Fast lattice reduction algorithms
for optimizing F9-linear pseudorandom
number generators

(Fo-tR AL BREEORBLO 720D
| EEEFEOT AT L)

R F

Contents

I Fast lattice reduction for Fg-lirnear pseudorandom num-

ber generators 3
1 Introduction 3
2 Linear generator and lattice method : 4
2.1 Dimension of equidistribution e, 4
2.2 Lafticestructure L e 5
2.3 Duallattice e 7
3 Main result ' 8
3.1 Schmidt’s generating set reduction L. 8
3.2 State representation. T 11
4 Computational complexities 14
5 Speed comparison 17

II An efficient lattice reduction method for Fy-linear pseu-
dorandom number generators using Mulders and Storjo-

hann algorithm 21
6 Introduction 21
7 Lattice method _ .24
7.1 Lattice structure 24
7.2 Schmidt’s reduction, inductive projection and state representation . . 25
8 Main result: PIS methed 27
9 Numerical experiments 32
9.1 PISversus SIS. I 32

9.2 Use of 0-excess states

10 Conclusions

Part 1
Fast lattice reduction for Fo-linear
pseudorandom number generators

1 Introduction

Let Fy ;= {0,1} denote the two element field. Sequence generators based on Fs-
linear recursion are widely used in practical applications, in particular as pseudoran-
dom number generators. Among-the quality criteria of the generators, the notion
of the dimension of equidistribution with v-bit accuracy is widely used as a most
informative criterion for the higher dimensional uniformness of the distribution of
the sequence (see [6]). When the state space is large, the computation of these
dimensions is time consuming, and at the designing stage of the generator, it be-
comes a bottleneck in finding good parameters. Couture, L’Ecuyer and Tezuka [2]
introduced a lattice bésis reduction method to compute these dimensions, over the
formal power series field Fo({¢t™!)). Couture and L’Ecuyer [1] improved Tezuka’s
resolution-wise lattice method {21] by using the dual lattice. The aim of this part is
to propose a simpler and more efficient method. In §2, we briefly recall the notion
of Fs-linear generators and computation of the dimensions of equidistribution using
lattices. In §3, we introduce a method to compute a reduced basis from a generating
set, a method to compute the dimension of equidistribution with v-bit accuracy for
v =w,w—1,w—2,... inductively in this order (w intended for the word size of
the machine}, and an efficient representation of the lattice elements (and operations
on them) in terms of the state space. We give the computational complexity of the
proposed method in §4. We compare the speeds of the state representation method

“and the dual basis method (1] in §5 using a C++ implementation.

2 Linear generator and lattice method

2.1 Dimension of equidistribution

We recall basic materials, see [6] and its references for the original definitions. An
Fo-linear sequence generator consists of a state space S = F%, an Fy-lincar state
transition function f : § — 5, an Fa-linear output function o : S — O where
O = F¥ is the set of outputs (w intended for the word size of the machine). Once an
initial state sg € S is given, the generator computes the next state by the recursion
sip1 = f(ss) (1 =0,1,2,...) every time unit, and the output sequence is given by
0(80), 0(s1), 0(82), ... € O. Throughout this part, P(¢) denotes the characteristic
polynomial of f.’

The dimension of equidistribution k(v) of such a generator is defined as follows.
We identify the output set F§ with the set of unsigned w-bit binary integers. Let
us consider the most significant v bits (v MSBs) in the outputs. We regard this to
consider the output with v-bit accuracy. This amounts to. consider the composition
0, : S > F¥ — FY, where the latter map denotes taking the v MSBs. Define the
k-tuple output function for any k > 0 by

Of,k) : 5 = (Fg)k: Sg (OU(SO): Ov(f('SO)): T Ov(fk_l(sf))))7

namely, o) (sp) is the consecutive k-tuple of the outputs from the state sp.

Definition 2.1. If o : § — (F3)Y* is surjective, then the generator is said to be
k-dimensionally equidistributed with v-bit accuracy. The largest value of k with this

property is called the dimension of the equidistribution with v-bit accuracy, denoted
by k(v).

Since 05,’“) is linear, k-dimensional equidistribution means that every element

in (F3}* occurs with the same probability, when the initial state sy is uniformly
distributed over the state space. If the generator has the maximal period 22 —1, then
this amounts to saying that every kv-bit pattern occurs as consecutive overlapping
k—tuples of v-bit integers equally often for the whole period, except the all-zero

pattern which occurs once less often.

The larger k(v) for each of 1 < v < w is desirable. By comparing the dimensions
of S and (F%)*, we have a trivial bound p = dim(S) > kv, and hence k(v) < |p/v].
If the equality holds, then the generator is said to be mazimally equidistributed.

We may compute k({v) by checking the surjectivity by linear algebra [3]. For a
large p, Couture et al. [2] and Tezuka [21] proposed much faster algorithms based

on lattice structures over power series.

2.2 Lattice structure

We briefly recall the above-mentioned lattice method. Let K denote the formal

power series field:

K :=TFy((¢ {Zaj |aj€F2,j0€Z}.

J=30

-For o = Yoo @t € K, we define a standard norm by
o] = max{—j€Z|a; #0} fa#0,
' —00 ifa=0.
For a vector v = (o, @s,...,a,) € K?, we define ||v|| := max;<;i<,|c:|. Note that

la| and {|v|| are often negative integers. Let oy =3 22 ;6™ € K. For v # 0, we

define its coefficient vector at the leading term w(y) € F3 by

7(y) 1= (a1,—ijy|}s Q2,—fiml}s - - - Bo—|lnl|)» SO that v = 7 (7)tM+lower degree terms in ¢.

A sibset L ¢ K is called an Fjf]-lattice if it is the set of linear combination
of W1, Ws, . .. ,w, With coefficients in Fy[t], where wy, ..., w, are linearly independent

over K. Such a set of vectors is called a basis of L.

Theorem 2.2 (Lemma 1 of [9]). Let wy,...,w, be the points in an Fs[t]-lattice
L C K" with the following properties:

(1) w; is a shortest nonzero vector in L;

(2) for i =2,...,v, w; is a shortest vector among the set of vectors w in L such
that wy,...,w;—1,w are linearly independent over K.
Then wy,...,w, form a basis of L.

Such a basis is called a reduced basis for L. Tt is not unique, but the numbers
v; = ||w;i|| are invariants of the lattice, called successive minima (see [8]). Let us
consider an Fa-linear generator. For a v-bit output sequence from an initial state
so € S, let x, denote a (v-dimensional vector-valued) generating function in K¥:

oQ

Xo{80) = Zoq,(fj(.so))t"l"j = 0u(s0)t + oy (51}t 2 4+ € KV, (2.1)

This gives an Fao-linear map x, : S — K. We define a lattice A, in KV as the-set
of F;[t]-linear combinations of x,(sp) and the unit vectors, namely, the Fy[t]-linear

span

A‘v = (X’U(SU): €1,€2,.. ., 6‘v>F2[t]: . (22)

where e; is the vector whose ¢-th component is 1 and 0 for the other components
(i = 1,...,v). The vectors x,(s9),€1,€s,...,6, form a generating set of A, over
Fs[t], but they are K-linearly dependent because they form a set of cardinality
v+ 1. Still, these v + 1 vectors generate a lattice: after multiplying each vector
by the characteristic polynomial P(t), every coordinate becomes a polynomial, and

thus there is a basis consisting of v vectors.

Theorem 2.3 (]2, 21]). Assume that P(¢) is irreducible. Take nonzero sy € S.
Then, k(v) = —v, holds, where v, is the v-th successive minimum of the lattice A,
in K*,

In [1], to obtain a reduced basis, the authors used the Lenstra reduction algorithm
17], which requires a basis of A, as an initial input. Since P(£)xy(so) € F1[t]*, one
can define polynomials (g1(¢), g2(t), ..., gu(t)) := P(¢)xu(s0). Let g1(£)~" denote a
polynomial which is a multiplicative inverse to g:(¢) modulo P(t) (which exists if
the MSB of the sequence is not constantly 0}, and define a vector with polynomial

componenj:s
T = (g1()71 - P(t)x0(s0)) mod P(t).

The first component of ¥ is 1, and the vectors ¥/P(t),e;..., ¢, form a basis of A,,.

In applying the Lenstra basis reduction, to avoid the infinite formal power series

¥/ P(t), we multiply this basis by P(¢) to reduce to the polynomial computation.
We apply the Lenstra’s reduction to the polynomial vectors

(L,Ga(8), ..., G (D)), (0, P(8),...,0),...,(0,...,0, P(t)) € Fu[t]°, (2.3)

where g;(f) .= g1(t)"1g;(¢) mod P(t.) (2<j<v).

Later we use the following.

Lemma 2.4. Let vy, ..., 1, be the successive minima of A,,. We have

v

—dim(S) =) "u.

i=1

Proof. From (25) in [8] (or (3) in [1]), the lemma follows. O

2.3 Dual lattice

For a lattice L C K", its dual lattice L' is defined by
L':={WeK"|h-WeRt, forall h e L},

where h- b/ = 22:1 hy(t) - B(t) (the scalar product) for A = (h1(2), ..., h.(t)) and
R = (hi(t),...,h,(t)). The vectors

(P(1),0,...,0),(=2(t),1,...,0,0),..., (=Gu(t),0,--- ,0,1) (2.4)

form (the so-called dual) basis of the dual lattice A!. The next theorem reduces the

computation of successive minima of A, to those of the dual.

Theorem 2.5 ([1]). Let 11, vs, .. ., 1, be the successive minima of A,, and vy, v4, ..., v/,

the successive minima of A’. We have, for:=1,2....v
U) y Ly 1
f
vit v, =0.

A big advantage of using the dual in [1} is that we can use the reduced basis of
AL, to compute that of A, |

Assume 1 < v < w. Let ¢ : K?~1 — K" be an inclusion by supplementing 0 at
the vth coordinate, and p : K — K®"! be the projection by deletion of the vth

coordinate.

Theorem 2.6 ([1]). For 1 < v < w, we have
(1) p(Ay) = Apor.
(2) &, =(Ay) ® {(=2(£), 0, ,0,1))py g
Whe.re {(=5.,(t),0,+++,0,1))p,p denotes the space spanned by a single vector.

The first claim follows from the definition of A,. The second follows from (2.4).
Thus, for the dual lattice A}, we may choose its lattice basis as the union of a reduced
basis of A],_; and the vector (—g,(¢),0,---,0,1). Consequently, if we compute
reduced bases of A5, A5, ... in this order, then we can use a reduced basis of Al _,
in computing that of Al. Computational complexity given in [1] shows a significant

advantage of this method, which we call dual lattice method.

3 | Main result

3.1 Schmidt’s generating set reduction

The Lenstra basis reduction requires a basis of the lattice. Although it is not dif-
ficult to obtain a basis from a set of generating vectors (cf. [5]), there is an even
simpler reduction algorithm by Schmidt [20, P.200}, which can be easily generalized
to an algorithm to obtain a reduced basis from a generating set. We describe this

generalized version, which we call Schmidt’s generating set reduction (SGR).

procedure Schmidt’s generating set reduction

input : a generating set w, wo, . .., Wy, which spans a lattice L over Fyt].
output : a reduced basis wq,ws, ... ,w, € L.

begin

while 7(wi), 7(ws), ..., 7(wy) are linearly dependent over Fy do

(reduction step)

Find a vector {o, s, ..., 0m) € F} such that > - aym(w;) = (0,...,0).
Find an integer 4max such that ||w; || = max{|lw;| | 1 < i< m,a; # 0}
St wi, e 3 ol il

Ifw;__ =0 then swap w;__ and wy,, and set m + m — L.

end while
Renumber wy, wa, ..., wy, in such a way that ||wi|| < ||we| < ... < ||wm]|-

end

Each reduction step decreases Y, ||w;|{, and since there is a shortest vector in
a lattice, the algorithm terminates. Then, the number m of vectors is reduced to
v, and w{w),...,m(w,) are linearly independent. Such a basis is called a reduced
basis in [20, P.199], and its equivalence to that in Theorem 2.2 follows from the
uniqueness of their length ([20, P.201)).

Using SGR, we can use p and (1) in Theorem 2.6 to obtain a reduced basis of A,
from that of Ay4q1: if wy, ..., wy1 is a reduced basis of A1, we obtain a generating
set plwr), ..., plwyyi) of Ay, hence we may apply SGR. Since p(w1),. .., plwys1) are
short, this lowers computational complexity significantly when one computes all k(v)
for 1 < v < w (see §4). We call this method inductive projection. Note that this
method computes k(w), k{(w — 1},...,k(1) in this order, which is converse to the
standard techniques (e.g., [1] [5]).

SGR in the inductive projection is proved to terminate when one vector is elim-

inated, as follows.

Theorem 3.1. Let w1, ..., Wyp1 be a generating sct of an Foft)-lattice L C K®.
Suppose that 7(w), ..., T(wyy1) has rank v. When we apply the SGR algorithm to
this generating set, then it terminates when the number of the vectors becomes v,
namely, when a vector is reduced to zero.

Let wf,...,w, be the obtained reduced basis. The number of reduction steps in

SGR required before the termination is bounded from above by

v+1 v

S il = 3l = [1, (5.1)

where w'®* denotes the last vector reduced to zero at the final step in SGR.
In particular, let L be A, in (2.2). Then, the value of (3.1) is bounded from
above by —||w!®t|| + 1, if wy, ... ,w,41 are the image by p of a reduced basis of the

lattice A,41 and the characteristic polynomial P(#) is irreducible.

Proof. In SGR, in one reduction step, one vector is reduced by subtracting an Fs[t]-
linear combination of the other v vectors. Looking at the coefficient vectors at the
leading term, this amounts to eliminating one F5 vector by subtracting an Fy-linear
combination of the other v vectors. The coefficients of the leading term of the re-
duced vector changes, but the other v vectors do not change. The reducibility implies
that even if we throw away the reduced vector, still the rank of the coefficient vectors
at the leading terms does not decrease. Thus, the rank of vectors m{ws), ..., m(Wyy1)
is always v. Consequently, if the reduced vector becomes zero, then the other v
vectors have rank v at the leading terms, which means the termination.

In each reduction step, the sum Y o' ||w;|| is decreased at least by one. When
one vector is reduced to zero, then this value becomes —oo. We look at the last
step of reduction. There is a vector w'®® that is reduced to zero, while the other v
vectors are unchanged and become the reduced basis. At this stage, the above sum
is |jw'®t|| + 37, |iwi||. Hence, the number of steps is bounded by their difference +
1, namely (3.1). '

If the lattices are from an Fy-linear generator, then > ., ||wi|| = — dim(S) holds

by Lemma 2.4. If @; (i=1,...,v+1) is a reduced basis of A1, then

uv+1 v+1
> llp@)Il <) liwl| = — dim(S),
i=1 i=1
hence the result. . O

We check that in inductive projection, SGR satisfies the condition in Theo-
rem 3.1. For v = w, we apply SGR to a generating set (2.2), whose cardinal-
ity is v + 1. In the induction step, we have v 4+ 1 generators projected from a
reduced basis, and SGR reduces them to v generators. In both cases, the coeffi-
cient vectors of the leading terms of the generating set have rank v as F5 vectors.
Namely, 7{xw(s0)),m(e1},m(e2),...,m(ey) have rank w. In the induction step, let
Wi,...,Wwyy1 be a reduced basis of A,y ;. Then w(p(w:)),...,m(p{wyt1)) have rank
v, since m{w1), . .., T(wy41) have rank v+ 1 and the rank of 7(p(w;))’s is at least the
rank of p(m(wi1)),..., p{m(wy41)), which is v, and consequently the rank must be v.

Thus, both cases satisfy the condition of Theorem 3.1.

10

Corollary 3.2. Under a heuristic assumption that on average [|w™|| > — dim(S)/v
holds, the average number of the reduction steps in SGR to obtain a reduced basis
of A, from that of A,,; is bounded from above by dim(S)/v + 1.

Proof. The assumption is that, ||w'*|| in the proof of the theorem is on a,veragé
larger than or equal to the average of ||wi]l,...,||«|]. This is justified by the fact
that w'** is reduced by !, hence has on average larger norm than the average norm
of ||wi||, which is ~ dim(S)/v by Lemma 2.4. a

, Note that w'®* is reduced often by using the longest vector or the second longest
vector among w;, hence the above bound dim(S5)/v + 1 seems over-estimated: SGR

tends to stop in a smaller number of steps, which agrees with our experiments.

Remark 3.3. There is a modified Lenstra reduction algorithm [18] applicable to a
generating set of a lattice, but its efficiency seems comparable to SGR. Wang and
Zhu [23] and Wang, Zhu and Pei [24] applied SGR. to compute the linear complexity
of a multisequence. A more informative complexity, based on the successive minima

obtained using SGR, is given by Wang and Niederreiter [22].

3.2 State representation

Another merit of tirle dual lattice method in [1] is that the space complexity is
reduced. If we apply SGR to the generating set (2.2) polynomialized by multiplying
by P(t), each vector has components being polyﬁomials of degree smaller or equal
to deg(P(t)) = dim(S). Thus, one vector requires dim(S) x v bits of memory, and
the generating set consumes v(v + 1) dim(S) bits. We need to start from v = w,
which costs a lot if dim(S) is large. On the contrary, in the dual lattice method,
for v = 1 we have no reduction step (and k(1) = dim(S)), and for v = 2 we need
2dim(S) bits of memory for each of two vectors, and after a basis reduction, the
components of the vectors in a reduced basis have degree dim(.5)/2 on average, thus
dim(S) bits for one vector and 2dim(.S) bits for a reduced basis. In the same way,
the reduced basis for A;, consumes v dim(.S) bits, which improves on v(v+ 1) dim(S)

for the original lattice.

11

Instead of using the dual lattice, we propose a method to represent a Veétor in
the lattice A, by a state, which we call fhe state representation. Since one vector
consumes only dim(.S) bits of memory, memory efficiency is comparable to the dual
lattice method (or better, since we need no assumption on the reducedness). Recall -
the map x, : S — K defined in (2.1). Note that K = Fy[t] @ (Fq[[t™]] - t71) as
an Fao-vector space, since any element of K is a sum of its polynomial part (némely,
a linear combination of # with § > 0) and its fractional part (namely, an infinite

linear combination of # with j < 0) in a unique way. Hence we have
EY =Falt]’ & (Fo[[t™]].- ¢71)".

The first direct summand is called the polynomial part, and the second is the frac-
tional part which we denote by F”. Let Fi(A,) b_e the fractional part F¥ N A,,. Since
A, contains Fst]?, the polynorriial part of any element in the lattice is in A,, and

so is the fractional part, namely:
A, = Bl @ F(A,)

as an Fa-vector space. Assume that the characteristic polynomial P(¢) is irreducible.
Then, the image of x, lies in F'(A,). Note also that A,/(F3[t]") is an Fy[f-module.

Lemma 3.4. If the characteristic polynomial P(%) is irreducible and x,, is nonzero,
Xo 0 S = Ay /(Fa[t]Y)
is an isomorphism as Fy[t]-modules.

If P(t) is irreducible, then this lemma implies that the fractional part of a lattice
element has a unique representation by a state in §, and the sum and multiplication
by ¢ for lattice elements can be computed by those for the corresponding states.
Thus, we can implement lattice reduction algorithms using operations on 5. This

is a key to reduce the space and time complexities by the state representation.

- Proof. The action of £ on s € § is defined by ¢ - s := f(s). Since x, is linear, to

show homomorphy, it suffices to show that

Xo(F(s0)) =t xu(s0) mod Fa¢]”.

12

But by the definition (2.1}, xu(f(s0)) = 2 520 0u(F/* (so))t™'7 and ¢ - xu(s0) =
> im0 0u(f7(50))t77, hence their difference is an Fy vector o,(sq) € Fa[t]”.

“We show isomorphy. Since P(t) trivially acts on S, S is a k := Fy[t]/(P(£))-
module with & being & field. Since dim(S) = deg(P(¢)), S is a one-dimensional
k-vector space. On the other hand, A,/(F3[t]*) is also a k-vector space, which is
generated by a single element x,(sg). Thus, X, is a k-linear map between two

one-dimensional spaces, so x, is an isomorphism if nonzero. : 0

From now on, we assume irreducibility of P(¢}). By the above lemma, we can
represent the fractional part of an element of A, as x,(s) in a unique way. Thus,
any element of A, has a unique representation as poly+ x,(s) with polynomial part

poly and the fractional part x,(s).

Definition 3.5. A pair of a polynomial vector poly and a state s € S is called the
state representation of poly - x,(s) € A,,. '

The addition of two representations is given by adding their polynomial parts,
and by adding the states in the state space. Multiplication by ¢ is given by

t(poly + xw(s)) = (t - poly + 0y (8)) + X'v(f(s))

In applying SGR to (2.2), note that ej,...,e, are not in the image of x,, but
once such a vector is reduced, then the result has only fractional part, having a
representation x,(s). Thus, most computation can be done inside the state space.

There is a slightly improved version. In a lattice-reduction procedure, we need
to compute the norm and the leading term of x,(s). A direct method is to com-
pute ;Jv(s),ov(7(8)), 0o(f%(5)), ... in this order, until one gets a nbnzero vector.
If 0,(f%(s)) is the first nonzero vector, then this vector is the leading coefficient
7(x.(s)) and ||x,{s}|| = —j — 1 holds. This method is time-consuming if the norm
is small, which is the case for the last steps of the reduction. '

To avoid this, we adopted the following representation. ILet s be a nonzero
state that represents a lattice element x,(s). If ||x.(8)|| = —n, then we keep the
pair (n — 1, f*"1(s)) as a representation of x,(s), instead of s. More precisely,
consider the set S := {(m,s") € Zx S | m > 0,||xu{f™(&")|| = —m — 1}. The

13

above mapping s — (n— 1, f*"(s)) € S gives the inverse to the mapping ¢ : § —
{0} = S — {0}; (m, s') = f~™(s"). Through this bijection, we use elements in S as
representations of lattice elements. It is easy to check that ||x.(¢{m, s))|| = —m 1
and 7w (x,(@(m, 8'))) = 0,(s"), so there is no need to search for the first nonzero term.
One can check that in the reduction steps in SGR, we need only the norm and the
leading term, hence this representation works. We leave it as an exercise to detail
how to compute the sum and the multiplication by ¢ in S.

We propose a combination of SGR, inductive projection, and state representation
for computing all k(v)’s, which we call SIS for short. Thus, first SIS computes a
reduced basis of A,, using SGR with state representation. By taking the projection,
SIS computes a generating set of A,_;, then reduces it to a reduced basis by SGR
with state répresenta,tion. SIS inductively computes reduced bases of A,, A,_1,
Ay—2, ..., Ag, in this order (inductive projection). Theorem 2.3 gives k(v) for

v=w,w—1,...,2.

‘4 Computational complexities

In a:practical Fyo-linear generator, f and o, can be computed by a few operations,
often independently of the size of the state space, which we assume is negligible from

the total cost of the computation.

Theorem 4.1. The average number of bit operations to obtain the reduced basis
by the SGR from the generating set in (2.2) is bounded by (v + 1) dim{S)? + (v* +

v%) dim({.9), when using the state representation.

Proof. One step of the reduction in SGR consists of v* bit operations for Gaussian
elimination to find a linear relation among v+1 Fy vectors, and v additions to reduce
a vector. Each addition requires dim(S) bit operations in the state representation.
Thus, one reduction step has vdim(S) + v® bit operations. By Theorem 3.1 and

Corollary 3.2, on average, the number of reduction steps does not exceed

w0}l + llexll + -+ 4 lleall = D _ llwil| + dim(S) /v + 1.

i=1

14

From Lemma 2.4, ||x.(s0)|| € —1 and ||e;|| = 0, it follows that this bound is
equal to dim(S)(1 + 1/v). By multiplying, we have a complexity upper bound
dim(S)(1 + 1/v)(v dim(S) + +®) = (v + 1) dim(S)? + (v* + v*) dim(5). O

Theorem 4.2. The average number of bit operations for SGR algorithm to obtain a
- reduced basis of A, from that of A, ; has an upper bound dim($)?+ (v?+v) dim(S)+

v3, when we use the state representation.

Proof. By Corollary 3.2, SGR needs at most dim(S) /v+1 reduction steps on average.
As in the proof of Theorem 4.1, each reduction step has v dim(5}+v?® bit operations,
hence we have (dim(S)/v + 1)(v dim(S) + +*) = dim(S)? + (v? +v) dim(S) ++*. O

These theorems give an upper bound of computational complexity of SIS. The-
orem 4.1 implieé that the first step of SIS computing requires at most w dim($)? +
w® dim(S) bit operations. At the step of the inductive projection from A,, to A,_; in
-SIS, Theorem 4.2 gives an upper bound of the complexity dim(S)?+v* dim(S) +°.
By summing for v =w —1,w —2,...,1, wdim(S)* + jw* dim(S) + fw* bit opera-
tions will suffice to compute the other w — 1 values k(w — 1), k(w —2), ..., k(1). By

summing, we have:

Theorem 4.3. SIS requires at most 2w dim(S)* + Zw® dim(S8) + 3w* bit operations

to compute all k(v), w > v > 1.

We compare this complexity with the following result for the dual lattice method
described in §2.3. A lattice A, is said to be regular if the minimum and the maximum

of its successive minima have a difference of at most 1.

Theorem 4.4. [1, Theorem 2 and §4] Suppose that A_, is regular. The number
of bit operations for computing a reduced basis of A} from that of A]_; does not
exceed |

Co(dim(S) +v —1)?, v>2,

where C is an absolute constant.
The number of bit operations for computing all k(1),...,k{w) does not exceed
- %Q(dim(S)+w — 1) for an absolute constant C’, under the regularity assumption

for each lattice Al.

15

The comparison of the orders show that our SIS method is expected to be more
efficient than this by a factor of w. (As pointed out by a referee, strictly speaking,
these are only upper bounds and do not compare the efficiency). Note that there
are differences in the estimation: our estimation does not assume the regularity on
the lattices, but does depend on a heuristic argument on the average. Actually, the
regularity implies that our estimation in Corollary 3.2 plus 1 gives an upper bound

as a worst case analysis, since |[w'™t|] > vy > —dim(S)/v — 1 if regular.

Remark 4.5. We are also interested in whether SGR is more efficient than Lenstra’s
algorithm or not, when used for dual lattice. According to our experiments, the
answer is yes, but not that much, see the next section. We implemented a version
of the dual lattice method, replacing the Lenstra algorithm with SGR.

There is one caution when SGR is used with the dual lattice method: to keep
the efficiency, we need a triangulation process, as stated below. In the dual lattice
method, let wy, . .., wy—; be the computed reduced basis of A]_,. Let B be the square
matrix of size v — 1 whose j-th column is w;. As explained after Theorem 2.6, the
vector *(—g,(¢),0,---,0,1) is reduced by using ¢(wy),...,t{w,—1) (called the first
phase, see [1, Proof of Theorem 2]), then the Lenstra algorithm is applied to obtain
a reduced basis of Al (the second phase). Let m(B) be the square matrix whose
J-th column is 7(w;). In the first phase, in one reduction step, a linear equation
7w(B)xz = y with coefficients in Fy is solved, until the vector becomes non-reducible
by t(wr),...,t(ws_1) (where y may change at every step). If 7(B) happens to be
triangular, then solving these linear equations is efficient. _

If B is obtained by Lenstra algorithm, then 7(B) is triangular. If B is obtained
by SGR, m(B) may be not triangular, but it is easy to transform B to another
reduced basis B’ with w(B’) being triangular. We use SGR. with this triangulation
procedure, then the dual lattice method with SGR is often faster than that with

Lenstra algorithm.-

16

5 Speed comparison

-

The following computer experiments compare our SIS method and the dual lattice
method. We assume w = 32, and choose three Fs-linear generators. We measured
the CPU time for computing each k(v) for 2 < v < 32, by using the following three

methods:
(1} SIS method (our proposal in § 3).
(2) the dual lattice method with

(a) SGR algorithm applied as in Remark 4.5.

(b) Lenstra reduction algorithm (the method proposed in [1]).

We implemented these three methods in C++. In the SIS method, we compute k(32)
from (2.2), and then k£(31), ..., k(2) inductively. In the dual lattice method, we need
to compute the characteristic polynomial P(t) by Berlekamp-Massey algorithm [10],
and then transform (2.3) into (2.4) by arithmetic operations modulo P(t). We refer
to this phase as the precomputation for the dual lattice method. For polynomial
arithmetic in the precomputation, we used the library NTL (http://www.shoup.
net/ntl). We conripute k(2) by applying SGR algorithm (a), or Lenstra’s algorithm

(b), to the basis (2.4), and then inductively compute %k(3),...,%(32). The tests
were performed on a computer with 64-bit AMD-Athlon 64 3200+ CPU and 2.0 GB
of memory, on a Linux operating system. The programs were compiled using gcc
compiler version 4 with the -O2 optimization flag.

We applied these methods to WELL44497a’, which is a maximally equidis-
tributed version of WELL44497a [17] by improving its tempering (see [4]). The
generator has dim(S) = 44497. The lattice A, turns out to be regular for every
2 < v < 32, except for v = 7. Table 1 gives the CPU time (in seconds) for computing
a reduced basis. As predicted from the computational complexities (Theorems 4.1
and 4.2), in the SIS method, the CPU time for computing %(32) is comparable to
the sum of all the rest of the computations. Note that the consumed time for £(31)
to k(2) is almost the same, as predicted from Theorem 4.2. In the dual lattice meth-

ods, computation of k(2) is fast, and computation time of k(v) increases, roughly

17

proportional to v, as predicted from Theorem 4.4. In these experiments, SGR is a
little faster than Lenstra’s algorithm.

The comparison of the CPU time is in accordance with the ratio v between
the complexity of our method and that of the dual lattice method, in inductive
computation of k(v). In total, our method is much faster.

We also compared the timings for two other Fy-linear generators with dim(S) =
19937, namely WELL19937a’ (a maximally equidistributed version of WELL19937a
[17] introduced in [4], A, being regular except for v = 6) and Mersenne Twister
MT19937 [12] whose lattices are far from being regular (whose total dimension
defect [17] A is 6750). Table 2 lists the total CPU time (in seconds) to compute
all k(v) (2 < v < 32) by the three methods for the three generators. The first line
lists the total time for each method applied for WELL44497a’, copied from the last
line of Table 1. The experiments on WELL19937a’ show the same tendency. In
MT19937, Leﬁstra’s algorithm is faster than SGR.

18

Table 1: The CPU time for computing k(v) (2 < v < 32) of WELL44497a’ (in
seconds). For the SIS methods, they are listed in descending order with respect to
v, according to the order of computation.

SIS dual lattice

SGR SGR | Lenstra
precom. | 1.829 1.845

k(32) | 1.996 k(2) 0.064 0.064
k(31) | 0.059 k(3) 0.138 0.140
k(30) | 0.058 k(4) 0.212 | - 0.217
k(29) | 0.058 k(5) 0.286 0.298
k(28) | 0.059 E(6) 0.364 0.379
k(27) | 0.057 E(7) 0.445 0.468
k(26) | 0.057 E(8) 0.527 0.553
k(25) | 0.057 E(9) 0.612 0.646
k(24) | 0.058 || %&(10) 0.700 0.739
k(23) | 0.056 || k&(11) 0.791 0.836
k(22) | 0.057 || k(12) 0.879 0.940
k(21) [0.057 || k&(13) 0.977 1.047
k(20) | 0.057 || k&(14) 1.071 1.157
%(19) | 0.056 || k(15) | 1.183| 1.266
k(18) | 0.057 || k(16) 1.284 1.383
kE(17) | 0.058 || k(17) 1.386 1.491
k(16) | 0.058 || k(18) | 1.505| 1.619
kE(15) | 0.051 || k(19) 1.623 1.761
k(14) [0.052 || k(20) | 1.742| 1.895
kE(13) | 0.053 || Kk(21) 1.857 2.008
%(12) | 0.053 || k(22) | 1.085| 2.148
E(11) | 0.054 || Kk(23) 2.114 2.288
£(10) | 0.050 || k(24) | 2.247 2.468
5(9) | 0.051 || k(25) | 2.365| 2.595
k(8) | 0.052 || k(26) 2.516 2.739
E(7) | 0.048 || k(27) 2.682 2.929
k(6) 1 0.060 | ~ k(28) 2.824 3.008
k(5) | 0.049 | k(29) 2.969 3.248
k(4) |0.049 | k(30) | 3.117 3.443
k(3) | 0.048 | E(31) 3.308 3.630
k(2) |0.048 || k(32) 3.456 3.806
total | 3.622 || total | 49.053 | 53.139

19

Table 2: The cumulative CPU-time (in seconds) for computation of all k(v) (2 < v <
32) of three Fy-linear generators, by the SIS method and the dual lattice methods.
The number in () shows the pre-computation time. The column A shows the total

dimension defect.

generators SIS

dual lattice

A

SGR

Lenstra

WELL44497a’ | 3.622

49.053(1.829)

53.139(1.845)

WELL19937a’ || 0.939

13.476(0.392)

MT19937 0.529

(
12.360(0.398)
9.399(0.403)

5.654(0.408)

6750

20

Part 11

An efficient lattice reduction
method for Fo-linear
pseudorandom number generators
using Mulders and Storjohann
algorithm |

6 Introduction

A recent trend in large-scale simulations is to use parallelism, based on many pro-
cessors (or cores). In such simulations, a large number of pseudorandom number

genérators with distinct parameter sets are often required, to assign each parameter

set to every core or every process. For this, an effective assessment of the quality

of a generator with a giveil parameter is desired. Pseudorandom number genera-
tors based on linear recurrences over the two-element field are good candidates for
this purpose (cf. Dynamic Creator of Mersenne Twister [131), since they have effec-
tive assessment via their dimensions of equidistribution, which are values assuring
uniformity of high-dimensional distribution. This part proposes a fast algorithm
to compute these dimensions, using a lattice reduction algorithm by Mulders and
Storjohann [15] in the SIS method in Part I.

Let Fy := {0,1} be the two-element field, ie., addition and multiplication
are done modulo two. We consider a pseudorandom number generator with a p-
dimensional state space S := F}, an Fo-linear state transition function f: 5 —+ 5,
and an Fy-linear output function o : $ — O where O = Fy is the set of outputs (w
intended for the word size of the machine). When we give an initial state sp € 5,
the generator computes the next state by the recursion s;1; = f(s;) (1=10,1,2,.. J,
and the output sequence is given by o{sg), 0(81), 0(82), ... € O. We identify O with
the set of unsigned w-bit binary integers. This type of generator is called an Fs-

linear generator. For example, Mersenne Twisters [12, 16] and WELL generators

21

-[17] belong to this class.

One of the merits of an Fas-linear generator is that we can compute the dimension
of equidistribution which measures high-dimensional uniformity of the sequence for
the whole period. Since most significant bits (MSBs) in a word-size integer are more
influential than lower ones in a Monte Carlo simulation, we often usé the dimension -
of equidistribution of v-bit accuracy k(v) defined as follows (see surveys [6, 14] for

details).

Definition 6.1 (Definition 2.1 of Part I). Consider an Fa-linear generator as above.
Let v be an integer with 1 < v < w. Let tr, : Fy -» F§ be the projection from w
bits to the v MSBs, called the truncation function.

For a positive intéger k, we define oq(,k) as the composition:

o) 8§ — (F3)", 80— (try 0 os0), try 0 0(f(s0)), - -, by © (7 (s0)))-

This map sends a state to the consecutive k-tuple output integers from the state,
with only v MSBs extracted from each integer.

The generator is said to be k-dimensionally equidistributed if and only if the map

ol is surjective. The maximum such & is called the dimension of equidistribution

with v-bit accuracy, and denoted by k(v).

The larger k(v) for each of 1 € v < w is desirable. By dimension comparison,

an obvious upper bound exists:
E(v)u < p, or equivalently k(v) < |p/v].

Definition 6.2. The gap
d(v) := |p/v] - k(v)

is called the dimension defect af v, and their sum

A=) (lp/v] — k()

is called the total dimension defect. I A = 0, the generator is said to be mazimally

equidistributed.

22

Usually, the above definition is adopted under the assumption that f has maximal
period 27 — 1. Then, every state except 0 occurs exactly once in a period, and hence
if one plots points in [0,1)F using overlappi_ng k-tuples from the oﬁtputs of the
generator over a whole period, then each of 2% pieces ;)f k-dimensional sub-cube
obtained by dividing each axis into 2" egual-length segments gets the same number
of points (except the cube at the origin, which gets one less). This explains the
terminology of the dimension of equidistribution. All generators freated here are
a,ssﬁmed to satisfy the maximal-period condition.

We can compute &(v) by linear algebra [3], since it is equivalent to the fullness
of the rank df the representation matrix of o). However, a naive Gaussian elimi-
nation costs O(p®) bit operations for the rank computation, which is huge for large
generators such as Mersenne Twister (p = 19937). Couture, L'Ecuyer, and Tezuka
[2] and Tezuka [21] proposed much faster algorithms based on lattice structures
over power series. Couture and L’Ecuyer [1] proposed an improvement by using the
dual lattices and Lenstra’s reduction algorithm [7]. In Part I, we proposed a more
efficient lattice computation method named SIS, based on manipulating the state

space instead of the lattice points. The number of bit operations for SIS to obtain

1
4

still time-consuming for large w (e.g., 64-bit or 128-bit generators [16, 19]) because

all k(v) is approximately 2wp? + $w®p -+ 2w?. However, the computation of k(v) is
of presence of the terms of order w®p and w?.

In this part, we improve on SIS method by replacing Schmidt’s léttice reduction
with a more efficient lattice reduction algorithm based on [15, 24], and show that
this algorithm lowers the computational complexity. The number of bit operations
is approximately 2wp® + w?p + lw?(w+1).

As another direction, we propose to apply our algorithm to the sequences gen-
erated from O-excess initial states (i.e., the state where all bits are 0 except one,
which is a bad initialization used to assess the generators in [17]). In fact, this
initialization considerably accelerates the lattice computation for generators with’
gparse transition function, such as Mersenne Twisters.

In Section 7, we recall the lattice method for computing k(v). In Section &,

we propose a new lattice reduction algorithm based on [15, 24|, and analyze the

23

computational complexity. In Section 9, we report the timing with or without 0-

excess initial states.

7 Lattice method

7.1 Lattice structure

We briefly recall the lattice method for computing k{v). Let K denote the formal
" power series field K := Fo((t™)) = {3272, a;t™ | a; € Fy,5o € Z}. For a =
> ait™ € K, we define a standard norm by
[max{—je€Z]|a;#0} ifa#0,

: |al'_{—oo ifa=0.
For a vector v = (o, Qs,...,0,) € K”, we define its norm by ||y|}| := max;<;<y|0u|.
Note that |a| and ||7v]| are often negative integers. To represent such a vy, we
sometimes use a formal power series with vector coeflicients. Namely, if o; =
> i, Git™?, then we denote

e o]

y={(01,...,0) = Z(al,j, R

j=do

For v # 0, we define its coefficient vector at the leading term w(vy) € F3 by
7() 1= (@1~ @2—l1lls - - - » Goo|jrl| }> 5O that ¥ == ()¢l +-lower degree terms in ¢.

A subset L C K" is said to be an Fs[tj-lattice if there exist K-linear basis
Wi, Wa, .. .i, w, of K" such that L is their span over Fy[t], i.e., L = (w1, wa, ..., Wy)wap-
We call such a set of vectors a basis of L. A basis wy,... ,w; of L is said to be
a reduced basis if w(wy),...,7(w,) are linearly independent over Fy. Let us sort
W1, Wa, ..., Wy 80 that ||wi|| < [lwe|| € -+« € ||wy|]- Then, the numbers v; == ||w;]|
(i=1,...,v) are uniquely determined by the lattice, and called successive minima
(see [8, 9] for details). Note that here we modified the notion of a reduced basis
defined in Theorem 2.2 in Part I by neglecting the orderings. If we sort the basis
with respect to the norm, we recover the original definition (see the first paragraph
in P.9).

Let tr, : O = F¥ — F% be the truncation function (Deﬁnition‘(i.l). For an Fo-

linear generator and an initial state sy € .S, we define its associated v-dimensional

24

vector-valued generating function x,(s) as follows:
Xo{(80) == Ztrv(o(fj(so)))t_l_j = tr,(0{so))t ™! + try(o(s1 NE2 + - € K¥. (7.1)
We define A, C K” by an Fy[t]-linear span

Ay = (61962:---:e'u:X'u(SO))Fg[t], (7.2)

where e; € K denotes the unit vector whose i-th component is 1 and the other com-
ponents are 0 (: =1,...,v). If we multiply x.(s0} by the characteristic polynomial
P(t) of the transition function f, then all coefficients are polynomials. Hence, A, is
an Fy[t]-lattice. If P(¢) is irreducible, then A, can be proved to be independent of
the choice of ;she initial state sp # 0. | ‘

The following theorem asserts that we can obtain k(v) by computing the succes-

sive minima of A,, namely, by computing a reduced basis of A,.

Theorem 7.1 ([2, 21], and Theorem 2.3 in Part I). Consider an Fa-linear gener-
ator. Assume that the characteristic polynomial P(t) of its transition function is
irreducible. Take nonzero initial state s € S. Then, we have k(v) = —u,, where v,

is the v-th successive minimum of A,,.

7.2 Schmidt’s reduction, inductive projection and state rep-
- resentation

By Theorem 7.1, computations of k(v) are reduced to computations of reduced bases
of the lattices A,. From now on, we treat the problem to compute a reduced basis of
A, for all 1 < v < w. Couture-L’Ecuyer dual lattice method [1] computes a reduced
basis of the dual basis of A, inductively for v = 1,...,w. In Part I, we proposed
even faster method named SIS (for Schmidt’s generating set reduction, inductive
projection, and state representation), which we briefly recall.

Schmidt’s generating set reduction (SGR), a variant of [20], is straightforward:
for a giveﬁ generating set {w1,...,wn} of an Fa[t]-lattice L, find any nontrivial
linear relation over Fy among a subset of the coeflicient vectors at the leading terms

m(w;) (1 <4 <). If there is none, the generating set is a reduced basis. If there

25

is any linear relation, by using the vectors appearing in the linear relation, one can
reduce the longest (with respect to the norm) by Fa[t]-linear combination of the rest
vectors. We iterate this reduction, until no linear relation exists. This works for a
generating set of the lattice, while Lenstra’s algorithm [7] works only for a basis (cf.
its generalization for the generating set is in [18]).

The inductive projection is a way to compute reducedA bases for all v. We compute
a reduced basis {wq,...,wy} of A, by SGR. Then, we compute reduced bases of

Aw—1, Ay—a, ..., Ay, inductively using projection, as follows. Let p be the projection
p: K" 5 K¥ (o, .., 0p) = (@, .. ,ap),

which depends on v but we do not specify v since it is clear from the context. It is

easy to see ((i) in Lemma 3 of {1])

A, = p(Av+1): (73)

by looking at the definition (7.2) of A,. This implies that if {ws,...,wyr1} Is a
basis of A,.1, then {p(wq),...,p(wyy1)} is & generating st of Ay, If the former
is a reduced basis, then the vectors in the latter generating set are already short,
and thus more easily converge to a reduced basis than starting from the defining
generating set (7.2). Once we compute a reduced basis of A,,, we compute those of
Aw—1, Ap—s, . .., A1, inductively as above. This is the inductive projection.

The state representation is a method to represent a lattice point in A, by a state
in § plus some bolynofnia,l information. We define the action of £ on s € § as
s-t:= f(s). Note that A,/(Fs[t]") is an Fy[t]-module. We have the following:

Lemma 7.2 (Lemma 3.4 of Part I). If the characteristic polynomial P(t) is irre-
ducible and ¥, is nonzero,
Xo 0 S = A,/ (FoE]”)

is an isomorphism as Fy[t]-modules.

In this case, we have a decomposition

A, = Fat]” & xu(5) (7.4)

26

as an Fa-linear space, and thus any element of A, has a representation poly+ . (s)
with a unique pair (poly, s) € Fo[t]* x S. Such a pair is said to be a (unique) state
representation of poly + x,(s) € A,. The first direct summand in (7.4) is called
the polynomial part. In lattice reduction algorithms, only the addition of two lattice
points an(i the multiplication to a lattice point by ¢ suffice to complete the reduction.
The addition is easy in the state representation. The multiplication by £ is given
by (poly -+ xu(s)) - t = poly - t + tr,(0(s)) + xu(F(s}). Thus, we may execute lattice

computation.

-8 Main result: PIS method

SGR algorithm seems comparable to or even more efficient than Lenstra’s algorithm.
More recently, Mulders and Storjohann [15] developed a faster lattice reduction
algorithm. Wang, Zhu, and Pei [24] independently proposed a similar but somewhat
specialized algorithm. Both of these can be called the pivot reduction algorithm. In
this section, we propose to replace SGR in SIS with the pivot reduction algorithm,
which we shall call PIS.

We follow the notation of [15] with some simplification. -
Definition 8.1. For a nonzero vector v = (ai,...,q,) € K, we define its pivot
indez (denoted by I(y) € {1,2,...,v}) by
I{7) == max{i | |eu| = []][}.

In other words, (<) is the coordinate index of the rightmost nonzero component in

the coefficient vectors at the leading term n(v) € F%.

‘Let L be an Fo[t]-lattice spanned by a generating set wy,...,w, € K? {m > v),
ie, L = {wi,...,wn)r,u. Let M be a generating set {w1,...,wn}. From now on, we
assume that M does not contain 0. We shall define a pivot reduction on M, which

gives another (smaller in a sense) generating set M’ of the same lattice.
Lemma 8.2. Assume that I(w;) for w; € M are all different, i.e.

1<k#I<m= I{w) # I{w). (8.1)
Then, M is a reduced basis of L.

27

This follows because 7 (w;) are linearly independent by the definition of I(w;).

Definition 8.3. (Pivot reduction.) Assume I(w;) = I{w;) for 1 < k # [< m. By
symmetry, we may assume ||w;|| > ||wk||. The pivotl reduction of w; by wy, is to obtain
a new generating set M’ as follows. Put w) := wy — wy, - theell=llesll | T w; = 0 then put
M = {w,.. ., w1, W1, . - Wy} and renumber them (and hence m is decreased by

one). If w] 5 0 then put M’ := {ws,...,wi—1,0], W1, . - Wi}
A pivot reduction decreases the “size” of M as follows.

Lemma 8.4 {(Lemma, 2.2 of [15]). Let M’ be obtained from M by a pivot reduction
of w; by wg. Let w; be the vector as above. Then, we have either ||wj|| < [|wi|
or (||wl] = ||lwi|| and I{w]} < I(w;)}). Thus, every pivot reduction decreases the
cardinality of M’ (if w] = 0), or {||wf||, I{e])) < (|||, I (wr)) holds with respect to

the lexicographic order.

The following lemma gives the relationship between the pivot reduction and the
condition (8.1).

Lemma 8.5 (Lemma 2.1 of [15]). M does not satisfy the condition (8.1) if and only

if we can apply a pivot reduction on M.

Mulders and Storjohann lattice reduction algorithm [15] is to iterate pivot re-
ductions on M until (8.1) holds. Since {(]|w||,I(w)) | 0 # w € L} is well-ordered
and bounded from below, this algorithm terminates and gives a reduced basis.

- Next, we specialize this algorithm in a more efficient way, as proposed in Sec-
tion IV of Wang et. al. [24], with the following restriction on M. Assume m =v+1,
namely, the given generating set M of L C KV is {wl, veo Wyt Assume that the

following triangular condition for the first » vectors holds:
IHw)=difori=1,...,v. (8.2)

Note that {e1,..., ey, xu(0)} in (7.2} satisfies (8.2). The next procedure gives a
sequence of pivot reductions that preserves this triangular condition to reach to a
reduced basis. We call this algorithm Pivot Lattice Reduction (PLR).

28

procedure Pivot Lattice Reduction (with triangular condition)

input: a generating set wy,ws, ..., wy,+ of L with triangular condition (8.2).
output: a reduced basis wy,ws,...,w, € L.
begin

While wy41 5 (0,...,0) do
(reduction step)
Set k <~ I{wyy1) (i-e., the pivot index of Wep1)-
If ol 2 Il
Set Wy < Wy — wy - tlessli=llexdl
else
Swap wy and wy.q1-
Seb wysg 4 wysg — wy - Hlewnli=llol
end if '
end while

end

In this algorithm, wy11 ¢ Wy — Wi tlewtll=llwell g g, pivot reduction. To keep
the triangular condition (8.2), we reduce only the last vector wyy1, by swapping
with wg if ||lwk|| > |lwyt1!] at the beginning of the reduction step. The algorithm
terminates when and only when the reduction of w1 is zero, and then the first v
vectors are a reduced basis.

The following theorem shows the number of pivot reductions r.equired to reach

to a reduced basis (similarly to Theorem 3.1 in Part T).

Theorem 8.6. Let wy, ... ,wyy1 be a generating set of an Fy[t]-lattice L ¢ K which
satisfies the triangular condition (8.2). Let wy,...,w] be the obtained reduced basis

by PLR. Then, the number of pivot reductions in PLR is bounded from above by

u+1 v

O il = 3 llfll = [l + 1) 83)

where w'®* denotes the last vector reduced to zero at the final step in PLR.

Proof. Again let M := {wj,...,wy11}. We define the number state size SM of M

29

v+1

S = (lwaillo + () (8.4)

i=1

Let N be a génerating set obtained by applying some number of pivot reductions to
M. 1f the cardinality of V is less than M, then N is a reduced basis, by the triangular
condition (8.2). Assume that N consists of nonzero v + 1 vectors, and define SV as
well as (8.4). Then, SM — S¥ is said to be the state drop [15]. The number of pivot
reductions from M to N is bounded above by the state drop, since a pivot reduction
decreases the state size at least by one (see Lemma 8.4 or [15, Theorem 2.2]). Let N
be the previous generating set to the last stage. Consequently, the pivot reduction
to N at the (v 1)-st vector eliminates this vector to zero and gives a reduced basis.
Hence N = {w),...,w!,w™*}. By the triangular condition (8.2), I(w;) = I{(w)) =i
(¢ =1,...,v), which are canceled out in state drop. We have bounds I{wyr1) < v
and I(w'®*) > 1. Thus,

. v+1 v
SM— SN < (O Mwll = D Ml = o™ o + v — 1.
=1 i=1
By adding 1 for the final reduction of w'®t, the theorem follows. O

Remark 8.7. This upper bound on the number of pivot reductions in PLR is
exactly v times the number of reduction steps in SGR. Note that one reduction in

SGR requires O(v) times operations on vectors.

It is easy to check that the generating set obtained by the inductive projection
(7.3) through PLR keeps the triangular condition (8.2}, because if {w1,...,wys1} is
a reduced basis of A,,; obtained by PLR, then we have I{w;) =i fori=1,...,v+
1. Then, {p(w),...,p(w,+1)} satisfies the triangular condition, so that we can
inductively compute a reduced basis of A,,.

The state representation is appiicable for PLR with no modification. Our pro-
posal is a combination of PLR, inductive projection, and state representation, for
computing all k(v)’s, named PIS.

We analyze the computational complexity for PIS. In a practical Fo-linear gen-

erator, f and o can be computed by a few operations, often independently of the

30

size of the state space. Hence, we assume that these operations are negligible from
the total cost of the computation. For each 1 < v < w, we consider the following

average assumption similar to Part 1. In Theorem 8.6, let L be A,. Then, we have

Z |lwil| = — dim(5), (8.5)

by Lemma 2.4 in Part I. Since the last vector w'®*t is reduced by one of w!, ..., w!, we
assume that ||w'8t|} is on average larger than or equal to the average of ||w}]], .. ., |[w!]],
namely,

]| > — dim(S) /. (86)

From now o, in the computation of complexity, we always assume (8.6). The

following theorem gives an upper bound of the total bit operations.
Theorem 8.8. Under (8.6), P1S requires at most
N 2, 1 4. 1,
2w dim(S5)* + ¥ dim(S) + 5w (w -+ 1)
bit operations to compute all k(v), w > v > 1.

We need two more lemmas and corollaries to prove the theorem, corresponding
to Theorems 4.1 and 4.2 in Part L.

Lemma 8.9. Under (8.6), the number of pivot reductions to obtain a reduced basis
by PLR. from the generating set in (7.2) is bounded by (v + 1) dim({S).

Proof. In (8.3), by ||es|| = 0 and ||x.(s0)|| < —1, the first sum is < —1. The second
sum is dim(S) by (8.5). The third term is bounded by dim(S)/v by (8.6). The

result follows from a simple computation. O

Corollary 8.10. Under the same assumption, the number of bit operations inside §
(i.e., neglecting the polynomial part) in the PLR algorithm starting from the gener-
ating set in (7.2) is bounded by (v+1) dim(5)?, when using the state representation.

Lemma 8.11. Under (8.6), the number of pivot reductions in the PLR algorithm
starting from {p{w1), ..., p(wyt+1)}, Where wi, ..., w1 are the reduced basis of A,

previously obtained by PLR, has an upper bound dim{S) + .

31

Proof. In (8.3), by ||p(ws)|| < [Jws||, the first sum is < 3% [Jws|| = — dim(S) by
(8.5). The second sum is again dim(S). The third term is bounded by dim(S)/v.
The result follows. | O

Corollary 8.12. Under the same assumption, the number of bit operations inside
S for PLR to compute a reduced basis of A, from that of A,; obtained by PLR is
bounded by dim(S)? + v dim(S), when using the state representation.

Proof of Theorem 8.8. We count the number of bit operations in the polynomial
part of the state representations in PLR. The opefations on the polynomial part are
necessary only when one reduces a vector with the non-trivial polynomial part in its
state representation. At the beginning, e, ..., e, are such vectors. For every i, e;
gets the reduction at most ¢ times, before its state representation has no polynomial
part. Thus, the number of pivot reductions on the polynomial part in PLR is at
most w(w + 1}/2. Since the polynomial part consists of w bits, the total number of
bit operations on the polynomial part in PLR is bounded by w?(w+1)/2. Summing
with Corollaries 8.10 and 8.12, we obtain the theorem. O

Remark 8.13. We compare the computational complexity of PIS (Theorem 8.8)
with SIS method. We assume (8.6) at the final step in SGR, as well. According to
Theorem 4.3 of Part I, SIS requires at most

4 1
2 dim(S)? + §'w3 dim(S) + de‘

bit operations for computing all k{v), w > v > 1. Thus, PIS is superior to SIS in w.
This is because SIS requires Gaussian elimination for finding a linear relation among
m{wy), .., m(w,) over Fy, which costs v® bit operations, at each reduction step for
k(v), while PIS has an automatic triangulization mechanism and no elimination is

necessary. This cost is not negligible for large w.

9 Numerical experiments

9.1 PIS versus SIS

We show some experiments to compare the following two methods:

32

1. PIS method {our proposal in Section 8).
2. SIS method (the method in Part I).

We apply these methods to some w-bit F-linear generators (where w is 32 or 64),
and measure the CPU time for computing k(w), k(w — 1),...,k(2) in this order.
All the tests are performed on 64-bit AMD-Athlon 64 4000+ and Linux operating
system. The programs are implemented with C language and compiled by using gcc
compiler version 4.4.1 with the -O2 optimization flag.

We first conducted an experiment with the 32-bit Fs-linear generator WELL19937a’
(a variant of WELI.19937a [17] with the tempering improved by the author [4], and
dim‘(.S’) = 19937). This generator is maximally equidistributed. The left side of
Table 3 shows the CPU time (in seconds). PIS is faster than SIS, and the difference
increases when v becomes large, probably because of the Gaussian elimination of
cost O(v®), which is avoided in PIS. These experiments are also in accordance with
the complexities obtained above.

To see the dependence on the size of w, we conducted an experiment with a
64-bit Mersenne Twister MT19936-64 [16] downloaded ffom (http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/emt64.html). This generator is a new ver-
sion based on a three-term recurrence (not five-term) with dim(S) = 19937. The

right side of Table 3 shows that PIS is about three times faster than SIS.

9.2 Use of 0-excess states

As another direction for acceleration, we propose choosing the initial state so € S
as one of the most 0-excess states {e.g., consisting of all O bits except for one).
The 0-excess states were proposed by Panneton, L’Ecuyer, and Matsumoto [17] as
bad initializations for Mersenne Twisters such that the output sequence is sparse
(namely much more 0 than 1) even after thousands of generations. Here, on the
other hand, this phenomenon can be used to accelerate the reduction speeds. We
designed an experiment comparing the timing of lattice reduction for randomly
selected initial states with that for 0-excess initial states. We also conducted an

experiment with the effect of O-excess states to other 32-bit Fa-linear generators,

33

namely Mersenne Twister MT19937 [12] (dim(S) = 19937) and WELL44497a’ (a
variant of WELL44497a [17] modified by the author [4] with dim(S) = 44497).
Table 4 gives a summary of the cumulative CPU time (in seconds) for computing
all k(v) (w > v > 2). WELL generatbrs recover from 0-excess states quickly, and
it is natural that the acceleration by 0-excess states of lattice reduction for WELL
generators is not significant.

In contrast, let us choose some 0-excess initial states for Mersenne Twisters. Its
state representation is very sparse. It is observed through the experiment that the
state representation continues to be rather sparse even after a considerable number
of pivot reductions. This results in a high probability to have a smaller norm vector
after a pivot reduction (not the decreasé_ of the pivot index). Consequently, the

lattice reductions are significantly accelerated.

10 Conclusions

We propose PIS metilod for computing all £(v), w > v > 1, which is an improvement
of SIS in Part I. Qur approach is to apply an efficient lattice reduction algorithm
by Mulders and Storjohann with the triangular technique by Wang et al., and it
is shown that this lowers the magnitude of computational complexity with respect
to the word size w. The numerical experiments confirm that our improvement is
practically effective, especially for large w. As another direction, use of 0-excess
initial states significantly accelerates the lattice reductions in the case of Mersenne
Twisters. This method is simple but very effective when we search for good Fs-
linear output functions for Mersenne Twisters (i.e., tempering in [11, 12]), which is

in particular useful for dynamic parameter searches [13].

34

Table 3: The CPU time for computing k(v) {(w > v > 2} of WELL19937a’ and
MT19937-64 (in seconds). They are listed in descending order with respect to v,
according to the order of computation.
WELL19937a’ MT19937-64

PIS | SIS PIS SiS PIS | SIS
k(32) | 0.275 | 0.451 || k(64) | 0.289 | 0.933 | k(32) | 0.004 | 0.009
k(31) | 0.009 | 0.014 || %{63) | 0.000 | 0.000 | £(31) | 0.000 | 0.003
k(30) | 0.009 | 0.014 || &£(62) | 0.000 | 0.001 | £(30) } 0.001 | 0.002
%(29) | 0.000 | 0.014 || k(61) | 0.000 | 0.001 | &(29) | 0.001 | 0.004
k(28) | 0.008 | 0.014 || &£(60) | 0.000 | 0.000 | £{28) | 0.002 | 0.004
%(27) | 0.008 | 0.013 || %&(59) | 0.000 | 0.001 | %(27) | 0.002 | 0.005
k(26 | 0.008 | 0.013 || %(58) | 0.000 | 0.001 | k(26) | 0.002 | 0.007
%(25) | 0.008 | 0.012 || k(57) | 0.000 | 0.000 | k(25) | 0.003 | 0.007
k(24) | 0.010 | 0.012 || £(56) | 0.000 | 0.001 | %(24) | 0.004 | 0.007
%(23) | 0.009 | 0.012 || %(55) | 0.000 | 0.001 | k(23) | 0.004 | 0.008
%(22) | 0.009 | 0.012 || k(54) | 0.000 | 0.001 | k(22) | 0.004 | 0.008
%(21) | 0.009 | 0.012 || k(53) | 0.000 | 0.001 | k(21) | 0.003 | 0.007
%(20) | 0.009 | 0.012 || %(52) | 0.000 | 0.000 | %(20) | 0.001 | 0.003
%(19) | 0.009 | 0.012 || k(51} | 0.000 | 0.001 | k(19) | 0.002 | 0.005
k(18) | 0.009 | 0.012 || k(50) | 0.001 | 0.001 | k(18) | 0.003 | 0.006
k(17) | 0.009 | 0.011 || k(49) | 0.000 | 0.001 | &(17) | 0.003 | 0.006
k(16) | 0.008 | 0.012 || £(48) | 0.001 ; 0.001 | k(16) | 0.004 | 0.007
%(15) | 0.008 | 0.012 || k(47) | 0.000 | 0.001 | k(15) | 0.001 | 0.003
k(11) | 0.008 | 0.01T || %(46) | 0.000 | 0.001 | k(i4) | 0.003 | 0.005
%(13) | 0.008 [0.010 || %(45) | 0.000 | 0.001 | k(13) | 0.002 | 0.003
%(12) | 0.009 | 0.010 || %(44) | 0.001 | 0.001 | k(12) | 0.003 | 0.005
E(11} | 0.008 | 0.011 | £(43) | 0.000 | 0.001 | £(11) | 0.003 | 0.003
%(10) | 0.009 | 0.010 || k(42) | 0.001 | 0.001 | k(10) | 0.003 | 0.004
%(9) | 0.009 | 0.011 || k(41) | 0.001 | 0.002 | %(9) | 0.003 | 0.002
%(8) | 0.008 | 0.010 || k(40) | 0.000 | 0.001 | %(8) | 0.003 | 0.003
%(7) | 0.008 | 0.011 || k(39) | 0.001 | 0.002 | %(7) | 0.002 | 0.004
%(6) | 0.008 | 0.010 || &(38) | 0.001 | 0.002 | %(6) | 0.003 | 0.003
k(5) | 0.009 | 0.009 || £(37) | 0.001 | 0.002 | k(5) | 0.003 | 0.004
k(4) | 0.009 | 0.010 || k(36) | 0.000 | 0.003 | k(4) | 0.003 | 0.004
%(3) | 0.009 | 0.010 || &(35) | 0.001 | 0.004 | %(3) | 0.004 | 0.005
%(2) | 0.009 | 0.009 || %(34) | 0.002 | 0.005 | k(2) | 0.005 | 0.005
total | 0.534 | 0.798 || £(33) | 0.002 | 0.005 | total | 0.386 | 1.128

35

Table 4: The cumulative CPU time (in seconds) for computing all k(v) (w > v > 2)
of four Fs-linear generators, by the two reduction algorithms and the two initializa-

tions. The column A shows the total dimension defect.
PIS(0-ex.) | SIS(0-ex.) | PIS | SIS A
MT19937-64 0.105 0.197 | 0.386 | 1.128 | 7820
MT19937 0.029 0.036 | 0.294 | 0.481 | 6750
WELL19937a’ 0.525 0.786 | 0.534 | 0.798 0
WELL44497a’ 2.536 3.091 | 2.591 | 3.193 0

36

Acknowledgements

Firstly, the author wishes to express his gratitude to his thesis advisor, Professor
Makoto Matsumoto at the University of Tokyo, for continuous support and en-
couragement. The author is greatly indebted to Dr. Mutsuo Saito at Hiroshima
University for giving the author invaluable comments, especially, for pointing out
an application to Dynamic Creator.

The author would also like to thank Professor Shu Tezuka at Kyushu Univer-
sity for initiating the author into pseudorandom number generation, and Professor
Masakazu Jimbo at Nagoya University who was a good advisor of the author’s mas-
ter’s course at Keio University.

This work was partially supported by Grant-in-Aid for JSPS Fellows 21-4427,
JSPS Grant-in-Aid for Scientific Research No. 21654004, No. 19204002, No. 21654017,
and JSPS Core-to-Core Program No.18005.

37

Bibliography

1]

2]

[5]

[6]

[10]

R. Couture and P. L’Ecuyer, Lattice computations fof random numbers, Math.

-Comput. 69 (2000), no. 230, 757-765.

R. Couture, P. L’Ecuyer, and S. Tezuka, On the distribution of k-dimensional
vectors for simple and combined Tausworthe sequences, Math. Comput. 60
(1993), 749-761.

M. Fushimi and S. Tezuka, The k-distribution of generalized feedback shift reg-
ister pseudorandom numbers, Commun. ACM 26 (1983), no. 7, 516-523.

S. Harase, Mazimally equidistributed pseudorandom number generators via lin-

ear output transformations, Math. Comput. Simul. 79 (2009), no. 5, 1512-1519.

P. L'BEcuyer and R. Couture, An implementation of the lattice and spectral tests
for multiple recursive linear random number generators, INFORMS Journal on

Computing 9 (1997), no. 2, 206-217,

P. I’Ecuyer and F. Panneton, Fy-linear random number generators, Advancing
the Frontiers of Simulation: A Festschrift in Honor of George Samuel Fishman
(C. Alexopoulos, D. Goldsman, and J. R. Wilson, eds.), Springer-Verlag, 2009,
pp. 169-193.

A. K. Lenstra, Factoring multivariate polynomials over finite fields, Journal of
Computer and System Sciences 30 (1985), no. 2, 235 — 248.

K. Mahler, An Analogue to Minkowski’s Geometry of Numbers in a Field of
Series, The Annals of Mathematics 42 (1941), no. 2, 488-522.

, On a theorem in the geometry of numbers in o space of Laurent series,
Journal of Number Theory 17 (1983), no. 3, 403 — 416.

J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform.
Theory IT-15 (1969), 122-127.

38

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

20]

M. Matsumoto and Y. Kurita, Twisted GFSR gener@tors I, ACM Trans. Model.
Comput. Simul. 4 (1994), no. 3, 254-266.

M. Matsumoto and T. Nishimura, Mersenne twister: a-623-dz'mensz'onally
equidistributed uniform pseudo-random number generator, ACM Trans. Model.
Comput. Simul. 8 {1998}, no. 1, 3-30.

, Dynamic Creation of Pseudorandom Number Generators, Monte Carlo
and Quasi-Monte Carlo Methods 1998 (Berlin) (H. Niederreiter and J. Spanier,
eds.), Springer-Verlag, 2000, pp. 56-69.

M. Matsumoto, M. Saito, H. Haramoto, and T. Nishimura, Pseudorandom
Number Generation: Impossibility and Compromise, J. Univer. Comput. Sci.
12 (2006), no. 6, 672-690.

T. Mulders and A. Storjohann, On lattice reduction for polynomial matrices, J.
Symb. Comput. 35 (2003), no. 4, 377-401.

T'. Nishimura, Tables of 64-bit Mersenne twisters, ACM Trans. Model. Comput.
Simul. 10 (2000), no. 4, 348-357. |

F. Panneton, P. L'Ecuyer, and M. Mé,tsumoto, Improved long-period generators
based on linear recurrences modulo 2, ACM Trans. Math. Softw. 32 (2006),
no. 1, 1-16.

S. Paulus, Lattice basis reduction in function fields, Algorithmic Number Theory
(Berlin) (P. J. Buhler, ed.), Lecture Notes in Computer Science, vol. 1423,
Springer-Verlag, 1998 pp. 567-575.

M. Saito and M. Matsumoto, SIMD-oriented Fast Mersenne Twister: a 128-bit
Pseudorandom Number Generator, Monte Carlo and Quasi-Monte Carlo Meth-
ods 2006 (Berlin) (A. Keller, S. Heinrich, and H. Niederreiter, eds.), Springer-
Verlag, 2008, pp. 607-622.

W. M. Schmidt, Construction and estimation of bases in function fields, J.
Number Theory 39 (1991), no. 2, 181 — 224.

39

21] S. Tezuka, The k-dimensional distribution of combined GFSR sequences, Math.
Comput. 62 (1994), no. 206, 809-817.

[22] L. Wang and H. Niederreiter, Successive minima profile, lattice profile, and
joint linear complezity profile of pseudorandom multisequences, J. Complex. 24

(2008), no. 2, 144-153.

[23] L. Wang and Y. Zhu, F[z]-lattice basis reduction algom’thm and muliisequence
synthesis, Sci. in China Ser. F 44 (2001), 321-328.

[24] L. Wang, Y. Zhu, and D.-Y. Pei, On the Lattice Basis Reduction Multisequence .
Synthesis Algorithm, IEEE Trans. Inform. Théory 50 (2004), no. 11, 2905-2910.

40

