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Chapter 1

Introduction

Consider a two-dimensional inviscid incompressible fluid acted on by gravity
and with a free surface.

While recent years have seen great progress in the study of well-posedness
of the initial-value problem (see [26] and the references therein and the ref-
erences therein), we confine ourselves to traveling-wave solutions.we confine

ourselves to traveling-wave solutions.

Using the stream function ¢ of the normalized velocity vector field (cf.
Section 2.4), we obtain the free boundary problem

Ay =—y(¥) n QN {Y >0} (1.1)
|V4|? + 29y — 20k = const on QN a{¥ > 0},
here ¢ is the gravitation constant, o > 0 is the surface tension coefficient and
(1)) is the vorticity of the fluid.

The free boundary problem describes both water waves, in which case we
would add homogeneous Newmann boundary conditions on a bottom y = —d
combined with periodicity in the z-direction or some condition at z = %00,
and the equally plhysical problem of the equilibrium state of a fluid when
pumping in water from one lateral boundary and sucking it out at the other
lateral boundary. In the latter setting we would consider a finite domain with
an inhomogeneous Neumann boundary condition at the lateral boundary, and
the bottom could be a non-flat surface. '

[N~



While most of the literature on existence of waves is based on perturbation
methods (see for example [22], [13], [19], [20], [3], [4], [25]), and the regularity
of the solutions so obtained is not an issue, in recent years there have heen
also studies based on variational methods (see for example [8], [6], [18]).
These have the potential to lead to the existence of large amplitude waves,
which is also supported by numerical studies; there is a large amount of
numerical research, see for example [14] and [23].1t is therefore natural to
ask whether there are singularities.

In the case of zero swrface tension (o = 0), study of traveling waves
goes back to Stokes, who in 1880 made the famous conjecture that the free
surface of a wave of maximal amplitude is not smooth at a free surface point of
maximal height, but forms a sharp crest with an angle of 120°. The conjecture

‘has been proved rigorously in {2] and [21] for isolated singularities satisfying
further structural assumptions, and in [24] for a more general setting.

When adding surface tension, physical intuition suggests that the corner
singularities just mentioned should disappear. Mathematically we are aware
of only two results in that direction: in [7], he authors prove that irrota-
tional waves with surfaces that are W>2-graphs, are analytic. In [12], the
authors prove for irtotational waves in three dimensions that C>%-solutions
are analytic. ' '

In Theorem 4.2.8 we prove that this physical intuition remains true for a
larger class of weak solutions allowing for example the possibility of corners
and cusps (see Section 2.4 for our notion of solutions). On a technical level,
however, the situation is not that obvious: in the case of zero vorticity, solu-
tions turn out to be critical points of the Mumford-Shah functional. For the
Mumford-Shah problem it is known that there exist energy minimising crack
tips, opening the possibility of cusps in our water wave problem (see [1] for

" an overview on the Mumford-Shah problem and [15] for a related problem in
two dimensions). The major task is then to exclude cusps. On the way there,
however, there are a number of technical difficulties: while the Mumford-Shah
problem has been extensively studied, many results are confined to minimis-



ers, so that we cannot use them. In particular, in the case of non-minimifers
it is not obvious whether limits of weak solutions are again weak solutions.
We would want a concentration compactness result making it possible to pass
to the limit in the nonlinear curvature term. Also, for non-zero vorticity, our
problem is not any more equivalent to the Mumford-Shah problem, as the
velocity potential ceases to exist. Different from the previous results [7} and
[13] for irrotational waves, our results hold for rotational waves and do not
use much initial regularity (see the Assumption in Section 2.4 and Remark
2.4.3). Rotational waves are currently a topic of interest (see for example
(10]). Our results may be extended to the Jordan curve case provided that
the air phase satisfies a uniform exterior sphere condition (cf.Remark 2.4.4.
Last, let us mention that our methods are not based on transformations in .
the complex plane, but we work with the original variables.

Our paper is composed as follows:

“In Chapter 2 we derive a variational formula for the two-dimensional
steady water waves. In Section 2.2 we introduce the governing equations and
the equivalent free boundary problem. In Section 2.3, we prove a variational
formula based on a domain variation/inner variation of the energy

B) = [ (V9P —26(8) — ayxeo) — 500 > 0).

Note that the negative sign in front of the Hausdor{l measure makes for a
drastic difference to the positive sign in [5] and means that we cannot use
their methods. Weak solutions will be defined in Section 2.4.

In Chapter 3 we study the blow-up limit of the stream function. In Sec-
tion 3.1 we extend Bonnets monotonicity formula to our problem. This will
in Section 3.2 lead to a growth estimate for the Dirichlet part of the energy as
a preliminary characterization of blow-up limits. Next we have to deal with
the curvature term in the equation. In Section 3.3 we will use the one-sided



curvature bound included in the equation to control the length of the free
surface, show existence of one-sided tangents and prove convergence of the
curvature term when passing to blow-up limits. This leads to more infor-
mation about the blow-up limits (Section 3.4): it turns out that the only
possibility of singularities is cusps pointing into the water phase.

Chapter 4 will be devoted to the regularity of the free boundary. Before
investigating that possibility of cusp type singularity, we show in Section 4.1
that outside the locally finite set of cusp points, the free surface is regular.
Last, using the regularity of the free boundary outside cusp points we prove
in Section 4.2 that cusps do not exist.

In Chapter 5 we let the surface tension go to 0 and study the limit of
., where 1, are period and satisfy the same boundary value on the bot-
tom of the fluid. Under suitable assumptions we prove that there exists a
subsequence 15, which converges to some function ¢ in W'? and that 1y
is a domain variational solution to the two dimensional steady water waves

without surface tension.

The results in Chapter 2-4 are joint works with Professor Georg S. Weiss.



Chapter 2

Variation formulation

2.1 Notation

Throughout the paper let © be a bounded domain in R?* with Lipschitz
boundary in which to consider the combined problem for fluid and air. Since
almost all of our results are completely local, we do not specify boundary
conditions on 9%). Moreover, we denote by x4 the characteristic function of
the set A, by x = (z,y) a point in R? by x -y the Fuclidean inner product
in R? x R?, by |x| the Euclidean norm in R? and by B,(x%) = {x € R? :
|x—x®| < r} the ball of center x° and radius r. By v we will always refer to the
outer normal on a given surface. We will use functions of bounded variation
BV (U), i.e. functions f € L}(U) for which the distributional derivative is a
vector-valued Radon measure. Ilere |V f| denotes the total variation measure
(cf. [17]). Note that for a smooth open set E C R?, [Vxg| coincides with
the surface measure on 0F. Let us also define the surface divergence

divpé = divé — v DEv,

where v is the upward pointing unit normal on the free surface I'.

Finally £" shall denote the n-dimensional Lebesgue measure and #H?® the
s-dimensional Hausdorff measure.



2.2 Equations of motion

We consider two dimensional capillary gravity water waves. The only ex-
ternal force acting on the water is gravity. Let (u(z,y,t),v(z,y,t)) be the
velocity field. Incompressibility implies that '

U, + vy = 0.

Under the assumption that the water is inviscid, the equations of motion are
Euler’s equations:
Up + Uy + VU, = —F; 2.1)
vt uvg vy, = —F,—g
where P(z,y,t) denotes the pressure and ¢ is the gravitation constant. All
our results hold for g = 0, too.
Although the present paper may be extended to the free surface being a
Jordan curve, we confine ourselves here to the free surface being the graph of
a function n(¢,z). The boundary conditions on the free boundary are then

the dynamic condition
T

——), On = n(t, x
). on {y=n(s )}

where F, is the atmospheric pressure and ¢ > 0 is coefficient of surface

PZP(]-O'(

tension, as well as the kinematic boundary condition

v=m+un, on {y=n(tz)}

For waves traveling at constant speed ¢ > 0, we define the stream function
P(z,y) by '
";b:c = v "py =u—-cG

whereupon the flow may be described by the following free boundary prob-

lemn:

VY2 + 29y — 20k = const on ' = 9{¢) > 0},
where ¥(¥) = v, — u, is the vorticity, I' is the graph of 5 and & = { \/H,_Z)I
is the curvature of I'. By a translation, we may assume const = 0.
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2.3 Variation formula

In this section we prove a variation formula for two dimensional water with

surface tension.
Let

E@) = fﬂ VP — /ﬂ 29y xiws0) — 2G()dx — 2HNO{w > 0}),

where G(s) = [, v()dt.

Theorem 2.3.1. Any critical point ¢ of the functional F is a solution to
the two dimensional capillary water waves if Vi #£ 0 in {3 > 0} and its free
boundary 8{ > 0} is a C% curve.

Proof. Let £ € CP(§4;R?), 9 be a critical point of £ and (%) = (x +
e£(x}). Then |
| SE(¢)(£) = lim —0 | (2.3)

Since Vb (x) = Vib(x + €£(x)) + DE(x)Vep(x + €€(x)), direct calculation
lime g 2{ [, [Vooe|Pdx — [, [VY|*dx}

= lim. 0 1{ [, (V¥ + DE(x) V) (x + £ (x))|Pd x

= Jo |V (x + e£(x))Pd (x + e£(x))dx}

= [, 2VYDEVY — |Vip[Pdivéd x,

E(we) - EW))
€

gives

limeso 2{ S0y 2090 % — [(yo0) 20vdx}
lime_g %{f{%w} 2qydx — f{"l’)e>0} 2g9(y + e£(x))d(x + e(&(x)}}
= — Jru0y(29ydive + 296)d x,

8



limeo 2{ [, G’(v,b6 ydx — [, G()dx}
= limeo ${ [, G (x + e€(x)))dx — [, G(#)(x + £(x))d (x + £(x))}
= [, C()divedx
and
lime o ¢{#' (3{¢x > 0}) - H'(0{¥ > 0})}
= — [Ldiveé(x)d %,
where I' = 8{+ > 0}.
Therefore (2.3) implies

fﬂ (V|2 divé — OV DEVY — 2G () dive

= 29yxqp>0rdive — 29X (y>0)62) — 20 / divp§ = 0.
r o
Since the free boundary 8{s) > 0} is a C*? curve and

div(|V[P€ — 2(V9 - )3 — 2G()€)
= |V PdivE + V([VY]?) - £ - 2(Vy - §)Ad — 2V(Vy - 5) Vip
—2G()divé — 2v()(V - §)
= |Vip[Pdive — 2VYDEVY — 2(VY - £)Ad)
—2G()dive — 29($) (V) - £),
we obtain that
0 = fﬂ (|V|2dive — 2V DEVY — 2G (¢)dive
—29yX(y>aydivE — 29X (y>0y&2) — 20 [ diveé
= fo div(|VY]*¢ — 2(V - )9 — 29y€ — 2G($)¢)
+2(Vep - E)A + 279V - £ + 20 [ kE - v
= [r(—IVY* — 29y + 20K)E - v + 2 [o(A¢ + 1) VY - €
for any £ € CJ(§2;R?). '
Therefore
Ay =—y(¥) in {¢ >0}
and
|V + 29y — 206 =0 onT.



Remark 2.3.2. This variational formula is a generalization of the result
in [10] where surface tension is neglected. The proof in [10] relies on the
hodograph transformation. Therefore they need the assumption that the free
surface is a graph of some function and the stream function is monotone in
the y direction. Our result holds for general simple curve.

2.4 Domain variation solutions

Definition 2.4.1. Let 2 be a domain in R?, G(t) = fot v(s)ds. The function
W € W(Q) such that ¢ > 0 and Vi) # 0 in {0 > 0} is called a domain

loc

variation solution of equation (2.2), if ¢ € C*(Q) N C2(Q N {¢ > 0}) and

f (IV4dive — 2VYDEVH — 2G () dive
& ' (2.4)

— 2g9yX >0y div€ — 29X (p>016a) — 20 / divp =0
T

for any &(x) = (£1(x), &(2)) € CPR(BR?).

Remark 2.4.2. A domain variation solution is a W2 weak solution of

A = —y(@) in QN {Yp > 0}. WhenT € C** and p € C*, ¢ is a
classic solution of (2.2).

Assumption: In this paper we assume that ye L™, ne Tthl;cl and that

th 3 = (——=—). is a Rad . We al that T’
e curvature £ = ( m)x is a Radon measure. We also assume tha

can be touched at every point from below by a ball of fixed radius xg > 0,

which implies that x > —#&g in the sense of measures. Both assumptions are

justified by the expected free boundary condition (2.2).

Remark 2.4.3. In the following two situations we can prove that for a do-
main variation solution the curvature of the free boundary is bounded from
below in the sense of measure.

Case 1: We assume that u < ¢ which is the same assumption as in [11]. If
v € C%, then 1 is a classic solution to equation A = —y(¢) in QN{y > 0} '

10



and for each € > 0 the level set T = {3 = €} is the graph of some function.
By Sard’s theorem T is a C curve for a.e. ¢ > 0. Let Q. = {3 > ¢}, v, be
the unit outward normal vector of Qe, 0 < f € CH{O4R) and £(x) = f{x)(}).
We calculate

fﬂ |V |2 — 2V DEVY — 2G()dive

= f, div(|VPPE - (Vi &w 2 f, G- v,
_fI‘ '—lv'ﬁblz‘f Ve_gfr 6 Ve

< =2 fr. G(e)¢ - ve.

Letting € — O, we obtain g |VY|* — 2V DEVY — 2G(¢)dive < 0. Therefore

0 > fooux(esopdivé + 9’X{¢>0}52 +6 [ diveg
f{w>0} gyayf(ﬂ: W) +9f(@,y) =6 frg-v
= [y(gn(z) — ox(z, n(x))) f (=, n(z)),

which implies that x(z,n(z)) > gn(x)é~! in the sense of measure.

Case 2: Let Qo ={yp > 0}, X = {u e WQ) :u>0andu—19 =

0 on 0}, E(u) = [ [Vul> —2G(u). If E(Y) = infuex B(u), we choose
the same test function £ as in case 1 and then obtain that E(¢¥(x + e£(x)) >
E() for € > 0 which implies that [, |VY|* — 2V¢DEVY — 2G(3h)dive < 0.
Conseguently x(x,n(x)) > gn(x)d! in the sense of measure.

Remark 2.4.4. Assuming that o general Jordan curve I' can be touched at
every point by a ball of fized radius kg 1 > 0 contained in the water phase,
all our results extend to the Jordan curve case, too. An extension of Remark
2.4.8, however, is not so obvious, and we leave that to future research.

11



Chapter 3

Blow-up

3.1 A Bonnet type monotonicity formula

Suppose that ¥ € W2 N (2 is a solution of AYp = —y(¥) in QN {& > 0},
loc

loc

8B, (x%) N {1p = 0} # B for every r € (0,7;). Let ®%(r) = r~} fBr(xU) V|2
Then d%@:'fo (r)=7r"2(r fBBr(xﬂ) |V |2dH! — fBr(xg) V2.
The well-known Wirtinger inequality states:

Lemma 3.1.1 (Wirtinger inequality). Let n € WH2([0,27), n(0) = n{27) =
0. Then f{fw n? < 4 fozw(n’)Q. Equality holds if and only if y = csin(0/2).

Following the idea of [5, Theorem 3.1} we use this inequality to obtain

Proposition 3.1.2. The limit lim, o4 @fo (r) € [0, +o0) exists.

12



Proof. Using polar coordinates we calculate

T Jom, ) (VY 2dHY =72 [ (e (r, 0) 2 + Zlaba(r, 0)[2) dO
> 2r( " | (r, 0)? d@)m( 2 Iapo(r, 0)[? dB)/>
2r(fo l%( O)[2 dOY2(L [i™ b (r, 6) [ dB)

> rf (r,0)).(r,0) db

faBr{x':')?’bvw v dH’

= 5.0y IV — (v)) (3.1)
> [0 V12— Cu g s f3" (s, 6) dbds
> [p00 (V2 = Ca 7 s qu(s 9) do) 2 ds
BIBT(XO) IV¢|2—02T1/2 0?‘ 9 . ¢2(S,9) d9d8)1/2
>[5 o0 VU = Car2(Jy s [ 93(s,6) dbds)'?
> [0y VI = Car?( [ o) [VEI)H2.

Thus ® > —Carl/231/2. Let ®(ry) = ¢g > 0. Since all solutions of the ODE

- _037.1/2@1/2,

3.2

U(rp) = co. ( )

are given by ¥(r) = (—2r*? + ¢,)?, where ¢ = a® + 03*7"3/ the com-
parison theorem implies that 0 < & < ¥. Consequently 0 < @iO(O—I—) =

limn, o ®% (1) < oo, 0
Proposition 3.1.3. ®¥(04) is upper semi-continuous with respect to X.

Proof. Since (®¥Y(r) > —Csrt/2(d¥)H2 > —C, we obtain ®¢(0+) < d%(r)+
Cr. By the continuity of ®¥(r) with respect to x for fixed r, we conclude
that choosing r small and subsequently |x — x°| small,

PY(0+) < B¥(r) + Cr < B% () + O(Jx — x°|) + Cr
< BY,(0+) + O(jx — x°|) + Cr + O(7).

Thus (I)Zﬁ (04) > limsup,_,.o0 ®2(0+). J

Let x° € I'. By a translation we may assume that x¥ is the origin. Let
W, (x) = r~124)(rx). Then the free boundary of <, is given by I\, = {x : rx €

13



I'} and that T is the graph of n,(x) = n(rx)/r. Let &, be the curvature of
[.. Then x, = 7& > —rKg. In the new coordinates 1, is a domain variation
solution in the sense

fUWM%%—ﬁW@gWNQWWW%W%—%%+ﬂmmwwm§

r

—%m+@wmm@—%/dM£=&
| (3.3)

where 2, = {x: x* +rx € Q}.

Since [ V¥, > = 17 f5, oy [VHI* = R®Y,(Rr), {4»} is bounded in
WL2(By) for each R > 0. Therefore there exists a subsequence {i, } such
that v, — o weakly in W,22(R?) and strongly in L (R?).

loe loc

3.2 A growth estimate and blow-up sequences

Proposition 3.2.1. There exists a Cr < co such that |[tr]|cr/2(5,) < Cry
here Cg is independent of . '

Proof. We first show that [ (30 |V4p|? < Cyr for all x and small . By
Proposition 3.1.2 there is a constant Cy such that [ |[VY[* < Cor for
xel.

For x € {¢) > 0}, let d = dist(x,T"). .

Ir<dlet f(y) =¥x+ry) and (s) = ;= fBBs{x) ¢ dH' = 5 [op fs dH
for 0 < s < r. Then '

_ 1 1 1 :
I (g) = —— (y) - 1~ | AR =— —~ ().
¥'(s) VIiy) vy dH fB 1 T /B " ()

275 S, 2ws

and

TR _ _ 1 _
P =55 [ 10— 5o [ )

Since v € L™, |4/ (s)] < Css for some C; < co and 9" € L.
Replacing + in (3.1) by ¥(y) — ¥(|y — x|}, we obtain

V(% (y) — ¥(ly —x])) < Car.

Br(x)

14



On the other han(i,

S50 V@) =0y =D 2[5, GIVEP = [ (s)]7)
_2 %fBr(x) V| — Cyr?

Consequently there exist § > 0 and Cy < co such that f5 . |[V¥[* < Cyr for
r <é.

Ifr>d, fBr(x) | V|2 < fBZr(Y) |Vap|2 < 2C%r.

By Morrey’s Lemma (see, for example [16, Lemma. 12.2]}, ||¢||qw2 < C for
some C' < o0,

Noticing ,(x) = f;i‘) we have

I iy_ - v
||¢r||01/2(1§3) = SUPg, %

G(rxl h{rx2
= SUPp, I v(/_|x1)—:£2(|l};2)|
= !|¢||Cl/2(3r3)

which completes the probf. O

- Consequently, passing to a subsequence if necessary, ¥, — % in C* for
a < % we may prove the following strong convergence result for the gradient:

Proposition 3.2.2. v, — 1y strongly in W2 (R?).

loc

Proof. 1t suffices to show that

11msup/§|V7,brk|2 fC|V¢0|2

for each non-negative ¢ € C(R?). We follow closely the proof of ‘[9, Lemma
7.2]. The scaled 9, is a solution to equation

Ay, = —1 Py (@ ’?) in {9, > O} (3.4)

Multiplying this equation by ¢, and integrating by parts, we get
[ AT 9V T, = 1o () =0
R

15



Letting & — oo we have

imsup [ VP = = [ V¢ Vi
B2 B2

k—oo

Multiplying equation (3.4) by (4o and integrating we get

/Rz Vb, - Vibo + PV - Vi, — (7% oy (/%) =

Letting £ — o0,
[ vl == [ wuve- i
R2 R2
Thus '

k—rco

lim sup C|V¢rk|25/ ¢ Vol
R2 R?

Notice that

OUT) =T fo 0 [V[* dx
=T [0 TV +rx)? dx

= ()7 o, ey VY1
= @io (1T'r)

Therefore, for every T' > 0,

SR(T) =T[5 o g [Vabo?

= limg00 @ o* (17)
= limy,_y00o % To(Try)
= &%, (0+)

which implies

Proposition 3.2.3. 9o(r,8) = a7/ cos(§ + ¢3).

16



Proof. Inequality (3.1) holds for ¢y with v = 0. Since @i’g(r) = const =
¥ (0-4), (%) = 0. This implies that the inequality in (3.1) is in fact
an equality for almost every r. Consequently the inequality in (3.1.1) is
an equality and there are two functions a(r) and #(r) such that for a.e. r
and for 8 € [0(r),0{(r) + 2n), 1p is given by yu(r,0) = alr) cos(%) and
| Z4p|* = Lo \eol? Yvg = il il 0 g2 = Lyf. Therefore #(r) = 0 and

G r2 Jo" lbol?
|/ (r)] = %]ac( )| for ae. r. Consequently a(r) = apr'/? and 8(r) = ;. O

3.3 Convergence of the curvature term

We will now study the convergence of jI‘,- divp £. Let us prove some lemmas
first.

Lemma 3.3.1. There ezists an L < 0o such that HY{(T', N By) < L for small

T.

Proof. The proof will be proceed by contradiction. We assume that

lim sup H(T'» N By) = +cc.
r—0
Then for every € > 0, there exist 7 > 0, x! = (21,41} € 'y, X2 = (Z2,%2) € I'»
such that x? is a local maximum point of the graph, 7, is monotone increasing
in (z1,29), |T2 — 21| < € and |y2 — 31| > 2|22 — 21| (see Figure 3.1).

Let v, = (cos(f,(z)),sin(f,(z))) be the unit normal of I',. Then 0.(z2) =
since I', can be touched by a ball from below. Moreover, there exists an x
such that 8,(z) exists and 6.(z) > 3 (otherwise jyo — 1| < |22 — 21]).

Let x® = (23,73} € I', be the point such that z; < z3 < 79, 8,(z3) = %” and
Z2<0(x) < 371‘1 for z3 < @ < m4. Then the arc length of I', between x? and
x% is bounded by

2

/ ds < 2|z — 3| < 2.
X

3

Here f;;z denotes the integral on I',.

17



Figure 3.1: Controlling oscillations

Since &, > —roT,
2

2
T X dar X
-3 =iad) —tulen) = [ GEds= [ reds > —more.

Thus we get a contradiction and the conclusion follows. O

Remark 3.3.2. Since HY (TN B,) = rH(I' N By}, the above lemma implies
HY(T'NB,) < Lr.

Lemma 3.3.3. Let v = (cos0{(x),sinf(z)) be the unit outward normal vec-
tor of {¢ > 0} at point x = (z,n(z)) for ae. x. Then for each zo,
esslimg 5,1 0() and esslim, z,_0(z) exist. =

Proof. We suppose towards a contradiction that there exist sequences {zj}
and {Z;} such that z; — xe+, & — 2o+ and

limsup 8(zx) — liminf (%) > § > 0. (3.5)

k—o0 k—roo

Fix r > 0 and let I" be the connected component of ' N B,(x°) that contains
x% = (z0,m(xq)). Let x* = (zx,n(xx)) € T and ¥* = (Z,,7(Z)) € I. By
(3.5) there exist ¢, j € N such that z; < Z; and 8(F;) — 8(z;) < —6/2. On
the other hand,

5 el
—5/2>8(:T:j)—9(xi):/_ Z—i ds=/{ & ds > —Lrkg — 0

18



as 7 — 0, a contradiction. Therefore esslimg_,,.. 6(x) exists. A similar
argument shows that esslim,_,, 4 #{z) exists. O

As a direct consequence we have

Lemma 3.3.4. For each x € T, there exists an rg > 0 such that for r < 1y
I'N B,(x) is connected. '

Lemma 3.3.5. Let R > 0, B&f = Br N {z > 0}. There exist a rotation A
and § > 0 such that for r < 6, A(T, N B}) is the graph of a function 7, and
|7 lwree < C, where C is independent of r.

Proof. Tt is sufficient to prove that there exists an € > 0 and a rotation such
that A(T' N B5(x°)) is the graph of a Lipschitz function. But that follows
from the right continuity of 8(x). - d

Proposition 3.8.6. limg e f divy, & = (T(0=) — T(0+)) - £(0) for & €
I

C(8); R?), where T(0+4) and T(0—) denote the right and left unit tangent

vector of I' at 0, respectively. -

Proof. There exists an 2 > 0 such that supp £ C Bgr. Notice that fr lel",,kf
is independent of the choice of coordinates. By Lemma 3.3.5T,, N B = is the
graph of a Lipschitz function 7 for each k € N, and ||f||w1 < C, where
C is independent of k.

Thus

fr,_knt divy, ¢ fg V1 B (divé — VADEVk)
. a ] 1 =t
_fo 823”7 ))\/1:(—-,)‘1‘3&3,(3”7())&/%

s (i)

+%E;($7?( ))\/I-EW+ ay(x?? (z ))m)

Recall that 7,(x) = @ By the right continuity of 6(z) we know that

r

for any given € > 0 there exists a kg € N such that [nk(:c) — 7?;,(0‘*‘)| <e

<z < > y
for 0 < o < R, k > k. Therefore e — \/1+('n(0+))2’ \/1+(nk)2 —

in LY0, R) respectively. Moreover,

7' (0+) {f.)? (7 (04))2

VIFFONE T V1EET T 1 0R)?
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VEé(z, fir(z)) € L®(0, R) and VE(z, fk(z)) — VE(z, 7 (0+)z) ae. as k — oo.
We conclude that

- ]-imk—)oo fr ﬂB+ diV]_",.Lg
= Jy (B @ (00)2) s + G e, 7 (0+)0) L s

V1 (04))? 17 (0+))?

520, 7(04)2) e + 520, 7(04)2) L2

VIH@ony | % L+ (01)*
= —T(0+) - £(0).
Similarly we have liln;;_,oo e nE: divr, £ =T(0-) - £(0). O
o

3.4 Characterization of blow-up limits

By the definition of domain variation solutions we infer that 4/, is a solution

in the sense

[ (9 aive - 294, D6V, — 2mGleil 4, ivg
0

i

— 29(%0 + TRYIYTEX (o, >03 AVE — 29(Y0 + TrY)X (w1, >0362) (3.6)
— 2 / divr, € = 0. ”
r

Tk

Recalling that t,, — 1y in W2 (R?) as k — oo, we obtain that ¢y is a

loc

domain variation solution in the sense

[(vtulaive —~29u0Evys) + 206(0) - (7(04+) = T(0-) =0
Lemma 3.4.1. u(r,6) =2 2?"”\/'Fcosg s a domain vartation solution of

/ (Vo *dive — 2VuDEVY) — 406 (0) = 0
R2

Here £(x) = (£1(x),£2(x)) 4s a smooth vector-valued function with compact

support. For any ¢ # 2, /%TE, c rcosg is not a solution.
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Proof. For each § > 0,

I = [ge(]V]*divE — 2VuDEVY) — 40£(0)
=o(1) + fﬁz\BS([VUIQdivg — 2VuDEVY) — 4a&1(0)
1)+ fgayg, div(|V[2€) — V|V[2¢ — 2VuDEVY — 40&(0).

Since v is harmonic in R2\ {(r,8) € R? : § = 7},
div((Vu - £)Vv) =XZ

1=1 Fx; (c‘f::l (2? 1 3:(:_-, gj)

'u 9 8u 2 Ov. du 351
= AU(Zfﬁl x5 ) + 2 J=18m; 8.'1: axe ‘EJ 4,j=18a; Oz; Bx;

= 1V|Vu*- £+ V’U.vav

Therelore

I =0(1) — 466 (0) + fga\p, div(|V|%€) — 2div((Vv - £) V)
= 0(1) — 406 (0) + fop, —IVUI* - v +2Vv - £V -1,

Let £(z) = £(8z). Since Vv - v = v/2, we have

I

(1) — 406:(0) + f5p, —|Vo|* -z +2Vv- £V @
(1) — 4080} + fop, — IV - 2 +vVu - £,

o
0
We use 8,60 = —sind, 8,6 = cosf, 8,r = cosf and d,r = sinf on S* to
obtain in the case v(r,d) = 2,/3¢\ /T cos § % that
I =o0(1)— 40&(0) — ﬂ OQT (—sinf(—1sing) + 4 cosfcos £)?
+(cos@(—1sin &) + 1 sinf cos £)? [(€; cos§ + E;sinf
—(—sinf(—%sin &) + 1 cosf cos £) cos 0,
—(cos B(—1sin &) + 1 sin 0 cos §) cos H&,

2 2

= o(1) — 40£1(0) — 2 0% }1(51 cosf + & sin )
—3(cos £ cos %{1 +sin £ cos gfg)

= 0(1) — 40’&1(0) + '2#7 0%51 — 0
as § — 0. We also obtain that I 4 0 in the case v = ¢/r cosg- where

c#2,/%. - 0O
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Figure 3.2: Do cusps exist?

By Lemma 3.4.1 and the fact that I'y is a graph in the y-direction we
obtain :

Proposition 3.4.2. For each free boundary point x, the blow-up limitio(r,8) =

er'/? cos(§ + 3) where ¢ =2

1'/2?" orc=0.
Definition 3.4.3. Let x" € T'. We call x° a cusp point if the blow-up limit
at x° is o(r,0) = 24/2r % cos(§ + 2£). We denote by S the set of cusp

potnts.

Tt follows that ®¥(0+) = const > 0 for x € S and ®¥(0+) =0 forx ¢ S.
From the upper semi-continuity of ®¥(0+) with respect to x we obtain that
S is closed.

Proposition 3.4.4. Cusp points are isolated.

Proof. Suppose towards a contradiction that there exists a sequence of cusp

points {x*} such that x* — x°. Let ¢(x) = %, where r, = [xF —

x°|. We may assuimne that ikr_k—xo — ( € S'. By Proposition 3.2.2 and the

closedness of S we know that 1y, — 1 = 2\/%?"1/ 2cos(g + &) in WH(R?).
From the super semi-continuity of ®¥(0+) with respect to ¥ and x we know
that |

lim ®%.(0+) = lim %, (0+) < @¥°(0+) =0,

k—o0 k—oo =—/=

Tk
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which contradicts &%, (0+) = const > 0.
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Chapter 4

Regularity

4.1 Regularity outside the set S

First we study the regularity of T\ S. Let U € Q be a domain such that
Uuns=40.

4.1.1 ! regularity

Proposition 4.1.1. TNU is a Cleurve.

Proof. Tt is sufficient to show that 6{z+) = 8(z—) for x = (z,n(z)) € T\ S.
We know that at x the blow-up limit ¢y = 0. Letting e — 0 in equa-
tion (3.6), we obtain that (T(z—) — T'(z+)) - £(x) = 0 for £ € C5°(§;R?).

Consequently 0(z+) = 8{z—). O

4.1.2 (Cb%* regularity

Let 1 < a < 1. We define D%\ (r) = & fp oy [V¥[*. Following the
method of A. Bonnet (see [5, Theorem 6.1]), we are going to show that there
exist 7o > 0 and C' < co such that &8¢ (r) < Cforx € IT'NT and r < rg.

By the C! regularity there exist rq > 0 and a cone K with opening angle %

and vertex at x such that K N B, (x) C {4 = 0}. A straightforward change
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of variables in the Wirtinger inequality gives

[t or = X [0,

Similar to inequality (3.1) we obtain Z&%e+(r) > —Cr{t=a)/2(gpetl(r))1/2,
Therefore ®¥271(r) is bounded.

Proposition 4.1.2. I'NTU is a CY* curve.

Proof. Let x € T'NU. By a translation we may assume that x = 0. Let ¢,
I, be the scaled ¢ and T, respectively, as defined in Section 3.2. Moreover let
v (x) = (cosb,(z),sinb,(z)) be the unit outward normal vector on o{v, >
0}. By the C? regularity 6,.(x) — 8(0) uniformly in [1,1] as » — 0. Recall
that 1), is a domain variation solution in the sense

/ (| V9, [2dive — 2V, DEV, — 2rG(r'/ 24, )divE — 2g(yo + TY)T X qwe >0y divE

= 29(Yo + ry)TEX (9r>0162) — 26‘/ divp £ = 0.

™

(4.1)

We choose a test function & € C}(Bq;R?) such that £ v, > 0on I, N By and
£ v, >1onT, N By, for r <rp. Then

/ diVFrf‘ SCr+C | |V <Cir+Cor™' [ |[VY)? < Car.
TN, By .V Br

Let x7 be the positive part of x. Since k. > —kgr and HY(, N By) < L, we

have

[ dwe= [ fumz-Cot+ [ cone
I''nBi TN TwnBy )

> —Cyr + / g
PrnBl/g

Thus me " kT = fFrﬂBl/z kT < Cyr + Csr® for small r. For xXel'nU,

i = 1,2, we obtain that |6(z;) —8(z2)| < fj |6} ds < Cs(|x! —x?|+|x! —x%|%)
which implies that v is a C¥ vector field on "N U. O
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By [16, Corollary 8.36] we have

Proposition 4.1.3. ¢ € CH*{({y > 0} N ).

4.1.3 Higher regularity

Let £ € CHU;R?). We recall that  is a domain variation solution in the

sense

/ (IV4|2dive — 2V DEVY — 2G () diveE
v (4.2)

— 29y X (y>01divE — 2gxqy>03ée) — 20 / divp§ = 0.
r

Fore > 0, let U, = UN{x:¥(x) > 0,dist(x,T) > €} and I'. = U N Q..
Then I'; is a Lipschitz curve. We calculate

fUE(|V't,b|2div§ — 2V DEVY — 2G(ap)dive

—2gyx >0y divE — 29X gs0yé) — 20 [ dive

= [y div(IVY[PE — 2(V¢ - V) + 2(Vi) - §) Ay

+27() Ve - € — 29div(yE) — [ G- v +20 [y 6E v

= [y div(IVPE — 2(Vy - )V — 29y) — [ G()E - v + 20 [i, 6E - v.

Since ¥ € CYe({1 > 0} NU), there exists a constant C' < co such that
|G ()| < ce for x € T'.. Letting ¢ — 0 we obtain

0 = [L(IVedivE — 2V DEVY — 2G (h)dive
—29yX >0y divE — 20X (g>0)2) — 20 [ divre
= f{¢>0}nU div(|[Vy% — 2(Ve - )V — 2gy€) + 20 [y KE - v
= Jrwr(— VY — 29y + 20K)€ - .

Hence | V|2 + 2gy — 20% = 0 on I' N U which implies k € C*(T'NU).
We have therefore proved the following Theorem

Theorem 4.1.4. TNU is a C*>* curve.
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If the vorticity function v € C*°, using [16, Theorem 9.19] we repeat the

above procedure and get

Theorem 4.1.5. If vy € C, then T'NTU is O and ¢y € C=({y > 0} NU).

4.2 Cusps do not exist

Lemma 4.2.1. Let x° be a cusp point. There exist constants 7 > 0 and
6 >0 such that [Vi(z)| 2 5wz for allz €T and |z — x0| < 6.

| 2 5o
Proof. We may assume x° = 0. Let z € I, 1 By and 1o = 1/kp. There exists
a ball B, (y) C {i» > 0} such that z € 0B,,(y). Since ¥, — o(r,0) =
2y/2+/reos(§ + 3) in C for @ < 3, there exist 7 > 0, ¢ > 0 such that
infzéaBm A Pr =€ for r < 1y, where ¢ is independent of z. We introduce an
auxiliary function v in A = B (y) \ Bry2(y) by

v(x) = e Bre _ g be
where p = |y — x| > r9/2 and 8 is a positive constant yet to be determined.

Direct calculation gives

Av = —e PP (46207 — 4Bp).

We choose 3 large enough so that Av < —1in A. Since inf,cg B, jo(y) W(z) >
¢ > 0, there is a constant € > 0 such that 1, + ev > 0 on 0B, 2(y). This
inequality also holds on 9B,, where ¢, > 0 and v = 0. Since Aw,.(x) =
—r32y(4hp(rx)) < Cr3/2, there is a positive constant 7y < 7o such that ¥, +ev
is superharmonic in A for r < ry. The weak maximum principle now implies
¥, +ev > 0 in A. Taking the normal derivative at z, we obtain

o, <e v

P 0) < 2 {) = /(o) = 7 <0
forr < ryandz € T, N By, Combmmg this with |V¢(TZ)| = 7"_1/23’*'”( )

yields the desired result. |
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Proposition 4.2.2. S = 0.

Proof. Suppose towards a contradiction that there is a cusp x® € S. By
a translation we may assume that x® = 0. Noticing that (0+) = = and
8(x) < , there exists a sequence x* = (zy,yx) € Ty such that z; — 0+ and
x(x*) < 0. The boundary condition implies |V#(x*)|* = —2¢gn(zi) + C1 +
20k(x*) < Cy which contradicts Lemma 4.2.1. O

Thus we have proved our main theorem:

Theorem 4.2.3. Let o be a domain variation solution satisfying the as-
sumption tn section 24 Then 1 is a classic solution to equation (2.2) and
the free boundary T' = 8{+p > 0} s a C*>* curve. Moreover, I is smooth if
v e ™, ‘
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Chapter 5
Zero surface tension limit

In this section we study the zero surface tension limit two dimensional steady
capillary gravity water waves. Let 0 < o < 1 be the coefficient of the surface
tension and ¥, be the normalized stream functions. we assume b, are 2L
periodic and satisfy the same boundary condition on the bottom ¥ = —d.

Let = (—L, L) x (—d,0), then ¢, be a solution to equations:

A, = —’y(;gba) in Qn{y¥ >0}

P =0 on ZJZ?’?a(ﬂ?) (5 1)
Ve + 29y — 205, =0 on y = n,(z) '
Yo =po O0 Y= —d,

where v € C((0, pa)) N L*=([0, pg]) is the vorticity function, the free surface
is the graph of some smooth function 7, which is also 2L periodic, pp is a

is the curvature of the free boundary

!
positive constant and k, = (I_HW
a

0{1s > 0}.

In this Chapter we assume that v > 0 and the arc length of the free
boundaries {1, > 0} in one period is uniformly bounded.

" In order to get the convergence of ¥, as ¢ — 0, we need some uniform
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estimates.
Lemma 5.0.4. {1, } is uniformly bounded in W'*(Q).

Proof. Let B = {(z,—d),—L <z < L} and Ty = {(z,n,(z)}),—L < z < L}.
By Green’s identity we have

Ja Ve Pdx = [V (%6 po)|2dx
= Jolto — (%dx+£ » — po) ez d
+fB Yo — ( oy )d:n '

Since v and v, are uniformly bounded,

|/ %dﬂ<@<m

where (] is independent of . The boundary conditions give

]B (6o — po)(— a‘”“)dx—o

and

| Jr, (@e = po) a’*”“dﬁﬂ < Cy(HMT
= Cy(H(T

2 (fp, Vol dH™)?
(Jo, =29y — 20k, dH)z.

l
2
i
2

Since psi, are 2L periodic, fi, &, = 0. Thus

| fr (o — po)BeedHY| < Co(HMTL))E( [, —2gydH')
< CyHYT,) < Cy.

Therefore there exists a constant C' < oo such that fﬂ |V1,Do|2dx < C for all
O<o <. O

Let Q=R x (—d—1,1). We extend ¢, to Q by defining 9, (z,y) = 0 for
O0<y<1and ¢(z,y)=pofor —d— 1<y < —d

Lemma 5.0.5. There ezists a constant C < 0o such that }|v,bd||c,5_(m < C,

where C does not depend on o.
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Proof. Similar to Proposition 3.1.2 and Proposition 3.2.1 there exist § > 0

and C' < oo such that | fp o [l < Cforx € 9,0 <7 < 4. C does

not depend on o since fg |V4f4|? which are uniformly bounded. By Morrey’s

Lemma we get a uniform C'F estimate for 1, O

We may choose a subsequence {t,,} such that t¢,, — 1 weakly in

W2 (Q) and strongly in C*(2) for some @ < . Moreover we have the

following strong convergence result:

Proposition 5.0.6. ¢,, — g strongly in W.22(0)

loc

Proof. Tt suffices to show that
lim / (V0,2 = / (V402
o;—0 Q 0

for each ¢ € C§°(Q2). Since 9, satisfies '

Ay, = —v(Ps,) in {8y, >0} - (5.2)

Multiplying this equation by (,, and (i separately and integrating by
parts, we get :

[ €1V 0296 T, = i) ix =0

and .

fﬂ (Vo - Vi, + $oVC - Vi, — Ctloy(tho,)dx = 0.

The W12(w) weak convergence and C*(Q) convergence imply that

/ (V@bg . V@bmdx — f Clvwglgd}( — 0,
193 Q

] Yo, V(- Vibg, — 10V ( - Vi, dx — 0,
Q

and

L oY (tbog) — Cy (o )dx — O
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as g; — 0. Therefore
iy, [ IV Pdx= [ (Vulax
0‘-5—)0 Q Q
O

Lemma 5.0.7. There exists a subsequence which is still denoted by v, that

X{who; >0} —F X{wo>0} 1 Lt

Proof. Since the arc length 9{%,} is uniformly bounded, we know that
{Xgwo>03} 18 ﬁniformly bounded in the space of bounded variation func-
tions. Thus there exists a subsequence 9, and a Caccioppoli set A such that
X{wo, >0} — Xa i L) and H'(GA) < co. By the uniformly convergence of
g, 1t is easy to see that {1 > 0} C A. Therefore it is sufficient to show that
A° C {1pp > 0}. We assume that towards a contradiction there exists a point
(z,y) =x € A°\ {#p > 0}, then there exists constant r > 0 and o > 0 such
that B.(x) C {1y, > 0} for o; < gp. Let @ = B.(x)U(z—r,z+7) x (—d,y).
Then Q € {1,, > 0}. Therefore 1, are supharmonic functions in  and
consequently g is also a supharmonic function in €. On the other hand, we
know that v > 0 in Q and (%) = 0 since x ¢ {thg > 0}. Thus we get a
contradiction by the maximum principle. Therefore X(y, >0} ~— X{go>0} In
L. O

Tt is easy to see that G(v,,) — G(¢p) in L' since that G(¢),,) is uniformly
bounded and ¢, — g a.e. '

Recall that divp £ = divé — v, DEv,, where v is the unit normal vector the
free surface I',. There exists a constant C' < oo such that ||divp,{|jze < C
for all o. Therefore

|O’/ divp, &) < eCHY (,) = 0
T, .

as o — 0.



Notice that v, is a domain variation in the sense
[[(9ulive — 29 DEV Y, - 2600.)dive
Q

20y ip o0y divE — 20X (s 0)Ea) — 20 f dive, € = 0.
Iy

Letting ¢; — we obtain the following theorem:

Theorem 5.0.8. vy is a domain variation solulion to the two-dimensional
gravity water waves without surface tension, more precisely, vy salisfies

/ﬂ (IVho[?divg — 2VepDEVhy — 2G (ho)dive

— 29YX (9o>0}AVE — 29X fyo>01E2) = 0.
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