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Introduction

One of the most fundamental problems in statistical physics is to derive a macro-
scopic evolutional equation describing natural phenomena like the dynamics of flu-
ids from a complicated interacting system of microscopic objects such as atoms or
molecules. This microscopic system has a large number of degrees of freedom, and
called a large scale interacting system. On the basis of stochastic analysis, some
scaling limits for the large scale interacting systems have been extensively studied
to establish a mathematical foundation of statistical physics. Hydrodynamic limit
is the most typical and important one among them, in which the averaging caused
by the local equilibrium plays an essential role. It is a limiting procedure in an ad-
equate space-time scaling, which enables us to derive a partial differential equation
describing a macroscopic evolution from a stochastic process describing a microscopic
evolution. The limiting equation is called a hydrodynamic equation. The equilib-
rium fluctuation is also one of such limiting procedures under a space-time scaling.
It enables us to derive a stochastic differential equation which describe macroscopic
time dependent fluctuation around the hydrodynamic limit starting from an equilib-
rium state. From the viewpoint of the probability theory, the hydrodynamic limit is
a law of large numbers for macroscopic parameters and the equilibrium fluctuation .
is a central limit theorem for them.

A large scale interacting system which satisfies the so-called gradient condition
is said to be gradient. As for reversible gradient models, the hydrodynamic limit and
the equilibrium fluctuation are proved in principle using the entropy method intro-
duced by Guo, Papanicolou and Varadhan in [11] or the relative entropy method by
Yau in [29]. To apply these methods to general (nongradient) models, Varadhan pro-
posed a clever method called gradient replacement in [26], which has actually been
applied to many nongradient models (e.g. [21, 15, 10,28, 16]). This method, how-
ever, requires several model-dependent estimates, there are still many open problems
related to scaling limits for nongradient models. In this thesis, we study scaling lim-
its for three types of nongradient models, which are interesting from physical points



of view but have their respective difficulties of applying Varadhan’s method.

In Chapter 1, we introduce a new class of nonreversible and nongradient lattice
gas models and prove the hydrodynamic limit for this model under the diffusive
space-time scaling. The hydrodynamic equation is a certain nonlinear diffusion
equation and its diffusion coeflicient is characterized by a variational formula.

The hydrodynamic limit for a nonreversible and nongradient system under the
diffusive scaling is first proved by Xu in [28] where the hydrodynamic behavior
of a one-dimensional mean-zero zero-range process is studied. Later, Komoriya
proved the hydrodynamic limit for a mean-zero exclusion process in [16]. A crucial
step for extending the entropy method first developed for reversible systems to
nonreversible systems consists in controlling the asymmetric part of the generator
by the symmetric one. This is related to the so-called sector condition. In [28,
27, 25], some versions of the sector condition are proved using the idea called loop
decomposition first introduced in [28]. The idea depends deeply on the mean-zero
property of random walks considered there. In this thesis, we do not use loop
decomposition, and instead we use the parity of the system to show a version of
the sector condition. This new method can be applied to Hamiltonian systems, and
indeed we use this in Chapter 2.

We are interested in this model not only because it is nonreversible and non-
gradient but also because it can be considered as an intermediate between two
well-studied lattice gas models, namely the totally asymmetric exclusion process
(TASEP)} and the simple symmetric exclusion process (SSEP).

The model considered here is characterized by a positive real number v which
represents the strength of eternal forces of the system. If v takes 0, the system
evolves as same as TASEP. On the other hand, if -y takes co heuristically, the system
evolves as same as SSEP where the hydrodynamic equation under the diffusive
scaling is the heat equation with a constant diffusion coefficient 1/2. From this
point of view, we study the asymptotic behavior of the diffusion coefficient of the
hydrodynamic equation as «y goes to 0 or oo and obtain some results which show that
the asymptotic behavior of the diffusion coefficient is consistent with the asymptotic
behavior of the microscopic evolution.

In Chapter 2, we consider a chain of anharmonic oscillators with a stochastic
perturbation preserving total energy. We study a fluctuation of a spatial distribution
of energy at equilibrium and prove the equilibrium fluctuation under the diffusive
space-time scaling. The limit fluctuation process is governed by a generalized sta-
tionary Ornstein-Uhlenbeck process, whose covariances are given by a variational



formula. Chapter 2 is based on a joint work with Professor Stefano Olla.

The derivation of the diffusion equation for a macroscopic evolution of energy
through a diffusive space-time scaling limit from a microscopic Hamilton dynamics,
is one of the most important problem in non-equilibrium statistical mechanics (]5]).
The main difficulty of this problem relates to the origin of the diffusive behavior
in classical physics. One dimensional chains of oscillators have been used as simple
models for this study. As deterministic dynamics lacks good ergodicity properties,
the derivation of macroscopic evolution equations from Hamilton systems has not
been justified mathematically so far. Therefore, stochastically perturbed Hamilton
systems have been considered instead. But since these systems are usually nonre-
versible and nongradient, it is still difficult to prove scaling limits for these systems
under diffusive scaling by Varadhan’s method. In this thesis, we overcome this diffi-
culty by using the method developed in Chapter 1 and obtain the diffusive behavior
of energy.

In Chapter 3, we consider a multi-species generalization of the symmetric simple
exclusion process in homogeneous and non-homogeneous hypercubes of Z¢. We
show some estimates of the spectral gap (the absolute value of the second largest
eigenvalue of the generator), which plays an important role in the proof of the
hydrodynamic limit for nongradient models. Chapter 3 is based on a joint work
with Professor Yukio Nagahata.

The spectral gap has been estimated in recent works by Caputo in [6] and by
Dermoune and Heinrich in [8] for non-homogeneous multi-color exclusion processes,
in which the multi-color particles evolve in accordance with the identical dynamics.
A distinctive feature of the multi-color exclusion process is that the spectral gap
depends on the density of vacant sites, which is not the case for the one-species
simple exclusion process. In particular, the spectral gap vanishes as the density of
vacant sites approaches 0. This degeneracy of the spectral gap was first shown by
Quastel in [21] for the simple exclusion process with color, which was introduced
by himself. In [6] and [8], the non-homogeneous multi-color exclusion process was
considered and they estimated the dependence of the spectral gap on the density of
vacant sites in detail.

The aim of our study is to extend the previous results to a multi-species ex-
clusion process. Namely, we consider a system of several species of particles having
their own dynamics, or precisely, their own jump rates and jump ranges. In phys-
ical point of view, it is a system of several constituents having physically different
properties. In our model, the hyperplanes of configurations with given numbers of



particles of each species are not necessarily irreducible. We give a sufficient condi-
tion of the dynamics to make them irreducible. Also, assuming the irreducibility of
them, we show that the spectral gap is bounded from below by Cpg/n? where pg is
a density of vacant sites, n is the length of each side of a latiice space and C is a
positive constant independent of n and pp.

. This paper is organized as follows: In Chapter 1, we prove the hydrodynamic
limit for exclusion processes with velocity. In Chapter 2, we prove the equilibrium
fluctuation for a chain of anharmonic oscillators with a stochastic perturbation. In
Chapter 3, we give detailed estimates of the spectral gap for multi-species exclusion
processes.
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Chapter 1

Hydrodynamic limit for exclusion
processes with velocity

1.1 Introduction

One of the main open problems in nonequilibrium statistical physics is the derivation
of diffusion equations from the microscopic Hamiltonian dynamics. The main diffi-
culty of this problem relates to the origin of diffusivity in classical physics. One way
to approach the problem is through the entropy method introduced by Varadhan
[26], but because of the lack of analytic tools, it is difficult to apply this method for
nonreversible and nongradient Hamiltonian systems under diffusive scaling. There-
fore, as a first step, in the present paper, we study the hydrodynamic limit for
nonreversible and nongradient lattice gas models under diffusive scaling.

The model we consider is a system of particles with velocity on the
one-dimensional discrete lattice Z under the constraint that at most one particle
can occupy each site. A set of possible velocities is {1, —1} and the state space
of the process is {1,0,—1}2. Its elements (called configurations) are denoted by
w = (w(z),z € Z) with w(z) =0 or 1 or —1 depending on whether z € Z is empty
or occupied by a particle with velocity 1 or a particle with velocity —1, respectively.
A particle at site z with velocity 1 (resp. —1) waits for an exponential time at rate
one and then jumps to z+1 (resp. £—1) provided the site is not occupied. If the site
is occupied by a particle with velocity 1 (resp. —1), then the jump is suppressed. On
the other hand, if the site is occupied by a particle with velocity —1 (resp. 1), then
the particle at = collides to the particle at = + 1 {resp. z — 1), namely the particle
cannot jump to 41 but instead the velocities of these two particles are exchanged.
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The changes of velocities also happen due to random external factors. The sign of
velocity of each particle flips {(from 1 to —1 or from —1 to 1) with exponential law
with a positive constant rate «. Flips of the sign of each particle’s velocity happen
independently of each other. Moreover, jumps or collisions of each particle and flips

of the sign of each particle’s velocity are all independent.

It is easy to see that the number of particles is a unique conserved quantity for
such process. We prove the hydrodynamic limit for the density of particles and ob-
tain a variational formula for the diffusion coefficient of the hydrodynamic equation,
assuming the continuity of the diffusion coefficient. The only assumption required
for an initial condition is that a law of large numbers holds for the distribution of
the density of particles. In particular, the macroscopic evolution of the density of
particles does not depend on the distribution of the initial velocities of particles, but
only on the distribution of the initial position of particles.

The hydrodynamic limit for a nonreversible and nongradient system is first con-
sidered in [28] where the hydrodynamic behavior of a one-dimensional mean-zero
zero-range process is studied. Later, Komoriya studied the hydrodynamic behavior
of a mean-zero exclusion process in [16]. A crucial step for extending the entropy
method first developed for reversible systems to nonreversible systems consists in
controlling the asymmetric part of the generator by the symmetric one. This is
related to the so-called sector condition. In [28], [27] and [25], some versions of the
sector condition are proved using the idea called loop decomposition first introduced
in [28]. The idea depends deeply on the mean-zero property of random walks con-
sidered there. In the present paper, we do not use loop decomposition, and instead
we use the parity of the system to show a version of the sector condition. This new
method can be applied to Hamiltonian systems.

We are interested in the model defined above not only because it is nonreversible
and nongradient but also because it can be considered as an intermediate between
the totally asymmetric exclusion process (TASEP) and the simple symmetric exclu-
sion process (SSEP). If we consider the case with v = 0 and the initial condition
satisfying that the velocities of all particles are same (e.g. 1), the system evolves as
same as TASEP. In this situation, since there is a transport in the system, we have
to consider the hyperbolic space-time scaling instead of the diffusive scaling to know
the time evolution of the density of particles. On the other hand, if we consider the
model with v = co heuristically, each particle jumps to right or left with probabil-



ity 1/2 under the exclusive constraint after exponential waiting time with rate one.
Therefore the system evolves as same as SSEP where the density of particles evolves
according to the heat equation with a constant diffusion coefficient 1/2 under the
diffusive scaling. From this point of view, we study the asymptotic behavior of the
diffusion coefficient of our model as v goes to 0 or oo and obtain some results which
show that the asymptotic behavior of the diffusion coefficient is consistent with the
asymptotic behavior of the evolution of the model. Specifically, we show that the
diffusion coefficient, denoted by D7(p) as a function of the density of particles p,
is strictly bigger that 1/2 for all positive v and p € [0,1], and it converges to 1/2
as v goes to oo for all p € [0,1]. We also show that D¥(p) = O(%) as -y goes to 0
for p € [0,1). On the other hand, for p = 1, we show that D¥(p) < O(%). The
difference of the order between p € [0,1) and p = 1 implies that p = 1 has some
special property. Actually, we can transform a configuration of our model with full
density (i.e. every site is occupied by a particle) to a configuration of the usual
exclusion process by corresponding a site occupied by a particle with velocity 1 to
an occupied site and a site occupied by a particle with velocity —1 to a vacant site.
By this transformation, we obtain an exclusion process where a particle jumps only
to one direction with a Glauber term at rate v at each site. Therefore, as v goes to
0, we obtain TASEP as a limit again formally. In [24], we study a high-dimensional
version of the model we consider here and show that in the case d > 3, the diffusion
coefficient D7(p) of the hydrodynamic equation goes to co for p € [0,1) but remains
finite for p = 1 as «y goes to 0. Especially, we conjecture that lim,o D7(1) relates to
the diffusion coefficient for TASEP, which is well studied and diverges for d = 1,2
but remains finite for d > 3 (see e.g. [18], [19]) .

This chapter is organized as follows: In Section 1.2 we introduce our model
and state main results. In Section 1.3, we give the proof of Theorem 1.1, which is
divided into several subsections. The proof of a version of the sector condition is in
Subsection 1.3.4 and the detailed estimates of the diffusion coefficient are obtained
in Subsections 1.3.5 and 1.3.6. In Section 1.4 we give a spectral gap estimate. In
Section 1.5, we characterize the class of closed forms.



1.2 Model and results

The exclusion process with velocity we consider is a Markov process w; on a config-
uration Spaée xv = {—1,0,1}"¥, where Ty = (Z/NZ) is a one-dimensional discrete
torus. To avoid technical things, we work on a space with the periodic boundary
condition. The dynamics is defined by means of an infinitesimal generator L}, acting
on functions f: yy — R as

= D {LIf@) + L7 fw) +7LLf (@)},

€T

where
L3 f(w) = Ypunj {f (W) = F(w)],
Ly f{@) = Lpey{f (™)) = f{w)},
and
L3 f(w) = Yuppoy U (0%) = f(w)}.

In the above formula, w® and w™¥ € ¥ stand for

w, if z#z,y, e
Ty o :_ Jw. iz,
w,' =<w, fz=z, Wy = .
. -w, iHfz=u,
wy ifz =y,

respectively. We shall use the notation 7, = 1y, -0} so that the variable n € {0, 1}~

denotes the configuration of occupied sites associated to w.

The process is invariant with respect to the following one—parameter family of

translation invariant product measures v,.

Definition 1.1. For each fized p € [0,1], let v, be a product measure on xn with
marginal given by

vo{w, =1} = g, Vo{lwz =0} =1-p and v{w,=-1}= g
for all x € Ty.

The index p stands for the density of particles, namely E,, [n] = p. We will
abuse the same notation v, for the product measures on the configuration spaces yx
or x = {—1,0,1}%, namely on the torus or on the infinite lattice. The expectation
with respect to v, will be sometimes denoted by

ff wivy(dw) = ([},

10



From the definition, our model is nonreversible with respect to the measure v,.

By the simple computations, we obtain that

(LR F)w) = S AL2* Fw) + Lo fw) + 7LLF W),

€Ty

where L}" stands for the adjoint operator of L}, with respect to v,,
N N P

Ly f(w) = L=y {F (™) = flw)},

and
Ly Fw) = L= {F (0™ = Fw)}.
Denote by LY;° the symmetric part of LY, and by L4 the anti-symmetric part of Ll

(LF N = D> L& 1 F@) + L2 fw)}, (Lifiw) =Y Lif(w
z€Twn €Ty
where
L0 £0) = 5 (Uinamy + Lo T @) — F)}
and

L21() = gal{f@™*) = @)} = {f(*) = f)}]..
Note that L4 does not depend on 7.

Here and after, we call § a cylinder function on yx if f depends on the configura-
tions only through a finite set of coordinates.

For any 2 € Z and cylinder functions f, g, let us define Dy z41(v,; f, g)
Dm:rJrl(yp:f) D (V,mf: ) and D (Vpu f) by

Dm,:n+1(up; f: g) = (_(L;:::z-l-l)f? g)p: D:c,x-f-l(yp; f) : :z,:chl(Vp; f: f)}

Dm(Vp;fag) = ( (L )f:g)p and Dy (Vp: ) ::D:c(yp;f:f):

where (-, ), stands for the inner product in L%(v,}. The reversibility of L&, and

3+
LY implies

Dyrss(05 £,8) = (Vs /) (Vaerng)ly
and 1
Dalvps f,9) = 5((VaF)(Vag)ho

where

vm,z+1f = 1{n;=1}{f(w$’m+1) - f(w)}

11



and
Vaof = L=} {f (&%) — f(w)}-
Let 7, be the shift operator acting on the set A C Z and cylinder functions f as

well as configurations w as follows:
A =2+ A, (Tow)z = wzy, and wf(w)= f(nw) for z,z€Z.

For every cylinder function g : x — R, consider the formal sum
Ly = Z Tad
=€l

which does not make sense but for which

Vol = 1{nu=1}{Pg(WD’1) — Dy(w)}

and
Vol'y 1= 1{n0=1}{Pg(w°) —~Tg(w)}
are well defined.

We are now in a position to define the diffusion coefficient. For each p € (0, 1),
the diffusion coefficient of the hydrodynamic equation for the exclusion processes
with velocity D7{p) is given as

- 11
2.1 DY = =4 — ] . .
(12.1) (p) "2 X0 jf supiDoa (Vi T'y) + ¥Po(v5i T'y)

- 2<W6A,11 - LAf: Fg)p - Do,l(Vp; Fg) - ’)/Dg(up; I‘g)]

where Cp is a subspace of cylinder functions defined in Subsection 1.3.2 below and
W¢, is a cylinder function defined in (1.3.2) below. Note that (Wgh — LAf, Ty, is
well defined by the definition of Cp. In this formula x(p) stands for the so-called
static compressibility which in our case is equal to

x(0) = (m3}e — (mo)2 = p(1 — p).

According to the later argument, we can show that D7(p) is continuous in
p € [0,1) without any assumption, but to prove Theorem 1.1, we assume a little
stronger condition that D7(p) is continuous in p € [0, 1] thfoughout the paper. Note
that it can be also shown that D7(p) is Lipshitz continuous in ¥ > 0, though it is
not necessary for the proofs of our main theorems.

12



For a probability measure N on xn, we denote by P,~ the distribution on the
path space D(Ry, xn) of the Markov process w(t) = {w,(t),z € Ty} with generator
N2LY,, which is accelerated by a factor N2, and the initial measure 1. Hereafter
E,~ stands for the expectation with respect to Pyw.

With these notations our main results are stated as follows:

Theorem 1.1. Let (™) n>1 be a sequence of probability measures on xn such that
the corresponding initial density fields satisfy

im 1l 3 Ome— [ Cmud > 5= 0

N—=oo
€T

for every 6 > 0, every continuous function G : T — R and some measurable function
po: T —[0,1]. Then, for every t > 0,

limsupIPuN Z G’( (£ — /G p(t,u)du| > 6§ =0

N—oo $E'E'N

for every & > 0 and every continuous function G : T — R, where p(t,u) is the
unique weak solution of the following nonlinear parabolic equation:

e} Op -
=_—4iD7 -
Moreover, for each p € (0,1) and v > 0, D¥(p) satisfies the inequality:
11— 2 p |
2. St P e i< 42 2F
(1.2.3) 57 5, D(p) 2+ 7o

Corollary 1.1.1. By (1.2.8), we obtain

1
limsup D7(p) = hmmf D(p) = 1 +—
p—0 2 2‘_},

which proves that DV(p) is continuous at p = 0. Also, we have

liirtl)D"’(p) =00 for pe0,1) and lim D7(p) = 1 for pe [0,1]
¥

F—ro0 2

where the second formula for p =1 means

1
lim liminf D"{p} = lim limsup D7(p) = 5

T—oo  p—l Y00 psl

precisely.

13



Theorem 1.2. For each v > 0,

limsup D7 (p) < 1-}- 1
p—1 =3 2 + 2/ + 2

In particular, limsup, ,, DV(p) < O(%) as v goes to 0.

Remark 1.1. Since we work on the one-dimensional torus, to prove the uniqueness
of weak solutions of the Cauchy problem (1.2.2), we can apply the proof of Theorem
A.2.4.4 in [14] straightforwardly. '

1.3 Proofs of the main theorems

The strategy of the proof is as follows. First, in Subsection 1.3.1, we reduce the
problem stated in the theorem to the replacement of the current by a gradient, and
give the proof of Theorem 1.1. Second, in Subsection 1.3.2, with the usual non-
gradient method we prove that the computation of a central limit theorem variance
associated to the symmetric part of the generator is sufficient for the proof of this
replacement and show a variational formula. for this central limit theorem variance.
These two steps are essentially the same as given for the generalized exclusion process
in [14], which is based on the method first established by Varadhan in [26]. The
main argument of this part is obtaining the estimate of the spectral gap and the
characterization of the closed forms, which are presented in Sections 1.4 and 1.5.
Then, in Subsection 1.3.3, we obtain the decomposition of a Hilbert space equipped
with the inner product defined by the central limit theorem variances. Here, we
use the sector condition in the sense of this Hilbert norm (1.5.8), which is shown
in Subsection 1.3.4. In Subsection 1.3.5, we obtain two variational formula for the
diffusion coefficient and its estimates from above and below. Finally, in Subsection
1.3.6, we give the proof of Theorem 1.2.

1.3.1 Replacement of the current by a gradient

We start with considering a class of martingales associated with the empirical mea-
sure. We take T' > 0 arbitrarily and fix it in the rest of this section. For each smooth
function H : T — R, let MEN(t) = MH(t) be the martingale defined by

t
M) = (1) = () 1) = [ NI, E)s,
0

14



where ;¥ stands for the empirical measure associated with 5(t), namely

(13.1) N (du) = Z Ne(t)82 (du), Qg t<T, uweT,

nE€T

and (¥, f) stands for the integration of f with respect to 7).

A simple computation shows that the expected value of the quadratic variation
of M¥(t) vanishes as N 1 oo, and therefore by Doob’s inequality, for every § > 0,
we have
11111 P.[ sup [MHE(t)| > 8] =0.

0KE<T
A spatial summation by parts permits to rewrite the martingale M (t) as
ME@) = (N, HY — («) H / E N HY) (= -erO 1{ws)ds,
z€Tpr

where Wy 1(w) = Wg, (w) + Wi, (w) represents the instantaneous current from 0 to
1 with

(132) W) =5m-m), Weh(®)= 3@ —m) + el —m)

and &Y H represents the discrete derivative of H:

e !

(O H) (5 ) = NIH(

Here, W (resp.Wg}) is the instantancous current from 0 to 1 associated to the

symmetric {resp. anti-symmetric) part of the generator respectively.

Next we show that the current W ; can be decomposed into a linear combination
of the gradient m — n and a function in the range of the generator L}: Wy +
D7(p)m — mo] = LLF for a certain cylinder function f and the function D7(p) that
depends on the density defined by (1.2.1), see Theorem 1.3 and Corollary 1.3.1 for
more precise statement.

For positive integers I, N, a function H in C?*(T) and a cylinder function f on
x, let
Xi(Hw)y= > H( )Trvff (w),
€T N

where
Vi(w) = Woa(w) + D70 (0))[7'(1) — 7/(0)] —~ LEf(w),

15



and

!
Ty.
mie) = (21+1 D My weTy
|ly—=|<!
Theorem 1.3. Fiz p € (0,1) arbitrarily. Then, for every function H in C*(T), we
have

1
inf lim sup hmsup:r\—r-logEVN [exp{N|f XNEN (H,w(s))ds|}] =0

feC  e50 Nooo

where C stands for the set of cylinder functions on .

The proof of Theorem 1.3 is postponed to the rest of this section. This theorem
implies the following corollary. For a positive integer { and a function H in C?(T),
let

Ynu(H,w) =" H(x {W:c s+1(w) + D7 (@)l (2 + 1) — 7' (@)]}.

z€T N

Corollary 1.3.1. For every function H in C2(T),

T

limsuplimsupE“NH/ Ynen(H,w(s))ds|] = 0.
=0 N—=oo o]

To prove this corollary, we can follow the argument in the proof of Corollary

7.1.2 in [14] straightforwardly. In particular, the L}f term is negligible. We have

now all elements to prove the hydrodynamic behavior of our nongradient system.

Proof of Theorem 1.1. Recall that the empirical measure 77" is defined by (1.3.1).
Denote by Q,~ the distribution on the path space D([0,T], M(T)) of the process
7Y where M(T) stands for the space of measures on T endowed with the weak
topology.

Following the same argument as for the generalized exclusion process in Section
7.6 in [14] it is easy to prove that the sequence {Q,~, N > 1} is weakly relatively
compact and that every limit point @ is concentrated on absolutely continuous
paths m(du} = (¢, u)du with density bounded by 1: 0 < #{t,u) < 1.

From Remark 1.1, there exists at most one weak solution of (1.2.2). Therefore,
to conclude the proof of the theorem, it remains to show that all limit points of
the sequence {Q,~, N > 1} are concentrated on absolutely continuous trajectories
7(t, du) = 7(t, u)du whose densities are weak solutions of the equation (1.2.2). With
Theorem 1.3, it is done exactly same way in the proof of Theorem 7.0.1in [14]. O
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1.3.2 Central limit theorem variances

To state the main theorem of this subsection, first we introduce some notation. For
a fixed positive integer [ we define A; := {—I,—I+1,..,1 —1,{} and L} , LR‘IS the
restriction of the generator LY, L% to A, respectively. We denote the set of cylinder
functions on x by C. For ¥ in C, denote by sg the smallest positive integer s such
that A, contains the support of ¥ and define Ay = A;,. Let Cp be the space of

cylinder functions with mean zero with respect to all canonical invariant measures:
Co={geC;{ga,x=0foral0 <K <|Af }.

Here, for a finite subset A of Z, we denote by |A| the cardinality of A and by {)a g
the expectation with respect to the canonical measure vp g = V(- [ 3 cp e = K)
for 0 £ K < |A| which is indeed independent of the choice of p. For a finite set A
and a canonical measure vy k, denote by (-, )ax (resp.(-,-),) the inner product in
L*(vax) (vesp. L*(v,)).

With these notations, we reduce the proof of Theorem 1.3 to the following

theorem:

Theorem 1.4.
(1.3.3) }cgg ll_iglo stép 20{(— L}ls‘)_lﬂ'f,l, VY g =0
where

VW) =@ +1)7 3 7 Woa(w)

|y|<¥

+ DM O (1) ~ " (O] = 2+ D)7 D (L], D),

yeAy

I'=1-1 and l=1—s;—1 so that TyLAsf+1f is Fp,-measurable for every y in A;f.

By the general argument, Theorem 1.4 is enough to conclude the proof of The-
orem 1.3. The precise argument for proving Theorem 1.3 from (1.3.3) should be
omitted here since it is very similar to that in Section 7.2 and 7.3 in {14], so here we
just show the sketch of the argument: First, using the Feynman-Kac formula, we
reduce the proof of Theorem 1.3 to the estimation of the largest eigenvalue of the
symmetric operator N2L37 + N XEV’E ~- Then, to localize the eigenvalue problem, we

use the usual procedure of the proof of the two-blocks estimate and an integration
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by parts formula (see Section 7.2 in [14]} and obtain that it is enough to estimate
the largest eigenvalue of the symmetric operator N* L}, + N X’R,,l for each fixed [ € N
instead of XL’E N Where

XL (Hw): ZH( TV P {(w)
cCT

and VH(w) is the function defined just above. In the proof of the two-blocks esti-
mate, we need the assumption that D¥(p) is continuous in p not only on the open
interval (0,1) but also at the boundary. Finally, with the usual procedure of the
proof of the one-block estimate and the general estimate of the spectrum of reversible
Markov processes (see Appendix 3.1.1 in [14]), we conclude that to show (1.3.3) is
sufficient.

For the beginning of the proof of {1.3.3) we obtain a variational formula for this
variance. We start with introducing a semi-norm on Cy, which is closely related to
the central limit theorem variance. For cylinder functions g, h in Cy, let

SN Z(g, Th)p and KL g, .= Za:(g, Tz}
TEL zEZ

K g,h >ps and < g >, are well defined because g and h belong to Cy and

therefore all but a finite number of terms vanish. For A in Cp, define the semi-norm
1

< h >, by

2 <hz>2.,. 1
K h>,,= sup{2 L g, h >+ —( ] L 5((‘70,1? ) Yo — ((VOI‘ ) Yot
g€Cy

= sup {2<K9,h>,. 20 € h >y —Doy(Vp;ano + Ty) — ¥Dolvp; am + )}
g&Cp,a€R

1
We investigate several properties of the semi-norm < - 2., in the next section,
while in this section we prove that the variance

@)TH=LET Y mdh, Y mdbhx

i<ty lel<ty

of any cylinder function 1 in Cp converges to < ¥ >, ., as [ T oo and L — p. Here
Ly stands for { — 3y 50 that the support of 7,9 is included in A; for every €A,

We are now in a position to state the main result of this section.
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Propositioﬂ 1.1. Consider a cylinder function ¥ in Cy and a sequence of integers
K; such that 0 < K; < 21 + 1 and im0 52 = p. Then,

lim 20 H(=LE) D o, D i =< ¥ Py -
|=[<ty |=|<iy
Proof. The key of the proof is the fact that any germ of a closed form, which is
defined and studied in Section 1.5, can be decomposed as a sum of germs in a
proper way. This is proved in Theorem 1.9 in Section 1.5, see there for more precise
statement. Once the theorem is established, the proof of Proposition 1.1 is the same
as that of Theorem 7.4.1 in [14] since the proof depends on the specific model only
through an integration by parts formula and the equivalence of ensembles, which
are easily shown. O

We conclude this section proving that for each 1 in Cp the function < ¢ >
[0,1] = R, that associates to each density p the value < ¥ >, is continuous
and that the convergence of the finite volume variances to < - >, is uniform on
[0,1]. For each I in N and 0 < K < 20+ 1, denote by V¥ (355) the variance of
(204 1)1 lelﬁlw T3 with respect to v k:

Vi (5r) = @NELEDT Y, Y mthu

2+l || <Ly || <y
We may interpolate linearly to extend the definition of Vlw to the whole interval [0, 1].
With this definition Vl"" is continuous. Proposition 1.1 asserts that V?'ﬁ converges,
as | 1T oo, to € ¢ >,,, for any sequence K; such that 2{{7‘1 — p. In particular,
[imy_ye Vl"’(p;) =<K ¥ >, for any sequence p; — p. This implies that < ¢ >, ,
is continuous and that-V;?(-) converges uniformly to < % 3. as [ 1 co. We have
thus proved the following theorem.

Theorem 1.5. For each fized h in Cp, K h >, is continuous as a function of the
density p on [0,1]. Moreover, the variance

@)=L Z zh, Z TP K,

|z <ln |z|<ts

converges uniformly to K h >, as 1 T oo and 5{% — p. In particular,

lim sup (2l)“1((—L1’lS)‘1 z Teh, Z Toh)yi gk = sup K h >, .

I
oK<t Rl<h, lel<in 0<p<t
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1.3.3 Hilbert space

We investigate here the main properties of the semi norm <« - >, introduced in
the previous section. We first define from <« - >, a semi-inner product on Cy
through polarization:

1
(1.3.4) L g, h>,.= Z{<< grh>,, —<Kg=h>,,}

It is easy to check that (1.3.4) deﬁnels a semi-inner product on Cq. Denote by
N,y the kernel of the semi-norm < - 32, on Cp. Since < - >>,., is a semi-inner
product on Cy, the completion of Cp|a;, ,, denoted by H, ., is a Hilbert space.

Here and after, we consider generators L7, L% and L* acting on functions f
in y as
Lf =) {LIf+L;f+yLafY, LY5F =) {L&af+vLif}, L7 =3 Lif.

TEZ ez oCE
Simple computations show that the linear space generated by W, and L"5C, =
{L"Sg; g € Cy} are subsets of Cy. The first main result of this subsection consists
in showing that #,, is the completion of L"SCq| N, + {W§1}, in other words, that
all elements of H, ., can be approximated by anl + L"7g for some a in R and g in
Co. To prove this result we derive two elementary identities:

(185)  <hL¥g>, = —<hg>p., <KhWe >, ==<h >

for all h, g in C,.

By Proposition 1.1 and (1.3.4), the semi-inner product < h, g >, is the limit
of the covariance (2!)_1((——1/1’!5)_1 > lal<t, 59> 2ojoj<t, Tohhi, as 11 oo and ).
In particular, if g = L gy, for some cylinder function gy, the inverse of the generator
cancels with the generator. Therefore, < h, L™ gy >, is equal to

— lim (21)™¢ Z T2 g0, Z Tohhx, =<K go, B > -

=00
|| <dgq |l <tn

The second identity is proved by similar way with the elementary relation

i _ s
LXI ZmEAE Ihy = Ez,z-{-leA; Wm,x-{-l'
The identities of (1.3.5) permit to compute these elementary relations

K W5, L h >,,=0
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for all A € Cp and
L Woo, Wiy = %X(P)-
Recall that x(p) stands for the static compressibility and is equal to {15}, — (no)3-
Furthermore,
2
2

1
< awffl + L%Sg »uy=x(o) + '2'((v0.1rg)2>p + %((VOFg)z)p

for @ in R and g in Cp. In particular, the variational formula for < h >, writes

2 < h, W5 >2
01 727 4 qup{—2 < h, L5y >, — < L5, 1.
x(p) g€Cq

(1.3.6) <4 h >>,D,'Y:

Proposition 1.2. Recall that we denote by L"5Cy the space {L"Sg; g € Co}. Then,
for each 0 < p < 1, we have

Hpy = L5\, @ {W(fl}' '
Proof. We can apply the proof of Proposition 7.5.2 in [14] straightforwardly. O

Next, to replace the space L7 Cy by L7Cy, we show some useful lemmas.

Lemma 1.5.1. For all g.h € Cy cmd 0 < p < 1, « LvSq, L*h >>M— - &
LAg, L¥Sh >, Especially, < L"%g, L4 >,.= 0.

Proof. By the first identity of (1.3.5),

& LT:S‘g’ LAh >>P}’T = — & q, LAh: >>p,*: - Z(ng! LAh’)P

wCZ
= Z(LATmQ: h)p = Z(T::LAQ: h)P
ez TEZ
Z(LAQ T_zh)p = Z(LAg,'rmh)p =< L4, L"h>,, .
wEZ €L
This concludes the proof. O
Lemma 1.5.2. For all g € Cp and 0 < p < 1, € LMg W& >,.,= — <

LAg, W5y > p-
Proof. By the first identity of (1.3.5),

K LG, Wah > py = = K g, Wil >pu= — Z(ng, Wiio
reZ
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= — Z a, I’V ,:t:+1 ZIC(Q, WzA—l z - W, $+1>P

YA  zEZ
=- Zw(g,LAnx)p = Z-T(LAQ, Nep = — K LG, Wg, >, .
x€Z z€Z
It concludes the proof. O

Lemma 1.5.3. Foralla€c Randge G and0 < p< 1, K aW[fl + L'Y'Sg,aW(fI -+
LAg 3,4=0.

Proof. By the second identity of {1.3.5), it is easy to see that < WO 11 W 1 o= 0.
Then, Lemma 1.5.1 and Lemma 1.5.2 concludes the proof stralghtforwardly. O

Proposition 1.3. There exzists a positive constant C., such that forall g € Cy and
0<p<l, g >,,<C, < Ly, ..

Proof. By Lemma 1.5.2, < L#g, W(’fl >>3,,y=<< LSg W >>§TS<< LSg >, . <&
‘ erl >, On the other hand, by Lemma 1.5.8 in the next subsection, | <«
LAg, L7 f pn | £ § K LYFf >y 45 < L5 >, for all f € Cp. In par-
ticular, for all f € Gy, —2 < LAg, LTS f Spy — K L >, < % < L7g >, ..
Therefore, by variational formula for « L*g >, in (1.3.6),

2K L5g >, < W > 1
T T g < I .

< LAg>,.<

ﬁvﬂ—(lz’?ﬂ < & for 0 < p <1, therefore

we can conclude the proof with C, = % : O

Moreover, by the inequality (1.3.12), we have

Now, we have all elements to show the desired decomposition of the Hilbert

spaces ..

Proposition 1.4. Denote by L7Cy the space {L"g;, g € Co}. Then, for each 0 <
g < 1, we have V
Hoy = L7Co| v, + {ng}_

Proof. Since {Wg,} and L7C; are contained in Cy by definition, H,,, contains the
right hand space. To prove the converse inclusion, let h € H,, so that
&L h,W§, >,4= 0and < h,L7g >,,= 0 for all g € ;. Then by assumption
and Proposition 1.2, A = limg_,o L"5hy in H,, for some hy € Cp. Especially
L h >p=limye K LSy, LVShy o= Mg e € LS hy, L7hy, >,y since
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< L"Shg, LAk, >,~= 0 by Lemma 1.5.1. On the other hand, by assumption
K h,L7hg >p4= 0 for all k. Also, by Proposition 1.3, sup, <« LThg >,,<
(Cy + 1) sup, <« L"Shy, > ,.:= Cy is finite. Therefore,

L h>y, = lm < LY by LRy, > p
—00

= lim < Ly — b, LTy 3, < Hm 1/Ch & L3Sh — h 30 = 0.
This concludes the proof. ' 0

Lemma 1.5.4. For each 0 < p < 1, we have
HP:’Y = L7G |NP.’)’ & {Wés:l}

Proof. Let a sequence gr € Cp satisfy limy oo Lgp = aW[fl in H,, for some
a € R. By the similar argument of the proof of Proposition 1.4, limsup, .., <
LY gy, L8 g >, 0= limsupg o, <€ LYgr, LY g >,,= limsup, ., € L'g —
aWgh, L g >, 0= 0 since « W§), L"¥gy, >>,,=0 for all k. On the other hand,
by Proposition 1.3, & L7g >,,< (Cy +1) < L™ g, >, then a = 0. O

Recall that Wy, = 1(no — m). Then we obtain the following decomposition:

Corollary 1.5.1. For each g € Cy, there exists a unique constant a € R such that

g—a(m—m) € LGy in H,,.

1.3.4 Sector condition in H,,

In this section, to obtain the sector condition in #,, ,, we study the special structure
of the space Cp. Roughly speaking the space Cp is divided in the countable spaces
which are orthogonal to each other in L?(v,).

First, we define some subsets of C indexed by nonnegative integers by

and L; be the linear space generated by L;. Here, g is a cylinder function depending
only on a configuration 7 instead of w. In other words, L; is the eigenspace of the

operator LY with respect to the eigenvalue —2i.

To consider the relation to the inner product introduced in the last section,
we restrict these spaces to Cp: M; := {f € L;; f € Co}. It is easily shown that
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C = BienyoLi, 'Co = Bien,,Mi and M; = L; for ¢ > 1. Moreover, L; and L; are
orthogonal in L*(v,) if ¢ # j.

Now, we prepare two easy but useful lemmas.

Lemma 1.5.5. For all f,g € Co,

€ I15F, IAg py= ~5{TyVETy), = 5 (T,V4T)),
where V2 f = we{f(w®**) — f(w™*1)}.
Proof. By the first identity of (1.3.5),

1
— <L f, L4 =< f, L4g P ou= Z(Tmf: LAg)p =3 Z {7=f, V;g)p

zEZ z,YEL
1
=z Z Ta:fa vf a:g Z (Tacf Tm(v T—@Q)) 3 Z (f’ vaT—mg)P
mzez szZ T,2€E4
1 1 1
— 5 Z(f: vfr‘g)p -3 Z(Tzfa vélrg)p = E(FfVOAPﬁp-

z€Z 14

O

Lemma 1.5.6. For all nonnegative integers i, f € M and z € Z, L5 f, 1, f € M
and LAf € M;_; ® M;.,. Here M_, := ¢. Therefore, for all f,g € Cq,

oo
KL= <L"fi>,.,
- Py

) i=0

o oo
& LT’Sf, LAg >>P)'T = Z << L’Y’th LAg-H_]_ >>P;’T + Z << L’Y’Sfi-i-l: LAQz >>p,'7'
i=0 i=0

[ a] [sa]
= - Z L LG, LA fi >0 + Z K LM fi1, L >,y
i=0 i=0

where f; and g; are the projection of f and g to the space M; respectively.
Proof. Straightforward. O

Next lemma gives us the essential estimates to prove our main result in this
subsection.

Lemma 1.5.7. For all nonnegative integerst, fiy & M, ¢ € M; and any positive
number A > 0,

1 A
|(Ffi+1v0AI‘Qi>P| < ﬂ'((vorfiH)Q)P + 'é‘((vﬂ,lrgi)g)lﬂ‘
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Proof. For any f;y, we have the unique decomposition of 'y, such that
g = Z . Ffi-l—l,A
ACZy4 DEA JAJ=i+1

where fz:Jrl,A(w) = Il epwz¢(n) for some cylinder function ¢ that depends only on
n. Since we take the index set as {A C Z,,0 € A,|A| = i + 1}, we obtain the
uniqueness of the decompositioﬁ. Note that all but a finite number of f;;1 4 are 0.
Therefore

(walvAP&)P_Z(Ff:HA o[T'g: (w 0’1) Ly, (w 0’_1)]>P

= Z Z T_zfir1,awo0[Tg, (W) — Ty, (w° )])

zeh
since for all z ¢ A and z € Z, (7, fi11,aw0[70gi(w™) — 72g:(w® 1)), = 0

By Schwarz inequality, the last expression is bounded from above by

(no(ZZ'r—zfz+m o{M0[Tq, (W) — Ty, (wO1)]%),

A zeA

< 2 (Y afinale + Sl %) ~ TP,

A zeA
< 5 (VeT )+ S((ToiT))

Here we use the relation that

((Vol511)%)0 = {(Vo Z Trinn) e = (=2 0> 7afira)Dy.

A zeA

and the inequality that

{m0[Lgs (™) = Ty (™ )], _
< 2<770[Pgi (wo'l) - ng (w)]z)!? + 2(770[Pgi (UJ) - ng' (wo'_l)]2>p = 4((v0,lrgi)2>f?'

Now we show the main result in this subsection.

Lemma 1.5.8 (sector condition). For all f,g € Cy,

1 1
| €L, LG 2 | < 5 KLY gy 5 K LG
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Proof. By Lemma 1.5.5,
| <<L%Sf: LAQ' 2y |

s )
==Y« LG, LA fi gy + Y € L fiy1, LA g > |

i=0 i=0
1 1
< 2 Z |(ng+1 vgrfi)ﬂ' + 9 Z |(Ffi+1v0APgi)P|‘
i=0 i=0

Then, by Lemma 1.5.7, the last expression is bounded from above by

)y

((VaFa o+ 5(Taal1 )+ 3 DT (0T

B | =
M| =

1 1
S 5 =4 LT’Sf >>p,»"r +-2_F); << L‘Y,Sg >>pn.'

since < LT’Sf 2 py= ZEO[%((VO,ini)Q)P + %((vﬂrﬂ-)z)p]- O

1.3.5 Diffusion coefficient

We now start to describe the diffusion coefficient of the hydrodynamic equation.
From Corollary 1.5.1, there exists a unique number D¥(p) such that

WO,l + DT(,O)(’Th — 770) e L7Cy 1in HP,’Y‘

Our purpose now is to obtain the explicit formula for D7. To do this, we follow
the argument in [17].

Lemma 1.5.9. For each 0 < p < 1, we have
Hpmy = LCo|n, ® {Wo} = L7*Co|n, ® {Wo 1}
where W, == Wgy — Wi.

Proof. We shall prove the first decomposition; the same arguments apply to the sec-
ond one. Since we already prove in Lemma 1.5.4 that L7C| A, has a one-dimensional
complementary subspace in H, ,, it is sufficient to show that H,, is generated by
LCy and the current. Let h € Hpy s0 that < b, Wo1 >,,=0and < h, L7g >, =
0 for all g € Cy. By Proposition 1.2, h = 1111_1k_,c,c,(cn‘[/V(f1 + L75hy) in H,., for some
a € R and hy € Cp. Bspecially € b >pp= limg oo < aWgy + L hy, aWP; +
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L5k, o= limg e € aW(‘fl + LS hy, aWpa + Lhy, >, since < anfl +
LSk, aWi + LAy, >,4= 0 by Lemma 1.5.3. On the other hand, by assump-
tion < A, a1+ L7hy >, = 0 for all k. Also, by Proposition 1.3, sup, <« aWy1 +
LRy 50 < 207 K W1 54 +2(Cy + 1) supy, < LY hy, 3, 4= Cy, is finite. There-
fore, € h >, y= limg 0o K aWiy + LY hyy, aWo 1 + L7hy 35 0= limy 00 < aWg +
L7Shy — hyaWay + L7k >,,< limsup_,, \/ Ch < aW§, + LShy — h >, = 0.
This concludes the proof. O

Now, we can define bounded linear operators T': H, =+ H, and T : H, — H,
as

T(aWoy + L7f) == aWy, + L5 f,  T*(aWy + L"*f) == aWg, + L5

since € aWo1 + LVf ,,=< aWg, + L™ >,,=€ aW + L8] >, + <
aWg +LAf >>,,. We can easily show that T* is the adjoint operator of T and also
we have the relations '

K TWs,, L f >y =< T*W§,, L7 f >>,,= 0,

K TWga, Woy py = T*Wiy, Wo p5= )—C%

for all f € H,. Especially, H,, = L7*Cy|n, & {TWg,} and there exists a unique
number Q7{p) such that

I/V(;*k,l - QT(p)TWéS,'l S LT’*CO in Hp,'y-

Proposition 1.5.

x(p) 2 .
1.3.7 (p) = = f < W5, -L" :
( ) Q (p) 2 <<< TWdS"l >>p,fy X(P) flélco 0,1 f >>Pﬂ"

Proof. First identity follows from the fact that

€T, Wiy — QUOTWS: 5= X2 — Qo) < TWE, = 0.

Second identity is obtained by the expression
Jnf (€< WG1 = Q) TWos = L7"f p} =0
0
since

fiélcf; {< W, ~ QT(P)TWth = L7 > p4}
9
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= inf {K Wy, — L™ .} — Q" (0)x(p} + Q"(p)* K TWE, >,

feto
= ;erlcﬁo{<< Wc’,’:l — LV*f >>pﬂ} —Q"(p)x(p) + QT(P;X(P).

0

By a simple computation, we can show that < T'g,g »,,=< T¢,Tg >, for
all g € H,, and therefore W§, — TWg, € L7+, since Wi, — TW, is orthogonal to
TWés,'l. By the fact we obtain the following variational formula for <« fI’I/V(‘,S:l p

Proposition 1.6.
(1.3.8) L TWE, 0= fiélcf KWy — L™ f >, .
i
Proof. By the similar argument with the proof of Proposition 1.5, we have
inf (K W5, —TWS — L7 f>,,}=0
fEC[) 3 1 i
and

it {< WL = TWs, — L7 f 3,0} = jnf {< Wiy — L f >p0}— K TWE, >,
0 4} .

which concludes the proof. O
Theorem 1.6.
(13.9) DY(p) = —— inf < Wi, —L*f 0, = x(p) .

Proof. By the definition, W, — 2D7(p)Wg, € L7C, and therefore

< Wo1 — 2DT(P)W65,‘DT*W65,'1 P o= @ - 2D7(p) < TWtfl >py=0.

So, D"{p) = Q—gﬂ and we obtain two variational formula from (1.3.7) and (1.3.8). O
Theorem 1.7. D7(p)} is continuous in p € (0,1).

Proof. Since <« g >, is continuous in p for all g € H,., D¥{p) is upper semi-
continuous and lower semi-continuous in p € (0, 1) by variational formula (1.3.9). O
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Remark 1.2. We can rewrite the first variational formula in (1.8.9) for D7(p} as

1
DT(P) = - fiélcf)"o{« Wés:l >>P='T + << L‘T?Sf >>p,-r + << WOA?]_ - LAf >>,0,"}"}

x(p)
1 1
(1.3.10) = 5+ ) }géu{<< LY,y + < Wi = LAf >,,}
1 1
1.3.11) =<4 —— inf sup{< L™ f >
( ) 2 x(p) reco geé?o{ I >

—2K W(ill ~LAf, L5 >0 — < L7y >}
The last erpression is rewritten in the explicit form as

1 1 .
+ oy b sup[Do, (15 T') +7Do(vp; I's)
g

2" x(p)
+ 2(W[f,11_ — L4, Lg)o — Doi(vp; Tg) — ¥Do(vp; Ty ).

Here, we use the fact that in the variational formula (1.8.10), it is enough to take
infimum in the set Meye, := UR My, and for all f € Meyen, Wa‘}l — LAf € Mgy :=
U2 oMa; 11, therefore < W‘fl - LAf, ‘W(fl o= 0.

Proposition 1.7.
D'T(p) < l + ?—_P
-2 4y
Proof. Take f = 0 in the variational formula (1.3.10), then we have
1 . L Wil >,
2 x(p)

Since we have the variational formula (1.3.6) for « W, >, and W§, € M,

D7(p) <

Wi = sup { -2 Wé?l:L'Y’Sf Doy — KLV f >, }
JEMy

Especially, since f = 7 f in H, for any f € M, and z € Z, we can assume that
f = wyf(n) with f which depends only on the values {r,;iz| > 1} . Then, by the
first identity of (1.3.5)

<KWt L5 f > p0= — Z(Wéwh Fle

EZ

= —% D Awa(l = egs) + w1 (1 — 1), wo f(0)), = —%("?0(2 —m = -1 (1)),
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Therefore,
-2 K Wgh L5 f >, —%((Vol“f)% = (n0(2—m — 7 )f (n))p — 2y{nof (M),

= ~2v(mo{f(n) — %(2 — = n-1) ), + (770(2 M — 17-1)%)p-

So, it is shown that

(1.3.12)
2
< WD1 o= SUp § —2 K W, L[>, — < LS >, } <L)
feMy ’ 4y
Il
Proposition 1.8.
1-p
DY(p) > =+ ——.
(p) + o

Proof. We take g = awy in the variational formula (1.3.11) for @ € R and obtain the
inequality that

Do) > =+

inf sup{& LY f >
X(P) Fel Daelllg{ ! o

—2a K Wi — LAf, L"5wy >, —a® < L¥wy 3,4}

By simple computations and the fact < LAf, LY5w, > ,+= 0, the last expression is
equal to
1
=+ —— inf L LY f >, +2ap(l — p) — a2
5 %00 ot 1}5{ F >y +2ap(1 = p) — a*2vp}
_l, 1 pl=pP 1 1-p

L S o A .
x(p) 27 2 2

Proposition 1.9.

inf sup « Wy, + D7(P) (m —mo) — LM(w) >,4=0.
feCo g<p<1

Proof. Essentially, we use three facts that DY(p) is continuous in p € (0,1), D?{(p)
is uniformly bounded in p € [0, 1] and the sector condition. Note that the continuity
of the diffusion coeflicient at boundary is not necessary.

Take arbitrary € > 0 and fix it. Then by Proposition 1.7 and its proof, we have
0 < 8, < £ such that for all p € [0,6,] U[L — 4, 1], '

< Wo1 + D(p)(m1 — mo) >pp=< (1 — 2D (0)) W5y + W5 >4
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_ 2 x(p) A 1 1

= (1= 2D ()57 < Wey »an< [ + - Ixle) <.
On the other hand, by definition of D7(p), for each p in (%i, 1-— 5—21), we can define
a function H(p,w)} € Cp such that

<« Wou + DY(p)(m —mo) — L"H(p,w) > < €.

Since by Theorem 1.7 « h >, is continuous in p for all & in Cy and D?(p) is
continuous in p € (0,1), for each po in (%,1 — %), there exists a neighborhood
Oy, of pg such that <« Wy + D¥(pg)(m — no) — L7H(pp,w) >,,< 2e and also
|D%(po) — D{(p)|> < € for p in O,,. To obtain an open covering of the compact
set {0,1], for p in [0, %], we define O, by [0,6.) and for p in [1 — %, 1], define it by
(1 -6.,1]. Also for pin [0,%&] U1 — %,1] we take H(p,0) = 0. Then, by these
definition, for all pg € [0,1] and p € O,,, we have the inequality that

<« Woa + D7(p)(m — o) — LYH(po,w) >,4< be.

Now, since there exists a finite subcovering {O,,,1 < k < n}, it is possible to define

by interpolation a function H®(p,w) so that

sup LK Wo+ D(p)(m — o) — L"H (p,w) >,,< Be.
0<p<1

with the following two condition: (i) For each p € [0,1], H(p,') is a mean-zero
cylinder function with uniform support. (ii) For each configuration w, H(-,w) is a
smooth function of class C2([0,1]). In order to remove the dependence on p, we
define f; by fi(w) := H(n'(0),w). Then, for sufficiently large I, §; belongs to Gy and

sup < Woi + D(pHm — mo) = L™ > p4< sup € L[ — H(p,w)] >, +5e.
D<p<l 0<p<l

By Proposition 1.3,

sup K LV[fi—H(p,w)| ,,< (Cy+1) sup < L[ — H:(p,w)] >,

0<psl 0<p<1
1 £ £
= (Cy+1) sup [5((V0,1 ZTE[H (nH{0),w) — H*(p, w)]?),
0=p<l TEZ

+ (Vo S mlH (1 (0), ) — HE (o)),

xeZ .
and now we can apply the method used in Lemma 2.1 in [10] directly to obtain that
the last term goes to 0 as [ goes to infinity. O

This result together with (1.3.3), the definition of T?;f’l and Theorem 1.5 con-
cludes the proof of Theorem 1.3.
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1.3.6 Proof of Theorem 1.2

In this subsection, we obtain a detailed estimate of the diffusion coefficient at the
boundary p = 1. Especially, we show that the asymptotic behavior of it as v goes
to 0 is different from that for p € [0,1). Moreover, by the proof of this estimate, we
can conclude that this asymptotic behavior for p = 1 depends on the dimension of
the space.
First, we define a subset of C, cylinder functions, indexed by the density p:
A, ={g€C; g= E I lleea(nz — p); ga € R}
AEZ,AFH0
Note that all but a finite number of g4 are 0 for g € A, since g is a cylinder function.
In the proof of Proposition 1.7, we obtain the inequality
KW >on

Do) = x(p)

2
2

and the variational formula

KW Sy =sup { =2 K WE, LW f >y = < LF 3 }
FeMy

= sup { =2 < Wi, L5(00) 3y — < 15 (a0g) By .
9€A,

By the first identity of (1.3.5},

2 W, L5 f >, = (2 —m — 119N e = X(0){295 — 90230 — 9(-110}

and
v 1 \v/ |
& LT’S(DJ[)Q) >>P;'T= 5(( Gorwog)Q)p + 5(( 0,1]:1“09')2)»0

=20 3 A5 3 (o) - nom)),

A€Z,AH0 1€2,i50,1
+ %(nom (g(n®") = mag(m)*), -+ %(ﬂo (r19(n®) — 9(m))*)s
>29p{+ Y G +y 3 (om(msn®™) — o))
EZ,i£0 i€Z,i70,1
+ 5(m(rgl®™) — gm))

Then, by simple computations, we obtain
o 2
(o (g (™) — 7ag(m)) ),
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2
= P(Uo( Z (gAU{—i} - 9Au{-i+1})(?h - no)erﬁ-A(m: - P)) )p
AGZ AFD,—i,—it+1

= x(p)p { Z (gaui—sy — gAU{—i+1})2X(P)|A|}
ACTAZ0,—i,—it 1

2> X(P)P(Q{—i} - 9{—a‘+1})2

and

(o (rig (™) — g(m))*), = p(( > (groan — 98)eea(ne — p)
AEZ,AF0,1

2
4 Z (97_1A\{0}u{u1} — 9a) loea(ne — P)) )
AEZ,AF0,AS1 '

=P{ > (gma—a XM+ > (g‘r—lA\{O}U{—l}_gA)2X(P)|A|}
A€Z,AZ0,1 AEZ AF0,AD]

> Y ax(P)(e — g
iR iA~10

Therefore, we have

LW >,,  SWge4, { — 2 KL W5k, LM (wog) >py — < L5 (wog) >,y }

x(e) x(#)
2793 0 2
< sup {2g4 - g1yp — gr-130 — =, AP Z 9 — P Z (9¢) — 9rie1y)* }
geA, P S i€Z,i%-1,0
1-p ‘ = =
=— +2p sup { —ay — 272@? — Z(ai — a,;+1)2}
8! - {e)E, =1 i=1

where sup (e}, is taken over all finite sequences of real numbers. Now, by the next
lemma we obtain the desired inequality.

Lemma 1.7.1.

sup

o0 el
1
—a -2y ai— (a; — as 2}:
{akiza { Z:; ; ) 4y + 492 + 2y

where SUPfy )0, @8 taken over all finite sequences of real numbers.

Proof. Define an n x n symmetric matrix A™ by setting A7, = 2y+1, A}, = 2y +2

for2<i<mn, A%, = A7, = —1for 1 <i < n—1 and other components are
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0. Let P* be an orthogonal matrix satisfying that D” := (P™)"1A"P" is diagonal.
Then,

o0 oo I

Sup { —o Q’YZ a; — Z(ai - ai+1)2} =sup sup 1 — e;a "‘t'aAna}
{a:}2y i=1 =1 n acRk"

where e; =* (1,0,...,0) € R". Now, by the change of variable a = P and the

simple argument of the linear algebra,

sup { —‘e;a—*aA"a} = sup { —" e, P"b —* bD'"'b}

acRn® beR®

1 1 1t
= sup { = (b+ Z(P"D™)"e1)D"(b + Z(P"D™)'e))} + = e, PH{D™) T (P™)tey
— 2 2 4

11:e (A™~!

== e

1 & 1
since A" is positive definite. Define an n x n symmetric matrix B™ by setting
BYy=2y+2forl1 <i<mn, B, =B},;,=—-1for1l <i<n—1and other
components are 0, then we have

det B™! 1

L ny—-1 — =
e(A") e = (2y+1)det B~1 —det B2 2v+1—b,,

det B7—1
det B» °

{bn}32, is & bounded increasing sequence of positive numbers and therefore b, =

where b, =

Since *e;{A™)"le, is positive and increasing by definition,

limg, o bn exists. By the definition of B™, we have an equation det B® = (2v +
2)det B™! — det B*2. By taking a limit, we obtain that é =2v+2— b, and
since by, < 27 + 1, we have b, = v+ 1 — /% + 2v which concludes the proof. O

1.4 Spectral gap

In this section, we prove the spectral gap for the exclusion process with velocity on
finite one-dimensional cubes, which is used in the proof of Theorem 1.9 in the next
section. We use the notation A; and LK’IS defined in Subsection 1.3.2. Also as in the
previous sections, we denote vy, x by v x, and expected values with respect to the
measure v g by {hix.

The main purpose of this section is to prove that the generator LX’IS in L (v k)
has a spectral gap of order at least 72
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Theorem 1.8. There ezists a positive constant C = C(~y) such that for every posi-
tive integer I, every integer 0 < K < |A] and every function f in L*(v k) satisfying
(Fux =0,

(FPhx < CP(-LEC, P

Proof. As in Subsection 1.3.4, we can decompose f as f = >, f; with some
positive integer m and f; in M;. Then, it is obvious that

m m
(P = Z(ff)z,f( and (—LY°f, flix = Z(—LK’ISfi, filrx.
i=0 =0
By simple computation, for i > 1,
!
. 1
Pk < 2fo o = (— > L2fi, fdux < ;(—Lx’ffi;fi)l,f(-

r=-I
On the other hand, fy is a function depends only on a configuration 7 instead of w.
Therefore we can apply the result for simple symmetric exclusion process (cf. [10])
to obtain a positive constant C' such that for every positive integer I, every integer

0 < K < |Ay| and every function fy in L%(v k) and M satisfying (folrx = 0,

-1

D < CP Y (Lgamrmeramoy (fo1™ ) = fo(m)) i

z=--1
Then, with this constant C, it is easily shown that

i—1

Ik S CP >~ (L= (folw™ ) — folw)) i

T=-1
1-1
=2C1 Y (—LZ=, 1 fo, fohix < 201—LY5 fo, fodi k-
z=—1

1.5 Closed forms

In this section, to complete the proof of Proposition 1.1, we introduce the notion of

closed forms.

Consider the configuration space x = {—1,0,1}2. For two configurations w and
¢ € x, define a function D(w,£) as follows. D(w, &) = 1 if one of the following two
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conditions is satisfied: (i) There exists a unique point z € Z such that w®**! = ¢
and (wy,wyt1) = (1,0) or (0,1), (ii) There exists a unique point z € Z such that
w=¢&% and w #£ £, and D(7,£) = 0 otherwise.

Let ’H%Hi and H; be subsets of x = {-1,0, 1}* such that Hezt1 =
{w ; (W, wgr1) = (1,0)} and Hy, = {w ;w, = 1}. Consider a family of R?-valued con-
tinuous functions u = (1}, u?) = (U}, u2),cz where vl : Hy o4 — Randu? : H, — R.

For an ordered pair (w,§) satisfying D(w,§) = 1, define a one-step integral I(, ¢ of

u by
W) =g and € Py,
ooy = ) =€ and €€ g,
(&) u2(w) if w® =¢ and w € H,,

—uZ{w?) if w* =¢ and € € H.
By the definition of D(w,£), the one-step path integral I, of u is well-defined.

Next, we consider more general paths. A path ['(w,£) = (w = W% w!,...,w™ L W™ =

£) from w to £ is defined as a sequence of conﬁguratioﬁs w? such that every two
successive configurations satisfies D(w?,w?t') = 1. A path integral can be naturally
extended to paths of any length as Iv, ¢ (u) := E:?:Ul Tus goreny (1)

Now, we introduce a notion of closed forms.

Definition 1.2. A family of R*-valued continuous functions u = (ul,u2),ez with
ul : Mppn = R and u2 : H, — R is called an closed form if it satisfies all of the
Jollowing conditions: .

(1) uz(w) + uy(w® ) = wi(w) + G (W¥¥) for all |z —y| =2 2 € Z and w €
Hzzr1 N Hyys, '

(i) ul(w) + 12 (w®) = ul(w) + w2(w¥) for all 7,y € Z and w € Hy N'H,,

(118) uy(w) Ful (w1 = ud(w)+ul(wV) forallz,z+1# y € Z andw € Hy g1 NH,,.

Proposition 1.10. If a family of R%-valued continuous functions u = (ul, 12}z is
an closed form, then for all closed path T'(w,€), Ir.e(u) = 0 where a path Tw, &)
is called closed if w = §.

Proof. Consider a closed path ['w,w) = (w = % !, ..,w™ L w™ = w). We prove
that the path integral along this path vanishes. The strategy consists in constructing
a new path with length m — 2 and same path integral.

First, we assume that there exists 0 < 7 < m — 1 such that (w*)® = w®! for
some & € Z. We take ¢y as the first time when this happen: iy := min{i > 0;3z €
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Z s.t. (w*)” = '} and denote by 7o the unique site which satisfies (w)%0 = +1,
Obviously, wj,% =1 or —1. We consider these two cases separately.

Assume that w® = 1 namely w®™ = —1. Then, by the definition of i,

wd # —1 and since T is a closed path, later the velocity of the particle at zg

must be changed again. Let 4; be the first time when this happen: #; := min{s >
ig + 1;(wh)®™ = w1}, If iy = ip + 1, a new closed path of length m — 2 can
be constructed as (w = ' w!, ..., wo Wi = @iot2 o3 | melgmo = ) If
i1 2 iy + 2, then since wl = —1 for all iy +1 < j < 4y, especially for j =4, — 1
and 1, there exists a unique site y # zo,zo — 1 such that w” = (w71} or
(w1l which immediately concludes that w! = ((wi=1)¥)* = ((wh1)%0)?
or witl = ({whr=lpvt)® = ((wil_l)”"’)y’yH. By the definition of a closed form,
the path (w =% w!, ..., w7l (i) 1+l ™1 ™ = ) has a same length
and path integral with the original path I'w,w). Repeating this argument #; —
ip — 1 times we obtain that the path integral along M'w,w) = (w = &% w?, ...,
Qio,w""“, (wiott)zo ., (W)= (wh=1)%0 it ™l W™ = ) also has a same

length and path integral with the original one. By the definition, w®*! = (wi)%,

a new closed path with length m — 2 can be constructed as (w = w® w?,...,wh =
(wiu-l-l)m‘nj (w'io+2)x0.", (w'il—Z)mo, (w'il—l)a‘:o, w‘il-l-l, s wm—17wm — w)
Now, we turn to the case with w® = —1. Then, by the definition of 4, w9, =

—1, and again since I’ is a closed path, later the velocity of the particle at zg
must be changed. This time, let 43 be the last time when this happen: #; :=
max{i < m — 1;{w')® = w1} If iy = 0 and 4, = m — 1, a new closed path

of length m — 2 can be constructed as {w!

= w® &% . w2 W™l = w™) and
it is eaéily shown that the path integral of this new path is same as that of the
original one. If iy > 1, since wf = —1 for 0 < j < 4o, especially for 49 — 1 and
ig, we can construct a new path with same length and path integral with original
one as (w = w0, (W)™, (w')?..., (wio=1)% i+l wmt ™ = w) by the same way
for the last case. Also, if 44 < m —2 then wf = —1foré+1 < j < m and
therefore (w = w’, w', ..., w", (wWhF2)% Wh+2 ™= W™ = ) has same length and
path integral with original one. Repeating this argument we obtain a new path with

ip = 0 and 4; = m — 1 from which we can construct a path of length m — 2 easily.
Finally, we consider the case in which for all 0 < 7 < m — 1, w'! = (W!)2=+!
for some z € Z. For this case, we just need to consider the usual jumps of par-

ticles. Without loss of generality, we can assume that (w2,wd .,) = (1,0) and
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w! = (wh)=*0+l By the special structure of one-dimensional space Z and the as-
¥y P
sumption that I" is a closed path, there exists a unique time 1 < 75 < m -~ 1 such
that 4p = min{é > 1,0 = (WH)moH (Wi Wi 1) = (0,1)}. Let 71 be the last
time before i that a particle jumps from zg to zp + 1t 4; = max{i < iy, =
(wh)roeott (Wi wi 1) = (1,0)}. Here, we shall assume without loss of generality
that between 4, and 4y, there are no jumps from some site z; to 1 +1 (resp. z; — 1)
and then a jump from site z; + 1 (resp.z1 — 1) to z. Otherwise, we can repeat the
' same argument to z; in place of zg. By this assumption, we can show that for any
i1 < § < dg, W = (WiW¥H for y # 3o — 1, 2 and zp + 1. Therefore, since u
is a closed form, we can invert the order of jumps and construct a new path (w =
LLJOJ wl, . wil , wi1+1, (w'n‘:1+l).’rg,mo+1.“, (win—2):l:0,:t:0+1, (w'fro—l)ma,xo—f-lj Lu'i(]-l—].:I . wm—l) wm
= w) with same path integral with original one. Then, since wi+l = (i)zo:m0+1
we can construct a new closed path of length m — 2 as (w = w9 w!, .., =
(wi1+1)$0,$0+1, . (wio—2)$0,$u+1’ (wiu-—l)mg,mg-i-l, w‘i0+1’ ’wm—l’ o = w) which
concludes the proof. O

Next corollary follows form this result:

Corollary 1.8.1. Let A be a connected finite subset of Z. All closed forms on
{—1,0,1}* are ezact forms. Precisely, if u is a closed form, then there ezists a
Junction F : {~1,0,1}* = R such that ul(w) = F(w™**!) — F(w) for allw € Hepp1
and w3 (w) = F(w*) — F(w) for all w € H.

Now, we extend the definition of closed forms. Let G, be a subset of ¥ =
{-1,0, l}z such that G, == {w ;wy=1or —1} ={w ;n, =1}.

Definition 1.3. A family of R*-valued continuous functions u = (u},u2),ez with
ut 1 G, — R fori= 1,2 is called an closed form if it satisfies all of the following
conditions:

(i) The restriction of u = (Uk|a, .1, Ual3e,) ts a closed form in the sense of Definition
1.9,

(i) W2 (w) = —12(w®) for all z € Z and w, = —1,

(iit) uz(w) = —uf(w®) + uz(w?) + uzy, (W7)**H) for all v € Z and (wo,worr) =
(_17 0):

() ul(w) = 12(w™) — 12, (w*) for allz € Z and (g, wen) = (1,-1),

(v) ul(w) = —ul(w®* ) for allz € Z and w € Gy M Gey1.
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By the definition, the set of closed forms of u = (u},u?),cz with v : G, = R
and the set of their regulations u = (u}|s, .., 42|x,) is one-to-one. Especially, the
. following holds:

Proposition 1.11. Let A be a connected finite subset of Z. All closed forms on
{~1,0,1}* are ézact forms. Precisely, if u is a closed form, then there exists a
function F : {=1,0,1}* — R such that ul(w) = F(w>*!) - F(w) and v2(w) =
F(w*) — F(w) for all w € G,. '

Proof. By Corollary 1.8.1 and the definition of closed forms, it is easy to show. O

Let us introduce the notion of a germ of closed form. A pair of continuous
functions g = (g*, %) where g* : Gy — R is a germ of closed form if u = (Ug)gez =
(T28)zez is an closed form. For a pair of L*(v,)-functions g = (g*, g*) where g’ :
Go — R, we call it a germ of closed form if u = (U;)zez = (70)zcz satisfies all
of conditions as a closed form in L?(v,) sense. Main theorem of this section is
formulated as follows:

-

Theorem 1.9. For every germ of closed form g = (g!, %) with ¢ € L*(v,) for
t = 1,2, there exists a sequence of cylinder functions h,, and a constant c such that
g = Jim (e no(1-m)+VoiTs,) in L*v,) and ¢* = lim (VD) in L2(vp).

The strategy of the proof is essentially the same as given for the generalized
exclusion process in the proof of Theorem A.3.4.14 in [14]. We first project the
closed form {g;,z € Z} on finite subsets and apply Corollary 1.8.1 to obtain the
cylinder function A,. Then, we divide the vector ((2n)~'Vg 1T4,, (2n) "1V s, ) into
the boundary term and the non boundary term, and show that the latter term
converges strongly in L?(v,) to the germ g. Finally, we prove that the boundary
term is a weakly relatively compact sequence and all limit points of the sequence
belong to the linear space generated by (1o(1 — 1), 0).

‘For each positive integer n, denote by 7, the o-algebra generated by {w(z), |z| <
n} and let gi® = E,[gi|F,]. It is easy to check that {gi"} is a closed form on
{-1,0,1}*. By Corollary 1.8.1, there exists a F,-measurable function ¥, such
that Vegi 19, = gL forall —=n <z <n—1, Vyhy =g forall -n < z < n
and Efth| Y\pyenc = K] = 0 for all 0 < K < 2n+ 1. Then for each n, let
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Ur, 1= E[3a|Fn), RS = (2n) V1T, and R2 = (2n)"'Voly,. R, = (R., R%) can
be decomposed as

@n)7V D Tatha + (20) T VTontn + (20) T Vg9

z=—n+1

where V = (V!,V?) := (Vg 1, Vo).

Lemma 1.9.1.
T n
(zﬂ')_lvi Z 'Tm"abn = (Qn)_l Z ngi—’T:;

z=—n-+1 . r=—n+1

converges to g* in L*(v,) fori=1,2.
Proof. By the martingale convergence theorem, it is easy to show. O

Next, we prove that the second component of the boundary term (2n)*Vr_,in
(resp. (2n)~ 'V 1,117, converges to 0.

Lemma 1.9.2.
(2n)‘1V27'_n1,bn = (2n)_lf_ngi’”

converges to 0 in L*(v,) and

(2n) VP athy, = 0

for all n.
Proof.
Ep[("_~n9721’n)2] = Ep[(E[Tngzp:n])z] < Ep[(92)2]
concludes the proof. O

Next, we consider the first component of the boundary terms. Let ¢, :=
E,[%n|Gn] where G, is a o-algebra generated by {n,,|z| < n}. We first prove
that the difference between the term (2n) 'Vl7_,4, (resp. (2n) 'V 711%,) and
(2n)~'V_n, (zesp. (2n) "1V 741¢,) converges to 0 in L (v,).

Lemma 1.9.3.

(Zn)_lvlT—n(";bn —¢n) and (zn)"1v17n+l(¢n — &)

converges to 0 in L*(v,).
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Proof. Since V'_n($n — $n) = TonVintr(¥n — 65) and Vir(d — ¢,) =
Tr41V—n—1,—n(¥n — &), it is enough to show that n=2E,[(1, — ¢,)?] converges to 0.

Let I be a F,-measurable function and Fy, := E,[F|Fy ] where Fi, is a o-
algebra generated by {w;, —n <z <k} and {n;,k+1 <z <n}for—n—-1<k<n.
Note that Fp = Fpn O Frcin D oo D Fonpn D Fon1n = Gyn. Then, we obtain the
equality that '

E(P = BIFIG)) = B Y. (R~ Fed)) = 3, BB - Fus)

k=—n k=-n

On the other hand, by simple computations, we can show that

w) — Fi(w*
Bl - Fiay] = By g9, my) < Lm0y

Therefore, we obtain the general inequality

E,[(F — E[F|Ga))?] ZE [(VeF)?]

k——n

Now, we apply this to i, and obtain the inequality
2n -|— 1

Bpl(dhn — ¢a)’] < Z By[(Vipa)?] < = Z By[(m 2)2’] = El(g°)?)
k——n kﬁ—n
with the relation that Vi, = gi’”, which concludes the proof. O

Let ¢ := E[tn|Gn]. Then we can apply the method of the proof of Lemma
A.4.15 in [14] to show that there exist finite constants Cy(p) and Ca(p) such that

3n—1
) [(vn n+1¢"n)2] < CI(P)n—lE [‘?5311] + Ca(p Z Dy z+1(1”p:¢’3n)
r=-3n
and
In—1
Ep[(Vn-1,-n9n)?] < Ci(p)n7'E, [¢3n] + Ca{p)n Z D, a:+1(Vpa¢3n)
=—3n

Especially, with the spectral gap estimates proved in the last section, we obtain that
sup B, [{(2n) ' Vppniidn}’] < oo and  sup E,[{(2n) 'V_p_1 _ndn}?] < 0o

which shows that the sequences (2n)"1V(17_né, and (2n) 'V 1Tn16n are weakly
relatively compact. To prove that all limit points belong to the linear space generated
by 1o(1 — m), consider a weakly convergent subsequence and denote by by (resp.
b_) the weak limit of the positive (resp. negative) boundary term.
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Lemma 1.9.4. b depend on w only through ny and ;.

Proof. We prove this statement fo b_; same arguments apply to by. By the defi-
nition, (2n)7'Vy17_né, is measurable with respect to the o-algebra generated by
{nz,z < 1} and the weak limit b- inherits this property. Now, we prove that
Vezt1b— = 0 for all z < —2. Since V5 is continuous with respect to the weak
topology, it is enough to show that the sequence (2n)™'V 411 Vo 17-n@n converges
to 0 in L*(v,). Actually, for any z < —2 and any 2n > |z|,

vm,.'z:+1v(),l'-"—n,fig'n = V0,1Vm,x_+1’n’—n¢n = VO,IT—nva:+n,a:+n—|-lE[T;3n|gn]
= v{),lT—nE[vx+n,m+n+l/§b~3n|gn] = VD,IT—RE[Tm+ngl|gn]'

Therefore, for each fixed z < -2,

limsup E{(2n) ' Va,241V0,17-n¢n}’] < limsupn2E[(g')’] = 0.

n—o0 n—oo

Now, we can apply the argument in the proof of Theorem A.3.4.14 step 5 to conclude
the proof. , O

Finally, by the definition, we can see that (2n) 'Vji7en¢, = 0 and
(2n) Vo 1Tnt16n = 0 if (mo,m) = (0,0),(0,1) or (1,1) and so it is also true for
b:. Then immediately we conclude that bi(w) = Cemp(1 — m ).
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Chapter 2

Macroscopic energy diffusion for a
chain of anharmonic oscillators

2.1 Introduction

The deduction of the heat equation or the Fourier law for the macroscopic evolu-
tion of the energy through a diffusive space-time scaling limit from a microscopic
dynamics given by Hamilton or Schrédinger equations, is one of the most important
problem in non-equilibrium statistical mechanics ([5]}. One dimensional chains of
oscillators have been used as simple models for this study. In the context of the
classical {Hamiltonian) dynamics, it is clear that non-linear interactions are crucial
for the diffusive behavior of the energy. In fact, in a chain of harmonic oscillators
the energy evolution is ballistic ([23]). In this linear system, the energy of each
mode of vibration is conserved. Non-linearities introduce interactions between dif-
ferent modes and destroy these conservation laws and give a certain ergodicity to

the microscopic dynamics.

In order to describe the mathematical problem, let us introduce some notation
we will use in the rest of the paper. We study a system of N anharmonic oscillators
with a periodic boundary condition. The particles are denoted by 7 =1,--- , N, and
we identify N +1 = 1. We denote by {g;};—1,.. v their positions, and by {p;};=1... v
the corresponding momenta (which are equal to their velocities since we assume
that the mass of all particles are unity). Each pair of consecutive particles (z,7 + 1)
are connected by an anharmonic spring. The interaction is described by a potential
energy V(giy1 — g;). We assume that V is a positive symmetric smooth function
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satisfying
Zg = / e PV Mdr < 0o
R

for all 8 > 0. Let a be the equilibrium inter-particle distance, where V attains
its minimum that we assume to be 0 : V(a) = 0. It is convenient to work with
inter-particle distances as coordinates, rather than absolute particle positions, so we
define r; = q; — ;1 —a,j = 1,..., N, with ¢o = gv. We replace V(-) with V(- + a)
hereafter. Namely, we assume V(0) = 0. The configuration of the system is given
by p;,rj,5=1,---,N € R* and energy function (Hamiltonian} defined for each
configuration is given by

N

i )

H=ZS_.,-, Sj=§p?—|-V(rj), j=1,...,N.
=1

The choice of &; as the energy of each oscillator is a bit arbitrary, because we
associate the potential energy of the bond V(r;) to the particle j. Different choices
can be made, but this one is notationally convenient.

We consider the Hamiltonian dynamics:
ri(t)=pi(t) —p;_1(t), j=1,..,N,
) = V() = V(8 G =1, N.

We are interested in the macroscopic evolution of the energy empirical density profile

(2.1.1)

under a diffusive macroscopic space-time scaling, More precisely, we study the limit
as N — o0, of the energy distribution on the circle T of length 1 defined by

(2.1.2) % 3 &N ().

The total energy is not the only conserved quantity under the dynamics (2.1.1). The
total length Zfil r; and the total momentum 27:11 p; are also integral of the motion
that survive to the limit as N — oo. In one dimensional system, even for anharmonic
interaction, generically we-expect a superdiffusion of the energy, essentially because
of the momentum conservation ([20, 1]). Adding a pinning potential 3% U(g)
to the Hamiltonian will break the translation invariance of the system and the
momentum conservation, and we expect a diffusive behavior for the energy, i.e. the

energy profile defined by (2.1.2) would converge to the solution of a heat equation
Oe(t, u) = Oy De(t, u))dye(t, u)
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under specific conditions on the initial configuration. The diffusivity D = D(e) is de-
fined by the Green-Kubo formula associated to the corresponding infinite dynamics
in equilibrium at average energy e (see below the definition).

As the deterministic problem is out of reach mathematically, it has been pro-
posed an approach that models the chaotic effects of the non-linearities by a stochas-
tic perturbations of the dynamics such that energy is conserved. A random exchange
of momenta of nearest neighbor particles that conserve total energy but total mo-
mentum has been studied in the harmonic case [4, 9, 3]. Stochastic exchanges that
also conserve total momentum have been considered in [1, 2], where a divergence of
- the diffusivity is proven for unpinned harmonic chains. The stochastic perturbations
considered in these papers are very degenerate (of hypoelliptic type), since they act
only on the momenta of the particles, and not on the positions. In particular these
stochastic terms conserve also the total length . r;.

In this article we want to deal with anharmonic chains with noise that conserves
total energy. For reasons we will explain in a moment, we need more elliptic stochas-
tic perturbations that acts also on the positions. In the case of one-dimensional
unpinned chains there is a way to define these perturbation locally (see the next
section) just using squares of vector fields that compose the Liouville vector field
that generates the Hamiltonian dynamics. It results a dynamics that conserves only
the total energy. So it has a one-parameter family of invariant measures that can
be described as follows. '

For any 8 > 0, the grand canonical measure vg defined by

v e e PE
vg = ————dpdr;
g g\/zwﬁ—lzﬁ Pt

is stationary for this dynamics. The distribution is called grand canonical Gibbs
measure at temperature T = 871, Notice that ry,...,7n, p1, ..., Px are independently
distributed under this probability measure. The ergodic measures of the dynamics
are the corresponding conditioned measures on the energy surfaces (microcanonical
Gibbs measures). As N — oo the microcanonical measure of energy e converges to
the corresponding v, (= I/Ec(’e)), in the sense of the finite dimensional distribution
~ (equivalence of ensembles), with corresponding inverse temperature S(e) given by
the usual thermodynamic relation. So we can consider the system starting with the

distribution ug’ as the system in equilibrium at temperature T' = 8.
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If the system is in equilibrium at 8(e), then standard central limit theorem for
independent variables tell us that as N — co energy has Gaussian fluctuations, i.e.

the energy fluctuation field
1
YN = — (51; g,', 0)—e
VN ; v {&(0) — e}
converges in law to a delta correlated centered Gaussian field ¥
E[Y(F)Y(G)] = X(6(©) | FuCE)y

~where x(B) is the variance of & under vp.

In this thesis we prove that these macroscopic energy fluctuations evolve diffu-
sively in time (after a diffusive space-time scaling) , i.e. that the time dependent
distribution

v_ 1 2
Y;, = ﬁ zéi/N {gi(N t) - 6}
converges in law to the solution of the linear SPDE
Y = D(B(e))8;Y dt + v/2D(B(e))x(B(e)) 8, B(y, 1)

where B is standard normalized space-time white noise. In this sense energy fluctu-

ation in equilibrium follows linearized heat equation.

The main point in the proof of this result is the following. Since total energy
is conserved, locally the energy of each particle is changed by the energy currents
with its neighbors, i.e. applying the generator L of the process to the energy &; we

obtain
(2.1.3) L& =W — Wi
where Wiz = —pV/(riq1) + W, Here —p;V'(ri11) is the instantaneous energy

current associated to the Hamiltonian mechanism, while W;‘S; 11 Is the instantaneous
energy current due to the stochastic part of the dynamics. While (2.1.3) provides
automatically one space derivative already at the microscopic level, W, is not
a space-gradient. In this sense this model falls in the class of the non-gradient
models, and some of them have been studied with a method introduced by Varadhan
[26]. The main point is to prove that W; ;41 can be approximated by a fluctuation-
dissipation decomposition '

I/Vi,i-l-l ~ DV&L —+ LF
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for a properly chosen sequence of smooth local functions F. In the harmonic case,
with noise conserving energy, this decomposition is exact for every configuration,
l.e. there exist a local second order polynomial F' such that W;;,, = DVE; + LF
for a given constant D (c¢f. [4]). In the anharmonic case such decomposition can
be only approximated by a sequence of local function Fj and in the sense that the
difference has small space-time variance respect to the dynamics in equilibrium at

given temperature (consequently D is a function of this temperature).

It is in order to do such decomposition that we have to use Varadhan’s approach
to non-gradient systems [26] and the generalization to non-reversible dynamics [28,
16]. The main ingredients of the methods are a spectral gap for the stochastic part
of the dynamics, and a sector condition for the generator I of the dynamics. It is
in order to prove these properties that we need such elliptic noise acting also on the

positions.

This chapter is organized as follows: In Section 2.2 we introduce our model and
state main results. In Section 2.3, we give the strategy of the proof of the main
theorem. The proof is divided into several sections: Section 2.4, 2.5 and 2.6. The
proof of a version of the sector condition is in Subsection 2.6.1 and the detailed
estimates of the diffusion coefficient are obtained in Subsections 2.6.2 and 2.6.3. In
Section 2.7, we give a spectral gap estimate which is used in Section 2.8, where we
characterize the class of closed forms.

2.2 Model and results

We will now give a precise description of the model. We consider a system of N
pa,rticles in one-dimensional space evolving under an interacting random mechanism.
Let T := (0,1] be the 1-dimensional torus, and for a positive integer N denote by
Ty the lattice torus of length N : Ty = {1,...N}. The configuration space is
denoted by @V = (R?)™¥ and a typical configuration is denoted by w = (p;, i )iery
where r; represents the inter-particle distance between the particle 2 — 1 and %, and
p; Tepresents the velocity of the particle 7. The configuration changes with time and,
as a function of time undergoes a diffusion in R?¥. The diffusion mentioned above

have as an infinitesimal generator the following operator

L?\f = AN"F']/SN
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where
Av=Y (X~ Yiar) Sv=5 {06+ Fien)?)
i€THn €T
and
Y= piOr, — V'(r;)0p;, X; =Y.

We assume that the function V' : R — R, satisfies the following four properties: (i}
V(r) is a smooth symmetric function. (ii) V(r) is strictly increasing in R,. (iii)
There exist some constants d. and d_ such that

0<d_S-—-—'2V(T)

<d
Vit S

forall 7 > 0. (iv) The pair of constants d; and d_ in (iii) satisfies d_ Jdy > (3/4)Y/16,

Remark 2.1. By the assumptions (i), (i) and (iii), it is easy to show that

r2 ' 2
— < V(r) < —
s, =V S5

forallr e R.

Remark 2.2. The assumption (i) is quite technical and required only in the proof
of the spectral gap estimate in Section 2.7.

We denote the energy associated to the particle ¢ by & = 22"{ + V(r;) and the
total energy defined by € = 3,
dynamics. Observe that the total enerpy satisfies LY (€) = 0, i.e. total energy is a

&; which denotes the Hamiltonian of the original

conserved quantity.

Recall that vf on QY is defined by

v 2 v
Vév(dpd‘r) _ H exp(—[z’( 7 T V( z))

i—1 \/27Tﬁ_12ﬁ

dpi Cl’f'i

where

Zg = ] e PV dr < 0.
R :

Denote by L? (Vé‘] ) the Hilbert space of functions f on QY such that Vév (f?) < 0.
Sy is formally symmetric on L*(v) and Ay is formally antisymmetric on L?(1}).
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In fact, it is easy to see that for smooth functions f and g in a core of the operator
Sy and Ay, we have for all 8 > 0

| Sunguttapdr) = [ (o) (dpan),
R2N m2N

and
f An{f)gv§ (dpdr) = — f FAN(g)vj (dpdr).
R2N R2N
N

In particular, the diffusion is invariant with respect to all the measures v3'. The
distribution is called grand canonical Gibbs measure at temperature T = 8~1. No-
tice that r1,...,7n,P1,...,pn are independently distributed under this probability

measure.

On the other hand, for every 8 > 0 the Dirichlet form of the diffusion with
respect to v is given by

DusD) = [ SABUPE + Wi (P} (dpar)

icTy

We will use the notation v for the product measures on the configuration spaces
Q= (RQ)Z, namely on the infinite lattice with marginal given by vg|a,. .~} = yg )

The expectation with respect to vz will be sometimes denoted hy

f Jus(dpdr) = {f)s.
)

Denote by {w(t) = (p(t),r(£));t > 0} the Markov process generated by N2Ly
(the factor N correspond to an acceleration of time). Let C(Ry, Q") be the space
of continuous trajectories on the configuration space. Fixed a time T > 0 and for a
given measure x4~ on §1V, the probability measure on C(]0, T}, Q) induced by this
Markov process starting in x#"V will be denoted by ]Puzv . As usual, expectation with
respect to P~ will be denoted by E,~. The diffusion generated by N2L}, can also
be described by the following system of stochastic differential equations

dp(t) = N[V (resa) = V() = 2{V"(r) + V" (ren) Yt
+ VIN{V (r541)dB} — V'(r;)dB}},
d’f'i(t) = N2 [p'a — i1 — ‘7V”(T‘z)]dt+\/’7N{—-pz 1dBl 1 +p1dB }

where {B}, Bf}icr,, are 2N-independent standard Brownian motions.
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Then, by Ito’s formula, we have
d&;(t) = N3[Wi_1; — Wigaldt + N{oy_1,4dB}, — 05;:1dB}}

where Wign = Wit + Wi, Wi = —piV'(rin), Wi = %{P?V”(T&l) -
V'(ri41)?} and 05501 = — A0V (Tig).

We can think of W; ;.; as being the instantaneous microscopic current of energy
between ¢ and ¢+1. Observe that the current W; ;.1 cannot be written as the gradient
of a local function, neither by an exact fluctuation-dissipation equation, i.e. as the
sum of a gradient and a dissipative term of the form L} (rh). That is, we are in
the nongradient case. The collective behavior of the system is described thanks to
empirical measures. With this purpose let us introduce the energy empirical measure
associated to the process defined by

7 (w, du) = ZS(t)é (du), 0<t<T, uweT,
EE'H'N

and (¥, f) stands for the integration of f with respect to V. To investigate

equilibrium fluctuations of the empirical measure 7V we fix 8 > 0 and consider the
system in the equilibrium v,év . Denote by Y;¥ the empirical energy fluctuation field
acting on smooth functions H : T — R as '

YN (H) = \/—ZH HE®) - ( 7+ YO}

icTy

where ¥(8) := (V(rg))s. On the other hand, let {¥;};1<o be the stationary generalized
Ornstein-Uhlenbeck process with zero mean and covariances given by

/ du/ dvH, (u exp{——( o) }H, (v)
W 4t —s)D(p)
for every 0 < s < t. Here x{(8) stands for the thermal capacity given by x(8) =
(E3)8— (€03 = 5= — ¥'(B) and Hy (u) (resp. Ha(w)) is the periodic extension to the
real line of the smooth function H; (resp H,), and D(B) is the diffusion coefficient
determined later.

EY;(H)Y(Hs)] =

Consider for k > % the Sobolev space H_j. Denote by Qp the probability mea-
sure on C([0,T],H_i) induced by the energy fluctuation field ¥, and the Markov
process {w™(t),t > 0} defined at the beginning of this section, starting from the
equilibrium probability measure ug . Let @@ be the probability measure on the space
C([0,T],H—-r) corresponding to the generalized Ornstein-Uhlenbeck process Y; de-
fined above. We are now ready to state the main result of this work.
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Theorem 2.1. The sequence of the probability measures {Qn n>1 converges weakly
to the probability measure Q.

Remark 2.3. For each H € C*(T),

(221) MPH = i)~ Yolt) ~ [ vup@amas
0

and

(222)  NPH.= (MPHY — o () D(B)(H ) sacr

are L'(Q)-martingale.

2.3 Strategy of the proof of the main theorem

We follow the argument in Section 11 in [14]. According to their argument, The-
orem 2.1 follows from the following three properties: (i) {Qn}np1 is tight, (i) the

restriction of all limit points @* to JFy are Gaussian fields with covariance given by
E[Y (#)Y (Ha)] = x(8){H1, Ha)r2(my,
(iii) all limit points Q* of convergent subsequence of {Qn }n»1 solves the martingale

problem (2.2.1) and (2.2.2).

For the proof of (i}, we can apply the argument in [12] directly. (ii) is straight-
forward.

To prove (iii}, for a given smooth function H : T — R, we begin by rewriting
YN(H)as

t . .
YN(H) =YV (H) + f VN > VNH(%)M,,;Hds + MEN (1)
0 €T
where VY H represents the discrete derivative of H:

(VVE)(5) = NIH( ) — H(zo)

and the martingale MV (¢} is

£ : .
EN - L N (g . dBL
MEN () = /0 il > VNH( ~7)t414B7.

1€Ty
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Then, we can decompose this as follows:

YN(H) = f YY(D(B)ANH)ds + I} po(H) + I3 5, (H)
ﬁ)ﬁzINt( )+ MN,F,t(H) - MIZ\T,F,t(H)
where
Bl f VE 3 VY H() Wasrs + DIOXB)E s — 12) — LR (wFds,
€Ty
I oy H) = / VE V() I (rF)ds
€Ty
B = [ =3 AVHGRI - 3) - ﬁ{&—%wwml,-
ieTy
M p(H ] = 3 VVH () + VT¥isa(Te))dBE - VAXAT)ABE)
M 5 (H / = 2 VG- TYisr(Tr)dB! + AX(Tr)dBE)
€Ty

The proof of (iii) is reduced to the following lemmas:

Lemma 2.1.1. For every smooth function H : T-— R and local function F in the
Schwartz space, :

lim B[ sup (I3 g (H) + My p.(H))*] = 0.
N'—>OO B OStST iy 340y
Lemima 2.1.2. For every smooth function H : T — R and t > 0,
i B,y (I, ()] = 0.

Lemma 2.1.3. There exists a sequence of local functions Fx in the Schwartz space
such that, for every smooth function H: T—=R and t > 0

lim lim E N[(I}\,Fxt( 1)) = 0.

K—oo N—oo

Moreouver, for this sequence F,

p—

Kl,glgo Ey (001 + vAY01(Cre))* + (VX0 (T )] = 2D(B8)x(8) =

where D(B) := D(B)x(8)8%. Note that

Iy p(H f VE Y YV H() Wigas + D(B)EE — ) — (s

1€Tn
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Now we proceed to give a proof of Lemma 2.1.1.

Proof of Lemma 2.1.1. Let us define

Cwr(®) = =5 D2 VVH(L)RF ()

Nz i€Tn
From the Ito’s formula we obtain

v p(t) = v (0) + I g (H)

¢ 1 N i 1 2
+ /U \/—FZV H(ﬁ)ﬁZ[—}G,jﬂ(nF)dBj+Xj(ﬁF)dBj].

€T N JETN

Therefore,

(B g (H) + M2, (D)) < %G (2) — Cop(0))?

+2{f0 % Z VNH(%)\/’_Y[—YJ'JH(RFMB} + X;(nF)dB]] - M} py(H)}"

1,J€TN

Since F is bounded and H is smooth, it is easy to see that the first term is of order
+. Using additionally the fact that F is local and in the Schwartz class, we can

prove that second term is also of order . O

2.4 Boltzmann-Gibbs principle

In this section, we prove Lemma 2.1.2. First, recall that for each e > 0, B{e) is

defined by the relation E,,  [€1] = e. Then, by simple calculations, we have

YE(e)

d o _i 1 — -1 _ 1 ! e “1=;
%0 =7 (55) = 707~ 33 +Y N = e

Now, we can rewrite the term I§ ,(H) as

/U \/Lﬁ S AVH(Z) 5 - h(e) — K(e)(& — o)

ieTy

where h(e) = 515 = (pf)se) and H'(e) stands for the derivative of h(e) with respect
to e. Then, Lemma 2.1.2 follows from standard arguments (cf. [14]).
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2.5 Central limit theorem variances

In this section, as the beginning of the proof of Lemma 2.1.3, we study the central
limit theorem variances. First, we introduce some notation. We denote C the set of
smooth local functions f on Q = {R?)Z satisfying that

pUre2 DD f(p, 1) € L*(vg)

for any multi-indices oy, g, a3 and o4 and for any 8 > 0. Here and after, we

consider operators L7, S7 and A acting on functions f in C as
Df=8"f+Af, SF=2% {KPf+Man)fh Af =Y Xuf —Yiguf
icZ i€z
For a fixed positive integer [, we define A; := {—{,—1+1,...,1—1,1} and LL, 53, the
restriction of the generator L7, §7 to A; respectively. For ¥ in C, denote by sg the

smallest positive integer s such that A, contains the support of ¥. For a technical

reason, we define sg = 53 + 1.
Let Cp be a subspace of cylinder functions defined as follows:
Co={ f;f =" _[Xi(F) + Yi441(G:)] for some A CC Z and{Fi}ics, {Gi}ien € C}.
ichA
For a finite subset A of Z, we denote by |A| the cardinality of A and by (-)a g the
expectation with respect to the canonical measure va g = vg( - |2 ,c0 & = |A|E)

for E > 0 which is indeed independent of the choice of 8. For a finite set A and a
canonical measure v g, denote by (-, -}o g (resp.(:, -)5) the inner product in L?(v4 g)
(resp. L*{vg)).

First, we note some useful properties of the space Cp.
Lemma 2.1.4. (i) For any f € Co, N > s5 and E > 0, {fiay.e = 0.
(ir) Wi, Wiy and p? — pj are elements of Co.
(#ii) For any F € C, LYF, SYF and AF are elements of C.
(iv) For any f € Cy, there exists a constant Cyg depending only on f and E > 0
such that for any u € D(L} ), —

~[(]R2}AN u Z T:.f)dvay e < Cf.E\/—m

|'i|SN—Sf—1
where Dy,p(w) = fpoyn L jnan(Xew)2 sz + fgaynw Soboon (Yekt1%)2dvay 5.
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Proof. (i) and (iii) are straightforward.

(ii): We have W[fl = g{pg‘[/’”(rl) - V'(r)?} = Yo, (poV' (1)), Wé‘}l = —pV'(ry) =
Yo1(=V(r1)) and pf — p§ = X2 {(po + p1)r1} — You{(po -+ p1)r1}.

(iv): By the definition, it is easy to see that there exist some functions F;, G; € C
such that f = Zlils o X,F;+Y;;.1G;. Then, we have

f(]RZ)ANu( Z [ )y E

| <N—s;—1

= ]{Rz}AN u Z T’L{ Z Xij -+ }Grj‘flGj}dVAN,E

il€N—sr—2  |f|<sy

- [Rz}A U Z Z {X’H‘jﬁﬁ} -+ E+j,i+j+1TiGj}dVAN=E
N

[l SN—s7—1]j|<sg

T /(RQ)AN Z Z {(Xirsu)7iFy + (Yiggignw)mGildva, e

[i|SN—s5—1 |7|<ss

- > > X Fr + (Yepsrw)me;Gy}dvay,
(BEYAN | <N~1

|71<sys
lk—j|<N-s7~1

: £R2)AN Z {(Xew)? + (Yersru)®} Z {{F®)2 + (GW)2}duvy 5

k| <N—1 k| <N—1

E) _ | k) _
where F®) = 371 Jejien—sp-1 To-iFy and GO =300 i sien_opa TG By
Schwartz inequality, the last expression is bound from above by

JDN’E(U) /{RZ)AN Z {(F&EN2 4 (G2 dyy, &

Bl<N—1
< |Pws@s D) [ 3 (B (hesG s
(B e lj1<s s
\ k=j1<N—s¢—1
= | Drs(w)(s; +1) f S (E+ (G dvays
: B2 hi<n 1 h1<s g,
\ [k—flEN—-55—1
< [ Pwp@)@s;+DEN 1) [ 3 [(F)2+ (G Pldvny,s
E l<sy
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and by the equivalence of ensembles, we obtain the desired result. O

Next, we study the variance

N Y(=SL) S i, 3 r)ane

<Ny li1<Ny

for ¢ € Cp where Ny = N — sy — 1. We start with introducing a semi-norm on Cy,
which is closely related to the central limit theorem variance. For cylinder functions
g, h in Gy, let '

L gh>p.= (9,mh)p and K g>pa= Y i(g,Es
i€z icZ
X g, h >p. and € g > .. are well defined because g and h belong to Cy and

therefore all but a finite number of terms vanish. For A in Cy, define the semi-norm
1
L h>E, by

geC,ucR

— {(apoV(r1) + YoT'g))s = 2{(XoTs)%)s}-

1
We investigate several properties of the semi-norm < - > . in the next section,

while in this section we prove that the variance

2Ny (=87 ) Z T, Z Ti¥)An Ex

i <Ny 3| <Ny

of any cylinder function 7 in Cy converges to < 1 >4, a8 N 1 co and Ey —
{Eo)p = -2-15 +1(8). We are now in a position to state the main result of this section.

Proposition 2.1. Consider a cylinde'r function ¥ in Cy and a sequence of integers
Ey such that limpy.,o Fn = 2—% +¥(B). Then,

lim (2N)"H(=ST,)7" D T D Thhay,my =< U Spy -

N—=oo
i <Ny il €Ny

The proof is divided into two lemmas.
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Lemma 2.1.5. Consider a cylinder function ¢ in Co and a sequence of integers Ey
such that IimN_?Do EN = % + ’l,!)(ﬁ) Then,

it @N) K830 D ¥ D b)avey 2KY >y

[{]| €Ny [i]| <Ny

Lemma 2.1.6. Consider o cylinder function v in Cy and a sequence of integers En
such that limy oo En = 2—15 +9¥(8). Then,

Hmaup(2W) ™ (=57, ) 3 7t 3 mbhanue S 9 By

[é| <Ny [l <Ny

Proof of Lemma 2.1.5. For the beginning of the proof, we calculate some variances
and covariances. Define Ay = Zz_ NTzWSI and for F € C, let Hf =
2 ileN-sp-1 WSTF. 1t is easy to see that

lim (2N)~}(-S7,)7" Z T, AN)anBn = — <Y g,

N—oo
4| ENy

I&EDW(ZN)_I((_SXN)_l Z Tiqp:Hﬁ)AN,EN =-< 'gb,F >>ﬁ,**r
il SNy

lim (2N)7H(=57,,) " (aAn + H), aAn + Hy) sy, By

N=oo

= %'((GPOV'(H) +Y0.T7)%) s + %((XOFF)z)ﬁ-

Then, obviously,

liminf(2N) (=81, )7 D mdh D mih)ag.s

HI<Ng TSNy |
> lim inf[2(2N) "H{(=5},) ™" | lZN 7, —(aAy + HY)) aw.x
i SNy

— 2Ny M(~81,) HaAn + HE), (aAn + HE)) Ay By
=2 Y, F g+ 20 <Y g —%((GPOV'(H) + YoiT'r))s — %((XOFF)Q)&

Then, taking the supremum of @ € R and F we obtain the desired inequality. O

Proof of Lemma 2.1.6. The key of the proof is the characterization of closed forms
which is proved in Section 2.8. Omnce Theorem 2.7 in Section 2.8 is established,
the proof of Lemma 2.1.6 is same as that of Theorem 7.4.1 in [14] since the proof
depends on the specific model only through an integration by parts formula and the
equivalence of ensembles, which are easily shown. : O
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- We conclude this section proving that for each ¢ in Cy the function < ¢ >,
R — R, that associates to each energy 8 the value < 1 g, Is continuous and
that the convergence of the finite volume variances to < - 4 is uniform on any
compact set in Ryg. For each N in N and E > 0, denote by Vlt{' (E) the variance of
eN+1)7! ZIiISN¢ %) with respect to vpy &

VIE) = Ny N(=SL) S i, 3 mithays.

i< Ny |é| <Ny
With this definition V¥ is continuous. Proposition 2.1 asserts that V¥ converges, as
N 1 00, to K % >4, for any sequence Ey such that Ey — élﬁ—f-zb(ﬁ). In particular,
Hmpy_seo Vﬁ (En) =< 9 >, for any sequence Ey — % + ¢{B). This implies that
< P g is continuous and that Vg? {-) converges uniformly on any compact set to
<Y > 4 as N T oo. We have thus proved the following theorem.

Theorem 2.2. For each fized h in Cy, < h >, is continuous as a function of 8

on R.. Moreover, the variance

CNY (=830 D mhy > TihYay.ey
[i| <N fi| <Ny,
converges uniformly to < h 5. as N T co and Ex — % + ¥(8).
Now by the argument in [12}, in order to prove Lemma 2.1.3, all we have to

show is that there exists a sequence of functions {F; }; in C satisfying that lim;_,o, <
Wy, + D(B)(p? — p) — L7F}, >3,= 0 and for this sequence Fi,

2D(B)
2

We will prove this in the next section and also give some detailed estimates of D(8).

A Bgl(00, + V% (Tr))? + (VAXo(Tre)] =

2.6 Hilbert space

In this section, we investigate the main properties of the semi norm < - >4,
introduced in the previous section. We first define from <« - >4, a semi-inner

product on Cy through polarization:
1 .
(2.6.1) K g, b >pgq= Z{<< g+h>s, — Kg—h>g,}.
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It is easy to check that (2.6.1) defines a semi-inner product on Cy. Denote by
Npgy the kernel of the semi-norm <« - >>,§,,f on Cy. Since & - >, is a semi-iuner
product on Cp, the completion of Cy|u;,_, denoted by Hg 4, is a Hilbert space.

By Lemma 2.1.4, the linear space generated by W5, and S7C := {S7g; g € C}
are subsets of Cy. The first main result of this subsection consists in showing that
Hpgy is the completion of S7C|u,  + {Wy,}, in other words, that all elements of
Hpa~ can be approximated by r:LI/V‘f1 + 57g for some @ in R and g in C. To prove this
result we derive two elementary identities:

(2.6.2) L, 8Tg Dpa=— K hg>p., KW Dp,=— < h>pu
for all A in Cy and g in C. |

By Proposition 2.1 and (2.6.1), the semi-inner product < A, g >4, is the limit
of the covariance (2N)™'((=S3,)7" Zicn, T8 Zjiiems, i anEx @8 N T 00 and
Exy — % + (3). In particular, if g = S7gy, for some g, in C, the inverse of the
operator 57 cancels with the operator 57. Therefore, < h, §7gy > 5,y is equal to
(2N)_1( E 7490, Z TR NEy =K G0, 0 g -

|#|<Ngy |é| <Ny

— lim
N—ooo
The second identity is proved by similar way with the elementary relation

o 5
SXN ZiEAN i€ = Ei,i—HEAN Wi

The identities of (2.6.2) permit to compute the following elementary relations

KW, b gy =~ i(€:STh)s

icZ

=~ Zi(&'[(ﬂ—l,iﬁ + (Yigr)’1h)s = ¥(paV'(r1) Yo n) s,
ieZ
«p}— 15, 8"h>p, =0

for all » € C, and

Y 1
< W, Wg, >py= 5((1901/'(?"1))2)& K Wi, 0} — B3 >pq= 7

Furthermore,
€AW, + 879 >py= Z{{apoV'(r1) + YouTg))s + 2 (KoL)

for @ in R and g in C. In particular, the variational formula for < h > 3. is reduced
to the expression

K h>py= sup {-2 <K h,aWg) + 79 >p, — < aWf| + S7g >p,}.
acR,geC :
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Proposition 2.2. Recall that we denote by S7C the space {S7g; g € C}. Then, for
each 8 > 0, we have
' Hpy = WWBJ @ {Wtfl}-

Proof. We can apply the proof of Proposition 7.5.2 in [14] straightforwardly. O
Corollary 2.2.1. For each 8 > 0, we have

Hpoy = STClag,, ® {0} — 15}
Proof. Straightforward. O

Next, to replace the space S7C by LYC, we show some useful lemmas.

Lemma 2.2.1. For all g,h € C and 8 > 0, € §7g,Ah >, ,= — < Ag,5"h >p.
Especially, < S7g, Ag >5,= 0.

Proof. By the first identity of (2.6.2),

< STgaAh >>.5,‘Y =-K gaAh >>ﬁ,*= - Z(ng:Ah’).ﬂ

iE€Z
= (Ang,h)g = (mAg, h)s
i€Z ieZ
=Y (Ag,Tih)s =) (Ag,mih)s = — < Ag,S"h >p, .
icZ €D
This concludes the proof. _ O

Lemma 2.2.2. Forallg € C and § > 0, K 879, Wg, >p,= — < Ag, W51 >p,.
Proof. By the first identity of (2.6.2),

< S'Tga W{fl >>;3,’}’\ =—-<g, Wé?l PP — Z(Tiga Wé?l)ﬁ

i€Z
== Z(Q: M§+1)ﬁ == Zi(gawfim - VW,%H);B .
i€k i€Z
== i, AlYs =Y i(Ag,E)p=— < Ag, W) s, .
i€Z ez
This concludes the proof. O

Lemma 2.2.3. Foralla ¢ R andg € C and > 0,

K an,S:l + 87g, aW&?l + Ag >p.=0.
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Proof. By the second identity of (2.6.2), it is easy to see that < W§,, Wg >5,=0.
Then, Lemma 2.2.1 and Lemma 2.2.2 concludes the proof straightforwardly. O

Proposition 2.3. There erists a positive constant Cg, such that for all g € C,
L AG>p< Cpy K 879 g4 |

Proof. By Proposition 2.2, we have the following variational formula for < Ag 4.,

< Ag,aW§, + 57k >3
K Ag sy = su ’ Al
I b a,E]R,IIa)EC{ K CLWffl + 87h >y
<« Ag,S"h % <« Ag,aW§, + 87h 5
= max { sup{ L1 sup — ’ }}
e K STh gy atohec K aWgy + S7h g,
& Ag, STh 2 & Ag, WS, + S7h 7%
= ma.x{sup{ J BAY sup{ g ShL ﬁ’"”}}.

By Lemma 2.2.8 in the next subsection, there exists a positive constant C, such
that < Ag, S7h >>%,7S Cy € 87h >5.,<« 879 >g, for all g, h € C. Therefore, we

have
< Ag, S7h >3
sup{

hel & STh oy
On the other hand, by Lemma 2.2.2, we have < Ag, Wés,'l >>%,,),=<< S7g, Wﬁ‘}l >>?3’.’,
<K 879 > 5, < WY >3, Therefore,

T} < Cy K 8% >p, .

K Ag, W5, + S7h >4
Sup{ ¥ ”T
ree K W+ 57h >
2K W >py +2C0, < STh >4,
LK Wg, +87h s,

.

<K 879 g,y sup{
heC

Now, we only have to show that

sup{ ! } < oo, sup{- < 5h >pa
hee | < W, -+ STh g, * e < W5y + STh >

} < .

The first inequality follows from Proposition 2.2. To prove the second identity, since ‘
we have the first inequality, it is enough to show that

sup
t>2.heC
KBV P p =t W1 25 o

& S’Th >>‘B1-'y
{— b <o
<< WO,l + S'Th >>18"T

The triangle inequality shows that

\/<< Wi+ 87h 2py 2 /K STh gy =/ K WS 5, = (VEi—1)2 /K WS, 5,

61




for any h satisfying < S7h >>4,=t < W§, >5,. Then, we obtain that

<< SFYh >>ﬂ,fy sup{

t
su _
tzzi?ec {<< stjl + S7h >>ﬁ;r} T 2 (-\/f —1)2
KSR g y=t<WE > g,y

} < 0.

a

Now, we have all elements to show the desired decomposition of the Hilbert
spaces Hg,y.

Proposition 2.4. Denote by LC the space {L7g; g € C}. Then, for each § > 0,

we have
Hpy = LClp;,, + {P} — v}

Proof. Since {p} — pi} and LC are contained in Cy by definition, Mz, contains
the right hand space. To prove the converse inclusion, let h € Hg, so that
& h,p? —pi »gy= 0 and <« h,L7g »z.,= 0 for all g € C. By Corollary
2.2.1, b = a(@? — p}) + limg 0o SThy in Hg, for some a € R and hy € C and
by the assumption a = 0. Namely, < h >g,= limg oo € SThy, SThy >g,=
limg oo & SThg, L7hy > 5,4 since < SThy, Ahg >5,= 0 by Lemma 2.2.1. On the
other hand, by the assumption < h, LThg >5.,= 0 for all k. Also, by Proposition
2.3, sup, € LThy >g,< (Cpy + 1)sup, € SThy >g,= C is finite. There-
fore, € h Ppy= limp0o € SThy, L7y = limg oo K STy — b, LRy Ppa<
limg o0 4/Ch € SThy — h 5 = 0. This concludes the proof. O

Lemma 2.2.4. For each 8 > 0, we have

Hpy = L7C|n,,, © {p} — pi}-

Proof. Let a sequence gy € C satisfy limg oo L7gx = ap? — p2) in H s for some
a € R. By the similar argument of the proof of Proposition 2.4, limsup, ., <
S, STgr >p~= limsup, o, € L7gk, S7gr >5,= limsup;_,o, <€ Lgr — a(p? —
p2), 87gk >p4= 0 since < p? — pg, 8"gr 5= 0 for all k. On the other hand, by

Proposition 2.3, €« L7gr 3>p,< (Cpy + 1) K §7gg >34, then a = 0. O

Corollary 2.2.2. For each g € Cy, there exists a unique constant a € R such that

g+a(Pi—p) €TC in Hg,.
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2.6.1 Sector condition in Hg.,

In this section, to obtain the sector condition in Hg,,, we study the special structure
of the space Cy. Roughly speaking the space Cp is divided in the countable spaces
which are orthogonal to each other in L2(vg).

First, for each finite subset of Z, we define a subspace L, of C as a set of
functions f satisfying that f is an odd function as a function of p; for all 4 € A and

f is an even function as a function of p; for all 7 ¢ A:

Ly ={f €C; f((#' 7)) = —f((p,7)) for all i € A, f((p',7)) = f((p, 7)) for all i ¢ A}

where p* = (..., Pi—2, Di—1, —Pi, Dit1, Pit2--.).- Then, it is obvious that C = Dyaj<oolia,
and L, and Lz are orthogonal in L?(vg) if A # A. Next, we define L; as a direct
sum of Ly satisfying |A| = 4: L; = @)a=La. Obviously, L; and L; are orthogonal
in L3 (g} if ¢ # 7. :

Now, we prepare two easy but useful lemmas.
Lemma 2.2.5. Forall f,g € C, K 87f, Ag >p = — (T (Xo—Y5 1)) = T(Xo—
Y0,)C 1) g

Proof. By the first identity of (2.6.2),

— K S, Ag 2= f,Ag Dp= Y (1, Ag)s = Y (nf, (X; — Yijn)g)s

iEZ iR .

= Z (7if, (Xi+i — Yeriorirn1)g)s = Z (7, 7i{(Xe — Yiw+1)7-:9)) 8

1,kEZ 1,kEZ
= Z(fa (X — Vg1 )Tg)p = Z(ka; (Xo — Yo,1)Tg)p = (T5(Xo — Yo,)Tg) -
kCZ keZ

O

Lemma 2.2.6. For all nonnegative integersi, f € L; andk € Z, S7f,m.f € L; and
Af €Li1 ® Ly, Here Ly :=¢. Therefore, for all f,g €C,

S >py=) €S >py,
i=0
oo oo
K Sf, Ag>py =Y K S, Agis Dy + Y K L fi10, LG >p,

i=0 i=0

o0 oo
==Y g1, Afi Dpy + > K S fin, Agi Sy

i=0 =0
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where f; and g; are the projections of f and g to the space LL; respectively.
Proof. Straightforward. . O

Next lemma gives us the essential estimates to prove our main result in this

subsection.

Lemma 2.2.7. There ezists a positive constant C such that for all nonnegative
integers ¢, fir1 € Lyyg and ¢; € Ly,

|(Ffi+1 (XU - }/b.,l)rgi)ﬁ' < C\/((Xorfiﬂ)z)ﬁ((XOng)z + (Yb,lrgi)g)ﬁ'

Proof. For any f;y1 we have the unique decomposition of T'y,,, such that

Ffi+1 = Z Ffi+1,A
ACZ.,. 0eA |A|=i+1
where fii14 € La. Since we take the index set as {A CZy,0 € A, |[A| =i+ 1}, we
obtain the uniqueness of the decomposition. Note that all but a finite number of

fir1,4 are 0. Therefore

(Ffi-i-l (Xo — Yb,l)rgé)ﬁ = Z(rfi+1,A(X0 - YD,I)FQi)ﬁ

A

= Z(Z Tz fir1.0(Xo — Yb,l)rgi)ﬂ
A

ZEA

since for all z ¢ A and k € Z, (7_, fi11,a(Xo — Yo1)m0:)5 = 0.

By Schwarz inequality, the last expression is bounded from above by

\/ (55 e fraa)a((Xo — You) T2,

A zgA

Since Y, >,en T-zfit1,4 8 an odd function as a function of pg, by the spectral gap

estimate for the one-site dynamics, the last expression is bounded from above by

< c\/ (3 3 e fr )P (XoTge)? + (%01T)%)5

A zeA

< Oy (KoL 1)) 8 ((XoTue)? + (V5,825

for some positive constant C. Here, the second inequality follows from the relation

((XOFfi+1)2)ﬁ = ((Xo Z Ffi+1,A)2>!3
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= {000 e fina) + X0 S T firna) s

A zeA A zeA
= {Xo D o fina) e + {6 ZT—zfz-l-l A}
A z€A A zEA
2 ({Xo(z ZT—-zfi-i—l,A)} )s
A zcA
since Xo(35 3,en T-2fir1,n) € L and Xo(3 A Yrga T—zfirin) € Lisa. O

Now we show the main result in this subsection.

Lemma 2.2.8 (sector condition). There exists a positive constant C., such that for
all f,g€C,

| < 87f,Ag 35 | < /< STf 57 579 Spy.

Proof. By Lemma 2.2.5 and 2.2.7,

| <87, A9 >0 | = | - Z < 87gis1, Al g +Z & 87 fiy1, Agi gy |
i=0 =0
< E |(Pgi+1(X0 - Yb,l)rfi).ol'!' Z |(Ffi+1 (Xo — Yb.l)rgi).ﬂl
i=0 i=0

< CZ VG200 (T )2 + (YT

+ CZ \/((X(Jrfz-i-l XOI‘Q:) + (}/b,lrgi)2>}3

< O;\/<< 57F > pn< 579 Spr

since < S7f >p.= Y200 TU(XoT5,)%5 + {(Yo1T')?)a)- O

2.6.2 Diffusion coefficient

We now start to describe the diffusion coefficient. From Corollary 2.2.2, there exists
a unique number D¥(B)(= D(B) in Lemma 2.1.3) such that

Woi+ bry(ﬁ)(ﬁ% —p}eIC in Mo

Our purpose now is to obtain the explicit formula for D7. To do this, we follow
the argument in [17].
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Lemma 2.2.9. For each 8 > 0, we have
%ﬁ,-y = mb\rﬂ & {Wg!]_} = L’Y‘*ClNﬁ & {I’ngl}
where W, == W, — Wi and LY = 87 — A.

Proof. We shall prove the first decomposition since the same arguments apply to
the second one. Because we already prove in Lemma 2.2.4 that LC| A has a one-
dimensional complementary subspace in Hg,, it is sufficient to show that Hgs,, is
generated by L7C and the current. Let h € Hs, so that < h, Wy, >g,= 0
and < h,L7g >p,= 0 for all g € C. By Proposition 2.2, h = limj_,co{aW§; +
S} in Hp,y for some a € R and A € C. Especially € h >g,= limj 0 <
aW§ + 57k, aW§, + SThy, g 4= limy oo < aW§) +S7hg, aWo 1+ L7k >4, since
& aWgy + S7hy, aWg + Ahy >g,= 0 by Lemma 2.2.3. On the other hand, by
assumption < h,aWy; + LVhy >g.,= 0 for all k. Also, by Proposition 2.3, sup, <
aWo 1+ L7hy >p < 20° € Wo g4 +2(Cay+1) sup, € SThy 3>4.:= Ch, is finite.
Therefore, < h >p .= limg_, <K aW[fl + SThg, aWo1 + LV g = limg oo <
G,W(‘)5:1+S’th—h, aWy 1+ L7hy >3, < limsupy_,, \/Oh < aW(fl + 5%y —h >g, =
0. This concludes the proof. O

Now, we can define bounded linear operators T : Hg, — Hg,y and T : Hp, —
Hg as

T(aWop +L7f) = aW§, + S7f, T*aWg, + L7 f) = aW3, + S f

since € aWo1 + Lf s =< aWg, + L7 f g, =< aW5y + Sf g, + <
aWgh + Af >p,,. We can easily show that T is the adjoint operator of 7' and also
we have the relations

1

< T(p% - pg): W;,l >>ﬁﬂ':<< T*(p% —_ pg), Wﬂ,l >>ﬁ,"f= _E’

and
L T(p} —15), L7 f >py=< T*(p; ~ p3), L f >p,=10

for all f € Hg,. Especially, Hgy = L7*C|y, , ® {T(p3 — p3)} and there exists a
unique number Q7(8) such that

W+ Q" (BYT(pi —p5) €L™C in Hgy.
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Proposition 2.5.

1
T B T(p? - pd) 2y

(263)  QB) = 8 inf < Wi, = L*f 5,

Proof. First identity follows from the fact that
< T(p} = pg), Woy + Q' (BYT (0} — 1) >p0= —% +Q(B) < T(pi — p}) = 0.
Second identity is obtained by the expression
inf {< Wo, + QBT (¥} — 1) — L™f >p,} =0
since

inf (< Was + QBT - ) — L f >}

. % Ty _QQT(»B) Y(2)2 2_ .2
= S Wo, = L7 a0} = —5— + QV8) <Tlpi — 1) >p
= < Wy~ D0 f g1 - 2T L TO)

O

By a simple computation, we can show that <« T'g, g >3 ,=<« Tg,Tg >z for
all g € Hp,y, and therefore (pf — pf) — T{pf —p§) € L7*Cy since (pf —p5) — T(p} — 1)
is orthogonal to T'(p? — pi). By the fact we obtain the variational formula for
< T(pi — 1) >pr

Proposition 2.6.
(2.6.4) L T) = p3) »py= il € i —p = L7 >y
Proof. By the similar argument with the proof of Proposition 2.5, we have

nf{< 5} — g~ T(of — ) — Lf 5} =0

and
inf{<p} — 95 — T(p} — p) — LV"f >4}
= nf{< 7}~ = L¥f 50} = < (0 — 1) >
which concludes the proof. O
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" Theorem 2.3.

- 1
DBy =pRinf €« W, — L*f >g.= — - )
()6) B fec o1 f By 32 mffec < p% _ pﬁ — L*f 5.

Proof. By the definition, Wp 1 + D(8)(p? ~ p2) € L7C and therefore

. - . 1 -
< Wou+ DY(B)(wi — ), T (9 = 15) 7= — g5 + D(B) < T(pi — p5) >p7=0
So, DY(B) = Q(8) and we obtain two variational formula from (2.6.3) and (2.6.4).

|

Theorem 2.4. For any sequences Fy in C such that limy e, < Wy + D7(8)(p? -
75) — LFx p,=0,

Dv(g)
g

Proof. By the assumption, limg 0o < T{Wo,1 + D"(8)(p? — p3) — L'Fx} >p,=0
and therefore

lim [2(poV"(r1) — YouT'me)%) s + 3{(XoTrc)%)s] =

HK—=o0

Jm < WG, — STFx 3p,= DV(B) < T(0] ~ 13) gy -

Then, since D'(8) = Q(8) = el s, Ad < W5 — 87Fx .=
F{(PoV'(r1) — YouT 5 )} + 3{(Xol'r¢ )}, we completes the proof. 0

Next, we give an explicit expression of the variational formula for the diffusion

coefficient.

Recall that C is divided info two orthogonal spaces L, := U2 Ly and L, :=
U2Liit1. Consider two subspaces of Hg,, defined as Hj == STL|n;, ., @ {W§,}
and 'Hgn, = S'Y]I_JolNﬁ‘_f.

Lemma 2.4.1. For each 3 > 0, we have
Hay = E:’T L% %?3,1

and they are orthogonal to each other. Moreover, W(fl eHz.,, Af€H; ., if f €L
and Af € Hg,, if f € Ly.

Proof. Straightforward. . O
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Proposition 2.7.

B7(8) = 8 inf sup{rly (V" () ~ YasT)P)s + 5((Xo' )
(2.6.5) Sle geLo

1
$2((Wh = ANy — 130T s + 2 (KT}
Proof. We can rewrite the first variational formula for D7(8) in (2.3) as

B inf{< Woy — §7f >y + < Woy — Af a4}

= ﬁz llgf fll-.lf {<< .M’/U 1 S_Yfg >>ﬁ,fy + S’on >>ﬁ,fy

"I" << WU,I b Afe >>,6,")‘ + << Afo >>ﬁnr}

=B ;gg suf{<< Wor—87f »py—2< Wa‘}l —Af, 8795y — < 89 >}
e g€lo

= B inf sup Lyl (V" () ~ YouT))s + 5{(XoT) ] + 2((Wes — AN

JeL E.ge]L

3BT + ST )el)

2.6.3 Detailed estimates of the diffusion coefficient

In this subsection, we give some detailed estimates of the diffusion coefficient as a

function of «y. Note that they are not necessary to prove our main theorem.

Proposition 2.8. 3
. 7~ Yoy 0

DBy < =(V —_

(8) < 50V (rols + 3~

Proof. Take f = 0 in the variational formula (2.6.5), then we have

DBy < B SHP{ D3V (r1)*)p + 2(WhTy)s — ’Y[ {(YouTg)?s + S ((XOP ¥el}

geL,

= 27 ro)a + £ sup VAT )s — 215 = 3 (L),

g€lo

2
. A P
Since W5y = Y0,1(32),

b (AWAT)s = 5 (V0T )5 — 3(Xele))s)

g€L,
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1 1, ..
S;JP{(PO,Yng)ﬁ = 5{(¥01Tg)*)s — 5{(XoT)") 5}
g€L,
1 1 1
SUP{—-((YO 1Ty —p8)2)s + §<P§)ﬁ - §<(X0P9)2)/3} < 5(?93)5-
9€L,
|
Proposition 2.9.
D'T
(ﬁ) - 4ﬁ<7"o)
Proof. By the variational formula (2.6.5)
~ . 1 1
DY(B) > v8 Jnf {[5{(poV"(r1) + Y0107)")s + 5{(Xol's)*)al}-
Since > = (paV'(r1), por1)s and (poro, Xo(Ts))g — {pors, You(T's))s = (V'(ro)ro —
V'(ri)r1,Ts)g = 0 for any f € L,, we have
1 ,
7= (poV'(r1) — Yo,u(T'5), por1) g + {poro, Xo(Ts)) g
for any f € Lg. Then, by Schwarz inequality,
1 A ,
5 < Inf {(poV"(r1) — You(T1)) + (Xo(T5))) 6{(por1)? + (maro)*)a
2 . ,
= Z(rp)p inf ((pV'(r1) — You(T5))” + (Xo(T5))*)s
B feLo
O

2.7 Spectral gap

In this section, we prove the spectral gap estimates for the process of finite oscillators
without the periodic boundary condition, which is used in the proof of Theorem 2.7

in the next section. We use the following notation:

Euypl-] Z( +V(r)) = E].

”ﬁ
Recall that we assume V() to be strictly increasing in R, and satisfy

2V (r)

<
0<d-< 37

Sd+<00

70



for all » > 0. Under these assumptions, we can operate the change of variables
(p,7) = (£,0) as VE cosf = % and VEsin 8§ = sgn(r)\/V(r), and we obtain that

1
1 _
]R.? f(p: T)dvﬁ - /27Tﬁ_1Z5

for some g : Ry x [0,27] — R, which satisfies d_ < ¢(£,6) < dy for all £ and 4.
Here, f(€,6) == f(p(E,6),7(E,6)).
Let hg(z)dz be the probability distribution on Ry of p?/2 + V(r) under dv},

o0 2
/ F(E,8)e™PEq(E,8)dEdD
0 0

i.e.

fR 90" /2+V(r))dvs = /0 N 9(z)hs(z)dz

for any g : Ry — R. Then, since hg(z) = ﬁ 02“ e~Peg(x, 8)df, we obtain
mg=1Z;
d_
Ze_ﬁ"’ < hg(z) < -Z—te_ﬁm

for all z > 0.

With these notations, we prepare two lemmas before we state the main result
of this section.

Lemma 2.4.2. There exists a positive constant C such that

By s|(f — Buys[f])?] < CEy [(X1f)7]
for every E > 0, and every differentiable function f.

Proof. By simple computations with the change of variable,

02w(f(E?9) - EV1.E[f])2Q(E79)d6

EVl,E [(f - EUl,E [f])2] = 2w q(E 9)(19

and |
EVl,E[(le)2] _ UQW{Q'(E, 9);139)?(19, B)}2q(E, 9)0{9-
' 0 g(E,0)d8

Therefore, it sufficient to show that there exists a positive constant C such that

0 "(F(B,8) — Bu o) a(B,0)d6 < C ] (G (E, 0)q(2,6)d6
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for every F > 0 and every differentiable function f. Then, since d_ < ¢(E,f) < d
for all B > 0 and 6, and

27

[ (7E.0) - BaslPaE 00 < [ (70 -

i f(E,@)d@))zq(E,B)dG

0

holds for every E > (0 and every differentiable function f, the desired inequality
follows from the Poincaré inequality. d

Lemma 2.4.3. There exist positive constants 0 < ¢ < C' < oo such that
cE<aE)<CE
for all E > 0 and for i = 1,2 where oq(E) := By, ;[p}] and an(E) := B, ,[V™(ry)].

Proof. By the change of variables introduced above,

T 9 F cos 02q(E, 8)d6

Evl 21 — J0
B [pl] fOQ‘.T q(E, 9) d9

and it is easy to show that 3—;}5) < B, ;[p?] < 2E. Similarly,

2m sa2
2 2 2 [, Esin@?q(E,0)dd _2F

< =z = <=

Bl < G BV == pme o = @

and
0

d%— OQﬂQ(E?g)dG a dﬁ- .

2 2 [’ Esin6%(E,0)dd _ d_E
BuslV ) 2 gy Bl ) = 2 o(B,0)db
+

The following is the main theorem in this section.

Theorem 2.5. There exists a positive constant C such that

N N-=-1
(2.7.1) Euyslf1 SO By gl(Xf)1+ CN? Y Boy o [(Viersr f)]
k=1 k=1

Jor every positive integer N, every E > 0, and every differentiable function f satis-
fying B,y 5(f] = 0.
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Proof. We start the proof by the usnal martingale decomposition. Let Gy, be the o-
field generated by variables {&,...,&, Pk+1,Tht1,---,PN,Tn )} Define fp :=
E,,N‘E[ﬂgk] for k = 0, ]., e ,N. Note that fg = f and fN = fN(c.c:l, e ,(.C,'N). Then,

we obtain

N-1
EVN,E [fg] = Z EVN,E [(fk - fk+1)2] + EVN,E [fiz\’]
k=0

We analyze each term separately.

By Lemma 2.4.2, for any k

By pl(fe — fr41)?IGk] < CEyy p[(Xis1 fr)?1Gx)

and therefore we have

. N )
EVN.E [fz] < CZ EVN,E[(kak—l)g] + EVN,E [fIQV]
k=1 '

N
<C Z EyN'E [(ka)Q] + EUN,E[fJZV]‘.
k=1

So we are left to estimate E,, [fy] in terms of the Dirichlet form
bt B [ (Yerin fv)?).
Observe that Yi x11fv = peV' (re41) (ng — ngH) fw(&r,...,En). Since vy g is
the conditional probability of the product measure VQ’ ,

By w PRV (re1)* 1G] = By g, [P B, V2(r)] = aa(Exon(Exi).

By Lemma 2.4.3, the Dirichlet form S8~ By 5[(Yepr1fn)?], is equivalent to

=z

-1

Euns |Eeers { (05, — Be,,) f}] -

o
Il

1

Now the problem is reduced to the estimates of the spectral gap for the energy
. dynamics depending only on variables £,...,&y. Since we can write the probabil-
ity distribution vy g(-|Gn) on {(&1,....En) 1 3, & = NE} as the product measure
T, ha(@s)dz; (or TIY, hs(x;)dz; for any f) conditioned on the same surface, The-
orem 2.6 in the next subsection completes the proof. |
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2.7.1 Spectral gap for the energy dynamics

Consider the product measuré HN hy(z;)dz; on Rf and duy g the conditional
distribution of it on the surface Ty gz = {3 v, 2; = NE}. We have the following

expression

N
dpn,g = H h(zi)dAnB(Z1;. .., TN)

=1
where dAn g is the uniform measure on the surface Ty g.

Theorem 2.6. There exists a positive constant C such that
N-1 ,
Buysl9°] < ON? Z Eun e [$i$i+1 (009 — 8211 9) ]
i=1

for every positive integer N, every E > 0 and every differentiable function g :
Yne — R satisfying E,, z[g] = 0.

To prove this, we first refer Caputo’s result (Example 3.1 in [6]). Let E;; and
D;; be operators defined by E;;f = B,y ,[f|F:;] and D;;f = E;;f — f where Fy;
is the o-algebra generated by variables {2} gz ;.

Lemma 2.6.1 (Caputo, [6]). If d_/d, > (3/4)Y1, then there exists a positive
constant C such that

MNE[Q %Z_ .U»NE[(D ,Jg) ]

for every E > 0, every positive integer N and every differentiable function g :
EN,E — R satisfying EMN.E [g] =0 -

Next, we show that we can take a telescopic sum.

Lemma 2.6.2. There exists a positive constant C such that

N-=1
NZE.UNE[ 139)2]<CN2ZEP'NE[ u+19) ]
i,4=1 i=1

for every E > 0, every positive integer N and every differentiable function g :
2 N.E —F R.
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Proof. First, we rewrite the term F; ;g in an integral form

fo (BE )Rz + 25 0)((: + 23)(1 - )

El.?g( )
""$t+-'ﬂg
Ja{a(1 — t))dt and R!;z € RY is a configuration defined by

where =, = fol h(at
o if k£ 4, 7,
(Rf,j??)k = ¢ (z; + 21t ifk =1,
(mit+ a1 —1t) ifk=j.

Then, by Schwarz’s inequality we have

L [ (ol 2) — oo il + )00 + 25) (1~ D)a)

(Di9(2))* = (5
'—':1:,+x_.,
< = / {Q(R:gm) -
—zit+z; JO

Now, we introduce operators 77, ¢*7 and 6% : RY — R¥ fori < j as

(@)} h((zi + 2)O0h((z: + 2)(1 — £))dt

loy fk#4,7,
(m )= z; if k=1,
o bl gnd 50 = ghitl o gH L2 L o 17— LJ . With these
4%) — g(z) as

ghd = gi—l7 o gi-25-1
notations, for any ¢ < j, we can rewrite the term g(R!

{g(6% " (R; 1,3( a"tz))) -
+ {g(R;_, (6% z)) — g(e* 7 z)} + {g(0™'x)

=1(D;;9(z))?] from above by

g(Rfjjx) —g(z) = Q(Rg—l,j (Ui'julm))}
—g(z)}.

Therefore, we can bound the term E
Bl [ (065 (o 2) — ol

R{(z; + z:)0)h{(z: + ;) (1 — 1))d]
[ (672 = gl

S )}

(2.7.2) -|—3E'”NE[,_‘
h{(z: + a:,)t)h((:ct + 2;)(1 — ¢))dt]

+3Balz— [ {0(072) = o) (s + )i+ 21— )
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We estimate three terms separately. The last term of equation (2.7.2) is equal to

3B,y s[{9(c™ 7 z) ~ g(2)}?]

and therefore bounded form above by

i—2

3N By nl{g(m™+1z) — g(2)}?].

k=i

By simple computations, we obtain that

By {g(m**1z) — g(2)Y]
= By s [{g(m™*1e) — (Bpir19) (7™ 2} + (Brr-19)(#) — 9(2)}’]
< 2By s [{9(r**2) = (Bring) (@ 12)}?] + 2By, J[{(Brrir9)(z) — 9(2)}’]
= 4EF"N,E [(ch.k+19)2]-

By the change of variable with y = ¢!z, we can rewrite the second term of
equation (2.7.2) as

3Bl [ {0(B19) ~ 0P hllur + 5)00((05-1 + 1)L~ D)

= 3E,y 5[ B141(0"°) — 29B; 519 + 7]
= GEIJ-NE[Q ( JJ-Hg) ] - 6}-;’1.111\1.‘9 [(Djxj+1g)2]'

Similarly, the first term of equation (2.7.2) is rewritten as

3By ol / (9 (R, ) — g(Rey )P

Syp1tys
A((y5-1 + y3)0) A{{yj—1 + y5) (L — £))dt]
= SE#N,E[Ej.j+1({g oGt — 9}2)] = 3EH'N,E [{g oghi~l — 9}2]-

As same for the first term of (2.7.2), it is bounded from above by
12N I B, [(Drx19)?. Therefore, we complete the proof. O

Lemma 2.6.3. There exists a constant C such that

(2-7-3) E;Lz,E [(D1,29)2] < OE.uz,E [371932(8%19 - a:szg)2]'

for every E > 0 and every differentiable function g: g — R.

76



Proof. Since the both sides of (2.7.3) do not change if we replace g with g+a for any
constant a, it is sufficient to show that the inequality holds for every differentiable
function g : ¥y g — R satisfying Ej, ;[g] = 0. In particular, since B, ,[(D;29)%] <
E,, 21g°], it is sufficient to show- that -

EM2,5[92] < CE#z,E[xle(aﬂug - 8$2.g)2]'

Note that for any positive function f: 33 g — Ry and for any E > 0,

() Funslf < Pl < (5Bl

In fact,
Bposlf] = 5 [ £, (L~ 9E)RCEM( - OE)dt

where Ep = fol R(tE}h((1 — ) E)dt. Then, since 3—;&‘“ < h(z) < 3—1‘6*”’, the above
estimate holds. Now, all we have to show is that, there exists a constant C such
that '

E)\2,E[92] < CE)Q,E ['7"1562(8119 - 8329)2]

for every £ > 0 and every differentiable function g : Xy, z — R satisfying E, ;[g] =
0. Tt is the same statement of this lemma with V(r) = %, or h{z) = e™®. For this -
case, it is well-known that the estimate holds (see [12]). O

Lemma 2.6.4. There exists a positive constant C such that
Bun s|(Dii+19)"t € CEpy plivi11 (80,9 — 8,1,9)7]

for every positive integer N, ¢ = 1,...,N — 1, and every differentiable function
g: % NE — E.

Proof. By Lemma 2.6.3,
EMN,E[(Digi-l*lg)zl‘Fi.’erl] < CEuN,E [331-56“1(3%-9 - 39:”1 9)2|7:i,i+1]

holds. Then, by taking the expectation, we complete the proof. O
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2.8 C(Closed forms

In this section, to complete the proof of Lemma 2.1.6, we introduce the notion of

closed forms and give a characterization of them.

Let us define A = Ug>1.Ax, where A is the space of smooth functions F de-
pending only on the variables (p;,7;) _k<i<k- Given F € Ay we consider the formal

sSum

oo

Flp,r)= Y mF(p,7)

j=—00

and for every ¢ € Z the expressions
OF o
)= Y, Z-nF(p7)
Op; i—k<j<itk Opi

and

OF o
B_T'z(p’ T') = Z E‘-TjF(p’T)

i—k<j<itk ¢

are well defined. The formal invariance F(r;(p, 7)) = F(p,r) leads us to the relation
oF oF
2.8.1 — = ——(n .
(2.8.1) 5 ) = 5 ((p,7)

Remember that Y;; = p:0,, — V'(r;)0p; and X :=Yj;. Given F € Aand i € Z,
X; (f) and Y.},,Hl(ﬁ) are well defined and satisfy

X:(F)(p,r) = Xo(F)(p,7),  Yigss(F)(p,7) = Yo, (F)(p,7).
Now we consider the following set
By = {(Xo(F), Yo,(F)) € L*(vg) x L*(vp) : F € A}.

We denote by $s the linear space generated by the closure of Bs in L?(vg) x
L*(vg) and (0,poV’(r1)). First, we observe that defining a vector-valued function

—~ —~

£ = (€9 €Y as (Xo(F), Yo1(F) for F € A or (0,poV’'(r1)), the following properties
are satisfied: '

i) Xi(1;6%) = X;(mg®) forall ¢,j€Z,
) Yiir(m8') =Y n(ngt) forall i,j€Z,
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i) Xi(r€) = Viga(ri€®) i {5} 0 {57 +1} =0,
?;’U) pz[Xz(thl) —_ Y;',i_;_l(?‘,;fo)] = VI(T'i+1)TiEO —_ V’(’n‘"ﬁ)ﬁ'fl for all ¢ € Z,

iU) V'(?"q:+1)[Xz'+1 (Tifl)—yi,i+1(7'i+1§[))] = V”(’n‘"i+1)Pi+1T@§1—V”(?‘ i+1)pi7¢+1§0 for all
1€ Z.

Now we can claim the desired characterization.

Theorem 2.7. If £ = (€°,&Y) € L3(vg) x L*(vg) satisfies conditions i) to v) in a
weak sense then £ € Hp. o

Proof. The goal is to find a sequence (Fy) n»1 in A such that (€0 — Xo(ﬁr),g_l —
Yg,l(f‘;r)l) converge to (0, cpoV'(r1)} in L*(vg) x L*(vg) for some constant c.

First, observe that for a smooth function F € Ay, we can rewrite Xy(F) and Yg,(F),
by using (2.8.1), as

k .
(2.8.2) > X(F)(r=ip,7)).
i=—k -
and
= ) 8F oF
289) 3 ViealPIrsp)~(Vrmi) g ) (rsp (b, ) Grestnr)
respectively.
We define
m (N} _ E m| T, 1 al pz? . v
P = BleriPe | gy 30 O V)

for m == 0,1 where £(p,7) = 7:£™(p,r), Fu is the sub o-field of Q generated by
(pi, 7)Y _y and ¢ is a smooth function with compact support such that go(% +
1(8)) = 1 (we need this cutoff in order to do uniform bounds later). Because vg is
a product measure and ¢ satisfies that

N 2 )
X (ZNl—i- 1 i;v{% + V(Ti)}) =0

for —-N<i<N-1and

N

1 P
Yiiip (ZN 1 Z {E + V(n-)}) =0

i=—N

79



for —N <i < N—1, the set of functions {(""")}_y<icn and {(€")} _n<icy_1 even
satisfies the conditions i) and v) on the finite set {—N, —N+1,..., N}. Therefore, by
the similar argument in Appendix B in [12], there exists a Fy-measurable function
g™ such that

Xi(g(N)) — f?’(N) for —N<i<N,

(2.8.4)
: Yi,i+1(9(N)) = fil’(N} for —N<i<N-1.

Because E, [¢™|E-n + - - + En] is radial and the integration was performed over
spheres, V) = g™ —E, [¢™|E_n+ - -+Ey] is still a solution of the system (2.8.4).
So we can suppose that E,,[¢™|E_y +--- + Ey = E] = 0 for every E € R*.
Define

(W,k) _ B E. [0 v’ 2,(2N)| £
g AN + k)dg valPZ N k=1 V' (TN 1) 9 | Fivaa]
and
4 3N/4
’g‘N = Z g(N,k)
k=N/2

where ¢g := E,, [V'(ro)?].
Using (2.8.2) and (2.8.3) for g\™*) and then averaging over k we obtain that

o0
Xo{ > Tja‘N) =§°+¢%[Ijir+fﬁ+1%+fﬁr]
and
Yo [ 32 %—fq‘”) = Ly S B Ries )

where

—_—— o —

3N/4  Nik—1

Iy= Z Z T—'iEVﬁ[V’(TN+k+1)2P2—N—k_1(f? A2N) “f?’(N+k))‘P(5—2N,2N)|fN+k], ‘
k=N/2 i=—N—k

—— o ——

3N/4  N+k—1

I = Z Z T—i{(gio AR f? )EU,B [V’(TN+k+l)2p2_N~*kﬁ199(5—2N,2N)|~F Nk )
k=N/2 i=—N—k

—— e~

3N/4  N4k-1

L= Z z (P, )i B [V (rivens1) P v ((E-aman) — 1| Fivasl,
k=Nj2 i=—N—k

3N/4

1 0,(2N
Ij"{r = k_Z:N/z m?’ —N-kEuﬁ [V'(?"N+k+1)2P2_N—k—1§N(+2k )‘P(5¥2{\’=2N ) F k),
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——T—

3Nf4  N+k—1

L Hl k
Iy = Z Z il [V (rNake1)?0% v (& @GN ¢ W ))90(5—2N,2N)|]:N+k],
k=N/2 i=—N—Fk

3Nf4  N+k—1

=" 3 & — B [V (rnanar) 0 v i1 0(E_aman) | Fel b,
k=N/2 i=—N-k

3N/4  Ntk—1

T = Z Z £ (p, )iy, [V’(TN+k+1)2p2—N—k—1(‘10(5—2N,2N) — D Fw-u];
. k=N/2 i=—N-k

aN/4

2}
Ry = Ton—k{V TV kst g,
N k=ZN/2 { ( +k+ )8}9N+k

3N/4

R% = Z TNh+1{P-N-k-1
k=N/2

gy

Or_n—k

Here the hat over the sum symbol means that it is in fact an average, and &_onon
is equal to g S v '

The proof of the theorem will be concluded in the following way. First we
show that the middle terms I}, I%, I3, I3 and J, J%, J3 tend to zero in L%(vg).
Then, the proof will be concluded by showing the existence of a subsequence of
{—R}; + R%}n>1 weakly convergent to cpoV’(ry) with some constant c.

For the sake of clarity, the proof is divided in three steps. Before that, let us state
two remarks.

Remark 2.4. We know that for m = 0,1, E,,[£™|Fn] LN &M, i.e given € > 0 there
exist Ng € N such that

Eyllgm =™ <€ if N> N
Moreover, by the translation invariance we have

Bl - VP < e if [-No—1,No+4] C[-N,N).

In fact, given 7_;A € Fn
[ & r-itp,rwatapar) = f & o, ra(dpdr) = [ o rvalapar
A 7—;(4) T.i(A)
= [ &t raldpr) = [ € (o, ryva(apar).
A A
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In addition, since E:.n‘(N} (r—:) € FNgt, we have

¢, (12) = By, 60| Yy

and therefore
E,llem — &M = B, lle™ — €M ()2 < By, lle™ — €M),

Remark 2.5. Besides a Strong law of large numbers for (pZV'(r;)%)icz we have

2
7] Oﬁ
B, | (S ver-2) | <%

for some finite constant Cg.

Step 1. The convergence of the middle terms to 0. The convergence to
zero as N tends to infinity of I3, and I% in L?(vg) follows from Schwarz inequality,
Remark 2.4 and the fact that v is a bounded function.

Using the symmetry of the measure about exchanges of variables, I3 can be rewritten
as

——— r——

——
3N/4 Nik-1 N—k

@) > > B> Vi) ok (0(E—avan) — DI Fnarl(7i(p, )

k=N/2 i=—N—k j=1

and then we decompose it as I - %”Iﬁr, where I3, and I§ are respectively

———

———
3N/4 Nik—1

N, 2
k=N/2 i=—N—k

———

Nk
Eys[ Y AV (rvnes)*pin—iy — %}(‘P(S—QN,ZN) — D|Fn](1=s(p, 7))
C =1

and o

————
3N/4  N4k—1

Y Y By le(€avan) — UFnerl(roilp, 7).

k=N/2 i=—N—k
For the first term, observe that

————

————
3N/4 Ntk—1

IV <@ Y, D B,

k=N/2 i=—N-k

N-k

Z{V ("'"N+k+:r) P-N k—j — —}

=1
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and the expectation inside the last expression is bounded by —Ng-f-,;, 80

Cpg
(1R 125y < —ﬁllﬁolliz(uﬁ)-

For the second term, written explicitly the conditional expectation we see that |I%|?

is bounded by

SN/E iRl
|£O p7r)|2 Z E /l(lo 4:N+1 ]‘i"')_l' dyns
k=N/2 i=—N—k |_7|<N+k
We rewrite the integral part as
1
f|€0 ] > (5' E.B)+4N+1 > (&j4i — Eg) + Eg) — 1%dyg
[Fl=N+k [fISN+k

where Fg = §1~‘;+1,b(5). Using the fact that ¢ is a Lipschitz positive function bounded
by 1 such that Cp(Eﬁ) = 1, we obtain that |7%|? is bounded from above by

e Y [l 3 - (8314- Bp)dvg
k=N/2 i=——N—k av+ 1 |5]>N+k 4N +1 FISN+E

where a A b denote the minimum of {a,b}. So, taking expectation and using the
Strong law of large numbers together with the dominated convergence theorem, the

convergence to zero as N tends to infinity of I3 in L*(v4) is proved.

Same arguments can be applied for J, J% and J§,. For I%, we can bound the

L2-norm of the term from above by fv—ﬁ||§°||%2(,,&) for some constant Cj.

Step 2. The uniform bound of the LQ(V,@)[)/ norms of the boundary

terms.

Remember that Rj is defined as

/L
1 2,
v VI Ey 2 y] 2 (2N\) F :
k;\w—z( NiE) AV (rvse ) By P2 vt V(P g 11) owend | Fvsl}

——————

Wi
k=N/22(N + k)
TNtV ("Nt 1) By [02 vkt V(v b 1) Yk Moot 190 | F v }

——
3N/4

LD IE s oy~ Z(N—i-k)

k=Ny/2
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g | Fyal}-

T—N—k{pN+kV'(?"N+k+1)Eu,3 0% gt V' (TN 011) Orwrt

By Schwarz inequality and (2.8.4), we can see that the L*(vg) norm of the first
. . . . . C

term in the right hand side of the last equality is bounded by Z7||¢ Y|z2(vg) for some

constant Cg. After an integration by parts, the second term can be written as

(2.8.5)

——

wa
k=N/22(N + k)
TNk {PN stV ("N k1) B [P2 vy (BV (rvais1)® = V(1)) 9| Fvs] T

Using the symmetry of the measure again, the conditional expectation appearing in
the last expression can be rewritten as

—————

2N

Eully i D, (BV/(r3)? = V() (g®™ o nl V)| Fry ]
J=N+k-+1

N+k+1

where 7 stands for the exchange operator of r; and ryypy1. After that, we

decompose the last expression as the sum of the following two terms,

TN
Byt n iy >, (BV'(rs) = V"(r;))g™ | Frsl,
j=N+k+1
and
Ton
Ev, 0%y k1 Z (BV'(r;)* = V"(r;))(g*™ ° ai VR _ gCN)Y| Py
j=N+k+1

The square of the last expressions are respectively bounded from above by

————

aN
CaNT'By, [(g® 2| Fiveal, CoBul D (9@ o N HH — gBNYY 1 4]
F=N+k+1
for some constant Cp. Using Schwarz inequality we can see that the square of each

term of the sum is respectively bounded from above by

C m
N_iE”ﬁ [( Z pir*l“k) (9(2N))2]:
k:N/2

84



and

, SN/ =
N_B? Eu, [Phan Z (g o gil+k+1 _ g@N))2]
k=N/2 J=N+k+l
C.é ’BTV}-Z _—_2—1-\;_- j—l
<S5 0 Bulphe Y 20— (N+k+D} Y (P omttt - gy
k=N/2 . =N+l =N1EIL
. 'm 2N
< Fﬁ Z Ey, [Pris 2 (g@M) o g+l _ g(M)2]
k=N/2 i=3N/2+1"
~aN/d o

for some constants Cg and Cj. One can now estimate Ek=N/2pN 1+ uniformly be-
cause of the cutoff. Using the spectral gap estimate (2.7.1) proved in the last section,

we can bound the first expression by a constant.

Finally, we state that we can bound the term E,, [(g®") o rf#1 — g2M))2] by
the Dirichlet form of g@®¥ which concludes the proof.

Proposition 2.10. There ezists some constant C such that for all f : 2 > R,
By, [(f omp™ — )] < C{E, [(Xif )] + Bup [(Visra )]}

Proof. The change of variables used in the last section and simple cbmputations
conclude the proof. O

Step 3. The existence of a weakly convergent subsequence of { R} }n>1.
Firstly, observe that the expression (2.8.5) is equal to

pOVI(Tl)hJI\r(PowTOJ oo DoTNJ2, T—TN/2)

where
N4 .
hy = Z 2(N -+ k) T_N_kEVﬂ [paN—k-l(ﬁV'(?’ N+k+1)2 - V”(TN+k+1))g(2N) | F i)
k=N/2

On the other hand, we had proved in Step 2 that {poV’(r1}h} }n>1 is bounded in
L*(uvg), therefore it contains a weakly convergent subsequence {pgV'(r1)hn}nr. We
can conclude in a similar way that {h} }n>1 is bounded in L?(vg), therefore {h}, } n-
contains a weakly convergent subsequence, whose limit will be denoted by h. It is

easy to see that
e '
||Xih}v||L2(Vﬁ) < ﬁH‘SDHL?(u,a) fOT 1 € {0,—1,—27-. }
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and

o .
Yisnhyllie, € Hll€ M@y for  {5i+1}C{0,-1,-2,---}

which implies that X;h = 0foré €C {0,-1,-2,---} and ¥; ;1 1h = 0 for {i,i+1} C
{0,—1,-2,---}. Since the function h depends only on {py, 9, p-1,7—1,P—2,7—2 - }
one can show that A is a constant function, let’s say ¢. Taking suitable test func-
tions, we can conclude that in fact {poV’(r1)h} }n converges weakly to cpoV'(r1).
This proves that for every weakly convergent subsequence of {R}}y>; there exist
a constant ¢ such that the limit is cpoV’(r1). Exactly the same can be said about

{R% N1 O
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Chapter 3

Spectral gap for multi-species
exclusion processes

3.1 Introduction

A key estimate needed for hydrodynamic limits is a sharp upper bound on the
relaxation time (inverse of the spectral gap) of a process (ef. [14]). In recent works,
the spectral gap for the multi-color exclusion process has been studied (e.g. [6], [8]).
A distinctive feature of the multi-color exclusion process is that the spectral gap
depends on the density of vacant sites, which is not the case for the one-species simple
exclusion process. In particular, the spectral gap vanishes as the density of vacant
sites approaches 0. This degeneracy of the spectral gap was first shown by Quastel
in [21] for the simple exclusion process with color, which was introduced by himself.
In [6] and [8], the non-homogeneous multi-color exclusion process was considered
and they estimated the dependence of the spectral gap on the density of vacant
sites in detail. The aim of this paper is to extend the previous results to a multi-
species exclusion process. Namely, we consider a system of several species of particles
having their own dynamics, or precisely, their own jump rates and jump ranges.
In physical point of view, it is a system of several constituents having physically
different properties. We study a process in homogeneous and non-homogeneous
hypercubes of Z¢ both.

The homogeneous multi-species exclusion process is defined as follows. Let us
consider the number of species r > 2 and the d-dimensional cube A, := {—n,—n +
1,..,n—1,n}¢ withn > 1 and d > 1. A configuration is denoted by n € T, :=
{0,1,2,...,7}* with interpretation that n(z) = 0 means that the site z is empty,
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whereas n(z) =14 for 7 € {1,2,...,r} means that z is occupied by a particle of the
i-th species. Each particle of the i-th species at z jumps to y at rate g(¢)pi(z, y) if
y is empty. Here g() is a positive constant representing a speed of the i-th species
and p;(-,-) is a transition probability of the i-th species on Z¢. p; is assumed to be

finite range, translation invariant, irreducible and symmetric for all 7.

It is obvious that the numbers of particles of each species are conserved under
the dynamics. We define X, for k& = (ko, k1, ..., &) with 3 ;_, k; = |A,| as a set of
configurations with k; particles of the i-th species and kg empty sites: ¥, :={n €
En; ZzeAn ].{%:i} = kq; for all 0 <iZ T}.

One of the difficulties in studying the multi-species exclusion process (or even
the multi-color exclusion process) is that there exist some choices of {p;}[_, where
for the dynamics defined by {p;};_;, £n is not an ergodic component even for large
n and ko > 1. We give two examples of such {p;}_; below (Example 3.1, 3.2). We

-also give a sufficient condition for the local ergodicity, or precisely, the following to
hold: for large enough n, X, is an ergodic component if ky > 1 (Proposition 3.1).

Under the assumption of the local ergodicity (Assumption 3.1), we prove that
the spectral gap for the homogeneous multi-species exclusion process is of order £3
where pp = I"E»_I is the density of vacant sites (Theorem 3.1). Moreover, we show

that Assumption 3.1 is crucial for the estimate (Proposition 3.2).

The non-homogeneous multi-species exclusion process is a multi-species exclu-
-sion process on a disordered lattice. Let {g; }zeza be a collection of occupation proba-
bilities satisfying € < g, < 1—¢ for some ¢ € (0, %] In the non-homogeneous dynam-
ics, each particle of the i-th species at site  jumps to y with rate g(3)p;(z, ¥){(1—¢z) gy
if y is empty. '

In [6], Caputo considered the mean-field type non-homogeneous multi-color ex-
clusion process, namely the case with g(¢) = 1 and p;(z,y) = 1/|A,| foralll < i < 7.
He showed that the spectral gap is of order py.

In [8], Dermoune and Heinrich considered the non-homogeneous nearest-neighbor
multi-color exclusion process, namely the case with g(¢) = 1 and pi(z,y) =
1 mae; cjeqles—ysl=13 for all 1 <4 < r. They showed that assuming {g; },ez¢ to be
periodic, the spectral gap is bounded from below by Cpgn~2 with a positive constant
C.

In this thesis, we study the case with more general g(i) and p; assuming the
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local ergodicity (Assumption 3.1). To obtain a lower bound of the spectral gap,
we give two sufficient conditions for {g, }zcze (Assumption 3.2). First condition is a
weaker version of the condition assumed in [8]. Second condition is a rather different
condition. Assuming either of them, we show that the spectral gap is bounded from
below by Cpon=2 (Theorem 3.2). It is worth to point out that the second condition

will hold almost surely for realizations of some i.i.d. random disorder.

This chapter is organized as follows: In Section 3.2 we introduce our model
and give two examples of jump ranges for which the local ergodicity does not hold.
Then, we state our main results. In Section 3.3, we give proofs of main results. In
Section 3.4, we give proofs of lemmas used in Section 3.3.

3.2 Model and results

Let g : {0,1,...,7} — R be a function satisfying g(0) = 0, g(¢) > 0 for all i €
{1,...,r} and {p; }1<i<- be finite range, translation invariant, irreducible symmetric
transition probabilities on Z¢. The generator acting on functions f: %, — R as

Lad)) = Y Po(@,9)9(0a) Lm0y ™™V ()
T,YyEAn
defines a Markov process on ¥, called multi-species exclusion process with parame-
ters (g, {pi h1<i<r) where po(z,y) = 0 by convention. Here, 7%¥ is an operator defined
by '
T f(n) = f(7Y) — ()

and n®¥ is the configuration obtained from 7 letting 7, and 7, be exchanged:

n, Uz=z

™)., =q m ifz=y
1, otherwise.

One may expect that if n is large enough, then each of £, for k = (ko, k1, ..., &)
with 37_, k: = |A,| and kp > 11s an ergodic component of L,,: But there is a counter
example as follows:

Example 3.1. Let d = 2 and r = 2. Suppose that the range of p, is the set of
nearest neighbor sites and that of p is given by the legal knight-moves, i.e., {z € Z?
piz) >0} ={z € Z? : ||z| = 1} and {z € Z% : pa(z) > 0} = {(£2,£1), (£1,£2)}
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Figure 3.1: This figure corresponds to Example 3.1. The black circle corresponds
to a first-species particle and the gray circle to a second-species particle. In the
left and center figures, the white circles correspond to the range of the first-species
particles and the second-species particles respectively. In the right figure, the white
circle corresponds to a vacant site.

where ||z|1 == oL imi| for & = (z1,22,...,24) € Z% First, we consider the
ergodicity of a hyperplane T, with n 2 2 and kg = 1. If there is no particle at
origin, the sites {z = (z1,22) € Z* : max{|z1]|,|z2|} = 1} are occupied by second-
species particles, the sites {x = (z1,%2) € Z*? : max{|zi|, |72} = 2} are occupied
by first-species particles, and each of other sites is occupied by one of a first or
second species particle, then any particle cannot move. It implies that X, x should
be diwvided into several ergodic components. Note that in this case, kg = 1 is not
essential. Let {z; = (2:1,7i2)}fq C Ay be a sequence satisfying |w:) — ;1| > 4 and
|Ts0—2;0| >4 forall1l <i < j < k. Suppose that there is no particle at {z;}5_,, the
sites {z;+2z:1 <i < k,z = (2, 22), max{|z|, |22|} = 1}NA, are occupied by second-
species particles, the sites {z; + z:1 <i < k,z = (21, 22), max{|z|,|z|} =2} NA,
are occupied by first-species particles, and each of other sites is occupied by one of a
first or second species particle. Then any porticle cannot move again. This yields,
if ko < L%—liﬁﬁ, Znk should be divided into several ergodic components.

One may still expect that if p; = p» = ... = p. and n is large enough, then
each of &, for k = (ko,k1,..., k) with >7_ k& = [Ay| and ky > 1 is an ergodic
component of L,. But there is also a counter example as follows:

Example 3.2. Let d = 2, 7 = 2 and p1 = py satisfy the condition {x € Z* :
p(z) >0} ={z € z*: pa(z) >_0} = {(£1,+1),(-2,1),(~1,2),(1,-2),(2,-1)}.
Consider the ergodicity of a hyperplane T, with kg =1 and ky, ks > 1. For each
configuration in such Y., the particle placed at upper right corner is frozen at the
corner. Precisely, the particle placed at upper right corner can move only to its left

lower site, but there is one vacant site so if the particle tries to move again, then
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Figure 3.2: This figure corresponds to Example 3.2. The black circle corresponds
to a first-species or a second-species particle and the white circles correspond to the
range of these particles.

it has to go back to the upper right corner. (Also, the particle placed at lower left
corner s frozen at the corner.) Therefore T, should be divided into three ergodic
components if ky =1 or ke = 1, and into four if k1, ke > 2. Note that, in this case,
ko = 1 s cructal. It is not difficult to see that if ky > 2, then L, is an ergodic
component for n large enough.

To avoid the case where the spectral gap vanishes, from now on we make the
following assumption:

Assumption 3.1. There exists ng such that for eachn > ng and k = (ko, ky, ..., k)
with Y. ki = |An| and ko > 1, Tox 18 an ergodic component of Ly,.

It should be possible to replace the condition in Assumption 3.1 by a condition
for the ranges of {p; }1<i<,. However it seems difficult to give an equivalent condition

so far, hence we give a following sufficient condition:

Proposition 3.1. Suppose that one of the following two conditions is satisfied:

(i) d>2 and pi(z) > 0 for all ||z|1 =1 andi € {1,2,...,7},

(it) pi(z) > O for all ||z]L = 1 and i € {1,2,...,7}, and for each i € {1,2,...,7},
there exists I; € Z¢ such that ||li]l; > 2, m(L) > 0.

Then Assumption 3.1 holds.

Next, we define the spectral gap precisely. Let v, x be the uniform probability
measure on X, for k = (ko,ky,..., k) with 3" & = |A,|. It is easy to see that

H

L, is reversible with respect to vy x. Under the Assumption 3.1, for n > ny, the
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restriction of L, on ¥,x which is denoted by Ly is irreducible if kg > 1. The
spectral gap of —L, x is given by

— e EVn.k [f(_Ln)f]
(3.2.1) A_Mm@,Jg{ AT

si1-0).

In what follows C, C" etc. represent constants that do not depend on n nor &.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then, there ezist positive
constants C and C" such that for all n > ng and k = (ko,ky,...,kr) salisfying

El.":é ki = |An| and ki k; > 0 for some 1 <i<j<r,
4 Ao

Remark 3.1. Consider o hyperplane X,k satisfying ki = 0 for all 1 < ¢ < r but
one. Then the'process restricted on X turns out to be a symmetric simple ezclusion
process. Hence the spectral gap does not depend on the density of vacant sites and

it is of order n~2. This estimate is true even for the non-homogeneous case defined
below (See [22]).

We emphasize that Assumption 3.1 is essential to the estimate of the dependence
on the density of vacant sites:

Proposition 3.2. There exists a multi-species ezclusion process satisfying the fol-
lowings: (i) For large enough n, n is an ergodic component of Ly, if kg > 2,

(ii) For alln € N, X is divided into several ergodic components if kg = 1 and
kiyk;j > 0 for some 1 <i < j <r (especially, Assumption 3.1 does not hold),

(iii) the spectral gap A(n,k) < Cmin{%, o5} if ko > 2 and ki, k; > 0 for some
1<i<j<r.

Now we move on to the non-homogeneous case. We shall use the notation

&x(n) = Lie>1y

for x € A, so that £(7) € {0,1}*» denotes the configuration of occupied sites
associated to 1. Let {g;,z € Z¢} be a collection of occupation probabilities. All
throughout this paper, we assume that for some € € {0, 3], we have

e<qg<1l—¢ forallzcZ%
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Given a collection of occupation probability {q;,z € Z%}, we define the jump

rate c by ,
cx,y(n) = qy(l - qff?) 1f (gz(ﬂ): gy(ﬂ)) = (17
0 otherwise.

1},
0),
The generator L, acting on functions f: 3, - R as

(L)) ==Y Po(®,4)9(0e) oy (M) 7™ £ ()

z,yEA,
defines a Markov process on X, called non-homogeneous multi-species exclusion pro-
cess with parameter (g, {p;}i_1, {g }oeze) Where po(z,v) = 0 by convention. When
g, does not depend on z, we say that we are in the homogeneous case. Actually, in

that case,
9(Ma)Czy = 9(ns)a(l — Q) lin,=0)

for some g, therefore the notation L, is consistent with previous definition except

multiple constant g(1 — g).

We now describe reversible measures of the process. Let (8;)1<i<» be a proba-
bility distribution on the set {1,...,7} and p be the product probability measure on
32, defined by

T

pln) =T I1 (&P - ) ~5).

=1 TCAn

where V;(n) is the number of particles of the i-th species on A,, for a configuration
7. We denote the canonical measure associated to &k = (ko, k1, ..., kr) by var(:) :=
p(+|Zpn 1) which is indeed independent of the choice of (8;)1<;<r- In the homogeneous
case, Vnx is uniform measure on X, so that the notation is consistent with the
previous definition.

It is easy to see that the generator L, is reversible w.r.t. g and the same is
true for the measure v, since vy k()¢ (1) = U p(N™Y) ey (Y) for all z,y and 7.
In the same way as the homogeneous case, under Assumption 3.1, for n > ng, the
restriction of L, on X, which is denoted by L, is irreducible if Xy > 1 and the
spectral gap of —L,,;, is given by (3.2.1). _

To give a lower bound of the spectral gap, we need the following assumption
for {gs}peza:

Assumption 3.2. FEither of them holds:
(i) There exists ¢° € [e,1 —¢] and T € N such that for any z € Z%, {y € 2Tz + Ar:
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gy = g} is not emply.
(ii) There exists M € N such that #{¢; : z € Z%} = M.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Then, there exists a
positive constant C such that for alln > ny and k = (ko, k1,..., k) satisfying
E'aT:D ki = |An|, 26

An, k) = CE'

3.3 Proofs of the main results

3.3.1 Proof of Theorem 3.2

First we recall the following result due to Caputo [6]. (See also references therein and
[7]). Given a collection of occupation probability {gz }zczd, we define the mean-field

type non-homogeneous multi-color exclusion process by the generator

Ly f(n) = l | Z oM™ f(n),
™ zychn
where ¢, is given by (3.2). Then it is easy to see that L} is also reversible w.r.t.
Vn,-defined in the previous section. The restriction of L7 on ¥, which is denoted
by L7 is irreducible if &y > 1. The spectral gap of —L7}; is given by

F (=L
By, i [/7]

Proposition 3.3. ([6]) There exist constants C1 = Ci(e) and Cy = Ca(e) such that
for alln and k = (ko, k1, ..., k) satisfying > ;o ki = |Anl,

Am = Am(n, k) = i?f{ Zok

Eun,k[f] = 0} -

CIPO < Am(n:k) < C"'2100-

Note that Proposition 3.3 was proved without Assumption 3.2.

According to this result, to get the lower bound of the spectral gap in our
main theorems, it is enough to bound the term B, [f(—L7)f] from above by the
Dirichlet form of our process multiplied by n? and some constant. In order to do it,

we use following two lemmas.
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Lemma 3.2.1. Suppose that Assumption 3.2 holds. Then there exists a positive con-
stant C = Cle,d, T) or Cle,d, M) such that for all n, k = (ko, k1, - . -, k) satisfying
Soioki=Ag| and f 1 Z, o R

(331) B, [f(-L7)fl<Cn® ) Yo Bupllie=n 7T (),

2€An ||2]1=1,22+2EA,
1t follows immediately from this assertion that we have the desired bound if
gli)=1land {z € Z?: ||z|h =1,2} C{z € Z%: pi(x) > 0} forall 1 < i < 7.
The next lemma claims that according to Assumption 3.1, we can bound each
term of the RHS of (3.3.1) corresponding to x from above by the Dirichlet form of
" the generator restricted to a certain neighborhood of z multiplied by some universal

constant. To state the next lemma, we introduce some notations. Define a shift
operator 7, by

(Ta))z = Noue for z,z € Z°,
mA=z+A forzeZ%and Ac Z%

For n > np and = € A,,, we define T = Z(z) € A, by

_ _ [ min{n~— ﬁg,mi} ifz >0,
L ma,x{nu —n, mi} if z; < 0.

Obviously, 73, € Ay and {z + 2; 2|1 = 1,2, z+ 2z € A} C ey, since we can
regard ng to be greater than or equal to two. Note that if ||z — z||; > np for all
z & A, then T = z.

Lemma 3.2.2. Suppose that Assumption 3.1 holds. Then, there exists a positive
constant C = Ce,d, ng) such that for alln, k= (ko, k1, ..., k) satisfying > ; o ki =
|Anl, F:Zpr 2 R andz € A,

Z E”n,k [1{7’1‘x+z=0} (ﬂ-m,m-i-zf(n) )2]

zx+zEA,|z||=1,2

<’ Z Evn,k [pT,'w (w: 1)) l{nu =_0} (Ww’vf(ﬁ))Q] .

WWETEAR,

We will prove these lemmas in the next section.

Proof of Theoremn 3.2. From Proposition 3.3, Lemma 3.2.1 and Lemma 3.2.2,
1
Vil F] < C%Eun,k [f(—L7) ]
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Po Ty ||2]1=1,2iz+2CAn

SCZ3" N Bulpnn0,0) -5 ().

Po TEAn WVETE AR,

Since for all w € Aq, [{z;w € TaAn, }| < (dng + 1)4, the last term is bounded from
above by

C= 3" By ulpn (w,0)Lig=oy (7 f ()]

o wW,vEAR

Here a constant C changes from line to line. Now, since

1 cy
p’?w (w:'u)l{m,:()} S max — v (?7)

1gigr Q(Z) &2 Prw (w7 ’U)Q(ﬂw)

it is easy to see that

TL2
Vi lf1<C— > B x[Pre (@, 0)g (1) (1) (77 £ (m))]

wwEAn
ﬂ2
=C—E,, [f(—Ln) /]
£o

for some positive constant C. |

3.3.2 Proof of Theoréni 3.1

Proof of Theorem 3.1. We have only to prove the upper bound estimate, since The-
orem 3.2 is valid for the homogeneous case. For each fixed » and &k = (ko, f_cl, ooy kr)
satisfying > ., k; = |Ay|, we pick'and fix a pair (z,7) such that 1 < 4,5 <7, i j
and 0 < k; < k;. We define F' by

F(n) = Z 1 1{n,=i)

zEAy,

where z; denotes the first component of z. Then we have
EVn,k [F] = | 03
EVn,k[F2] = n2|An|Pi(1 - pi)r
B [F(=Ln)F] < [An|pipo.



where p; = I_}&gl_l and f = g means that there exist positive constants C' and C’ such
that Cf < g < C'f. Since p; < 1/2, there exists a constant C' such that

BIF(=L)F] _ Co

Aln, k) < B <7

3.3.3 Proof of Proposition 3.1

Proof of Proposition 8.1.

First we suppose that the condition (i) is satisfied. In particular, we can assume
that d > 2 and {z € Z%: p;(z) > 0} = {z € Z%: ||z|y = 1} for all 1 < ¢ < 7. In this
case, on the one hand, it is not difficult to see that X, is an ergodic component if
ko > 2. On the other hand it is well known that if kg = 1 and max;<;<r k; = 1, i.e.,
all particles are distinguishable, then %, ; is divided into two ergodic components.
Furthermore, for such 2.k, if n € o, 2,y € A, satisfying |z — g1 = 1 and
Nz, My 7 0, then n and 7™¥ belong to different ergodic components (see e.g. Section
7.41in [13]). This yields that though %k, = 1, if max;<;<, k; > 1 then X, & is an ergodic
component since we have at least one pair of particles of same species. Hence we take
np = min{n € N : |A,| > r + 2}. Then for any n > ng, we have maxpgi<r ki > 1,
which completes the proof of the first case.

Second we suppose that d = 1, p(z) > O forall |z| = lforall 1 < ¢ <7~

and there exists ly > 2 such that p;(z) > Ofor all |#| = lpand 1 <i<r. Itisa
stricter condition than the condition (ii}. In this case, it is not difficult to see that if
maXp<i<r ki = lo — 1 and ky > 1, then X, is an ergodic component. Hence we take
np =min{n € N:2n+1 > (T—i—i) (Io—2)+1} and then we have maxp<icr ks > lp—1
for any n > ng. _ '

Finally we suppose that the condition (ii) is satisfied. We only need to prove
the case where d = 1, py(z) > O for all |z| = 1 and 1 € 7 £ r, and there exists
I={(l,l,...,l,) € Z" such that |l;| > 2, p;(;) > 0 for all 1 < ¢ < r. In this case,
set Ip = [ + 1 where [j is the least common multiple of &y — 1,5 —1,..., — L.
Then one can see that if maxoci<, ks = lp — 1 and kp > 1, then £, is an ergodic
component, similarly to the second case. Hence we take ng =min{n € Z: 2n+1 >
(r+1)(lp — 2) + 1} and then we have maxg<;<r &; 2> lo — 1 for any n > ng, which

proves the proposition. |
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3.3.4 Proof of Proposition 3.2

Proof of Proposition 3.2.
Let d> 2, r =2 and ¢, = q. We define a set A C Z% by

A = A UA,

Ay = {z=(21,20,...,24) € L% Fslzagafimt' <1},
Ay o= {(£1,£1,...,%£1) € 29},

Ay = AN\{Q,1,...,0,(-1,-1,...,-1) € Z%,
Az = {zeZ%|zlh =1},

Ay = (Ugea, Az +z)\ Ay

Suppose that the range of p; and py are same and satisfy {z € Z% : p,(0,z) > 0} =
{z € Z% : py(0,z) > 0} = A. This model with d = 2 corresponds to Example
3.2. Just as shown in Example 3.2, if ky = 1, then the particles placed upper right
corner, (n,mn,...,n) and lower left corner (—n, —n,...,—n) are frozen at the corner
for all n. Furthermore if 5y > 2, ¥, is an ergodic component for n large enough.
To simplify our model, we suppose that g(3) =1 for 7 =1, 2.

The upper bound estimate given in Section 3.3.2 is valid for this model. To
obtain another upper bound of the spectral gap, we define G by
G(n) = l{ﬂyn=i} + 1{nyn=01nyn-—l=i}
- 1{71—yn='i} - 1{"‘?—yn=0s"f—yn—-1=i}

for 1 = 1 or 2 satistying 0 < p; < -12- where y, = (n,n,...,n) € Z% Then by simple

* computations, we have

EVn,k [G] 01
EVn,k [GQ] Z C,pi:
FondlG(-Lo)G] < C'lps

for some constants C" and C”. Hence there is a constant C such that
. rPo .
Aln, k) < G’mm{ﬁ,pg}.

Therefore we conclude that Assumption 3.1 is crucial for the estimate of the spectral
- gap. ' O
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Without giving the proof, we comment that lower bound estimate for this model

is given as follows; there is a constant C such that

P

3.4 Proof of lemmas

Here and after, a constant C' may change from line to line.
Proof of Lemma 3.2.1.

First we suppose that Assumption 3.2 (i) holds. We extend the argument due
to Dermoune et al. (Section 4 in [8]). For each fixed = € Z¢, we can pick and fix

y = y(z) such that y(z) € nrAr and gy = ¢

For n > 4T, we define

A= | W@,

ZEA a1 —1
where [-] denotes Gauss’ symbol. It is easy to see that A2 C A,. We also define
Az} = {u €AY : |lu— 2|y < 54T}
AL(2) = {(u,v) € (An)? : w,v € A% U {2}}
An(z,w) = {(u,v) € (An)* : u € A(2),v € AQ(w)}

for z,w € A,.
Note that #A4°%(z) > 1. By Schwarz inequality, for any z,w € A,,
By L=y (77 f(n))7]
1—¢g) wo
< 3B, Y L@ s
(uw)eAL(z)

+Enil D Llin=oy (@ ()

- (ww)edq(w)

FBil D Loy (S )}

{u,v}EAL(2,w)

Since there is a positive constant Crg such that |{z € A, : (u,v) € AL(2)} < Crg4
and |[{(z,w) € (An)? : (u,v) € AL(z,w)}| < Crqfor any pair (u,v) € (An)?, we have

Epilf(L)f] < CE,,[3 > Liny=0y (7" £(m))’]

wEAY vEAn:|u—v| 1 L104T
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+0Eyn,k[|j\1—n| > Lo (m“ ().

u,vEAD

Since g, = ¢° for all y € A2, by a standard argument, we obtain that

E[EI—T T Ly (1 F(0))?]

u,weAD

< Cn2E, | > Limyuy=0) (7YY £ (1))

2w A porila—w|1 <2

Bl Y L@ o)),

wUEALlu—v][1<2

IA

The second inequality holds because |{y(z) — y(w)|y < 4T +2Td if ||z — w]j, < 2. It
is also standard to see that the first term of (3.4.1) is less than or equal to

CE,,[ Y. Lim,=0) (7% £(m))?],

wwEAlu—v1 <2
which completes the proof.

Second we suppose that Assumption 3.2 (ii) holds. Given z,y € A, we set
~v(z,y) C A, the canonical path from z to y, which denotes the nearest neighbor
path that goes from z fo y, moving successively as far as it has to in each of
the coordinate directions, following the natural order for the different coordinate

directions. In order to prove Lemma 3.2.1, we have only to show that

By i [Liny=oy (™ £ ()]
(341) SCllz=ylhBail 2. Lo f()7)

u,’vE’y(a:,y),||u—1JH1§2
To simplify our notation, we shall prove this inequality for d = 1 and ¥y < z. The
strategy is similar to the one used in [22].

Step 1. Given K € N, we define z; = 2% for 0 <i < 4K — 3 by

i if0<i<K,
) K-2-5 Hi=K+2+1,0<j<K-2
AT K- ifi=K+2j,0<j<K-1,
i—3K+3 if3K-3<i<4K —3.
Note that
(3.4.2) zi—zi—|=1lor2for 1 <i<4K -3,
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meazx#{i:(lgz'félK—ii,zi:u}Sél.

Given a sequence of sites {a(¢) : 0 <1 < N} C A, satisfying if 0 € < j < N, then
a(i) < a{j), we define §; =S¢ : ¥, > Z, for 0 <i <4N —3 by
. m ifi=0
5 “_{ ZioSm H1<i<4N -3
- a(z¥ Va(zN
S = e,

Then it is easy to see that Syv_sn = n®De?) and il 9,y = 0 then (Sin)a(y = 0 for
all 0 < ¢ < 4N — 3. Therefore, by using Schwarz inequality

1{ﬂa(o)=ﬂ} (ﬂ_a(()),a,(N) f ('W))z

4N-3 2
= { Z 1{(Si—ln)a{zi_l)=0}Tra(Zi)’a(z‘iﬁl)f(Si_ln)}

i=1
4N -3

( > lo(z) - a(ziﬁm)

( Z |a,(z%) D) 1{(Secrm)ae,_yy=0} (Wa(z;'),a{zf:-z}f(si_ln))2).

iA

By the definition, we have Z4N 3 |a(z) — a(zi_1)] < 5la(N) — a(0)|. Therefore we
have ‘

By, [l{ﬂu(u)=0} (ﬂa(o)'a(mf (7?))2]
4AN-3

< Cla@)—a@) 3. Y
i=1 NEDnk (=) —a(zz )l
. ._1
U (Si—
1{(31‘—177)':(2:,;_1):0}( TolE), a(z‘_l)f( 177)) Vnr’c( i— 17?)]_—_[ z’:i(g};})
=1 '

Suppose that there exists a constant C* such that

v £(Sj-1m)
T,y .?_1 *
su | | e s oL
15«;5411)%3 e vnx{Sim) T

Then by using change of variables, we have
EVn.k [1{77:.[0):0} (Wa(o)'a(N)f(n))z]
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4N-3

< Cla(N) — a(0)] Z la(z) -1a(zz-_1)|

XEVn,k [1{(7?)0.2.,;_1:0} (Wa(zi),ﬂ(zi—l)f(n))Q]'

Since )
U, — £ ay
By oMoy (7" fm)Y’] € — By i [ n=o} (7" £ (1))7]
for all u,v € A,,, and (3.4.2), we have

B [Lraaymot (%O ()]
< Cla)-a®) Y -

0<i<f <N, jimj|<2 la{s) - a(z’){
XEVn,Ic [1{%(1_):0} (Wa(i),a(j)f(n))ﬂ,
By L aqany=0y (@@ 1 (1))
1
< Cla(N) — a(0)] Z -
ocicismi_ji<a |97) — ald)i
xEVn.,k [l{ﬂa(i)=0} (Wa(i)’a(j)f(n))2]'

Step 2. If |z —y| < K for some constant K, then applying Step 1 in case where
{a(®)} = {y,y + 1,...,z} together with sup;c;c4n_3 V’;:—fjgﬁ-)@ < (£2)2, we have
the inequality (3.4.1).

Step 3. In this step we apply Step I inductively as follows:*

Due to Assumption 3.2 (ii), there is a pair of a constant M and aset {¢*: 1 <4 < M}
such that {¢*: 1 < i< M}={g.:z € Z}. Givenu,v € Ap,u>vand 1<k <M,

we set
By = By(u,v, k) :={w:v <w<u,q,= ¢}
By = Bi(u,v,k) = {b(8) }ilo = {b(¢; u, v, k) o := Bo U {u, v},
where N = N(u,v,k) = #B; —1 and if 0 <4 < j < N then b(3) < b(j).
() Set {a(8)} = Bu(=, 9, 1). 1f {ar(75-1), 1)} N {w, y} = 0, then “2E0=tD
1. This and (3.4.2) yield

i—-1

Vn k(Sj—l'f]) 1—¢ 32
3 < .
w L= —( e )

1<i€4N-3 77
j=1

Therefore we can apply Step I and we have
1

mEvn,k [Lmy=03 (7™ £ ()]
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1 . .
< C E — = E. (1 S (71.&1(1),01(3}1‘(?7))2]_
0<i<i<I,li—j|<2 la1 (4) — a,(8)] ™ {2 (=0}
Note that

max{#{u: a(i) <u< alf),qu=q"}:i<j|j - <2} <3,

max{#{(i,7) i < j,|j — 1| < 2,a) Sw<a(f)} :y<u< 2} < 3.

(II) For each pair of a1(k),e1(!) for k <l and |l — k| < 2 in (I), we set {a=(z)} =

{aa(i;k,1)} == Bi(a1(1), a1(k), 2). Similarly, Step I is applicable and we have
1

— pe1(),aa(0)
|a1(l)—al(k)]E"nvk[l{”al{t>=0}( Freald) £(m))?)

<c ) :

%Eyn [1 ; =0 (1]-@2(?:),0-2(3)‘]('(7?))2].
0<I<f<N,|i—ji<2 |a2(.7) - G'«2(?,)| i L {"ay (5 =0}

Note that the constants €' do not depend on ¢, j, k£ nor {. We also note that

max{max{#{u: a(i;k,1) Suv < a(f;k,},qu=¢"} :n=1,2}
i< li—d <2k <l |l-k <2} <3,

max{#{(,k,5,1) 1§ < 4, [f = 1] <2k <L, — k[ <2,
a(izk,l) <u<al(f;k D} y<u<z} <35

(11} Inductively we set

{on(D)} = {an(GE™ 7))

B (a,m._l(l; km-—-l? lmﬂl), am;—l(kQ km_l: lm_l): m)

for 3 <m < M, k™1™ e N™=2 k™ [™ € N st k™ < I |IP - k7| <2

foralll <n<m-1LEkr =k P =I"1foralll <n<m-—2 k<1 and
|l — k| < 2. Similarly, Step I is applicable and we have
1

o = e ()] P ey 0 (17O £ ()]

<c > :

1 ~ L, [1 e (1) =0 (TI‘“"‘(")‘ﬂm(:i)f(n))z]_
OSi<jSN,|i—j|52|am(])_afm(‘a)| e LM (=0}

Note that the constants C' do not depend on 4, 7, &™ nor ™. We also note that
Y
(3.4.9) max{max{#{u : a(i; k™, I™) < u < a(f; k™, 0™),qu = ¢"} : n < m}
o <G 2P <IN I~k < 2for 1<v<m—1} <3,
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and
max{#{(i, ™, 7,I") 1 ¢ < j, |7 — 4| L 2,k7 <17,

| — k| <2forl <v<m—1,a(f k™0™ <u<alf; k™ 0™)}

(3.44) e

:y§u§$}53(3 ).

Step 4. By (3.4.3), we have

max{{|a(7; K, 1M} — a(s; M, 1)) |
i< g i =i <LEM <IM UM _EM <2for 1 <v< M -1} < 3M.

Plugging Step 2 into Step 3, together with this and (3.4.4), we have inequality
(3.4.1). ' O
Proof of Lemma 3.2.2.

Let us denote 7%¥n = »®™¥. Given a number N, a sequence {z; € A,: 0<i <
N} and a configuration 77 € X,,, we define

nO =7, and ﬂi s PEALTL o PPE-1 o OT:nl,:r.un for 1 < i < N.

Due to Assumption 3.1, Xp, 1 with &y > 11is an ergodic component of Lpy- Therefore
for each fixed z,y € A,, and ¢ € X, with k3 > 1 and {, = 0, there is a pair of
a number N = N((,z,y) and a sequence {z;({,z,y) € Ap, : 0 <4 < N,zp =
y,zy = z} such that T#¥*N-1 o TEN-1EN-2 o o Tov%on = ¥ ((H),, = 0 for all
0 < ¢ < N and pyi-vy, (%, 2-1) > 0 for all 1 <4 < N. By taking the spatial
shift, for each fixed n > ng, £ € Ay, z+ 2z € A, with ||z]|, = 1,2, and 5 €
Znk with 754, = 0, we define N(n,x,2 + 2) by N(n,z,2 + 2) := N(Tuzn|a,,, 7 —
Z,x+z—I) and {zi(n,z,z+2) € pAp, 1 0 <1 < Nyzg = 2+ 2,28y = T}
by zi(n, 2,2 + 2) = 2i(7-29Any, T — T, + 2z — Z) + Z. Note that N(n,z,z + 2)
and {z;(n,z,2 + 2)}; depend only on the occupation variables of the sites 7zAn,
and satisfy that ToN:IN-1 o TEN-12N-2 o o T*0%0p = p®3+% (pi=1) = = ( for
all 1 <4< N and Pini-1), (#;,2:-1) > 0 forall 1 < ¢ < N. Since &, is a finite
set, IV is bounded above by a constant, i.e., there is a constant N < oo such thai
SUp,, MaXges, MAXzeA, |z|=12 V (7, Z,T + 2) = MaXger,, MAXg yey, N(¢,z,y) = No.
Since Plri=1)e, (zi,2;-1) > 0 for all 1 <7 < N, we have

]-{n;.;,z:O} (ﬂ$’$+zf(n) )2
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N 2
< C {Z 1{{1?{_1)%‘_1=0},n_:ci,z¢;-1f(,nw1)}
i=1

N 2
¢ {Z{P(niﬁl)z,. (i, Zom1 )} o), —op ™™t f () }

i=1

IA

By using Schwarz inequality, right hand side above is less than or equal to

N
CN ZP[ni—l)zi (@4, Tim1 ) L (r-1)gmop (P55 F(P71))2

=1

Hence we have

By [Lnaamoy (71 £ ()]

‘ N(n,z,z+2)
< GEVn.k [N(?], Z,T+ z) Z p(’?‘;l):ci (il’,‘i, .'.l’:-,;_l)
i=1
Li-1)s,_ =03 (7% f ()]
Ninzz+z)
< CNoEuul D Pty (@i mict) (i), =y (1™ (5 1))]
=1

Since N(n, z,z + 2) and {z;(n,z,z + 2)}; depend only on the occupation variables
of the sites in 73A,,, we have

N(n®,m+z)

Bl D Pte 0 mn) Lot (55 F))

i=1
N a—Fx+2—8)

= Z EVn,k[l{T—EnlAn(J:C} Z p(ni‘l}xi(mi’ﬁi—l)

¢EEq, i=1

L1y, =075 f (1))
N{z—Zx+2—7)

= Y Z By e [L{r_znlan, =P, (%1, Tic1)

¢E€Bn,

l{mi_l)mi_l:D)}(ﬂ_mi,mi—l f(,ni—l))z]
N((,e—Z,2+z—T)

> Z Y Ballirmanian =P, (0, )

{€En, W wETEAn,

L{mi-1),=0)) (T F (7" 1))?].
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Under the condition 7_z7|s,,, = ¢, we can perform the change of valuable and obtain
that for all { € Ep,, w,v € TslAn, and 1 <i < N((,z — T,z + 2z — T),

By [Lrenlnng =¢1Pm-130 (w0, 0) L1y, =0 (7 F (')

s1p 2B, 1 =3P (00 (711

<GBy, [P (W, v) 1 =0y (7 f(1))?]

IA

where sup, Ynalh) (3=£)Mnal =: C;. Therefore, we obtain that

Unix{n'}) =
Ninzz+z)
E,,n!k [ Z p(ni-l)xi (‘Jli, $i_1)1{(ni—1)=iﬂ=0} (ﬁmi,mi—lf(nt—l))z]
i=1 .
< ONg(r+ 1)l 3" By, [pn, (w,0)1 =0} (7" F ()],
'LU,UGT;EA.N,U
which completes the proof. O
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