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Abstract

In this paper, we study finite symplectic actions on K3 surfaces X,
i.e. actions of finite groups G on X which act H*°(X) trivially. We
show that the action on the K3 lattice H?(X,Z) which is induced by
a symplectic action of G on X depends only on G up to isomorphism,
except for five groups.

0 Introduction

A compact complex surface X is called a K3 surface if it is simply connected
and has a nowhere vanishing holomorphic 2-form wx. An automorphism g
of X is said to be symplectic if g*wx = wx. Nikulin [15] studied symplectic
actions of finite groups on K3 surfaces. In particular, he showed the following
result:

Theorem 0.1 ([15]). There exist ezxactly 14 finite abelian groups G (G =
Cs,Cs,...) which act on K3 surfaces faithfully and symplectically. Moreover,
for each G, the action of G on the K3 lattice which is induced by a symplectic
action of G on a K3 surface is unique up to isomorphism.

In this paper, we prove that the above uniqueness holds for any finite

groups except for five groups. We use the same notations for groups as in [26]
(cf. Table 10.2).

Main Theorem. Let G be a finite group such that G # Qg, Ta4, S5, La(7),Us.
Then the action of G on the K3 lattice which is induced by a faithful and
symplectic action of G on a K3 surface is unique up to isomorphism. More
precisely, if G; & G acts on a K3 surface X; faithfully and symplectically
(i = 1,2), then there exists an isomorphism o : H%(X1,7Z) — H?(X,,7Z) pre-
serving the intersection forms such that a«oGroa~! = Gy in GL(H?*(X2,Z)).
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As a corollary, we have the following by a similar argument in [15] (see
[25] for a detailed argument).

Corollary 0.2. Let G be a finite group which is not the exceptional cases listed
above. If G acts on a K3 surface X; faithfylly and symplectically (i = 1,2),
then there exists a connected family X of K3 surfaces with an action of G
which satisfies the following conditions:

(1) X1,X2 are fibers of?(

(2) the restriction of the action of G on X to the ﬁbeT X; coincides with the
given one (i =1,2);

(8) the action of G on each fiber of X is symplectic.

If two K3 surfaces X; and X, with actions of G satisfy the conclusions of
Corollary 0.2, X7 and X5 are said to be G-deformable.

We recall known results on finite symplectic actions on K3 surfaces. After
a result of Nikulin [15], Mukai [14] completely classified finite groups which
act on K3 surfaces faithfully and symplectically by listing the eleven maximal
groups (see Theorem 2.4). Xiao [26] gave another proof of Mukai’s result by
studying the singularities of the quotient G\X for a K3 surface X with a
symplectic action of a finite group G. Moreover, he showed the following:

Theorem 0.3 ([26]). Let G be a finite group. Suppose that G # Qg,Taq.
Then, for any K3 surface X with a faithful and symplectic action of G, the
quotient G\X has the same A-D-E-configuration of the singularities.

Considering his result, one may expect that the uniqueness as in Theorem
0.1 holds for most of non-abelian finite groups as well. This paper is motivated
by this expectation. We follow Kondd’s approach [10] with which he gave
another proof of Mukai’s result. His method is to embed the coinvariant
lattice H?(X,Z)¢ = (H?(X,Z)%)~ into a Niemeier lattice N, and to describe
a symplectic action as an action on N. Here a Niemeier lattice is a negative
definite even unimodular lattice of rank 24 which is not isomorphic to the
Leech lattice. By looking this action more carefully, we prove Main Theorem.
For some finite groups, their symplectic actions on K3 surfaces were studied
by several authers [11, 18,9, 17, 27, 6, 25, 7]. We use computer algebra systems
- GAP [8] and Maxima [12] for the computations of permutation groups and
lattices.

The paper proceeds as follows. In Section 1, we recall basic facts on lat-
tices, which are used through the paper. We recall results on finite symplectic
actions on K3 surfaces in Section 2. Using these results, we can take a lat-
tice theoretic approach to study finite symplectic actions on K3 surfaces. We
introduce the notion of “finite symplectic actions on the K3 lattice A,” tak-
ing account of Nikuin’s characterization of symplectic actions on K3 surfaces
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(see Definition 2.5 and Proposition 2.6). The set of finite symplectic actions
G C O(A) on A is denoted by L. For G € L, there exist a K3 surface X, a
symplectic action of G on X and a G-equivalent isomorphism A & H?(X,Z).
Section 3 is the key of the paper. By Kondd’s lemma (see Lemma 3.2), the
coinvariant lattice Ag for G € £ can be embedded into a Niemeier lattice N
primitively. Since the action of G on Ag is extended to that on N such that
Ng = Ag, we can study G as an automorphism group of N. Applying the
classification of Niemeier lattices, we classify the primitive embeddings of Ag
into Niemeier lattices. To prove Main Theorem, we first prove the uniqueness
of Ag and A®. In Section 4 and 6, we show the uniqueness of Ag and AC
respectively, by using the result in Section 3. Next, we show the uniqueness
of the glueing data of A® and Ag to A. In Section 5 and 7, we show that
either O(Ag) = O(g(Ag)) or O(AC) = O(g(A%)) holds for any G. This im-
plies the uniqueness of the glueing data. Finally, in Section 8, we prove Main
Theorem by using the results in the previous sections. Some applications of
Main Theorem are given in Section 9.
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1 Basié facts on lattices

1.1 Definitions

A lattice L = (L,( , )) is a free Z-module L of finite rank equipped with
an integral symmetric bilinear form ( ,” ). We identify a lattice L with its
Gramian matrix ((v;, v;)) under an integral basis (v;) of L. The discriminant
disc(L) of L is defined as the determinant of the Gramian matrix of L. If
disc(L) # 0 (resp. = =£1), a lattice L is said to be non-degenerate (resp.
unimodular). Let ¢(;) (resp. t(_)) be the number of positive (resp. negative)
eigenvalues of the Gramian matrix of L. We call (f(,),t)) the signature of
L and write

sign L = (t(4),t(-))- (1.1)
If (v,v) = 0mod 2 for all v € L, a lattice L is said to be even. We denote
by L(\) the Z-module L equipped with A times the bilinear form ( , ), i.e.
(L, A({, )). A sublattice K of L is said to be primitive if L/K is torsion-free.

An automorphism of L is defined as a Z-automorphism of L preserving ( , ).
We denote by O(L) the group of automorphisms of L. For a subset S C L,
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1.1 Definitions

we write
O(L,S) ={g € O(L) ] g-S=S} (1.2)
We assume that an action of a group G on L preserves ( , ). If a group G
acts on L, we define the invariant lattice L¢ and the coinvariant lattice Lg
by
L={veL|g-v=v(Vge@B)}, Lg= (L9)%. (1.3)

Definition 1.1. A lattice L with an action of G is called a G-lattice if G is
a subgroup of O(L) and is denoted as (G, L). An isomorphism of G-lattices
is defined naturally, ie., (G,L) = (G',L’) if there exists an isomorphism
a: L — L' such that

aoGoa ' =G . (1.4)

We recall some basic properties on discriminant forms of lattices for the
sake of reader’s convenience. See [16] for details. Let L be a non-degenerate
even lattice. The discriminant group A(L) is a finite abelian group defined
by

AL)y=LY/L, LY={velL®Q|(v,L)CZ} (1.5)
Here we extend the bilinear form ( , ) on L. to that on L ® Q linearly. We
have

JA(L)] = [disc(L)]. (16)
The discriminant form g(L) of L is defined by
q(L) : A(L) — Q/2Z; x mod L~ (z,z) mod 2Z, (1.7)

which is well-defined. We write simply ¢(L) instead of (A(L),q(L)). For a
prime number p, let A(L), and ¢(L), denote the p-components of A(L) and
q(L), respectively. We have

AL) =P ALy, L) =Dl (1.8)

We can consider g(L), as the discriminant form of L ®Z,. (The discriminant
group and form for a non-degenerate even lattice over Z, are similarly defined.
Note that any lattice over Z, is even if p # 2.) An automorphism of ¢(L) is
defined as'an automorphism of a finite abelian group A(L) preserving ¢(L).
We denote the group of automorphisms of g(L) by O(¢g(L)). An automorphism
¢ € O(L) induces an automorphism @ € O(g(L)). This correspondence gives
the natural homomorphism

O(L) — O(q(L)). (1.9)
We define
Ou(L) = Ker (O(L) — O(4(L)) (1.10)
and
O(Z) = Im(O(L) — O(4(L). (1.11)
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1.2 Facts

1.2 Facts
We use the following facts. We refer the reader to [16].

Lemma 1.2 ([16]). Let L1, Lo be non-degenerate even lattices. We define

- Tsom(g(L1), —q(L2)) = {v: q(L1)=q(L2)}- (1.12)
If v € Isom(q(L1), —q(L2)), the lattice T, defined by
Iy={z®ye Ly ®Ly | v(z mod L) = y mod Ly} (1.13)

is an even unimodular lattice which contains L, and Lo primitively. This cor-
respondence gives a one-to-one correspondence between Isom(q(L1), —q(L2))
and the set of even unimodular lattices ' C LY & LY which contain L and Ly
primitively. Moreover, let ' € Isom(q(L1),—q(Lz2)) and ¢; € O(L;). Then,
01 @ 2 € O(L; ® Ly) is extended to an isomorphism I', — Ty if and only if
Y ooyt =B, in O(g(L2))-

Lemma 1.3. Let I' be a non-degenerate even lattice and L a non-degenerate
primitive sublattice of I'.

(1) If g € Og(L), the action of g on L is extended to that on T' whose
restriction to (L)i is trivial. ‘

(2) Suppose that T' is unimodular. If G is a subgroup of O(I',L) and the
action of G on (L)i+ is trivial, then the induced action of G on A(L) is
trivial. :

(3) Suppose that T is unimodular. If a group G acts on T’ and T'q is non-
degenerate, then the induced action of G on A(T¢) is trivial.

To determine the discriminant form of a lattice, it is convenient to localize
it, i.e., consider it over Z,. First we consider the case p # 2. In this case, any
lattice can be diagonalized over Z,.

Proposition 1.4 (cf. [4, 16, 5]). Let p be an odd prime and ¢, € Z,; a
non-square p-adic unit. If L®) is a non-degenerate lattice over Lo,

L) = B ((pF) %™ @ (epp") ™) (1.14)
k>0

where ng, > 0 and my € {0,1} are uniquely determined. Hence

aL®) = P (P "™ @ 4P (r)°) (1.15)
k>1
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1.2 Facts

where
P (%) = (1/p*) on Z/p"Z, (1.16)
0 (0") = (ep/p") on Z/P"Z. (117)

In (1.15), the ny, and my, are also uniquely determined.

Let L be a non-degenerate lattice. We can determine ¢(L), as follows.
Let Z,) be a localization of Z by the prime ideal (p), which is considered as
a subring of Z,. Then L can be diagonalized over Z ). This is similar to the

determination of the elementary divisors of integral matrices. Then we can

write

L=PLP " (1.18)

k>0
over Zp), where L,(cp ) are lattices over Zpy such that L,(cp )=0or disc(L}fD )) c
Z{,y/(Z,)?. (The discriminant of a lattice over a ring R is defined modulo

R*)2.) The ny and my, for L ® Z,, in the above proposition are determined
v p
Y

(0,0) if L =0,
(ng, i) = { (rank P, 0) if disc(LP) € (23)2/(Z))?,  (1.19)

(rank L) —1,1) otherwise.

‘Next we consider the more complicated case p = 2.

Proposition 1.5 (cf. [4, 16, 5]). Let L) be a non-degenerate lattice over
Zo. Then L@ can be written as an orthogonal sum of the following lattices:

0 2k ok+l ok
(52k>7 (2k 0) 3 ( 2k‘ 2k—|—1> 9 (120)

where k >0 and € € {1,3,5,7}. Hence, if L is even, q(L®) can be written
as an orthogonal sum of the following:

P (2%) = (e/2%) on Z/2"Z, (1.21)
u® (2%) = (1 /02k 1/02k> on (2,/257)%2, (1.22)
W= (" ) mee o)

In the case p = 2, the uniqueness as in Proposition 1.4 does not hold.
Although there is a complete system of invariants of a non-degenerate lattice
over Z, (see [5]), we only recall the unimodular case.
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Proposition 1.6 (cf. [5]). For a non-degenerate lattice L) over Zy with
disc(L®) € Z, a quadruple (r,d,t,e) defined as follows is a complete system
of invariants of L?. If

O @@ ® G) (1))@” o (f ;)W, (1.24)

the invariants r,d,t, e are defined by

r = rank L®, (1.25)
e (2) 7XV2 /(7.X)2

d= +1 if dlSC(.L Y e +(Z3)* /(25 ), (1.26)
—1 otherwise,

t=> & mod8Z; € Zy/8Zs, (1.27)
I if LD is odd

_ if L ?s odd, (1.28)

II otherwsse. '

~ For example, we can directly check that

(1)®3 =~ G ;) ® (3) (1.29)

over Zy. We actually have (r,d,t,e) = (3,+1,3,I) for both lattices. Using
Proposition 1.6, we can determine g(L)2 for a non-degenerate even lattice L
similarly to the case p # 2. We can find an orthogonal decomposition

L=@PLY e S (1.30)

k>0

over Zs, where Lg) is of the form (1.24). Then we can write g(L) as the
corresponding orthogonal sum of (1.21)—(1.23). For relations between (1.21)~
(1.23), see [16].

For a finite abelian group A, let [(A) denote the minimum number of
generators of A. Let L be a non-degenerate even lattice. Since rank LY =
rank L (see (1.5)), we have

I(A(L)) < rank L. (1.31)

The follwoing theorem is a reformulation of Eichler’s result in a view-point of
discriminant forms.

Theorem 1.7 ([16]). Let L be an indefinite even lattice of rank > 3. Suppose
that the following conditins are satisfied:
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(1) For each p # 2, either rank L > [(A(L),) + 2, or ng +my > 2 for some
k in the orthogonal decomposition (1.15), i.e.,

a(L)p = 4 @ ¢ (0*) @ ¢ (") (1.32)
for some g, and k > 0.

(2) FEither rank L > I(A(L),) + 2, or

a(L)2 2 g2 ® g3 (1.33)

for some gy and gb, where ¢4 is one of the following:
u@(28), k>0, (1.34)
v (2%, k>0, (1.35)
¢ @2 (2" @ (2¥), e € Z3 kK >0, k- K| <1 (1.36)

[l

Then any non-degenerate even lattice L' such that sign L' = sign L and q(L')
q(L) is isomorphic to L.

We use the following facts in Section 7.

Theorem 1.8 ([16]). Let L be an indefinite even lattice of rank > 3. If the
following conditins are satisfied, O(L) = O(q(L)).

(1) For each p # 2, rank L > I(A(L)p) + 2.

(2) FEither rank L > [(A(L),) + 2, or
¢(L)2 = g ®uP(2) or g ®v?(2) (1.37)
for some gs.

Remark 1.9. The conditions of Theorem 1.8 are stronger than those of
Theorem 1.7.

Theorem 1.10 ([16]). If L is a non-degenerate even lattice over Z,, we

have O(L®)) = O(q(LP)).

2 Finite symplectic actions on the K3 lattice A

A compact complex surface X is called a K3 surface if it is simply connected
and has a nowhere vanishing holomorphic 2-form wx.

Definition 2.1. For a K3 surface X, an automorphism g of X is said to be
symplectic if g*wxy = wx.
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We are concerned with faithful and symplectic actions of finite groups on
K3 surfaces.

Notation 2.2. We identify abstract groups (notation: ®,...) which are iso-
morphic to each other. For a group G acting on an object, the abstract group
(forgetting its action) is denoted by [G].

Definition 2.3. We denote by &35 the set of finite abstract groups & # 1
which can be realized as faithful and symplectic actions of groups on K3
surfaces.

Mukai determined &33P completely by listing the eleven maximal groups
in 673",
Theorem 2.4 ([14]). A finite abstract group & # 1 is an element in &35
if and only if & is a subgroup of the following eleven groups:

Tug, N72, Mg, &5, La(7), Hi92, T192, Ua,4,As, F3s4, Mag.

There are exactly 79 groups in 873®. See Table 10.2 for all elements in
67 5T. We use Xiao’s notation [26].

For a K3 surface X, the second integral cohomology group H?(X,Z) with
its intersection form is isomorphic to the K3 lattice A defined by

-A=(?é§®3@Ea—n@, (2.1)

‘which is the unique even unimodular lattice of signature (3,19) up to iso-

morphism (see Theorem 1.7). Here Ejg is the root lattice of type Eg. The
Néron—Severi group NS(X) of X is considered as a sublattice of H*(X,Z). If
a group G acts on X, the action of G induces a left action on H?(X,Z) by

g-v=(g"1)", geGuveHY(X,D). (22)

Note that if the action of G is faithful, so is the induced action of G on
H?(X,Z) by the grobal Torelli theorem (see [2]). Hence, if we take an iso-
morphism « : H?(X,Z) — A, the action of G on X induces a subgroup
aoGoa~! C O(A), which is isomorphic to G as an abstract group.

We define the notion of “finite symplectic actions on the K3 lattice.”

Definition 2.5. A finite subgroup G # 1 of O(A) is called a finite symplectic
action on the K3 lattice A, if the following conditions are satisfied:

(1) Ag is negative definite;
(2) (v,v) # =2 for all v € Ag.

9 December 6, 2010




We denote the set of finite symplectic actions on the K3 lattices A by £. Note
that the finiteness of G follows from the condition (1).

Definition 2.5 is justified due to the following:

Proposition 2.6 ([15]). If a finite group G acts on a K3 surface X faithfully
and symplectically, then H*(X,Z)c C NS(X) and the induced subgroup of
O(A) is an element in L. Conversely, any element in L is induced by a
symplectic action of a finite group on a K3 surface.

A K3 surface which admits a symplectic action of a finite group is char-
acterized by coinvariant lattices Ag of G € L.

Proposition 2.7 ([15]). Let ® € &3;. A K3 surface X admits a symplec-
tic action of & if and only if there exists a primitive embedding Ag — NS(X)
for some G € L such that [G] =

Now we consider extensions of symplectic actions.

Proposition 2.8. Suppose that a finite group G acts on a K3 surface X
faithfully and symplectically. Then the action of G on X 1is ertended to a
faithful and symplectic action of G’ := Og(H*(X,Z)q).

Proof (cf. [15]). By Lemma 1.3(1), the action of G on H?(X,Z) is extended
to that of G’ such that

H(X,2)¢ = H2(X,Z)C . (2.3)

By the definition of a symplectic action, we have wx € H2(X,C)®. Since G
is a finite group, there exists a G-invariant Kahler (1,1)-form x € H2(X,R)C.

By (2.3), the action of G’ also fixes wx and k. By the grobal Torelli theorem
for K3 surfaces, the action of G’ on H%(X,Z) is induced by that on X. Since
the action of G’ fixes wx, the action of G’ on X is symplectic. O

Definition 2.9. For G € £, we define Clos(G) by
Clos(G) = Og(Ag). (2.4)

By Lemma 1.3(1), the action of G on A is extended to that of Clos(G)
such that Ag = Acies(c), and Clos(G) is considered as an element in £ (see
Definition 2.5). We define the subset L5 of £ by

Leos = {G € L | Clos(G) = G}. (2.5)

By the following proposition, rank Ag depends only on the structure of G as
an abstract group.
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Proposition 2.10 ([15, 14]). Let g be an element in O(A) such that the
group (g) generated by g is an element in L. Then ord( ) < 8 and Tr(g; A) =
x(g) — 2, where

x(g) = 24,8,6,4,4,2,3,2 if ord(g) =1,2,3,4,5,6,7,8. (2.6)

Hence, for G € L,

rank Ag = ¢(G) :=24 — Z x(9). (2.7)
’ g€G

In particular, ¢(G) = ¢(Clos(G)).

3 Embeddings of Ag into Niemeier lattices

In this paper, a Niemeier lattice is a negative definite even unimodular lattice
of rank 24 which is not isomorphic to the negative Leech lattice. Here the
negative Leech lattice is the unique negative definite even unimodular lattice
of rank 24 which has no vector v such that (v,v) = —2 (cf. [5]). In this section,
We study primitive embeddings of Ag into Niemeier lattices.

Definition 3.1. Let A denote the set of isomorphism classes of G-lattices
(G, N) which satisfy the following conditions:

(1) G # 1 and N is a Niemeier lattice;

(2) there exists a vector v € N¢ such that (v,v) = —2;
(3) there exists no vector v € N¢ such that (v,v) = —2;
(4) there exists a primitive embedding Ng — A.

Lemma 3.2 ([10]). For any G € L, (G,A¢) = (G', Ng/) for some (G',N) €
N. Conversely, if (G', N) € N, then there exists an element G € L such that
(G,A¢) & (G',Ngr).

Remark 3.3. In the above lemma, we write (G, A¢) instead of (Glag,Ac)
(cf. Definition 1.1). We use the same notation in what follows.

By Lemma 3.2, the study of (G,Ag) for G € L is reduced to that of A.
In the following subsections, we present how to make a complete list of N.
Some consequences from the list are given in Subsection 3.4.
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3.1 Some facts on Niemeier lattices

3.1 Some facts on Niemeier lattices

The following theorem is standard.

Theorem 3.4 (cf. [5]). There exist exactly 28 isomprphism classes of Niemeier
lattices. The isomorphism class of a Niemeier lattice N is determined by the
root sublattice of N, whose type is given in Table 10.1. Here the root sublattice
of N 1is the sublattice generated by vectors v € N such that (v,v) = —2.

Let N be a Niemeier lattice. A vector d € N is called a root if (d,d) =
—2. Let A denote the set of roots of N. A Weyl chamber C is a connected

, component of N ® R — Ugead™. ‘The set of positive roots A* corresponding
to C is defined by

E
£
|
E
i
2
!
i
|
1
3
a
=l
k|
il
|
3]
3
i
3
£l
|
o
4
~4
|
b |
|
I

At ={de A|(d,C) CRso}. (3.1)

We have A = At 1J—A*. The set of simple roots R(N, A*) corresponding to
AT is the set of positive roots d € AT such that there exists no decomposition
d = dj +dp with d; € A™". Tt is known that R(IN, A1) becomes a Dynkin dia-
gram of rank 24. The automorphism group of the Dynkin diagram R(N,A™)
is denoted by Aut(R(N, AT)). Let W(N) denote the subgroup of O(/N) which
is generated by reflections of d € A. The action of W () on the set of Weyl
chambers is free and transitive. The group O(N, A™) (see (1.2)) is considered
as a subgroup of Aut(R(N,A™)). We have O(N) = W x O(N, A™).

3.2 Method for making the list of NV

We use the above result to construct a complete list of A/. For the proof of
the following lemma, see [10].

Lemma 3.5 ([10]). Let N be a Niemeier lattice and G a subgroup of O(N).
Then the condition (8) in Definition 8.1 is satisfied if and only if there exists
a G-invariant set of positive roots.

Let N;y.---, No3 be all Niemeier lattices and Af a set of positive roots of
N;. Let G € O(NV;) be a subgroup satisfying the condition (3) in Definition
3.1. By the above lemma, we may assume that G preserves A; by replacing
G by 7Gy~! for some v € W(N;) if necessary. Hence we may only consider
subgroups of O(N;, A). Using GAP, we can make a complete list of sub-
groups Gi1, -+ ,Gij; of O(N;, AF) such that [Gyj] € &5® up to conjugacy™.
Since O(N;, A7) is realized as a subgroup of Aut(R(N;, A;)), so is Gy;. To
decide whether (G;;, N;) € N or not, we should check conditions (2)—(4) in
Definition 3.1 for (G;j;, N;).

INote that conjugacy in O(‘Ni,A;")b is equivalent to conjugacy in O(N;), which is a
property of semi-direct product groups.

12 ' December 6, 2010




3.3 Example

The condition (2) can be checked directly. For example, if N; is of type
A®?* the condition (2) is equivalent to the existence of a G;;-fixed element
in R(N;, A}). By Lemma 3.5, the condition (3) is already satisfied.

To confirm the condition (4), it is sufficient to show that there exists an
even lattice L such that

SignL = (33 19 - C(G’ij))a Q(L) = _q(NGij) (32)

by Lemma 1.2 and Proposition 2.10. We can compute the Gramian matrix of
NGii by using the orbit decomposition of R(N;, Aj) which is obtained from
the list of (G;j, N;). From the Gramian matrix of N Gii | we can determine
A(NGis) and q(Ni) (cf. Section 1). Since ¢(Ng,,) = —q(N4) by Lemma
1.2, we obtain the list of ¢(Ng,,). From'the list, we have the following:

Lemma 3.6. For (G;;, N;) satisfying the condition (2) in Definition 3.1, the
condition (4) is equivalent to the inequality

I(A(NGi3)) < 22 — ¢(Gy;) = rank NG — 2. (3.3)

Here l(A) denotes the minimum number of generators of a finite abelian group

A.

Proof. For each case satisfying the inequality (3.3), we can find a lattice L
satisfying (3.2). See Tables 10.2 and 10.3 for ¢(Ng,;) and L in each case
respectively. Conversely, the existence of L implies that

I(A(N%49)) = 1(A(Ng,,)) = l(A(L)) < rank L = 22 — ¢(Gy;) (3.4)
by Lemma 1.2 and (1.31). , O

By the above argument, the set which consists of (Gij, N;) satisfying the
condition (2) and the inequality (3.3) becomes a complete list of N.

3.3 Example

We consider the case of the cyclic group Cg of order 8 as an example. We
make the list of (G,N) € N with [G] = Cs. Since ¢(Cs) = 18, we have
rank Ng = 18 and rank N¢ = 6. Using GAP, we can make a complete list
of subgroups G C O(N,A™) such that [G] = Cs up to conjugacy for each
Niemeier lattice N. The result is as follows.

case (1) (IT) (II1)  (IV) (V) (VI)

root type of N ES* AY* e D, AS® A?u AT AP
number of stable N

components of R(N, At) 0 1 0 2 0 2

(G,N) e N? no yes no  yes no yes
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3.3 Example

If the condition (2) in Definition 3.1 holds, then at least one component of the
Dynkin diagram R(N,A™) is stable under the action of G. In the case (I),
the action of G as a permutation group of the components Eg of R(N, A™) is
transitive. Therefore, we have (G, N) € N in the case (I). Similarly, we have
(G,N) ¢ N in the cases (III) and (V). In fact, we have (G,N) € N in the
cases (II), (IV) and (VI), as we will see below. Let g be a generator of G.
The case (II). There exists a numbering of R(N,AT) = {vy,...,v24} a8
in Figure 1 such that
g Vi = Us(i)s (3.5)

where

o =(1,6,11,16,5,10,15,20)(2,7,12,17,4,9,14,19)(3, 8, 13, 18)(23,24).

3.6
- Hence N¢ ® Q is generated by &9
3 ' 3
wy = Z('U1+5i + Usg5:), W = Z('U2+5i + Vaysi),
50 =0 (3.7)
w3 = ZU3+51, Wy = V21, W5 = V22, We = V23 + V24
i=0

over Q. From the explicit description of G C O(N, A%), we find that N¢ is
generated by the above vectors and (w; + ws)/2 over Z. Therefore,

w1, we, (w1 + ws3) /2, wyg, ws, We (3.8)

form a basis of N¢ over Z. The Gramian matrix of N under the basis (3.8)
is

-16 8 0 0 0 0
-8 —-16 8 0 0 0
0 8§ -8 0 0 O
0 0 0 -2 1 0 (3:9)
0 0 0 1 -2 2
0 0 0 0 2 -4
We can determine A(N®) and ¢(N) from (3.9) (cf. Section 1):
A(N®) = 7/27 ® Z/AZ & (Z/8Z)%?, (3.10)
G\ ~~ 0 . 1/8
Wz apeame (e ). (3.11)
Since q(Ng) = —q(N€) by Lemma, 1.2, we have
N 0 1/8
o(No) = (—1/2) @ (-1/4) @ (1/8 A ) . (3.12)
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3.3 Example

1 6 11 16
2 7 12 17 21 22
3 8 13 18
4 9 14 19
5 10 15 20

Figure 1: Age‘l @ Dy

23

24

The case (IV). Similarly, there exists a numbering of R(N, A™) as in Figure

2 such that g - v; = v,(;), where

o= (3,4)(5,7,6,8)(9, 11, 13, 15,17, 19, 21, 23)(10, 12, 14, 16, 18, 20, 22, 24).

Moreover, N ® Q is generated by

8
w1 = V1, W = V2, W3 = Vg + Vg, Wy = E Vi,
i=5
7 7
Wy = E Vg+2i, W = E V10+2i
i=0 i=0

over Q, and N€ is genérated by

w1, Wa, W3, Wa, W5, 5 (w1 — w2 + ws — we)

3

over Z. The Gramian matrix of NC under the basis (3.15) is

-2 1 0 O 0 -1
1 -2 0 0 0 1
60 0 -2 0 0 0

0 0 0 -4 O 0

o 0 o 0 -16 -8

-1 1 0 0 -8 -6

From (3.16), we can check that ¢(Ng) is isomorphic to (3.12).

(3.13)

(3.14)

(3.15)

(3.16)

The case (VI). There exists a numbering of R(N, At) as in Figure 3 such

that g - v; = v,(;), where

o =(3,4)(5,6,7,8)(9,10, 11,12,13,14, 15,16)(17, 18, 19, 20, 21, 22, 23, 24).

(3.17)
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3.3 Example

1 i 3 i 21 I 23 i
2 4 22 24
Figure 2: A?m

Moreover, N ® Q is generated by

8

4
W1 =V, W2 =V, W3 = E Viy Wg = E Vi,
1=

16 =3 =5 (3.18)
Ws ’—‘Z% We = Zvi
i=9 i=17
over Q, and N€ is generated by
1 1 1
w1, W, W3, §(w1 + wa + w3 + wa), —2—(w4 + ws), 5(1114 + we) (3.19)

over Z. The Gramian matrix of N under the basis (3.19) is

-2 0 0 -1 0 O
o -2 0 -1 0 O
0o 0 -4 -2 0 O

-1 -1 -2 —4 -2 -2
o o0 0 -2 -6 -2
0o 0 0 -2 -2 -6

(3.20)

From (3.20), we can check that q(Ng) is isomorphic to (3.12).

1 6 2 O 230 240

Figure 3: AP

The type of the root sublattice of N©, i.e. the sublattice generated by
vectors v € N¢ such that (v,v) = —2, in each case is as follows. '

case | (II) (IV) (VD)
root type | A3 A1 @ Ay AY”

(3.21)
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3.4 Consequences from the list of N

Hence the condition (2) in Definition 3.1 is satisfied. The condition (3) is
satisfied by Lemma 3.5. By the above argument, we have

q(NG)g<—1/2>@<—1/4>@<1‘/)8 1(/)8) (322

in each case. Let L be a lattice defined by

L= oo (g g) . (3.23)

Then we have sign L = (3,1) and ¢(L) & —q(Ng). By Lemma 1.2, there exists
a primitive embedding Ng — A such that (Ng)x = L. Thus the condition
(4) is satisfied. Therefore, we have (G, N) € N in the cases (II), (IV) and
(VI).

3.4 Consequences from the list of N

Let Q denote the set defined by '

Q= {(8,q) | 3G € L such that & = [G],q = q(A¢)}. (3.24)
By Lemma 3.2, we have |
Q ={(8,q) | 3(G,N) € N such that & = [G],q = ¢(Ng)}. (3.25)

Let ~ denote the natural equivalence relation on Q, i.e., (8, q) ~ (&’,¢’) when
® = &' and ¢ = ¢’. By (3.25) and the list of g((IV;)%#) for (G;;, N;) € N, we
have the following:

Proposition 3.7. For & € 73'°, we have

1 if & # Qg, Ty,

2 if.®6 = Qs, Toy. (3.26)

£ ({a| (®,9) € Q) fisom) = {

Remark 3.8. From the Xiao’s list [26], we have §&7)3'F = 79. By the above
proposition, (Q/ ~) = 81. In Table 10.2, we list a complete representative
{(Bn,qn)} of Q/ ~. Our numbering coincides with that in [26].

By (3.25), we have the natural map
TN =9 (G,N)— ([G],q(N)). (3.27)

In Table 10.6, the type of the root sublattice of N& for each (G,N) € N is
given. From the table, we have the following:
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Proposition 3.9. Let Q° denote the subset of Q which is defined by
Q° ={(®,9) € Q| & # Bss}. (3.28)

There exists a section o : Q° — 7w~ 1(Q°) of m with the following properties.
Here we denote a(Q°) by N'. .

(1) Let (G,N) € N and (G',N') e N'. If 7(G,N) = 7(G',N') and N€ =
(N)E', then (G,N) = (G', N").

(2) Let (G,N) € N'. If [G] # B3, then N is of type AP**.

Proof. For each (&,q) € Q°, we can chose o(®,q) € N case by case. As an
example, we consider the case of Cs = &14 (see Subsection 3.3). By the table
(3.21), the root types of N¢ for (G, N) € N with [G] = Cs are different from
each other. Therefore, N¢ are not isomorphic to each other. Hence we can
chose (G, N) of the case (VI), in which N is of type AP?*, as o(®14,q14)-
Similarly, for (G, N) € N with 7n(G, N) = (6,,qn), the isomorphism classes
of NG can be distinguished by looking the root types except for the cases
n = 32,41, 56. For the cases n = 32, 41, 56, we can distinguish them by looking
the root types and the numbers of vectors v € N¢ such that (v,v) = —4. As
a consequence, we can choose (G, N) enclosed by boxes in Table 10.6. The
choice of o is not unique. ’ _ O

4 Uniqueness of coinvariant lattices Ag

Let S denote the set of G-lattices which is defined by
S ={(G,8) | 3G’ & L such that (G, 8) = (G, Ag:)}. (4.1)

Note that G C Og(S) by Lemma 1.3(3). In this section, we apply the result
in the previous section to prove the following: ‘ '

Theorem 4.1. The natural map ¢ : S/isom — Q/ ~ is bijective.

Proof. The surjectivity of ¢ is trivial. We shall show the injectivity. Let
(8,9) € Q. Suppose that (G,S) € S, [G] = & and ¢(S) = q. We show that
(G, S) is uniquely determined up to isomorphism.

(1) The case & # ®5z3. By Proposition 3.9, there exists an element
(I N) € N’ such that [I'] = & and ¢(Nr) = gq. We show that (G,S) =
(T, Nr). By Lemma 1.2, ¢(S) = ¢ = q(Nr) & —q(NT'). Again by Lemma
1.2, there exists a primitive embedding S < N’ of S into a Niemeier lattice
N’ such that (S)% = NT. By Lemma 1.3, the action of G on S is extended
to that on N’ such that (N')g = S and (N')¢ & NT. Thus (G,N’) € N
(see Definition 3.1). By Proposition 3.9, we have (G,N’) = (I', N). Hence
(Gv S) = <G7 (N,)G) = (F: NI")
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(2) The case & = Bsg. From Table 10.4, we find that &43 C Bs55 and
c(B43) = ¢(Bsg). Hence there exists a subgroup G3 of G such that [G3] =
®43. Since ¢(B43) = c(Bsg), we have (G)3,S5) € S. Let Gy3 € L be as in
Lemma 8.8. By (1) and Proposition 3.7, (G',S’) € S such that [G'] = B43
is unique up to isomorphism. Therefore, we have (G}3,S) = (Gus,Ag,,)-
By the condition (2) in Lemma 8.8, there exists a unique subgroup Gsg of
O¢(Ag,s) such that [Gsg] = Bs8 up to conjugacy in O(Ag,,). Hence (G, S) =
(Gs8, Acys)- O

Definition 4.2. Let (8,q9) € Q. By Theorem 4.1, there exists a unique
element (G,S) € S such that [G] = & and ¢(S) = ¢ up to isomorphism.
The lattice S determined by this conditions is denoted by S(®,q). Since
G C Og(S), & is a subgroup of [Og(S(&, q))].

By the definition of S(®, q), we have
Ac = 5([G], ¢(Ag)) (4.2)
for G € L.

Corollary 4.3. Let ‘(G,q), (B',¢)e Q. If&C &, g=¢q and c(B) = (&),
then S(®,q) = S(&',¢). :

Proof. Let G’ € L such that [G'] = &' and q(Ag/) = ¢’. Then Agr = S(&',¢').
Let G be the subgroup of G’ which corresponds to the subgroup & of &’. Since
c(G) = ¢(G'), we have S(&,q) 2 Ag = Ag = S(&, ). O

Remark 4.4. In Table 10.4, we give the trees of
Ts = {an I S(QSna Qn) = S} (43)

for Ts with §Ts > 2. From Tables 10.2 and 10.4, we find that there exist

‘exactly 40 isomorphism classes of lattices S(®,,,g,) (or Ag for G € £). Also,

we can check that the natural map
{S(8,9) | (&,9) € Q}/isom — {q | (&,q9) € Q,q = q(5(8,q))}/isom (4.4)
is bijective.
Definition 4.5. Let (8,q) € Q. We define Clos(@, q) by
Clos(®,4) = ([0o(S(®,0))], ). (45)

Note that & is a subgroup of [Og(S(®,q))] (see Definition 4.2).
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For (&,q) € Q, there exists an element G € L such that ([G],¢(Ag)) ~
(&, q). Since S([G], ¢(Ag)) = Ag, we have

Clos(®, g) = ([Oo(Ag)], ) = ([Clos(G)], g) (4.6)

(see Definition 2.9). In particular, we have Clos(®,¢q) € Q. Let Qcos denote
the subset of Q which is defined by

chos = {(Qja Q) € Q | Clos(QS,q) = (QS, q)} (47)
For G € L, we have G € L if and only if ([G], ¢(Ag)) € Qclos-

Corollary 4.6. The map
which is induced by the correspondence (&, q) — S(®,q) is bijective.

Proof. The inverse map of (4.8) is the map induced by the correspondence
S = ([0o(5)], 4(S5))- - O

Corollary 4.7. Let (8,q) € Q. Then we have Clos(®,q) = (&, q), where &’
is the unique mazimal element in

(8" e8P | (8",¢") € Q,6C & g=q",¢(6)= c(&")}. (4.9)
Moreover, we have the following.

(1) If & € {Qs,T24}, i-e., (8,9) ~ (&n,q,) for n € {12,13,37,38}, then
we have the follwoing table. '

n|6=6,|m|6 =6,
12 Qs |12 Qs
13 Qs 40 | Qs *Qs
37 Toy 77 Tig2
38 1oy 54 Tus

Here m is determined by (&, gm) ~ Clos(®, q).
(2) If & € {Qs,T24}, then & is the unique mazimal element in

{6" c 8T | & C &",¢(8) = c(&")}. (4.10)

Proof. For any element & in (4.9), we have S(®6, q) & S(6"”,¢") by Corollary
4.3. Hence &" C & = [0p(S(®,q))]. Therefore, the former part of the
corollary follows. We can check the latter part by Proposition 3.7 and Table
10.4. 0
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5 Property O(Ag) = O(q(Ag))

This section is devoted to prove the following theorem, which gives a sufficient
condition for G € £ such that O(Ag) = O(¢q(Ag)).-

Theorem 5.1. Let G € L with ¢(G) = rank Ag > 17 (see Proposition 2.10).
Then O(Ag) = O(¢q(Ag)) if and only if [Clos(G)] € {Bus, B51}. In particular,
if ¢(G) =rankAg =19, then O(Ag) = O(q(Ag)).

Since ¢(B45) = ¢(B51) = 18 by Table 10.2, the latter part of the theorem
follows from the former part.

5.1 Criterion of O(L) = O(q(L))
We prepare for a criterion of the property O(L) = O(gq(L)).

Lemma 5.2. Let H be a group and K1, Ko subgroups of H. If K1 C Ky and -
ﬁKl\H/KQ = ’1, then Kz =H.

Proof. By the second assumption, any element in H is of the form kiks with
k; € K;. Hence Ko = H by the first assumption. [

Proposition 5.3. Let Ly be a non-degenerate even lattice. Then O(L;) =
O(q(L1)) if and only if there exists a non-degenerate even lattice Lo satisfying
the following conditions.

(1) There exists an essentially unique even unimodular lattice U C LY & Ly
which contains L; primitively. Here the uniqueness of I' means that for
another I, there exist isomorphisms @; € O(L;) for i = 1,2 such that
p1 ® w2 induces an isomorphism T’ — T".

(2) The restriction map O(T, Ly) — O(Ls) is surjective (see (1.2)).

Proof. Assume that there exists Ly satisfying the conditions (1) and (2). Let
v € Isom(q(L;), —q(L2)) be the isomorphism corresponding to I' (see Lamma
1.2). The condition (1) implies that

O(L2)\ Isom(g(L1), —Q(Lz))/O(Ll) = y71o0(Lz)oy\ O(g(L1))/O(L1) (5.1)

is a one point set by Lemma 1.2. On the other hand, the condition (2) implies
that for any po € O(Ls), there exists an automorphism ¢; € O(L;) such that
yo®, 0y ! =P, by Lemma 1.2. Hence v~ 10 O(Ly) oy C O(L;). By Lemma
5.2, we have O(L1) = O(q(L1)).

Conversely, assume that O(L;) = O(g(L1)). Then any non-degenerate
even lattice Lo with g(L2) & —q(L1) satisfies the conditions (1) and (2) by

Lemma 1.2. For example, we can take L;(—1) as L. O
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5.2 Proof of Theorem 5.1

5.2 Proof of Theorem 5.1

Now we apply Proposition 5.3 to prove Theorem 5.1. Let Gy € £L. We may
assume that Gy € Leos. By Lemma 3.2, Ag, & N¢ for some (G,N) € N’
such that [Gy] = [G]. To prove Theorem 5.1, it is sufficient to show that
the conditions (1) and (2) in Proposition 5.3 are satisfied for L; = Ng and
Ly = NC.

We check that the condition (1) is satisfied as follows. Let N’ C (Ng)Y @
(N€)V be a Niemeier lattce which contains Ng and NC primitively. By
Lemma 1.3, the action of G on Ng is extended to that on N’ such that
(N")¢ = N€. We have (G, N’) € N by Definition 3.1. By Proposition 3.9,
(G,N) = (G, N'). The uniqueness of N is shown.

Before showing the condition (2), we prepare for a couple of lemmas.

Lemma 5.4. Let I" be an even unimodular lattice and L, a primitive non-
degenerate sublattice of . Then the kernel of the restriction map 7 : O(T, (L1){) —
O((L1)g) coincides with Og(Ly), which is considerd as a subgroup of O(T, (L1)¢).

Proof. By Lemma 1.3(1), we have Og(L1) C Ker(nw). The converse follows
from Lemma 1.3(2). O

Let At be a set of positive roots of N which is stable under the action of
G. Since N is of type AT O(N,A") = M,y and the Weyl group W of N
is isomorphic to C24.

Lemma 5.5. In the above setting, we have a semi-direct product
O(N,N%) = C% x N, (G) C O(N) = W x My, (5.2)

where n = rank N¢ = 24 — ¢(G) and Nyr,,(G) is the normalizer subgroup of
G n M24. »

Proof. Set {v1,...,v24} = R(N,A%) and W' = O(N, N) N W. The action
of G decomposes R(N,A") into n orbits O1,...,0,. The invariant lattice
NG is generated by Zveoj v over Q. Let w € W. Then w is of the form

w= HT(W)%, e; € {0,1}, (5.3)

where T'(v) is the reflection of v. Since

w (Z aivi> = Z(—l)e"aivi, (5.4)

i=1
W' is generated by [[,co, T'(v) and W' = CF. By Lemma 5.4, we have
G < O(N,N%). Hence O(N,N%)/W' C N, (G). For g € N, (G), we
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~ For any v = (v;) € S, we can see that |v;| < (max{|bs;|}/N)

e

have gG - v; = Gg - v;. Therefore, for any j, g - O; = Ojs for some j', and
Nip,, (G) € O(N, N€). The assertion follows from this. a

Now we check the condition (2) of Proposition 5.3. By the above lemma,
we can determine the order of H from the order of Ny, (G). We can compute
the order of Njy,, (G) by using GAP. On the other hand, we can also determine
the order of O(NY) as follows: Let B = (b;;) € M,(Z) be the Gramian
matrix of N¢. Then O(N€) is identified with the matrix group M consisting
of P € M,(Z) such that tPBP = B. Let S denote the set consisting of
column vectors v € Z" such that tvBv = b;; for some i. Then any element
P € M is of the form (v; ---v,) with v; € S. Since N¢ is negative definite,
there exists a positive number A such that —M — X - 1,, is positive definite.
12 for all j.
Thus we can enumerate all elements in S and M in finite steps. Practically,
we should take M with smaller |b;;| (cf. the reduction theory of quadratic
forms). Also, we should take larger A. For example, we start with A = 1. If
—M —1,, is not positive definite, then we try A = 99/100,98/100, - - - . Finally,
we get X such that —M — X - 1,, is positive definite. For our N¢, whose rank
is £ 24 — 17 = 7 by the assumption of the theorem, we can determine the
order of O(N®) in practical time by this method. The author used Maxima
for this computation. The result is the following:

Proposition 5.6. For (G,N) € N such that G = Oo(Ng), c(G) > 17,
[G] # B4g,B51 and N is of type AP**, we have | O(N, NC)|/|G| = | O(NF)|.
For example, we consider the case #80, in which & = Fj3g4. There exists

exactly one element (G, N) € N such that [G] = F3g4. The Niemeier lattice
N is of type AP?*. We have |Ny,,(G)/G| = 2 and O(N€) = 64. Since

(@) = 19, we have | O(N, N%)|/|G| = | O(NC)| = 64 by Lemma 5.5.

We shall finish the proof of Theorem 5.1. Since G = Og(Ng), the restric-
tion map O(N, NY) — O(N%) induces an injective map O(N, N%)/G —
O(NY). By the above proposition, this map is actually bijective, i.e., the
restiction map O(N, N¢) — O(N€) is surjective, and the condition (2) is
satisfied. Now we have checked the conditions (1) and (2), and it follows that

O(NG) = O(QNG)'

6 Uniqueness of invariant lattices A®

This section is devoted to prove the following:
Proposition 6.1. Set E = {G5, Lo(7),As}. For (&,q) € Q (see (3.24)), we

have

$({A9 ] G € £,[G] = 8,¢(Ag) = g}/isom) = (6.1)

1 otherwise.

{2 if®€E,
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The Gramian matrices of A are given in Table 10.3.

Proof. Let G € L such that [G] = & and ¢(Ag) = ¢. By Lemma 1.2, g(A%) &
—q(Ag) = —q.

First we consider the case rank A® > 3. Since sign A = (3,19) and Ag is
negative definite, AC is indefinite in this case. From Table 10.3, we can check
that the conditions (1) and (2) in Theorem 1.7 for A® are satisfied. Hence
the assertion follows from Theorem 1.7. We can directly find the Gramian
matrices of A® with the given signature and discriminant form for each case.

Next we consider the case rank A = 3. In this case, AC is positive definite.
From the table of definite ternary forms [20], we can check that there exists a
unique positive definite even lattice K of rank 3 such that ¢q(K) = —q up to
isomorphism, except for the cases & = G5, L2(7),Us. If & = G, Lo(7), Us,
there exist exactly two positive definite even lattices K7, K5 of rank 3 such
that q(K;) & —q up to isomorphism. For each ¢ = 1, 2, there exists a primitive
embedding A¢ — A such that (Ag)x & K; by Lemma 1.2. By Lemma 1.3, the
action of G on Ag is extended to that on A such that A 2 K. This action
is an element in £ by Definition 2.5. Therefore, the assertion follows. O

7 Property O(AG) = O(q(A%))

This section is devoted to prove the following:
Theorem 7.1. Let G € L. If rank A > 4, or equivalently, c¢(G) < 18 (see
Proposition 2.10), then O(AC) = O(q(A%)).

We may assume that G € Lo by replacing G by Clos(G) if necessary.
Then Ag & S(B,, ¢,) for some (&, g,) € Qelos (see Section 4). We can check

" that AC satisfies the conditions (1) and (2) in Theorem 1.8 from Table 10.3,

except for the following nine cases:
n = 26, 30, 32, 33, 40, 46, 48, 56, 61. (7.‘1)

Hence we have O(AG) = O(q(A%)) except for these nine cases.
For example, in the case n = 65, we find that

AC = (‘21 Z) & (4) @ (-8), (7.2)
g(A%) 2 —ge5 = v (2) @ ¢ (4) ® ¢! (8) ® ¢ (3) (7.3)

from Table 10.3. Since
rank AC =4 > I(A(A®)3) + 2 = 3, (7.4)

the condition (1) is satisfied. On the other hand, since v(?)(2) appears in the
orthogonal decomposition (7.3) of ¢(A%), the condition (2) is satisfied.
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7.1 Preparation for the cases (7.1)

7.1 Preparation for the cases (7.1)

Before studying the cases (7.1), we recall some properties of the spinor norm
(see e.g. [4]). Let L be a non-degenerate lattice. For any ¢ € O(L ® Q), ¢ is
written as a composition of reflections:

Here T'(v) € O(L ® Q) is the reflection of v, which is defined by
2(v, w) ..

Tw) w=w-— 0. 0) (7.6)
The spinor norm 6(¢p) of ¢ is defined by
0(p) = [ [(vi, vi) mod (Q*)* € Q*/(@*)?, (7.7)

i=1
which is independent of the choice of the expression (7.5). We define a map
f and a subgroup O’(L) c O(L) by
f=det x0: O(L) — {£1} x Q*/(Q*)? (7.8)
and O'(L) = Ker(f). Note that if L = L, ® Lg, then f(O(L;)) C f(O(L)).
We can define the spinor norm 6,(¢p) € QX /(Q))? of v, € O(L® Q) in a
similar way. Moreover, we define

fp = det x0, : O(L,) — {£1} x Q}/(Q)? (7.9)

and O'(L,) = Ker(f,), where L, = L ® Z,,.
To deal with the cases (7.1), we use the following proposition, which is a
consequence of Strong Approximation Theorem of quadratic forms (cf. [4]).

Proposition 7.2. Let L be an indefinite even lattice of rank > 3. We set
Oo(Lp) = Ker(O(Lp) — O(g(Lp))) and d = disc(L). If the natural map

p O LP
O(L H J{; Oo( p)))) (7.10)

is surjective, then O(L) = O(q(L)).
Proof. We have a natural commutative diagram

0 - O(L) — O —  fO@) — 0

(7.11)
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7.1 Preparation for the cases (7.1)

“where Og(L,) = O'(L,) N O¢(Ly). The rows in (7.11) are exact. Since
) =T oG, = I 5t (r.12)

pld pld

by Theorem 1.10, it is sufficient to show that 3 is surjective. Since [O'(L,) :
0p(L,)] < o0, each coset of O'(L,)/ Og(L,) is open dense subset of O'(Ly) in
p-adic topology. By Strong Approximation Theorem of quadratic forms (cf.
[4]), the image of O'(L) in [] pld O'(L,) is dense. Therefore, « is surjective. On
the other hand, v is surjective by the assumption. By chasing the diagram,
(3 is surjective. O

For f(O(L)) and f;(Oo(Lp)), we have the following:

Lemma 7.3. Let LP) be a non-degenerate even lattice over Z,.

(1) If v € LP) satisfies a = (v,v) € Zy V2L, then T(v) € O0o(L®) and

fp(T(v)) = (=1,a) € fp(O0(Lyp)).
(2) If L) contains U = (9}) as a sublattice, then

J2=((1,23/(25)%),(-1,2)) ifp=2 '
Oo(L® 2 2 i) b 7.13
fp(QolL)) 5 {Jp = {£1} x 25 /(Z))? otherwise. (7.13)
(8) If p=2 and L contains V = (21) as a sublattice, then
f2(00(LP)) > Ja. (7.14)

Proof. Let v,a be as in (1). Since T'(v) - w = w — (2(v,w)/a)v and 2/a € Z}},
we have T'(v) - w € L®) for w € L®). Hence T(v) € O(L®)). If w € (LP)V,
then (v, w) € Zp, thus T'(v) - w = w mod L®. Hence T(v) € Og(L®). Since
the determinant of any reflection is euqal to —1, we have f,(T'(v)) = (—1,9).
This proves (1).

Let (e1,ez) be a basis of U such that (e;,e;) = 0 and (e1,ez) = 1. For
x € L), set v, = e1 + zez. We have (v, vz) = 2z € 2Z,5. By (1), T(vg) €
OO(L(p)) and f,(T(v;)) = (—=1,2z). We can check that the group generated
by elements of the form (—1,2z) is Jo (resp. Jp) if p =2 (resp. p # 2).

The proof of (3) is similar to (2), and we omit it. O

Lemma 7.4. Let L be a non-degenerate even lattice.
(1) f(=11) = ((-1)™"F, disc(L)).
(2) f(O(U(1)) = ((—1,£28)), where U(t) = (¢ §).

26 December 6, 2010




7.2 Proof of Theorem 7.1 for the cases (7.1)

Proof. Let (ey,...,e,) be an orthogonal basis of L ® Q, where r = rank L.

Then, —1; = [[;_, T(e;) and [];_,(ei, €;) = disc(L) mod (Q*)?. Therefore, |

f(=11) = ((-1)",disc(L)). This proves (1). |
Let (e1, e2) be a basis of U(t) such that (e;,e;) = 0 and (e;,e2) =t. Then,

O(U(t)) = (Z/2Z)? is generated by T(ey + e3). Therefore, f(O(U(t))) =

((—1,42t)). This proves (2). O

7.2 Proof of Theorem 7.1 for the cases (7.1)

We set L = AY, r = rankL and d = disc(L). We shall show that the
map (7.10) is surjective in each case in (7.1). In other words, we show that
I1,a f2(O(Lp)) is generated by the images of O(L) and ][, 4 fp(Oo(Lyp)). In
fact, we have f,(O(Lyp)) = N, except fot the case n = 61, where |

N, = {£1} x Q3 /(@) (7.15)

Recall that the map (a, b, ¢) — (—1)23°2¢ induces an isomorphism (Z/2Z)% —
Q5/(Q%)?. Moreover, the map (a,b) — 2p” induces an isomorphism (Z/2Z)* —
Qr/(Q}))? if p # 2, where €, is a non-square p-adic unit. Let (e1,...,e,) be
a basis of L whose Gramian matrix is given by Table 10.3. We say a is rep-
resented by L if there exists a vector v € L such that (v,v) = a. We denote
f(O(L)) and f,(Oo(Ly)) by I and I, respectively.

(1) The case n = 26. We have

L= (g g) @) ®@), d=-2° (7.16)

Since 2 and 6 are represented by L, we have (—1,2),(—1,6) € I by Lemma
7.3(1). By Lemma 7.4(2), (—1,£16) = (—1,%1) € I. We can check that the
images of these four elements generate N2. (In what follows, we omit “the
image(s) of” for simplicity.)

(2) The case n = 30. We have

®2
(0 3 2 3 a6
L_(3 o) @(3 o>’ d=—3°, (7.17)

By Lemma 7.4(2), (—=1,£6) € I. Since T'(e5) € O(L), we have f(T(e5)) =
(—1,2) € I. We can check that these three elements generate Nj.
(3) The case n = 32. We have

L (05 4 2 o2 s3
L_(5 0)@(2 6), d=-22.5° (7.18)

Since Ly contains U, we have Jo C I by Lemma 7.3(2). Since 4 is represented
by L, we have (—1,4) = (—1,1) € I5 by Lemma 7.3(1). By Lemma 7.4(2),

e e e S B 0 S i o S S S e 5
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7.2 Proof of Theorem 7.1 for the cases (7.1)

(—1,£10) € I. Since T(e3) € O(L), we have f(T'(e1)) = (-1,4) =
I. Let I' = (4%). By Lemma 7.4(1), f(-1z) = (1,20) = (1
Therefore, the images of I, Iz, Is contain the follwoing elements.

(-1 T)
,D) €

| image in Ny X Nj
(LZ;/(Z;)z) X (LT)) (_1a§) X (LT)

(1,7) x (-1,71)
(—1,+£10) x (—1,410),(-1,1) x (-1,1),(1,5) x (1,5)

I,
I5

From this, we can check that I, I, I5 generate Ny X Np.
(4) The case n = 33. We have

(0 7 2 1 s
L_(7 0)@<1 4>, d=-T7 (7.19)

By Lemma 7.4(2), (—=1,414) € I. Since T(e3) € O(L), we have (—-1,2) € I.
We can check that these three elements generate N7.
(5) The case n = 40. We have

L= (4)9 @ (-4)%2 d=210 (7.20)

Let ¢ = T(e1)T(e1 + 2e3) € O(Lz). Then, modulo L, we have

€1 €1 2 _ 3 _ 6_1
28 —4— = T(el) (-21—- -2-6(61 + 262)) = T(el) 461 =7 3 (721)
€2 _ ©2_4 = T(ey) 2= &2

Hence ¢ € O¢(L2) and f2(p) = (—1,4) - (=1,20) = (1,5) € I. Since
T(e1),T(eq), T(e1+e2) € O(L), we have (—1,+4),(—1,8) € I. We can check
that these four elements generate Ns.

(6) The case n = 46. We have

L G ;) ® (6) @ (—18), d=—22.3% (7.23)

Since Lo contains V', we have Jo C Iz by Lemma 7.3(3). Since T'(es + e4) €
Oo(Lz), we have fo(T'(e3 + es)) = (—=1,—12) = (—1,3) € I,. Hence I = Na.
Since T'(e1),T(e3), T'(es) € O(L), (-1,2),(-1,6),(~1,—18) € I. From this,

we can check that I, I> generate Ny x Nj.
(7) The case n = 48. We have

(12 6 0 3 o228
L_(6 12)@(3 0), d=—22.35 (7.24)
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Since Lo contains U, ((1,Z /(Z3)?),(—1,2)) C I, by Lemma 7.3(2). By
Lemma 7.4(2), (—1,%6) € I. Since T'(e1), T'(e1+e2) € O(L), (—1,12),(-1,36) €
I. Therefore, the images of I, I contains the follwoing elements.

‘ ‘ image in Ny X N3
I (1,23 /(25)%) x (1,1),(-1,2) x (1,1)
I (—1,:|:6) X (—1,:|:6), (_133) X (_173)’ (_1’T) X (_1,T)

From this, we can check that I, I, generate Ny x N3.
(8) The case n = 56. We have

L= (4% (-8), d=-2° | (7.25)

By the argument in the case n = 40, ¢ = T(e1)T(e1 + 2e2) € Op(L2) and
fz((p) = (1,3) € I,. Since T(el),T(€4),T(€1+€2) € O(L), (—1,1), (-—1, —g), (—l,g) S
I. We can check that these four elements generate Ns.

(9) The case n = 61. We have

(8 4\ (0 3 o4 a3 ‘
L_(4 8)@9(3 0), d=—2%. 3% (7.26)

Since L contains U, J := ((1,Z5 /(Z3)?),(-1,2)) C I, by Lemma 7.3(2).
By Theorem 3.14(1) of [1], f2(O(Lz2)) C J, thus Iy = f5(O(Lg)) = J. Since
T(e1) € O(L), (-1,8) = (—1,2) € I. By Lemma 7.4(2), (—1,46) € I. From
this, we can check that I, I generate fo(O(Lz)) x Ns.

Thus, we have proved Theorem 7.1.

8 Uniqueness of symplectic actions on the K3 lattice

In this section, we use the results in the previous sections to prove Main
Theorem.

8.1 The case ¢(G) <18
Proposition 8.1. The natural map

{G € L | c(G) <18} /conj — {(G, S) € S | ¢(G) < 18}/isom (8.1)
is bijective.

Proof. The surjectivity follows from the definition of S (see (4.1)). Let
(G, S) € S such that ¢(G) < 18. Suppose that G; € £ and (G, Ag,) = (G, S)
for ¢ = 1,2. To prove the injectivity, it is sufficient to show that G; and G
are conjugate in O(A). By Proposition 6.1, A®* = A%2. By Theorem 7.1,
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8.2 The case ¢(G) =19

O(AG1) = O(q(A%)). Therefore, a primitive embedding Ag, — A such that
(Ag,)+ = A® is unique up to isomorphism and the restriction map

O(A,Ag,) — O(Ag,) (8.2)

is surjective by Lemma 1.2. Thus we may assume that Ag, = Ag, after re-
placing G1 by ¢G1p~! for some ¢ € O(A) if necessary. Since (G1,Aq,) =
(G2,Ag,), G1 and Go are conjugate as subgroups of O(Ag,). Since the re-
striction map (8.2) is surjective, G1 and G2 are conjugate in O(A). O

8.2 The case ¢(G) =19
Lemma 8.2. Let G1,G2 € L such that [G1] = [G2], Clos(G1) = Clos(Ga2)

and ¢(G;) = 19. If [Clos(G;)] # A4.4, F3s4, then G1 and G are conjugate in
Clos(Gy). ’

Proof. 1t is sufficient to consider the case G; C Clos(G;). By Tables 10.2 and
104, we find that H = [CIOS(GZ)] = T48, ngz, Tlgz, M20- Using GAP, we can
check that there exists a unique subgroup & of $ up to conjugacy in $ such
that ® = [G;]. The assertion follows from this. O

Now we consider subgroups & of 4 4 or Figq such that ¢(®) = 19. In
[14], Mukai constructed K3 surfaces which admit finite maximal symplec-
tic actions. We use two K3 surfaces from [14], on which 24 4 or F3g4 acts

symplectically.
Let X be a surface in P® which is defined by the following equations:
?+yt 4+ = V3u?, (8.3)
2?4 Cy? + (222 = /302, (8.4)
22 4+ Cy? + 2% = V3uw?, (8.5)

where ( = exp(2mv/—1/3) and z,y, z,u,v,w are homogeneous coordinates of
P°. Since X is a smooth complete intersection of type (2,2,2) in P°, X is a
K3 surface. Let G denote the subgroup of PGL(6, C) which is generated by

(x:y:z:utv:iw)—(—z:—y:z:u:v:w), (8.6)
(z:y:z:u:v:iw)— (z:y:z:—u:—v:w), (8.7)
(x:y:z:u:v:iw)— (y:z:z:u:Cv: Cw), (8.8)
(z: v w)»—>(a::§2y:§z:v:w:u), (8.9)
(ziy:z:iu:v:w)— (—z:—2z:—y:u:w:v) (8.10)

Then G acts on X symplectically and [G] = 24,4. Moreover, let G denote the
group generated by G and

g:(z:y:z:uv:iw)— (u:v:iw:x:z:yY). (8.‘11)
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8.2 The case ¢(G) =19

Then G acts on X and g*wx = v/—lwx. Using GAP, we can prove the
following;:

Lemma 8.3. Suppose that & € 873" is a subgroup of Aysy and (&) = 19.
Then there exists a unique subgroup K of G such that [K]| = & up to conjugacy

in G. _
Let Y be a surface in P® which is defined by the following equation:
syttt =0, (8.12)

where z, %, 2, t are homogeneous coordinates of P3. Since Y is a smooth quartic
surface in P3, Y is a K3 surface. Let H denote the subgroup of PGL(4,C)
which is generated by

(x:y:z:t)— (iz: —iy: z:t), (8.13)
(x:y:z:t)—(y:x:2:1), (8.14)
(x:y:z:t)—(y:z:t:z), (8.15)

where i = y/—1. Then H acts on Y symplectically and [H] = F3g4. Moreover,
let H denote the group generated by H and

h:(z:y:z:t)— (ixz:y:z:t). (8.16)

Then H acts on Y and h*wy = iwy. Again using GAP, we can prove the
following:

Lemma 8.4. Suppose that & € B33 is a subgroup of Fzgs and c(&) = 19.
Then there exists a unique subgroup K of H such that [K] = & up to conjugacy
in H.

Remark 8.5. Since GAP is good at handling permutation groups, we re-
alize G and H as quotients of permutation groups in GAP. For example,
the subgroup of PGL(2,C) which is generated by (z : y) — (¢z : y) and
(z:y)— (y:x) is realized as

((1,2,3),(1,4)(2,5)(3,6))/((1,2,3)(4,5,6)). (8.17)

Remark 8.6. By a similar argument in [7], we can show that the projective

automorphism groups of X and Y are G and H, respectively. However, since
X and Y have Picard number 20, the automorphism groups of X and Y are
infinite groups by [23].

By considering induced actions on H?(X,Z) and H*(Y,Z), we have the
following:
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Lemma 8.7. Consider G and H as a subgroup of O(A). Suppose that & is a
subgroup of Ay 4 (resp. Fsgq) such that ¢(&) = 19. Then there exists a unique
subgroup K of G (resp. H) up to conjugacy in O(A) such that [K] =

We use the following lemma in the proof of Theorem 4.1.
Lemma 8.8. There ezists an element G43 € L which satisfies the following:
1. [G43] = G435

2. There exists a unique subgroup Gsg of Op(Ag,s) up to conjugacy in
O(AG43) such that [G58] = 658.

Proof. Fix an identification H?(Y,Z) = A. By Table 10.4, there exists a
subgroup Gaz of H such that [G43] = 43. Since 0(643) = c(H ) =19, we have
Ag,, = Ag. Hence Og(Ag,,) = H. Since H < H, we have H c O(A, Ag,,).
By Lemma 8.4 and Table 10.4, the condition (2) is satisfied. O

We have the following by the above lemmas.

Proposition 8.9. Set E = {G;5, L2(7),Us} C BF3". The natural map

{GeL|c(G)=19,[G] & E}/conj — {(G,S) € S | ¢(G) =19,[G] ¢ E}(/Sislosr;l
is bijective. | '

Proof. The surjectivity follows from the definition of & (see (4.1)). Let
(G,S) € S such that ¢(G) = 19 and [G] ¢ E. Suppose that G; € £ and
(Gi,Ag,) = (G, S) for i = 1,2. To prove the injectivity, it is sufficient to
show that G and G are conjugate in O(A). By Proposition 6.1, AGt = A%z,
By Theorem 5.1, O(Ag,) = O(g(Ag,)). Therefore, a primitive embedding
Ag, — A such that (Ag,)x = A®! is unique up to isomorphism by Lemma
1.2. Thus we may assume that Ag, = Ag, after replacing G1 by G~ for
some ¢ € O(A) if necessary. Hence [Clos(G1)] = [Clos(G2)].

(1) The case [Clos(G;)] # 4.4, F334. By Lemma 8.2, G; and G, are
conjugate in Clos(G;) (C O(A)).

(2) The case [Clos(G;)] = 44 (resp. Fisq). By the above argument,
we have Ag, = Ag (resp. Ag) for some identification A = H?(X,Z) (resp.
H?(Y,Z)). Hence Clos(G;) = G (resp. H). By Lemma 8.7, G; and G are
conjugate in O(A). O

Proposition 8.10. For & = G5, Ly(7),2s, there exist exactly two elements
G1, G2 in L up to conjugacy in O(A) such that [G;] = &. We have Ag, = Ag,,
q(AC1) = q(AG?) and AG 2 AC2.
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8.3 Proof of the Main Theorem

Proof. By Proposition 3.7 and Theorem 4.1, there exists a unique element
(Go,S) € S up to isomorphism such that [Gy] = &. Since & is a maximal
element in B35F, 0o(S) = Go. By Theorem 5.1, O(S) = 0(g(S)).

Lemma, 1.2 and Proposition 6.1, there exist exactly two primitive sublattices
A1, As of A up to O(A) such that A; = S. Let G € L such that [G] = &. Then
Ag = S. Hence, we may assume that Ag = A; (¢ € {1,2}) after replacing G
by ¢Gy¢~! for some ¢ € O(A) if necessary. This implies the assertion. O

8.3 Proof of the Main Theorem

Theorem 8.11. Let & € 835F.

(1) If & = Qg,Ts4, there exist ezactly two elements G1,Gy in L up to
conjugacy in O(A) such that [G;] = &. We have the following table, by
changing numbering of G1, Gz if necessary (see Corollary 4.7).

® || case | [Clos(G1)] | disc(Ag,) || case | [Clos(G2)] | disc(Ag,)

#12 Qs 512 || #40 QS X Qg 1024
477 Tioo —~192 || t54 —384

To4

(2) If & = G5, Lo(7),Us, there exist exactly two elements Gl, Gy in L up to
conjugacy in O(A) such that [G;] = &. We have Ag, = Ag,, ¢(AC?) =
q(A9?) and AC* 3 AC2,

(8) Otherwise, there exists a unique G € L up to conjugacy in O(A) such
that [G] =

Proof. By Theorem 4.1, (G, S) € S is determined uniquely up to isomorphism
by [G] and ¢(S). The assertions (1) and (3) follow from Propositions 8.1, 8.9
and Table 10.2. The asserion (2) is the same as Proposition 8.10. O

9 Applications

Combining Xioa’s result (Theoi"em 0.3), the following theorem is a direct
consequence of Theorem 8.11 and grobal Torelli theorem for K3 surfaces.

Theorem 9.1. Let & € &7/3'°. Set E| = {Qs, Toa}, B2 = {65, La(7),As }.

1. If & & E1 U E,, then the moduli of K3 surfaces with &-actions is con-
nected.

2. If X; is a K3 surface with a symplectic ;-action (i = 1,2) such that
&; & Ey and &1\ X, and B2\ X,y have the same A-D-E-configuration of
the singularities, then &1 = G5 and X, and X9 are G-deformable.
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B-actions such that X; and Xo are not G-deformable.

Then there exist K3 surfaces X1 and Xo with sympelctzc

4. If a K3 surface admits a symplectic action of type (&, q) € Q, then the
action is extended to Clos(®, q).

10 Tables

10.1 Niemeier lattices

1 root type |O(N1,A;|-)1‘ O(N,,,Aj_)Q |O(N,,A,j_)l
1 Day 1 1 1

2 D1s @ Eg 1 1 1

3 EP3 1 G3 6

4 Agg 2 1 2

5 D&? 1 P 2

6 A7 ® Er 2 1 2

7| Do EP 1 () 2

8 A15 ® Dy 2 1 2

9 D3 1 B3 6

10 A%} 2 Gy 4

11 | A1 @ D7 @ Eg 2 1 2

12 E$* 2 H 48
13| A$? e Dg 2 Gq 4

14 D& 1 H 24
15 A$3 2 G 12
16 | A% D$? 2 Gy x Gy 8
17 A$H 2 Ay 24
18| A¥*e D, 2 G4 48
19 D$" 3 Se 2160
20 A$S 2 Gs 240
21 ASS 2 F3 x GL(3,F>) 2688
22 AP 2 M 190080
23 AP 1 Moy 244823040

- 10.2 Abstract groups and discriminant forms

We give the list of a complete representative {(Q,,qn)} of @/ ~. Recall that

Q={(®,q) | 3G € L such that & =
={(8,9) | 3(G,N) € N such that & =

34

[G]aq = Q(AG
(G, g =

)}
q(Ng)}
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10.2 Abstract groups and discriminant forms

and (8,q) ~ (&',¢') when & = &', ¢ = ¢’ (see Subsection 3.4). For ¢ : A(q) —
Q/2Z, we denote the order of A(g) by |g|. We use the following notation (cf.
[5]):

0" =g (@)%, a7 =P (@)* " © 4P (a),
Dn _ bn—1 r
b =u@ @), by = u @) @v®(b), b = g%, (b)),

where p is an odd prime, a = pF¥, b=2* and LE,Z; + o 18 a (unique) unimodular
lattice over Zy which has the invariants r, d, t, e defined in Proposition 1.6 (see

Section 1). For example,

Alges) = (Z/2)®* © 2/32 © Z/9Z,

w19 (), ) owme s

In the list, e.g. g5 is isomorphic to ¢i¢.

35 December 6, 2010




10.2 Abstract groups and discriminant forms

n | |Gy 6, |gn| dn c(®n)
1] 2 Ca 256 2 8
2| 3 Cs 729 3+6 12
3| 4 Cz | 1024 | 25°% 452 12
41 4 Cy 1024 | 242 4t 14
5| 5 Cs 625 116 16
6| 6 Ds 972 | 242,319 14
7| 6 Cs 1296 #18 16
8| 7 Cy 343 #33 18
9| 8 C3 1024 | 248,452 14
10| 8 Dy 1024 455 15
11| 8 | CyxCy| 1024 #22 16
12| 8 Qs 512 273,857 17
13| 8 Qs | 1024 #40 17
14| 8 Cs 512 126 18
15 9 C2 729 #30 16
16 | 10 Dy | 625 5+4 16
17 12 A4 576 | 257%,45%,372 | 16
18| 12 Dip | 1296 | 24 3+4 16
19| 12 | CyxCs | 1728 161 18
20| 12 Q12 432 #61 18
21| 16 Ch 512 | 248,81t 15
22| 16 | Cyx Dg | 1024 | 272 45* 16
23| 16 | Tye; | 512 #39 17
24| 16 | Qg+ Cy | 1024 #40 17
25 | 16 C? | 1024 #75 18
26| 16 | SDig | 512 |24 48 8482 | 18
27| 16 | Cy x Qg | 256 #75 18
28 | 16 I2d | 256 #80 19
29| 16 | Qi | 256 #80 19
30| 18 Ass | 729 | 34971 16
31| 18 | C3x Dg | 972 148 18
32| 20 | Hol(Cs) | 500 252,513 18
33| 21 | CyrxCs| 343 7+3 18
34| 24 Gy 576 413 3+2 17
35| 24 | Ca xRy | 576 51 18
36| 24 | C3xDg | 432 161 18
37| 24 Tos 192 #77 19
38| 24 Ty 384 #54 19
39| 32 20Cy | 512 | 2%, 482,83 | 17
40| 32 | Qs*Qs | 1024 4+° 17
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10.2 Abstract groups and discriminant forms

41| 32 I'7ay 512 #56 18

42 | 32 Tycs 256 175 18

43 | 32 T'7az 256 #80 19

44 | 32 I'se 256 #80 19

45 | 32 Tsaz 256 #80 19

46 | 36 32Cy 324 | 252,372,971 |18

47 | 36 C3 x Uy 432 - 61 18

48 | 36 B33 972 | 2;%,37%,971 |18

49 | 48 24C;3 384 | 25%,871,371 |17

50 | 48 42Cs 256 #75 18

51| 48 Cy x 6,4 576 | 24%,45%,3%2 | 18

52 | 48 | 22(Cy x Cg) | 288 #78 19

53 | 48 22Q19 288 #78 19

54 | 48 Tus 384 | 241837371 |19

55 | 60 As 300 | 2;%,3t4,572 |18

56 | 64 Ta5a, 512 453 871 18

57 | 64 T1301 256 175 18
58 | 64 | T'ya1 256 180 19 :
59 | 64 rzgaz 256 ﬁ80 19 ‘
60 | 64 Tasaz 256 180 19

61 | 72 Ay 3 432 452,373 18

62 | 72 Ny 324 | 4F13t2971 |19

63 | 72 My 216 | 273,3°L9°1 |19

64 | 80 24Cs 160 181 19

65 | 96 24Dy 384 | 2%, 471,871,371 | 18

66 | 96 24Cs 384 #76 19

67| 96 42 Dg 256 #80 19

68 | 96 23Dy 288 #78 19

69 | 96 | (Qs*Qg) x Cs | 192 #77 19

70 | 120 Gs 300 | 43%,3t1,572 |19

71 | 128 Flag 256 #80 119

72 | 144 A2 288 H78 19

73 | 160 24D1g 160 #181 19

74 | 168 Ly(7) 196 4t 7+2 19

75 | 192 429, 256 252,852 18

76 | 192 Higo 384 | 47%,8t1 371 |19

77 1 192 Tig2 192 473 3+1 19

78 | 288 24 4 288 | 242,871,312 |19 |
79 | 360 A 180 | 45%,372,5t1 |19
80 | 384 Fis4 256 451 842 19 '
81 | 960 Mo 160 | 2;%,87%,57r |19
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10.3 Invariant lattices AC

10.3 Invariant lattices AC

0
o= (3

[1)) ' (10.1)

For abelian G € £, the Gramian matrices of A® are determined in [6].

g | r d q Gramian matrix

1|14 | —256 21" U & Fg(—2)

2 10| ~729 3+6 UaU(3)%2a Ay(—1)92
T 3|10 —-1024 | 255457 UaU(2)%% @ Dy(-2)

4| 8| —1024 | 282 44! U U(4)®% o (—2)®2

6| 8 | —972 252,375 | U(3) @ A2(2) @ Ax(—=1)®2

9 | 8 | —1024 | 245442 U(2)%% @ (—4)®2

10| 7 | 1024 44° U (4)%? @ (—4)®3

_ _ 6 2 2

125 | 512 | 273,852 (3 B —62) @ (—2)®2

16 | 6 | —625 5t UeU(5)%

17| 6 | =576 | 2%,45%,372 | U@ A2(2) @ Ax(—4)

18| 6 | —1296 | 2f*, 3+ U @ U(6)®?

21| 7 | 512 278, 841 U(2)®3 ea (—8)

22| 6 | —1024 | 2f%, 48t U(2) @ (4)%% @ (—4)®2

26| 4 | —512 | 211 47t 82 UB)® (2) @ (4)

30| 6 | —729 3+4 9+1 UB)®2o (23)

32| 4| =500 | 27257 UG)®(53)

33| 4 | —343 773 UM e (2])

34| 5 | 576 | 4F3 312 Ud Ax(2) ® (—12)

39| 5 | 512 | 2f%, 482381 | UQ) @ @)@ (—4) @ (8)

40 | 5 | 1024 4F° (4)93 @ (—4)®2
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10.3 Invariant lattices AG

46 | 4| —324 | 252%,3%2,971 Ay @ (6) © (—18) |
48 | 4| —972 | 2;%,373,911 U(3) @ Ay(6) |
49 | 5| 384 24,841,311 | U(2) @ 42(2) ® (-8) |
51| 4| =576 | 27%,482,3%2 U(2) ® (12)®?
54 3| 384 | 2f18-2 3+ (§126 186)
55 | 4| —300| 25%,371,572 U @ Ay(10)
56 | 4 | —512 433 841 (4)®3 @ (—8)
61 |4 | —432 45%,3%3 U(3) @ A2(4)
62 3| 324 | 431, 3+2 o1 (S%%
500
63|3| 216 | 273,3+1,9%1 (8162162)
65 | 4 | —384 | 252,47, 841,3+1 Ai(?)@(4>ea<—8>
70|3| 300 | 471,371,572 (148),(‘%%?)
020128 2412126
74 3| 196 4t 72 (14 O),(281)
002%020218
75 | 4 | —256 2%, 8572 (gggg)
%9%
76| 3| 384 | 4728} 3+ (oso)
0400102
7713 192 473,371 084
78| 3| 288 | 2f2 8il 3+2 %%g
79 (3| 180 | 45%,3+2 5+ (%é%), 883)
0012400338
80| 3| 256 4 852 (8(s)g
81(3| 160 | 2;2,8f,57! (32%)
2212
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10.4 Trees of groups with common invariant lattices

10.4 Trees of groups with common invariant lattices

116 H#18 433 422 #26
[ N I
85 7  #8 #11 f14
175
#40 461
N 50
124 36 #47 |
| N |
13 #20 #19 |
#25
180
/
167
I
I 158
|
44
AN
128

10.5 Extensions

130 #39

I
#15 23

AN
§57
|
442

|
427

AN

471
-
#59

443

N SN S

#51 #54 456 #76

|

181
|
#73

!
464

#48
[ N R
#31 #35 #38 t41 166
77 £78
| RN
169 68 §72
| N
#37 1§53 #52
AN £60
H60 & |
A f44
§45
l
#29

maximal:54, 62, 63, 70, 74,76, 77,78,79, 80, 81
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10.6 Root types of N¢

n | extensions

3,4,6,9,10,12,16,17, 18,21, 22, 26, 30, 32, 34, 39, 40, 46, 48, 49, 51,

54,55, 56,61,62,63,65,70,74,75,76,77,78,79, 80,81

6,17,18,30, 33, 34, 46, 48,49, 51, 54, 55,61, 62,63, 65, 70, 74, 75, 76,

77,78,79, 80,81

9,10,17,18,21, 22,26, 34, 39, 40, 48, 49, 51, 54, 55, 56, 61, 62, 65, 70,

74,75,76,77,78,79, 80,81

4 10, 12,22, 26, 32, 34, 39, 40, 46, 51, 54, 56,61, 62, 63, 65, 70, 74,75, 76,
77,78,79, 80,81

6 | 18,30, 34,46,48,51, 54, 55,61, 62,63,65,70,74,76,77,78,79, 80, 81

9 | 21,22,39,40,49, 51, 56,65, 75,76, 77,78, 80, 81

10 | 22,26, 34, 39, 40, 51, 54, 56,61, 62, 65, 70,74, 75,76, 77, 78,79, 80, 81

12 | 26, 54, 63,75, 80, 81

16 | 32,55,70,79, 81

17 | 34,49,51,55,61,65,70,74,75,76,77,78,79, 80, 81

18 | 48,51,54,61,62,70,76,77,78

21 | 39,49, 56,65,75,76,77, 78,80, 81

22 | 39,40,51,56,65,75,76,77,78, 80,81

26 | 54, 80

30 | 46,48,61,62,63,78,79

32|70

33|74

34| 51,61,65,70,74,76,77,78,79, 80, 81

39 | 56,65,75,76,77,78, 80, 81

40 | 56,76, 77,80

46 | 62,63,79

48 | 62

49 | 65,75,76,78, 80, 81

51| 76,77,78

55 | 70,79, 81

56 | 76,77,80

61178

65 | 76,78,80, 81

75 | 80,81

10.6 Root types of NC

We give the type of the root sublattice of N, which is generated by vectors
v € N€ with (v,v) = -2, for (G, N) € N such that [G] = &,, and q(Ng)
gn (see Table 10.2). In the list, elements in N’ are enclosed by boxes (see
Proposition 3.9) and the number of vectors v € N with (v,v) = —4 are given
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10.6 Root types of N¢

for the cases n = 32,41,56. As for Niemeier lattices N = N;, see Table 10.1.
n=1
i 3 6 7 8 9
type Eg A?g ® FEr Dy A?S & Dy Dg
i 11 12 12 13 14
type | AP® @ D, © Dg DY? Di®E;s AP @ Dg D¥?
i 15 16 16 16 18
type Ag v A?s (&) DZBZ A?M ® As - Dy @ Ds A?lz ® Dy
i 18 19 19 20 21
type | AT @ A3 @ A5 A" DY AY? AP
i 21 22 123
type | AY' @ AY? AS* AP
n=2
i |12 14 17 18 19 19 21 22 |23]
type E6 DG A6 A2 @ A5 A;@b D4 &) ASBZ A:G?z Agad A?b
n=3
i | 12 16 16 18 19 19 21
type | D2  AP®  DF? AT @ A; AF? DY AP
i | 21 21 21 |22 23 23
type | AZ® Az @ AT° APZ  AT? AT AT
n=4
i |13 18 19 20 21 22 |23
type | Ds Dy AY? AP @ Ay AP? @ A3 AP? @ AS? AY*
n=2>5,16
i |19 20 22 [23]
type | Dy Ay AS? AP°
n==~6
i 12 12 14 18 18 19
type_ D4 E6 D5 Aiﬁd D A2 A2 ) A5 A§54
i 19 19 21 22 22 |23]
type AS}Z @ Ag D4 AEBZ ) A3 A2 A%Bd A?4
n="17,18
i |12 18 19 19 21 22 |23
type D4 A?d D A2 A%BJ A3 A§94 A2 A?
42
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10.6 Root types of N¢

n=_8,33
i |21 |23
type | Az AY
n=29
i | 21 21 (23] 23 23
type | ATT ATE  APT AP ATE
n =10
i |18 19 21 21 22 23] 23
type | Az ADZ ADT ATTg A; AT? AT? AT
n=11,22
i | 21 [23] 23
type | AP* AP® AP*
n=12
i | 18 22 123 |
type | Dy AY° @ Ay AY®
n = 13,24, 28,29, 37,40, 43, 44, 45, 59, 60, 67, 69, 71, 77, 80
i []23
type | AY"
n = 14,26
i |18 22 |23
type | A5 A1 DAy AP
n = 15,30
i | 19 22 |[23]
type | A3® A5 AY”
n=17
i | 19 19 21 21 22 23 23 |23]
type | AY? A, @Dy Az APZ ATT ATT APT AP
n = 19,20, 36,47, 61
i | 19 |23
type | A5" AP
n =21
i | 23 |23
type | AY* AY
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10.6 Root types of N

n = 23,39
i 23] 23 23
type | AY> AP AP
n = 25,27,42,50,57,75
z-
type | A}
n =31
i [ 19 19 22 |23]
type | A2 Ay Ax A
n =32
i 19 20 20 @ 22 123
type A3 AEBZ A4 A1EBA2 A?
t{v e N[ (v,v) = —4} 14 22
n =34
i | 19 19 21 21 21
type Agﬂ AQ@A3 A?Z A?Z@A3 A3
i | 22 23 23 23 23]
type | AYZ  ATZ APT AT AT
n = 35,51 |
i | 21 21 [23] 23 23
| type | AYZ APT A, APT AF?
n = 38, 54
i |18 22 |23]
type | Ao Ay A
n =41
i 23 23 |23
type APT ATT AT
Hve NO [ (v,o)=-4}] 26 26 42
n = 46
i 22 22 123
type | AT @ Ay A @ AY? AP°
n =48
i |19 22 [23]
type | A2 Ay Ay
n =49
i |23 23 [23]
type | Ay AP* AP°
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10.6 Root types of N¢

n = 52,53,68,72,78

n = 56

n = 58

n = 62

n =63

n = 64,73,81
n = 65

n = 66, 76
n =70
n="7T4
n="79

i |23 |23

type | Ay AY
i |19 22 22 23 23]
type D4 A2 A;ez A?s A?A
i 23 |23
type AT? AP

f{ve NO | (v,v) =—4} | 26 42

7

23 23

type

@©2 @2
A7 A

?

22 23]

type

A A

{ 22

22 123]

type | AT

AP Ay, AP°

1

23 [23]

type

©3 ©4
Al Al

1 23

23 23 |23]

type

A, APT AT AT

?

23 23 |23

type

A, 4, AT

1

19 22

23 |23

type

A; A; A, A%

1

21 23 [23]

type

A; ATE AT

)

22 23 |23]

type

D2 D2 Do
AZ Al Al
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