We have

now all elements to prove the hydrodynamic behavior of our nongradient system.

Proof of Theorem 1.1. Recall that the empirical measure 77" is defined by (1.3.1).
Denote by Q,~ the distribution on the path space D([0,T], M(T)) of the process
7Y where M(T) stands for the space of measures on T endowed with the weak
topology.

Following the same argument as for the generalized exclusion process in Section
7.6 in [14] it is easy to prove that the sequence {Q,~, N > 1} is weakly relatively
compact and that every limit point @ is concentrated on absolutely continuous
paths m(du} = (¢, u)du with density bounded by 1: 0 < #{t,u) < 1.

From Remark 1.1, there exists at most one weak solution of (1.2.2). Therefore,
to conclude the proof of the theorem, it remains to show that all limit points of
the sequence {Q,~, N > 1} are concentrated on absolutely continuous trajectories
7(t, du) = 7(t, u)du whose densities are weak solutions of the equation (1.2.2). With
Theorem 1.3, it is done exactly same way in the proof of Theorem 7.0.1in [14]. O
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1.3.2 Central limit theorem variances

To state the main theorem of this subsection, first we introduce some notation. For
a fixed positive integer [ we define A; := {—I,—I+1,..,1 —1,{} and L} , LR‘IS the
restriction of the generator LY, L% to A, respectively. We denote the set of cylinder
functions on x by C. For ¥ in C, denote by sg the smallest positive integer s such
that A, contains the support of ¥ and define Ay = A;,. Let Cp be the space of

cylinder functions with mean zero with respect to all canonical invariant measures:
Co={geC;{ga,x=0foral0 <K <|Af }.

Here, for a finite subset A of Z, we denote by |A| the cardinality of A and by {)a g
the expectation with respect to the canonical measure vp g = V(- [ 3 cp e = K)
for 0 £ K < |A| which is indeed independent of the choice of p. For a finite set A
and a canonical measure vy k, denote by (-, )ax (resp.(-,-),) the inner product in
L*(vax) (vesp. L*(v,)).

With these notations, we reduce the proof of Theorem 1.3 to the following

theorem:

Theorem 1.4.
(1.3.3) }cgg ll_iglo stép 20{(— L}ls‘)_lﬂ'f,l, VY g =0
where

VW) =@ +1)7 3 7 Woa(w)

|y|<¥

+ DM O (1) ~ " (O] = 2+ D)7 D (L], D),

yeAy

I'=1-1 and l=1—s;—1 so that TyLAsf+1f is Fp,-measurable for every y in A;f.

By the general argument, Theorem 1.4 is enough to conclude the proof of The-
orem 1.3. The precise argument for proving Theorem 1.3 from (1.3.3) should be
omitted here since it is very similar to that in Section 7.2 and 7.3 in {14], so here we
just show the sketch of the argument: First, using the Feynman-Kac formula, we
reduce the proof of Theorem 1.3 to the estimation of the largest eigenvalue of the
symmetric operator N2L37 + N XEV’E ~- Then, to localize the eigenvalue problem, we

use the usual procedure of the proof of the two-blocks estimate and an integration
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by parts formula (see Section 7.2 in [14]} and obtain that it is enough to estimate
the largest eigenvalue of the symmetric operator N* L}, + N X’R,,l for each fixed [ € N
instead of XL’E N Where

XL (Hw): ZH( TV P {(w)
cCT

and VH(w) is the function defined just above. In the proof of the two-blocks esti-
mate, we need the assumption that D¥(p) is continuous in p not only on the open
interval (0,1) but also at the boundary. Finally, with the usual procedure of the
proof of the one-block estimate and the general estimate of the spectrum of reversible
Markov processes (see Appendix 3.1.1 in [14]), we conclude that to show (1.3.3) is
sufficient.

For the beginning of the proof of {1.3.3) we obtain a variational formula for this
variance. We start with introducing a semi-norm on Cy, which is closely related to
the central limit theorem variance. For cylinder functions g, h in Cy, let

SN Z(g, Th)p and KL g, .= Za:(g, Tz}
TEL zEZ

K g,h >ps and < g >, are well defined because g and h belong to Cy and

therefore all but a finite number of terms vanish. For A in Cp, define the semi-norm
1

< h >, by

2 <hz>2.,. 1
K h>,,= sup{2 L g, h >+ —( ] L 5((‘70,1? ) Yo — ((VOI‘ ) Yot
g€Cy

= sup {2<K9,h>,. 20 € h >y —Doy(Vp;ano + Ty) — ¥Dolvp; am + )}
g&Cp,a€R

1
We investigate several properties of the semi-norm < - 2., in the next section,
while in this section we prove that the variance

@)TH=LET Y mdh, Y mdbhx

i<ty lel<ty

of any cylinder function 1 in Cp converges to < ¥ >, ., as [ T oo and L — p. Here
Ly stands for { — 3y 50 that the support of 7,9 is included in A; for every €A,

We are now in a position to state the main result of this section.
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Propositioﬂ 1.1. Consider a cylinder function ¥ in Cy and a sequence of integers
K; such that 0 < K; < 21 + 1 and im0 52 = p. Then,

lim 20 H(=LE) D o, D i =< ¥ Py -
|=[<ty |=|<iy
Proof. The key of the proof is the fact that any germ of a closed form, which is
defined and studied in Section 1.5, can be decomposed as a sum of germs in a
proper way. This is proved in Theorem 1.9 in Section 1.5, see there for more precise
statement. Once the theorem is established, the proof of Proposition 1.1 is the same
as that of Theorem 7.4.1 in [14] since the proof depends on the specific model only
through an integration by parts formula and the equivalence of ensembles, which
are easily shown. O

We conclude this section proving that for each 1 in Cp the function < ¢ >
[0,1] = R, that associates to each density p the value < ¥ >, is continuous
and that the convergence of the finite volume variances to < - >, is uniform on
[0,1]. For each I in N and 0 < K < 20+ 1, denote by V¥ (355) the variance of
(204 1)1 lelﬁlw T3 with respect to v k:

Vi (5r) = @NELEDT Y, Y mthu

2+l || <Ly || <y
We may interpolate linearly to extend the definition of Vlw to the whole interval [0, 1].
With this definition Vl"" is continuous. Proposition 1.1 asserts that V?'ﬁ converges,
as | 1T oo, to € ¢ >,,, for any sequence K; such that 2{{7‘1 — p. In particular,
[imy_ye Vl"’(p;) =<K ¥ >, for any sequence p; — p. This implies that < ¢ >, ,
is continuous and that-V;?(-) converges uniformly to < % 3. as [ 1 co. We have
thus proved the following theorem.

Theorem 1.5. For each fized h in Cp, K h >, is continuous as a function of the
density p on [0,1]. Moreover, the variance

@)=L Z zh, Z TP K,

|z <ln |z|<ts

converges uniformly to K h >, as 1 T oo and 5{% — p. In particular,

lim sup (2l)“1((—L1’lS)‘1 z Teh, Z Toh)yi gk = sup K h >, .

I
oK<t Rl<h, lel<in 0<p<t
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1.3.3 Hilbert space

We investigate here the main properties of the semi norm <« - >, introduced in
the previous section. We first define from <« - >, a semi-inner product on Cy
through polarization:

1
(1.3.4) L g, h>,.= Z{<< grh>,, —<Kg=h>,,}

It is easy to check that (1.3.4) deﬁnels a semi-inner product on Cq. Denote by
N,y the kernel of the semi-norm < - 32, on Cp. Since < - >>,., is a semi-inner
product on Cy, the completion of Cp|a;, ,, denoted by H, ., is a Hilbert space.

Here and after, we consider generators L7, L% and L* acting on functions f
in y as
Lf =) {LIf+L;f+yLafY, LY5F =) {L&af+vLif}, L7 =3 Lif.

TEZ ez oCE
Simple computations show that the linear space generated by W, and L"5C, =
{L"Sg; g € Cy} are subsets of Cy. The first main result of this subsection consists
in showing that #,, is the completion of L"SCq| N, + {W§1}, in other words, that
all elements of H, ., can be approximated by anl + L"7g for some a in R and g in
Co. To prove this result we derive two elementary identities:

(185)  <hL¥g>, = —<hg>p., <KhWe >, ==<h >

for all h, g in C,.

By Proposition 1.1 and (1.3.4), the semi-inner product < h, g >, is the limit
of the covariance (2!)_1((——1/1’!5)_1 > lal<t, 59> 2ojoj<t, Tohhi, as 11 oo and ).
In particular, if g = L gy, for some cylinder function gy, the inverse of the generator
cancels with the generator. Therefore, < h, L™ gy >, is equal to

— lim (21)™¢ Z T2 g0, Z Tohhx, =<K go, B > -

=00
|| <dgq |l <tn

The second identity is proved by similar way with the elementary relation

i _ s
LXI ZmEAE Ihy = Ez,z-{-leA; Wm,x-{-l'
The identities of (1.3.5) permit to compute these elementary relations

K W5, L h >,,=0
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for all A € Cp and
L Woo, Wiy = %X(P)-
Recall that x(p) stands for the static compressibility and is equal to {15}, — (no)3-
Furthermore,
2
2

1
< awffl + L%Sg »uy=x(o) + '2'((v0.1rg)2>p + %((VOFg)z)p

for @ in R and g in Cp. In particular, the variational formula for < h >, writes

2 < h, W5 >2
01 727 4 qup{—2 < h, L5y >, — < L5, 1.
x(p) g€Cq

(1.3.6) <4 h >>,D,'Y:

Proposition 1.2. Recall that we denote by L"5Cy the space {L"Sg; g € Co}. Then,
for each 0 < p < 1, we have

Hpy = L5\, @ {W(fl}' '
Proof. We can apply the proof of Proposition 7.5.2 in [14] straightforwardly. O

Next, to replace the space L7 Cy by L7Cy, we show some useful lemmas.

Lemma 1.5.1. For all g.h € Cy cmd 0 < p < 1, « LvSq, L*h >>M— - &
LAg, L¥Sh >, Especially, < L"%g, L4 >,.= 0.

Proof. By the first identity of (1.3.5),

& LT:S‘g’ LAh >>P}’T = — & q, LAh: >>p,*: - Z(ng! LAh’)P

wCZ
= Z(LATmQ: h)p = Z(T::LAQ: h)P
ez TEZ
Z(LAQ T_zh)p = Z(LAg,'rmh)p =< L4, L"h>,, .
wEZ €L
This concludes the proof. O
Lemma 1.5.2. For all g € Cp and 0 < p < 1, € LMg W& >,.,= — <

LAg, W5y > p-
Proof. By the first identity of (1.3.5),

K LG, Wah > py = = K g, Wil >pu= — Z(ng, Wiio
reZ
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= — Z a, I’V ,:t:+1 ZIC(Q, WzA—l z - W, $+1>P

YA  zEZ
=- Zw(g,LAnx)p = Z-T(LAQ, Nep = — K LG, Wg, >, .
x€Z z€Z
It concludes the proof. O

Lemma 1.5.3. Foralla€c Randge G and0 < p< 1, K aW[fl + L'Y'Sg,aW(fI -+
LAg 3,4=0.

Proof. By the second identity of {1.3.5), it is easy to see that < WO 11 W 1 o= 0.
Then, Lemma 1.5.1 and Lemma 1.5.2 concludes the proof stralghtforwardly. O

Proposition 1.3. There exzists a positive constant C., such that forall g € Cy and
0<p<l, g >,,<C, < Ly, ..

Proof. By Lemma 1.5.2, < L#g, W(’fl >>3,,y=<< LSg W >>§TS<< LSg >, . <&
‘ erl >, On the other hand, by Lemma 1.5.8 in the next subsection, | <«
LAg, L7 f pn | £ § K LYFf >y 45 < L5 >, for all f € Cp. In par-
ticular, for all f € Gy, —2 < LAg, LTS f Spy — K L >, < % < L7g >, ..
Therefore, by variational formula for « L*g >, in (1.3.6),

2K L5g >, < W > 1
T T g < I .

< LAg>,.<

ﬁvﬂ—(lz’?ﬂ < & for 0 < p <1, therefore

we can conclude the proof with C, = % : O

Moreover, by the inequality (1.3.12), we have

Now, we have all elements to show the desired decomposition of the Hilbert

spaces ..

Proposition 1.4. Denote by L7Cy the space {L"g;, g € Co}. Then, for each 0 <
g < 1, we have V
Hoy = L7Co| v, + {ng}_

Proof. Since {Wg,} and L7C; are contained in Cy by definition, H,,, contains the
right hand space. To prove the converse inclusion, let h € H,, so that
&L h,W§, >,4= 0and < h,L7g >,,= 0 for all g € ;. Then by assumption
and Proposition 1.2, A = limg_,o L"5hy in H,, for some hy € Cp. Especially
L h >p=limye K LSy, LVShy o= Mg e € LS hy, L7hy, >,y since
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< L"Shg, LAk, >,~= 0 by Lemma 1.5.1. On the other hand, by assumption
K h,L7hg >p4= 0 for all k. Also, by Proposition 1.3, sup, <« LThg >,,<
(Cy + 1) sup, <« L"Shy, > ,.:= Cy is finite. Therefore,

L h>y, = lm < LY by LRy, > p
—00

= lim < Ly — b, LTy 3, < Hm 1/Ch & L3Sh — h 30 = 0.
This concludes the proof. ' 0

Lemma 1.5.4. For each 0 < p < 1, we have
HP:’Y = L7G |NP.’)’ & {Wés:l}

Proof. Let a sequence gr € Cp satisfy limy oo Lgp = aW[fl in H,, for some
a € R. By the similar argument of the proof of Proposition 1.4, limsup, .., <
LY gy, L8 g >, 0= limsupg o, <€ LYgr, LY g >,,= limsup, ., € L'g —
aWgh, L g >, 0= 0 since « W§), L"¥gy, >>,,=0 for all k. On the other hand,
by Proposition 1.3, & L7g >,,< (Cy +1) < L™ g, >, then a = 0. O

Recall that Wy, = 1(no — m). Then we obtain the following decomposition:

Corollary 1.5.1. For each g € Cy, there exists a unique constant a € R such that

g—a(m—m) € LGy in H,,.

1.3.4 Sector condition in H,,

In this section, to obtain the sector condition in #,, ,, we study the special structure
of the space Cp. Roughly speaking the space Cp is divided in the countable spaces
which are orthogonal to each other in L?(v,).

First, we define some subsets of C indexed by nonnegative integers by

and L; be the linear space generated by L;. Here, g is a cylinder function depending
only on a configuration 7 instead of w. In other words, L; is the eigenspace of the

operator LY with respect to the eigenvalue —2i.

To consider the relation to the inner product introduced in the last section,
we restrict these spaces to Cp: M; := {f € L;; f € Co}. It is easily shown that

23



C = BienyoLi, 'Co = Bien,,Mi and M; = L; for ¢ > 1. Moreover, L; and L; are
orthogonal in L*(v,) if ¢ # j.

Now, we prepare two easy but useful lemmas.

Lemma 1.5.5. For all f,g € Co,

€ I15F, IAg py= ~5{TyVETy), = 5 (T,V4T)),
where V2 f = we{f(w®**) — f(w™*1)}.
Proof. By the first identity of (1.3.5),

1
— <L f, L4 =< f, L4g P ou= Z(Tmf: LAg)p =3 Z {7=f, V;g)p

zEZ z,YEL
1
=z Z Ta:fa vf a:g Z (Tacf Tm(v T—@Q)) 3 Z (f’ vaT—mg)P
mzez szZ T,2€E4
1 1 1
— 5 Z(f: vfr‘g)p -3 Z(Tzfa vélrg)p = E(FfVOAPﬁp-

z€Z 14

O

Lemma 1.5.6. For all nonnegative integers i, f € M and z € Z, L5 f, 1, f € M
and LAf € M;_; ® M;.,. Here M_, := ¢. Therefore, for all f,g € Cq,

oo
KL= <L"fi>,.,
- Py

) i=0

o oo
& LT’Sf, LAg >>P)'T = Z << L’Y’th LAg-H_]_ >>P;’T + Z << L’Y’Sfi-i-l: LAQz >>p,'7'
i=0 i=0

[ a] [sa]
= - Z L LG, LA fi >0 + Z K LM fi1, L >,y
i=0 i=0

where f; and g; are the projection of f and g to the space M; respectively.
Proof. Straightforward. O

Next lemma gives us the essential estimates to prove our main result in this
subsection.

Lemma 1.5.7. For all nonnegative integerst, fiy & M, ¢ € M; and any positive
number A > 0,

1 A
|(Ffi+1v0AI‘Qi>P| < ﬂ'((vorfiH)Q)P + 'é‘((vﬂ,lrgi)g)lﬂ‘

24



Proof. For any f;y, we have the unique decomposition of 'y, such that
g = Z . Ffi-l—l,A
ACZy4 DEA JAJ=i+1

where fz:Jrl,A(w) = Il epwz¢(n) for some cylinder function ¢ that depends only on
n. Since we take the index set as {A C Z,,0 € A,|A| = i + 1}, we obtain the
uniqueness of the decompositioﬁ. Note that all but a finite number of f;;1 4 are 0.
Therefore

(walvAP&)P_Z(Ff:HA o[T'g: (w 0’1) Ly, (w 0’_1)]>P

= Z Z T_zfir1,awo0[Tg, (W) — Ty, (w° )])

zeh
since for all z ¢ A and z € Z, (7, fi11,aw0[70gi(w™) — 72g:(w® 1)), = 0

By Schwarz inequality, the last expression is bounded from above by

(no(ZZ'r—zfz+m o{M0[Tq, (W) — Ty, (wO1)]%),

A zeA

< 2 (Y afinale + Sl %) ~ TP,

A zeA
< 5 (VeT )+ S((ToiT))

Here we use the relation that

((Vol511)%)0 = {(Vo Z Trinn) e = (=2 0> 7afira)Dy.

A zeA

and the inequality that

{m0[Lgs (™) = Ty (™ )], _
< 2<770[Pgi (wo'l) - ng (w)]z)!? + 2(770[Pgi (UJ) - ng' (wo'_l)]2>p = 4((v0,lrgi)2>f?'

Now we show the main result in this subsection.

Lemma 1.5.8 (sector condition). For all f,g € Cy,

1 1
| €L, LG 2 | < 5 KLY gy 5 K LG

25



Proof. By Lemma 1.5.5,
| <<L%Sf: LAQ' 2y |

s )
==Y« LG, LA fi gy + Y € L fiy1, LA g > |

i=0 i=0
1 1
< 2 Z |(ng+1 vgrfi)ﬂ' + 9 Z |(Ffi+1v0APgi)P|‘
i=0 i=0

Then, by Lemma 1.5.7, the last expression is bounded from above by

)y

((VaFa o+ 5(Taal1 )+ 3 DT (0T

B | =
M| =

1 1
S 5 =4 LT’Sf >>p,»"r +-2_F); << L‘Y,Sg >>pn.'

since < LT’Sf 2 py= ZEO[%((VO,ini)Q)P + %((vﬂrﬂ-)z)p]- O

1.3.5 Diffusion coefficient

We now start to describe the diffusion coefficient of the hydrodynamic equation.
From Corollary 1.5.1, there exists a unique number D¥(p) such that

WO,l + DT(,O)(’Th — 770) e L7Cy 1in HP,’Y‘

Our purpose now is to obtain the explicit formula for D7. To do this, we follow
the argument in [17].

Lemma 1.5.9. For each 0 < p < 1, we have
Hpmy = LCo|n, ® {Wo} = L7*Co|n, ® {Wo 1}
where W, == Wgy — Wi.

Proof. We shall prove the first decomposition; the same arguments apply to the sec-
ond one. Since we already prove in Lemma 1.5.4 that L7C| A, has a one-dimensional
complementary subspace in H, ,, it is sufficient to show that H,, is generated by
LCy and the current. Let h € Hpy s0 that < b, Wo1 >,,=0and < h, L7g >, =
0 for all g € Cy. By Proposition 1.2, h = 1111_1k_,c,c,(cn‘[/V(f1 + L75hy) in H,., for some
a € R and hy € Cp. Bspecially € b >pp= limg oo < aWgy + L hy, aWP; +
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L5k, o= limg e € aW(‘fl + LS hy, aWpa + Lhy, >, since < anfl +
LSk, aWi + LAy, >,4= 0 by Lemma 1.5.3. On the other hand, by assump-
tion < A, a1+ L7hy >, = 0 for all k. Also, by Proposition 1.3, sup, <« aWy1 +
LRy 50 < 207 K W1 54 +2(Cy + 1) supy, < LY hy, 3, 4= Cy, is finite. There-
fore, € h >, y= limg 0o K aWiy + LY hyy, aWo 1 + L7hy 35 0= limy 00 < aWg +
L7Shy — hyaWay + L7k >,,< limsup_,, \/ Ch < aW§, + LShy — h >, = 0.
This concludes the proof. O

Now, we can define bounded linear operators T': H, =+ H, and T : H, — H,
as

T(aWoy + L7f) == aWy, + L5 f,  T*(aWy + L"*f) == aWg, + L5

since € aWo1 + LVf ,,=< aWg, + L™ >,,=€ aW + L8] >, + <
aWg +LAf >>,,. We can easily show that T* is the adjoint operator of T and also
we have the relations '

K TWs,, L f >y =< T*W§,, L7 f >>,,= 0,

K TWga, Woy py = T*Wiy, Wo p5= )—C%

for all f € H,. Especially, H,, = L7*Cy|n, & {TWg,} and there exists a unique
number Q7{p) such that

I/V(;*k,l - QT(p)TWéS,'l S LT’*CO in Hp,'y-

Proposition 1.5.

x(p) 2 .
1.3.7 (p) = = f < W5, -L" :
( ) Q (p) 2 <<< TWdS"l >>p,fy X(P) flélco 0,1 f >>Pﬂ"

Proof. First identity follows from the fact that

€T, Wiy — QUOTWS: 5= X2 — Qo) < TWE, = 0.

Second identity is obtained by the expression
Jnf (€< WG1 = Q) TWos = L7"f p} =0
0
since

fiélcf; {< W, ~ QT(P)TWth = L7 > p4}
9
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= inf {K Wy, — L™ .} — Q" (0)x(p} + Q"(p)* K TWE, >,

feto
= ;erlcﬁo{<< Wc’,’:l — LV*f >>pﬂ} —Q"(p)x(p) + QT(P;X(P).

0

By a simple computation, we can show that < T'g,g »,,=< T¢,Tg >, for
all g € H,, and therefore W§, — TWg, € L7+, since Wi, — TW, is orthogonal to
TWés,'l. By the fact we obtain the following variational formula for <« fI’I/V(‘,S:l p

Proposition 1.6.
(1.3.8) L TWE, 0= fiélcf KWy — L™ f >, .
i
Proof. By the similar argument with the proof of Proposition 1.5, we have
inf (K W5, —TWS — L7 f>,,}=0
fEC[) 3 1 i
and

it {< WL = TWs, — L7 f 3,0} = jnf {< Wiy — L f >p0}— K TWE, >,
0 4} .

which concludes the proof. O
Theorem 1.6.
(13.9) DY(p) = —— inf < Wi, —L*f 0, = x(p) .

Proof. By the definition, W, — 2D7(p)Wg, € L7C, and therefore

< Wo1 — 2DT(P)W65,‘DT*W65,'1 P o= @ - 2D7(p) < TWtfl >py=0.

So, D"{p) = Q—gﬂ and we obtain two variational formula from (1.3.7) and (1.3.8). O
Theorem 1.7. D7(p)} is continuous in p € (0,1).

Proof. Since <« g >, is continuous in p for all g € H,., D¥{p) is upper semi-
continuous and lower semi-continuous in p € (0, 1) by variational formula (1.3.9). O
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Remark 1.2. We can rewrite the first variational formula in (1.8.9) for D7(p} as

1
DT(P) = - fiélcf)"o{« Wés:l >>P='T + << L‘T?Sf >>p,-r + << WOA?]_ - LAf >>,0,"}"}

x(p)
1 1
(1.3.10) = 5+ ) }géu{<< LY,y + < Wi = LAf >,,}
1 1
1.3.11) =<4 —— inf sup{< L™ f >
( ) 2 x(p) reco geé?o{ I >

—2K W(ill ~LAf, L5 >0 — < L7y >}
The last erpression is rewritten in the explicit form as

1 1 .
+ oy b sup[Do, (15 T') +7Do(vp; I's)
g

2" x(p)
+ 2(W[f,11_ — L4, Lg)o — Doi(vp; Tg) — ¥Do(vp; Ty ).

Here, we use the fact that in the variational formula (1.8.10), it is enough to take
infimum in the set Meye, := UR My, and for all f € Meyen, Wa‘}l — LAf € Mgy :=
U2 oMa; 11, therefore < W‘fl - LAf, ‘W(fl o= 0.

Proposition 1.7.
D'T(p) < l + ?—_P
-2 4y
Proof. Take f = 0 in the variational formula (1.3.10), then we have
1 . L Wil >,
2 x(p)

Since we have the variational formula (1.3.6) for « W, >, and W§, € M,

D7(p) <

Wi = sup { -2 Wé?l:L'Y’Sf Doy — KLV f >, }
JEMy

Especially, since f = 7 f in H, for any f € M, and z € Z, we can assume that
f = wyf(n) with f which depends only on the values {r,;iz| > 1} . Then, by the
first identity of (1.3.5)

<KWt L5 f > p0= — Z(Wéwh Fle

EZ

= —% D Awa(l = egs) + w1 (1 — 1), wo f(0)), = —%("?0(2 —m = -1 (1)),
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Therefore,
-2 K Wgh L5 f >, —%((Vol“f)% = (n0(2—m — 7 )f (n))p — 2y{nof (M),

= ~2v(mo{f(n) — %(2 — = n-1) ), + (770(2 M — 17-1)%)p-

So, it is shown that

(1.3.12)
2
< WD1 o= SUp § —2 K W, L[>, — < LS >, } <L)
feMy ’ 4y
Il
Proposition 1.8.
1-p
DY(p) > =+ ——.
(p) + o

Proof. We take g = awy in the variational formula (1.3.11) for @ € R and obtain the
inequality that

Do) > =+

inf sup{& LY f >
X(P) Fel Daelllg{ ! o

—2a K Wi — LAf, L"5wy >, —a® < L¥wy 3,4}

By simple computations and the fact < LAf, LY5w, > ,+= 0, the last expression is
equal to
1
=+ —— inf L LY f >, +2ap(l — p) — a2
5 %00 ot 1}5{ F >y +2ap(1 = p) — a*2vp}
_l, 1 pl=pP 1 1-p

L S o A .
x(p) 27 2 2

Proposition 1.9.

inf sup « Wy, + D7(P) (m —mo) — LM(w) >,4=0.
feCo g<p<1

Proof. Essentially, we use three facts that DY(p) is continuous in p € (0,1), D?{(p)
is uniformly bounded in p € [0, 1] and the sector condition. Note that the continuity
of the diffusion coeflicient at boundary is not necessary.

Take arbitrary € > 0 and fix it. Then by Proposition 1.7 and its proof, we have
0 < 8, < £ such that for all p € [0,6,] U[L — 4, 1], '

< Wo1 + D(p)(m1 — mo) >pp=< (1 — 2D (0)) W5y + W5 >4
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_ 2 x(p) A 1 1

= (1= 2D ()57 < Wey »an< [ + - Ixle) <.
On the other hand, by definition of D7(p), for each p in (%i, 1-— 5—21), we can define
a function H(p,w)} € Cp such that

<« Wou + DY(p)(m —mo) — L"H(p,w) > < €.

Since by Theorem 1.7 « h >, is continuous in p for all & in Cy and D?(p) is
continuous in p € (0,1), for each po in (%,1 — %), there exists a neighborhood
Oy, of pg such that <« Wy + D¥(pg)(m — no) — L7H(pp,w) >,,< 2e and also
|D%(po) — D{(p)|> < € for p in O,,. To obtain an open covering of the compact
set {0,1], for p in [0, %], we define O, by [0,6.) and for p in [1 — %, 1], define it by
(1 -6.,1]. Also for pin [0,%&] U1 — %,1] we take H(p,0) = 0. Then, by these
definition, for all pg € [0,1] and p € O,,, we have the inequality that

<« Woa + D7(p)(m — o) — LYH(po,w) >,4< be.

Now, since there exists a finite subcovering {O,,,1 < k < n}, it is possible to define

by interpolation a function H®(p,w) so that

sup LK Wo+ D(p)(m — o) — L"H (p,w) >,,< Be.
0<p<1

with the following two condition: (i) For each p € [0,1], H(p,') is a mean-zero
cylinder function with uniform support. (ii) For each configuration w, H(-,w) is a
smooth function of class C2([0,1]). In order to remove the dependence on p, we
define f; by fi(w) := H(n'(0),w). Then, for sufficiently large I, §; belongs to Gy and

sup < Woi + D(pHm — mo) = L™ > p4< sup € L[ — H(p,w)] >, +5e.
D<p<l 0<p<l

By Proposition 1.3,

sup K LV[fi—H(p,w)| ,,< (Cy+1) sup < L[ — H:(p,w)] >,

0<psl 0<p<1
1 £ £
= (Cy+1) sup [5((V0,1 ZTE[H (nH{0),w) — H*(p, w)]?),
0=p<l TEZ

+ (Vo S mlH (1 (0), ) — HE (o)),

xeZ .
and now we can apply the method used in Lemma 2.1 in [10] directly to obtain that
the last term goes to 0 as [ goes to infinity. O

This result together with (1.3.3), the definition of T?;f’l and Theorem 1.5 con-
cludes the proof of Theorem 1.3.
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1.3.6 Proof of Theorem 1.2

In this subsection, we obtain a detailed estimate of the diffusion coefficient at the
boundary p = 1. Especially, we show that the asymptotic behavior of it as v goes
to 0 is different from that for p € [0,1). Moreover, by the proof of this estimate, we
can conclude that this asymptotic behavior for p = 1 depends on the dimension of
the space.
First, we define a subset of C, cylinder functions, indexed by the density p:
A, ={g€C; g= E I lleea(nz — p); ga € R}
AEZ,AFH0
Note that all but a finite number of g4 are 0 for g € A, since g is a cylinder function.
In the proof of Proposition 1.7, we obtain the inequality
KW >on

Do) = x(p)

2
2

and the variational formula

KW Sy =sup { =2 K WE, LW f >y = < LF 3 }
FeMy

= sup { =2 < Wi, L5(00) 3y — < 15 (a0g) By .
9€A,

By the first identity of (1.3.5},

2 W, L5 f >, = (2 —m — 119N e = X(0){295 — 90230 — 9(-110}

and
v 1 \v/ |
& LT’S(DJ[)Q) >>P;'T= 5(( Gorwog)Q)p + 5(( 0,1]:1“09')2)»0

=20 3 A5 3 (o) - nom)),

A€Z,AH0 1€2,i50,1
+ %(nom (g(n®") = mag(m)*), -+ %(ﬂo (r19(n®) — 9(m))*)s
>29p{+ Y G +y 3 (om(msn®™) — o))
EZ,i£0 i€Z,i70,1
+ 5(m(rgl®™) — gm))

Then, by simple computations, we obtain
o 2
(o (g (™) — 7ag(m)) ),
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2
= P(Uo( Z (gAU{—i} - 9Au{-i+1})(?h - no)erﬁ-A(m: - P)) )p
AGZ AFD,—i,—it+1

= x(p)p { Z (gaui—sy — gAU{—i+1})2X(P)|A|}
ACTAZ0,—i,—it 1

2> X(P)P(Q{—i} - 9{—a‘+1})2

and

(o (rig (™) — g(m))*), = p(( > (groan — 98)eea(ne — p)
AEZ,AF0,1

2
4 Z (97_1A\{0}u{u1} — 9a) loea(ne — P)) )
AEZ,AF0,AS1 '

=P{ > (gma—a XM+ > (g‘r—lA\{O}U{—l}_gA)2X(P)|A|}
A€Z,AZ0,1 AEZ AF0,AD]

> Y ax(P)(e — g
iR iA~10

Therefore, we have

LW >,,  SWge4, { — 2 KL W5k, LM (wog) >py — < L5 (wog) >,y }

x(e) x(#)
2793 0 2
< sup {2g4 - g1yp — gr-130 — =, AP Z 9 — P Z (9¢) — 9rie1y)* }
geA, P S i€Z,i%-1,0
1-p ‘ = =
=— +2p sup { —ay — 272@? — Z(ai — a,;+1)2}
8! - {e)E, =1 i=1

where sup (e}, is taken over all finite sequences of real numbers. Now, by the next
lemma we obtain the desired inequality.

Lemma 1.7.1.

sup

o0 el
1
—a -2y ai— (a; — as 2}:
{akiza { Z:; ; ) 4y + 492 + 2y

where SUPfy )0, @8 taken over all finite sequences of real numbers.

Proof. Define an n x n symmetric matrix A™ by setting A7, = 2y+1, A}, = 2y +2

for2<i<mn, A%, = A7, = —1for 1 <i < n—1 and other components are
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0. Let P* be an orthogonal matrix satisfying that D” := (P™)"1A"P" is diagonal.
Then,

o0 oo I

Sup { —o Q’YZ a; — Z(ai - ai+1)2} =sup sup 1 — e;a "‘t'aAna}
{a:}2y i=1 =1 n acRk"

where e; =* (1,0,...,0) € R". Now, by the change of variable a = P and the

simple argument of the linear algebra,

sup { —‘e;a—*aA"a} = sup { —" e, P"b —* bD'"'b}

acRn® beR®

1 1 1t
= sup { = (b+ Z(P"D™)"e1)D"(b + Z(P"D™)'e))} + = e, PH{D™) T (P™)tey
— 2 2 4

11:e (A™~!

== e

1 & 1
since A" is positive definite. Define an n x n symmetric matrix B™ by setting
BYy=2y+2forl1 <i<mn, B, =B},;,=—-1for1l <i<n—1and other
components are 0, then we have

det B™! 1

L ny—-1 — =
e(A") e = (2y+1)det B~1 —det B2 2v+1—b,,

det B7—1
det B» °

{bn}32, is & bounded increasing sequence of positive numbers and therefore b, =

where b, =

Since *e;{A™)"le, is positive and increasing by definition,

limg, o bn exists. By the definition of B™, we have an equation det B® = (2v +
2)det B™! — det B*2. By taking a limit, we obtain that é =2v+2— b, and
since by, < 27 + 1, we have b, = v+ 1 — /% + 2v which concludes the proof. O

1.4 Spectral gap

In this section, we prove the spectral gap for the exclusion process with velocity on
finite one-dimensional cubes, which is used in the proof of Theorem 1.9 in the next
section. We use the notation A; and LK’IS defined in Subsection 1.3.2. Also as in the
previous sections, we denote vy, x by v x, and expected values with respect to the
measure v g by {hix.

The main purpose of this section is to prove that the generator LX’IS in L (v k)
has a spectral gap of order at least 72
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Theorem 1.8. There ezists a positive constant C = C(~y) such that for every posi-
tive integer I, every integer 0 < K < |A] and every function f in L*(v k) satisfying
(Fux =0,

(FPhx < CP(-LEC, P

Proof. As in Subsection 1.3.4, we can decompose f as f = >, f; with some
positive integer m and f; in M;. Then, it is obvious that

m m
(P = Z(ff)z,f( and (—LY°f, flix = Z(—LK’ISfi, filrx.
i=0 =0
By simple computation, for i > 1,
!
. 1
Pk < 2fo o = (— > L2fi, fdux < ;(—Lx’ffi;fi)l,f(-

r=-I
On the other hand, fy is a function depends only on a configuration 7 instead of w.
Therefore we can apply the result for simple symmetric exclusion process (cf. [10])
to obtain a positive constant C' such that for every positive integer I, every integer

0 < K < |Ay| and every function fy in L%(v k) and M satisfying (folrx = 0,

-1

D < CP Y (Lgamrmeramoy (fo1™ ) = fo(m)) i

z=--1
Then, with this constant C, it is easily shown that

i—1

Ik S CP >~ (L= (folw™ ) — folw)) i

T=-1
1-1
=2C1 Y (—LZ=, 1 fo, fohix < 201—LY5 fo, fodi k-
z=—1

1.5 Closed forms

In this section, to complete the proof of Proposition 1.1, we introduce the notion of

closed forms.

Consider the configuration space x = {—1,0,1}2. For two configurations w and
¢ € x, define a function D(w,£) as follows. D(w, &) = 1 if one of the following two
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conditions is satisfied: (i) There exists a unique point z € Z such that w®**! = ¢
and (wy,wyt1) = (1,0) or (0,1), (ii) There exists a unique point z € Z such that
w=¢&% and w #£ £, and D(7,£) = 0 otherwise.

Let ’H%Hi and H; be subsets of x = {-1,0, 1}* such that Hezt1 =
{w ; (W, wgr1) = (1,0)} and Hy, = {w ;w, = 1}. Consider a family of R?-valued con-
tinuous functions u = (1}, u?) = (U}, u2),cz where vl : Hy o4 — Randu? : H, — R.

For an ordered pair (w,§) satisfying D(w,§) = 1, define a one-step integral I(, ¢ of

u by
W) =g and € Py,
ooy = ) =€ and €€ g,
(&) u2(w) if w® =¢ and w € H,,

—uZ{w?) if w* =¢ and € € H.
By the definition of D(w,£), the one-step path integral I, of u is well-defined.

Next, we consider more general paths. A path ['(w,£) = (w = W% w!,...,w™ L W™ =

£) from w to £ is defined as a sequence of conﬁguratioﬁs w? such that every two
successive configurations satisfies D(w?,w?t') = 1. A path integral can be naturally
extended to paths of any length as Iv, ¢ (u) := E:?:Ul Tus goreny (1)

Now, we introduce a notion of closed forms.

Definition 1.2. A family of R*-valued continuous functions u = (ul,u2),ez with
ul : Mppn = R and u2 : H, — R is called an closed form if it satisfies all of the
Jollowing conditions: .

(1) uz(w) + uy(w® ) = wi(w) + G (W¥¥) for all |z —y| =2 2 € Z and w €
Hzzr1 N Hyys, '

(i) ul(w) + 12 (w®) = ul(w) + w2(w¥) for all 7,y € Z and w € Hy N'H,,

(118) uy(w) Ful (w1 = ud(w)+ul(wV) forallz,z+1# y € Z andw € Hy g1 NH,,.

Proposition 1.10. If a family of R%-valued continuous functions u = (ul, 12}z is
an closed form, then for all closed path T'(w,€), Ir.e(u) = 0 where a path Tw, &)
is called closed if w = §.

Proof. Consider a closed path ['w,w) = (w = % !, ..,w™ L w™ = w). We prove
that the path integral along this path vanishes. The strategy consists in constructing
a new path with length m — 2 and same path integral.

First, we assume that there exists 0 < 7 < m — 1 such that (w*)® = w®! for
some & € Z. We take ¢y as the first time when this happen: iy := min{i > 0;3z €
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Z s.t. (w*)” = '} and denote by 7o the unique site which satisfies (w)%0 = +1,
Obviously, wj,% =1 or —1. We consider these two cases separately.

Assume that w® = 1 namely w®™ = —1. Then, by the definition of i,

wd # —1 and since T is a closed path, later the velocity of the particle at zg

must be changed again. Let 4; be the first time when this happen: #; := min{s >
ig + 1;(wh)®™ = w1}, If iy = ip + 1, a new closed path of length m — 2 can
be constructed as (w = ' w!, ..., wo Wi = @iot2 o3 | melgmo = ) If
i1 2 iy + 2, then since wl = —1 for all iy +1 < j < 4y, especially for j =4, — 1
and 1, there exists a unique site y # zo,zo — 1 such that w” = (w71} or
(w1l which immediately concludes that w! = ((wi=1)¥)* = ((wh1)%0)?
or witl = ({whr=lpvt)® = ((wil_l)”"’)y’yH. By the definition of a closed form,
the path (w =% w!, ..., w7l (i) 1+l ™1 ™ = ) has a same length
and path integral with the original path I'w,w). Repeating this argument #; —
ip — 1 times we obtain that the path integral along M'w,w) = (w = &% w?, ...,
Qio,w""“, (wiott)zo ., (W)= (wh=1)%0 it ™l W™ = ) also has a same

length and path integral with the original one. By the definition, w®*! = (wi)%,

a new closed path with length m — 2 can be constructed as (w = w® w?,...,wh =
(wiu-l-l)m‘nj (w'io+2)x0.", (w'il—Z)mo, (w'il—l)a‘:o, w‘il-l-l, s wm—17wm — w)
Now, we turn to the case with w® = —1. Then, by the definition of 4, w9, =

—1, and again since I’ is a closed path, later the velocity of the particle at zg
must be changed. This time, let 43 be the last time when this happen: #; :=
max{i < m — 1;{w')® = w1} If iy = 0 and 4, = m — 1, a new closed path

of length m — 2 can be constructed as {w!

= w® &% . w2 W™l = w™) and
it is eaéily shown that the path integral of this new path is same as that of the
original one. If iy > 1, since wf = —1 for 0 < j < 4o, especially for 49 — 1 and
ig, we can construct a new path with same length and path integral with original
one as (w = w0, (W)™, (w')?..., (wio=1)% i+l wmt ™ = w) by the same way
for the last case. Also, if 44 < m —2 then wf = —1foré+1 < j < m and
therefore (w = w’, w', ..., w", (wWhF2)% Wh+2 ™= W™ = ) has same length and
path integral with original one. Repeating this argument we obtain a new path with

ip = 0 and 4; = m — 1 from which we can construct a path of length m — 2 easily.
Finally, we consider the case in which for all 0 < 7 < m — 1, w'! = (W!)2=+!
for some z € Z. For this case, we just need to consider the usual jumps of par-

ticles. Without loss of generality, we can assume that (w2,wd .,) = (1,0) and
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w! = (wh)=*0+l By the special structure of one-dimensional space Z and the as-
¥y P
sumption that I" is a closed path, there exists a unique time 1 < 75 < m -~ 1 such
that 4p = min{é > 1,0 = (WH)moH (Wi Wi 1) = (0,1)}. Let 71 be the last
time before i that a particle jumps from zg to zp + 1t 4; = max{i < iy, =
(wh)roeott (Wi wi 1) = (1,0)}. Here, we shall as