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                       Abstract 

  In this paper, we study finite symplectic actions on K3 surfaces X, 
 i.e. actions of finite groups G on X which act H2,0(X)  trivially. We 

show that the action on the K3 lattice H2 (X, Z) which is induced by 
a symplectic action of G on X depends only on G up to isomorphism, 
except for five groups.

0 Introduction

A compact complex surface X is called a K3 surface if it is simply connected 

and has a nowhere vanishing holomorphic 2-form cox . An automorphism g 

of X is said to be symplectic if g* cox = wx. Nikulin [15] studied symplectic 
actions of finite groups on K3 surfaces. In particular, he showed the following 

result: 

Theorem 0.1 ([15]). There exist exactly 14 finite abelian groups G (G = 
C2, C3, ...) which act on K3 surfaces faithfully and symplectically. Moreover, 
for each G, the action of G on the K3 lattice which is induced by a symplectic 
action of G on a K3 surface is unique up to isomorphism. 

  In this paper, we prove that the above uniqueness holds for any finite 

groups except for five groups. We use the same notations for groups as in [26] 
(cf. Table 10.2). 

Main Theorem. Let G be a finite group such that G Q8, T24, 65, L2(7), 2t6 . 
Then the action of G on the K3 lattice which is induced by a faithful and 
symplectic action of G on a K3 surface is unique up to isomorphism. More 
precisely, if Gi "' G acts on a K3 surface Xi faithfully and symplectically 
(i = 1, 2), then there exists an isomorphism a: H2 (X1i Z) — H2 (X2, Z) pre-
serving the intersection forms such that a o G1 o a-1 = G2 in GL(H2 (X2, Z)).

*This work was supported by Grant -in-Aid for JSPS Fellows No. 20-56181.
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  As a corollary, we have the following by a similar argument in [15] (see 

[25] for a detailed argument). 

 Corollary 0.2. Let G be a finite group which is not the exceptional cases listed 
above. If G acts on a K3 surface Xi faithfylly and symplectically (i = 1, 2), 
then there exists a connected family X of K3 surfaces with an action of G 
which satisfies the following conditions: 

(1) X1, X2 are fibers of X; 

(2) the restriction of the action of G on X to the fiber Xi coincides with the 
    given one (i = 1, 2);

(3) the action of G on each fiber of X is symplectic. 

If two K3 surfaces X1 and X2 with actions of G satisfy the conclusions of 
Corollary 0.2, Xi and X2 are said to be G-deformable. 

   We recall known results on finite symplectic actions on K3 surfaces. After 
a result of Nikulin [15], Mukai [14] completely classified finite groups which 
act on K3 surfaces faithfully and symplectically by listing the eleven maximal 

groups (see Theorem 2.4). Xiao [26] gave another proof of Mukai's result by 
studying the singularities of the quotient G\X for a K3 surface X with a 
symplectic action of a finite group G. Moreover, he showed the following: 

Theorem 0.3 ([26]). Let G be a finite group. Suppose that G Q81724. 
Then, for any K3 surface X with a faithful and symplectic action of G, the 
quotient G\X has the same A-D-E-configuration of the singularities. 

   Considering his result, one may expect that the uniqueness as in Theorem 
0.1 holds for most of non-abelian finite groups as well. This paper is motivated 
by this expectation. We follow Kondo's approach [10] with which he gave 
another proof of Mukai's result. His method is to embed the coinvariant 

lattice H2 (X, Z)G = (H2 (X, Z)G)1 into a Niemeier lattice N, and to describe 
a symplectic action as an action on N. Here a Niemeier lattice isa negative 

definite even unimodular lattice of rank 24 which is not isomorphic to the 
Leech lattice. By looking this action more carefully, we prove Main Theorem. 

For some finite groups, their symplectic actions on K3 surfaces were studied 

by several authers [11, 18, 9, 17, 27, 6, 25, 7]. We use computer algebra systems 
GAP [8] and Maxima [12] for the computations of permutation groups and 
 lattices. 

   The paper proceeds as follows. In Section 1, we recall basic facts on lat-

tices, which are used through the paper. We recall results on finite symplectic 

actions on K3 surfaces in Section 2. Using these results, we can take a lat-

tice theoretic approach to study finite symplectic actions on K3 surfaces. We 

introduce the notion of "finite symplectic actions on the K3 lattice A," tak-

ing account of Nikuin's characterization of symplectic actions on K3 surfaces
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(see Definition 2.5 and Proposition 2.6). The set of finite symplectic actions 
 G C 0(A)  on A is denoted by L.  For G E £, there exist a K3 surface X, a 

symplectic action of G on X and a G-equivalent isomorphism A ̂ _' H2 (X, Z). 
Section 3 is the key of the paper. By Kondo's lemma (see Lemma 3.2), the 
coinvariant lattice AG for G E ,2 can be embedded into a Niemeier lattice N 

primitively. Since the action of G on AG is extended to that on N such that 
NG = AG, we can study G as an automorphism group of N. Applying the 

classification of Niemeier lattices, we classify the primitive embeddings of AG 

into Niemeier lattices. To prove Main Theorem, we first prove the uniqueness 

of AG and AG. In Section 4 and 6, we show the uniqueness of AG and AG 

respectively, by using the result in Section 3. Next, we show the uniqueness 

of the glueing data of AG and AG to A. In Section 5 and 7, we show that 
either 0(AG) = 0(q (AG)) or 0(AG) = 0(q (AG)) holds for any G. This im-
plies the uniqueness of the glueing data. Finally, in Section 8, we prove Main 
Theorem by using the results in the previous sections. Some applications of 
Main Theorem are given in Section 9.
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1 Basic facts on lattices

1.1 Definitions 

A lattice L = (L, ( , >) is a free 7-module L of finite rank equipped with 
an integral symmetric bilinear form ( , >. We identify a lattice L with its 
Gramian matrix ((vi, vi)) under an integral basis (vi) of L. The discriminant 
disc(L) of L is defined as the determinant of the Gramian matrix of L. If 
disc(L) 0 (resp. = ±1), a lattice L is said to be non-degenerate (resp. 
unimodular). Let t(+) (resp. t(_)) be the number of positive (resp. negative) 
eigenvalues of the Gramian matrix of L. We call (t(+), t(_) ) the signature of 
L and write 

sign L = (t(+), t(_)).(1.1) 

If (v, v) - 0 mod 2 for all v e L, a lattice L is said to be even. We denote 
by L(7) the Z-module L equipped with A times the bilinear form ( , ), i.e. 
(L, A( , ) ) . A sublattice K of L is said to be primitive if L/K is torsion-free. 
An automorphism of L is defined as a Z-automorphism of L preserving ( , ) . 
We denote by O(L) the group of automorphisms of L. For a subset S C L,
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1.1 Definitions

we write 

 O(L, S) _ {g E 0(L) g • S = S}.(1.2) 

We assume that an action of a group G on L preserves ( , ). If a group G 
acts on L, we define the invariant lattice LG and the coinvariant lattice LG 

by 

        LG = {v EL g • v = v (Vg E G)}, L = (LG)L• (1.3) 
Definition 1.1. A lattice L with an action of G is called a G-lattice if G is 

a subgroup of O(L) and is denoted as (G, L). An isomorphism of G-lattices 
is defined naturally, i.e., (G, L) "' (G', L') if there exists an isomorphism 
a:L —L'suchthat 

aoGoa-1=G'.(1.4) 

  We recall some basic properties on discriminant forms of lattices for the 

sake of reader's convenience. See [16] for details. Let L be a non-degenerate 
even lattice. The discriminant group A(L) is a finite abelian group defined 
by 

A(L) = LV /L, Lv = {v E L ® Q I (v, L) C Z}. (1.5) 
Here we extend the bilinear form ( , ) on L. to that on L ® Q linearly. We 
have 

A(L) _ Idisc(L) 1 .(1.6) 

The discriminant form q(L) of L is defined by 

q(L) : A(L) — (2/2Z, x mod L (x, x) mod 2Z, (1.7) 

which is well-defined. We write simply q(L) instead of (A(L), q(L)). For a 
prime number p, let A(L)p and q(L)p denote the p-components of A(L) and 
q(L), respectively. We have 

A(L) = ® A(L)p, q(L) = q(L)p.(1.8) 
   pp 

We can consider q(L)p as the discriminant form of L ® Z Z. (The discriminant 
group and form for a non-degenerate even lattice over Zp are similarly defined. 
Note that any lattice over 7p is even if p 2.) An automorphism of q(L) is 
defined as an automorphism of a finite abelian group A(L) preserving q(L). 
We denote the group of automorphisms of q(L) by O (q (L) ) . An automorphism 
cp E 0(L) induces an automorphism e 0 (q (L) ) . This correspondence gives 
the natural homomorphism 

O(L) —* O(q(L)).(1.9) 

We define 

O0(L) = Ker(O(L) —} O(q(L)))(1.10) 
and 

O(L) = Im(O(L) --* O(q(L))).(1.11)
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1.2 Facts

1.2 Facts 

 We use the following facts. We refer the reader to [16]. 

Lemma 1.2 ([16]). Let Li, L2 be non-degenerate even lattices. We define 

Isom(q(L1), —q(L2)) = {7 : q(L1)4q(L2)}. (1.12) 

If 7 e Isom(q(Li), —q(L2)), the lattice F.y defined by 

l,,,={xEDyELi®L2 I-y(x mod Li) =y mod L2}(1.13) 

is an even unimodular lattice which contains L1 and L2 primitively. This cor-

respondence gives a one-to-one correspondence between Isom(q(L1), —q(L2)) 
and the set of even unimodular lattices F C L1 ® L2 which contain Li and L2 
primitively. Moreover, let '' E Isom(q(L1),•—q(L2)) and (pi E O(Li). Then, 
,0i ED CO2 E 0(L1 ED L2) is extended to an isomorphism F., —4 F7 if and only if 
71 0 (7)1 0 7_i =7,2 in O(q(L2))• 

Lemma 1.3. Let F be a non-degenerate even lattice and L a non-degenerate 
primitive sublattice of F. 

(1) If g E 00(4 the action of g on L is extended to that on F whose 
restriction to (L)r is trivial. 

(2) Suppose that F is unimodular. If G is a subgroup of O(r, L) and the 
action of G on (L)r is trivial, then the induced action of G on A(L) is 

    trivial. 

(3) Suppose that F is unimodular. If a group G acts on F and FG is non-
    degenerate, then the induced action of G on A(FG) is trivial. 

  To determine the discriminant form of a lattice, it is convenient to localize 
it, i.e., consider it over Z. First we consider the case p 2. In this case, any 
lattice can be diagonalized over Zr,. 

Proposition 1.4 (cf. [4, 16, 5]). Let p be an odd prime and E E Zp a 
non-square p-adic unit. If L(p) is a non-degenerate lattice over Zp, 

L(p) ̂, ® ((pk)®nk ® (eppk) mk) ,(1.14) 
k>0 

where nk > 0 and mk E {0,1} are uniquely determined. Hence 

          q(L(p)) (q)(pk)EDflkq(P)(pk)®m/k~,(1.15) 
                        k>1
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1.2 Facts

where

q+p) (pk) = (11pk) on Z/pkZ, 
 q(P) (pk) = (Eplpk) on Z/pkZ.

(1.16) 

(1.17)

In (1.15), the nk and mk are also uniquely determined. 

Let L be a non-degenerate lattice. We can determine q(L)p as follows. 
Let Z(p) be a localization of Z by the prime ideal (p), which is considered as 
a subring of Z Z. Then L can be diagonalized over Z. . This is similar to the 

determination of the elementary divisors of integral matrices. Then we can 

write 

L Lp) (p')(1.18) 
k>0 

over Z(p), where L(kp) are lattices over Z(p) such that Lkp) = 0 or disc(Lkp) ) E 
zx/(z(p)). (The discriminant of a lattice over a ring R is defined modulo 
(R><) 2 .) The nk and mk for L ® Zp in the above proposition are determined 
by

(nk,mk) =

(0, 0)if L(kp) = 0, 

(rank L(kp), 0) if disc(Lp)) E (ZP )2/(Z(p))2, 
(rank 415') - 1, 1) otherwise.

(1.19)

Next we consider the more complicated case p = 2. 

Proposition 1.5 (cf. [4, 16, 5]). Let L(2) be a non-degenerate lattice over 
Z2. Then L(2) can be written as an orthogonal sum of the following lattices:

    0 2k)2k+1 2k 
(62k) ,2k o'2k 2k+1, (1.20)

where k > 0 and E E {1, 3, 5, 7}. Hence, if L(2) is even, q(D')) can be written 
as an orthogonal sum of the _following:

(1.21)

(1.22)

(1.23)

  In the case p = 2, the uniqueness as in Proposition 1.4 does not hold. 

Although there is a complete system of invariants of a non-degenerate lattice 

over Z2 (see [5]), we only recall the unimodular case.
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1.2 Facts

 Proposition 1.6 (cf. [5]). For a non-degenerate lattice L(2) over Z2 with 
disc(L(2)) E Z2 , a quadruple (r, d, t, e) defined as follows is a complete system 
of invariants of L(2) . If

            O 1 ®'2 2 1)                              ®m 

L(2) 2-j- ®(ei) ® 1 0  l 2) 

the invariants r, d, t, e are defined by 

r = rank L(2), 

            f+i if disc(L(2)) E ±(4)2/(4)2, d= 
—1 -otherwise, 

t = E ei mod 8Z2 E Z2/8Z2) 

I if L(2) is odd, 
e=                    II 

otherwise.

For example, we can directly check that

(1)e3 - (1 2) (3)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

over Z2. We actually have (r, d, t, e) = (3, +1, 3, I) for both lattices. Using 
 Proposition 1.6, we can determine q(L)2 for a non-degenerate even lattice L 

 similarly to the case p 2. We can find an orthogonal decomposition 

               L ,'co,Lk(2)(1.30) 
k>o

over Z2, where 42) is of the form (1.24). Then we can write q(L)2 as the 
corresponding orthogonal sum of (1.21)—(1.23). For relations between (1.21)— 

(1.23), see [16]. 
  For a finite abelian group A, let 1(A) denote the minimum number of 

generators of A. Let L be a non-degenerate even lattice. Since rank /iv = 
rankL (see (1.5)), we have 

l(A(L)) < rank L.(1.31) 

The follwoing theorem is a reformulation of Eichler's result in a view-point of 

discriminant forms.

Theorem 1.7 ([16]). Let L be an indefinite even lattice of rank > 3. Suppose 
that the following conditins are satisfied:
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 (1) For each p 2, either rank L > l(A(L)p) + 2, or nk + mk > 2 for some 
k in the orthogonal decomposition (1.15), i.e., 

q(L)p~qp ® q(p) (pk) ® qP) (pk) (1.32) 

for some qp and k>0. 

(2) Either rank L > l (A(L) p) + 2, or 

q(L)2 _ q2 ® q2 (1.33) 

for some q2 and q where q'2 is one of the following: 

u(2) (2'), k > 0,(1.34) 

  v(2)(2'), k > 0,(1.35) 

     (IT(2) ED q122) ®(1(3)(2'),ei E71,k,k'> 0,k—< 1. (1.36) 

Then any non-degenerate even lattice L' such that sign L' = sign L and q(L') ^_' 
q(L) is isomorphic to L. 

  We use the following facts in Section 7. 

Theorem 1.8 ([16]). Let L be an indefinite even lattice of rank > 3. If the 
following conditins are satisfied, O(L) = O(q(L)). 

(1) For each p 2, rank > l(A(L)p) + 2. 

(2) Either rank L > l (A(L) p) + 2, or 

              q(L)2Nq2 ® u(2) (2) or q2 ED v(2)(2) (1.37) 

for some q2. 

Remark 1.9. The conditions of Theorem 1.8 are stronger than those of 
Theorem 1.7. 

Theorem 1.10 ([16]). If L(p) is a non-degenerate even lattice over 7 p, we 
have O(L(P)) = O(q(LO)). 

2 Finite symplectic actions on the K3 lattice A 

A compact complex surface X is called a K3 surface if it is simply connected 
and has a nowhere vanishing holomorphic 2-form wx. 

Definition 2.1. For a K3 surface X, an automorphism g of X is said to be 
symplectic if g* cox = wx . 
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  We are concerned with faithful and symplectic actions of finite groups on 

K3 surfaces. 

 Notation 2.2. We identify abstract groups (notation: U, ...) which are iso-
morphic to each other. For a group G acting on an object, the abstract group 
(forgetting its action) is denoted by [G]. 

Definition 2.3. We denote by 03Z3 P the set of finite abstract groups U! 1 
which can be realized as faithful and symplectic actions of groups on K3 

surfaces. 

Mukai determined 077 p completely by listing the eleven maximal groups 
in 03Z3P. 

Theorem 2.4 ([14]). A finite abstract group C! 1 is an element in UK3 P 
if and only if CU is a subgroup of the following eleven groups: 

T48, N72, M9, 65, L2 (7), H102, T192, 21-4,4, 216, F384, M20. 

There are exactly 79 groups in 03K3 P. See Table 10.2 for all elements in 
115 K3 P • We use Xiao's notation [26]. 

For a K3 surface X, the second integral cohomology group H2 (X, Z) with 
its intersection form is isomorphic to the K3 lattice A defined by 

              ®)3E8(_1)2,A=01(2.1) 
which is the unique even unimodular lattice of signature (3, 19) up to iso-
morphism (see Theorem 1.7). Here E8 is the root lattice of type E8 . The 
Neron—Severi group NS (X) of X is considered as a sublattice of H2 (X, Z) . If 
a group G acts on X, the action of G induces a left action on H2 (X, Z) by 

g • v = (g-1)*v, g e G, v E 112(X, Z). (2.2) 

Note that if the action of G is faithful, so is the induced action of G on 

H2 (X, Z) by the grobal Torelli theorem (see [2]). Hence, if we take an iso-
morphism a: H2 (X, Z) A, the action of G on X induces a subgroup 
o o G o a-1 c 0(A), which is isomorphic to G as an abstract group. 

  We define the notion of "finite symplectic actions on the K3 lattice." 

Definition 2.5. A finite subgroup G 1 of 0(A) is called a finite symplectic 
action on the K3 lattice A, if the following conditions are satisfied: 

(1) AG is negative definite; 

(2) (v,v) —2 for all v E AG.
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 We denote the set of finite symplectic actions on the K3 lattices A by L.  Note 

that the finiteness of G follows from the condition (1). 

  Definition 2.5 is justified due to the following: 

Proposition 2.6 ([15]). If a finite group G acts on a K3 surface X faithfully 
and symplectically, then H2(X,Z)G C NS(X) and the induced subgroup of 
0(A) is an element in L. Conversely, any element in £ is induced by a 
symplectic action of a finite group on a K3 surface. 

A K3 surface which admits a symplectic action of a finite group is char-
acterized by coinvariant lattices AG of G EL. 

Proposition 2.7 ([15]). Let 5 E U K3 P. A K3 surface X admits a symplec-
tic action of 1�3 if and only if there exists a primitive embedding AG y NS(X) 
for some G E L such that [G] = CU . 

  Now we consider extensions of symplectic actions. 

Proposition 2.8. Suppose that a finite group G acts on a K3 surface X 
faithfully and symplectically. Then the action of G on X is extended to a 
faithful and symplectic action of G' := Oo(H2(X,Z)G). 

Proof (cf. [15]). By Lemma 1.3(1), the action of G on H2 (X, Z) is extended 
to that of G' such that 

H2 (X, Z)G = H2 (X, Z)G' .(2.3) 

By the definition of a symplectic action, we have cvx E H2 (X, C)G. Since G 
is a finite group, there exists a G-invariant Kahler (1, 1)-form E H2 (X, R)G. 
By (2.3), the action of G' also fixes cvX and IC. By the grobal Torelli theorem 
for K3 surfaces,-the action of G' on H2 (X, Z) is induced by that on X. Since 
the action of G' fixes cvX, the action of G' on X is symplectic. ^ 

Definition 2.9. For G E £, we define Clos(G) by

Clos(G) = Oo (AG).(2.4) 

By Lemma 1.3(1), the action of G on A is extended to that of Clos(G) 
such that AG = AClos(G), and Clos(G) is considered as an element in L (see 
Definition 2.5). We define the subset Cclos of L by 

£cios = {G E L I Clos(G) = G}. (2.5) 

By the following proposition, rank AG depends only on the structure of G as 

an abstract group.
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Proposition 2.10 ([15, 14]). Let g be an element in 0(A) such that the 
 group (g) generated by g is an element in L. Then ord(g) 5_  8 and Tr(g; A) = 

x(g) — 2, where 

x(g) = 24,8,6,4,4,2,3,2 if ord(g) = 1, 2, 3, 4, 5, 6, 7, 8. (2.6) 

Hence, for G E L, 

             rank AG = c(G) := 24 —1E x(g).(2.7) 
IGI gEG 

In particular, c(G) = c(Clos(G)).

3 Embeddings of AG into Niemeier lattices 

In this paper, a Niemeier lattice is a negative definite even unimodular lattice 
of rank 24 which is not isomorphic to the negative Leech lattice. Here the 
negative Leech lattice is the unique negative definite even unimodular lattice 
of rank 24 which has no vector v such that (v, v) = —2 (cf. [5]). In this section, 
We study primitive embeddings of AG into Niemeier lattices. 

Definition 3.1. Let N denote the set of isomorphism classes of G-lattices 

(G, N) which satisfy the following conditions: 

(1) G 1 and N is a Niemeier lattice; 

(2) there exists a vector v E NG such that (v, v) = —2; 

(3) there exists no vector v E NG such that (v, v) = —2; 

(4) there exists a primitive embedding NG y A. 

Lemma 3.2 ([10]). For any G e L, (G, AG) ^_ (G', NG,) for some (G', N) E 
N. Conversely, if (G', N) E N, then there exists an element G e L such that 
(G, AG)~'(G',NG')• 

Remark 3.3. In the above lemma, we write (G, AG) instead of (GI AG, AG) 

(cf. Definition 1.1). We use the same notation in what follows. 

By Lemma 3.2, the study of (G, AG) for G E L is reduced to that of N. 
In the following subsections, we present how to make a complete list of N. 
Some consequences from the list are given in Subsection 3.4.

11 December 6, 2010



3.1 Some facts on Niemeier lattices

3.1 Some facts on Niemeier lattices

The following theorem is standard. 

 Theorem  3.4 (cf. [5]).  There exist exactly 23 isomprphism classes of Niemeier 
lattices. The isomorphism class of a Niemeier lattice N is determined by the 
root sublattice of N, whose type is given in Table 10.1. Here the root sublattice 
of N is the sublattice generated by vectors v E N such that (v, v) = —2. 

Let N be a Niemeier lattice. A vector d E N is called a root if (d, d) = 
—2. Let A denote the set of roots of N. A Weyl chamber C is a connected 
component of N ® IR — UdeOd1. `The set of positive roots A+ corresponding 
to C is defined by 

A+ = {d E A I (d, C) C R>0}.(3.1) 

We have A = A+ Li —L ±. The set of simple roots R(N, A+) corresponding to 
A+ is the set of positive roots d E A+ such that there exists no decomposition 

d = d1 + d2 with di E It It is known that R(N, 0+) becomes a Dynkin dia-
gram of rank 24. The automorphism group of the Dynkin diagram R(N, 0+) 
is denoted by Aut(R(N, A+)). Let W(N) denote the subgroup of 0(N) which 
is generated by reflections of d E A. The action of W(N) on the set of Weyl 
chambers is free and transitive. The group 0(N, A+) (see (1.2)) is considered 
as a subgroup of Aut(R(N, A+)). We have 0(N) = W x 0(N, Al.

3.2 Method for making the list of Al 

We use the above result to construct a complete list of Al. For the proof of 
the following lemma, see [10]. 

Lemma 3.5 ([10]). Let N be a Niemeier lattice and G a subgroup of 0(N). 
                                                      Then the condition (3) in Definition 3.1 is satisfied if and only if there exists 

a G-invariant set of positive roots. 

Let N1.... , N23 be all Niemeier lattices and At a set of positive roots of 
Let G c 0 (Ni) be a subgroup satisfying the condition (3) in Definition 

3.1. By the above lemma, we may assume that G preserves O2 by replacing 
G by'yG'y' for some y E W (Ni) if necessary. Hence we may only consider 
subgroups of 0(Ni, 0?). Using GAP, we can make a complete list of sub-
groups Gil, •••, Giiz of 0(Ni, &) such that [Gij] E UK3 p up to conjugacyl. 
Since 0(Ni, A ) is realized as a subgroup of Aut(R(Ni, A- )), so is C. To 
decide whether (Gii, Ni) E N. or not, we should check conditions (2)—(4) in 
Definition 3.1 for (Gii , Ni ) .

1Note that conjugacy in O(Ni, At) is equivalent to conjugacy in O(Ni), which is a 
property of semi-direct product groups.
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3.3 Example

 The condition (2) can be checked directly. For example, if Ni is of type 
A®24, the condition (2) is equivalent to the existence of a G2j-fixed element 
in R(Ni, A, ). By Lemma 3.5, the condition (3) is already satisfied. 

  To confirm the condition (4), it is sufficient to show that there exists an 
even lattice L such that

sign L = (3, 19 — c(Gii)), q(L) _" —q(NGi;) (3.2) 

by Lemma 1.2 and Proposition 2.10. We can compute the Gramian matrix of 

NGij by using the orbit decomposition of R(Ni, 02 ) which is obtained from 
the list of (Gij , N2 ) . From the Gramian matrix of NGij , we can determine 
A(NGii) and q(NGij) (cf. Section 1). Since q(NGij) ̂ ' —q(NGii ) by Lemma 
1.2, we obtain the list of q(NGij). From'the list, we have the following: 

Lemma 3.6. For (Gii, Ni) satisfying the condition (2) in Definition 3.1, the 
condition (4) is equivalent to the inequality 

l (A(NGii)) < 22 — c(Gii) = rank NGij — 2. (3.3) 

Here l (A) denotes the minimum number of generators of a finite abelian group 
A. 

Proof. For each case satisfying the inequality (3.3), we can find a lattice L 
satisfying (3.2). See Tables 10.2 and 10.3 for q(NGij ) and L in each case 
respectively. Conversely, the existence of L implies that 

l (A(NGii)) = l (A(NGi j)) = l (A(L)) < rank L = 22 — c(Gij) (3.4) 

by Lemma 1.2 and (1.31).^ 

By the above argument, the set which consists of (Gij, Ni) satisfying the 
condition (2) and the inequality (3.3) becomes a complete list of Al.

3.3 Example 

We consider the case of the cyclic group C8 of order 8 as an example. We 
make the list of (G, N) E Al with [G] = C8. Since c(C8) = 18, we have 
rank NG = 18 and rank NG = 6. Using GAP, we can make a complete list 

of subgroups G C O(N, A+) such that [G] = C8 up to conjugacy for each 
Niemeier lattice N. The result is as follows.

case (I) (II) (III) (IV) (V) (VI)
 root  type  of  N E®4 A®4 ED D4 A®s

3

AT12

2

A®12

2

A®24

1

number of stable

components of R(N, A+)
0 1 0 2 0 2

(G, N) e V? no yes no yes no yes
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3.3 Example

If the condition (2) in Definition 3.1 holds, then at least one component of the 
 Dynkin diagram R(N, A+) is stable under the action of G. In the case (I), 

the action of G as a permutation group of the components E6 of R(N, A+) is 
transitive. Therefore, we have (G, N) ¢ JN in the case (I). Similarly, we have 

(G, N) ¢ Al in the cases (III) and (V). In fact, we have (G, N) e Al in the 
cases, (II), (IV) and (VI), as we will see below. Let g be a generator of G. 

The case (II). There exists a numbering of R(N, A+) = {vi, ... , v24} as 
in Figure 1 such that 

g • vi = va(i),(3.5) 

where 

o- = (1,6,11,16,5,1O,15,20)(2,7,12,17,4,9,14,19)(3,8,13,18)(23,24). 
                                            (3.6) 

Hence NG ® Q is generated by 

33 

w1 = E(v1+5i + v5-1-5i), w2 = E(v2-+-5i + v4+5i), 
i=0i=0 (3.7) 

3 W3 = E V3+5i, W4 = V21, W5 = V22, W6 = V23 + V24 
i=0 

over Q. From the explicit description of G C 0(N, Al, we find that NG is 
generated by the above vectors and (wl+w3)/2 over Z. Therefore, 

w1, w2, (w1 + w3)/2, w4, w5, w6(3.8) 

form a basis of NG over Z. The Gramian matrix of NG under the basis (3.8) 
is

(3.9)

(3.10) 

(3.11)
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3.3 Example

 Figure 1: A®4 ®D4 

The case (IV). Similarly, there exists a numbering of R(N, A+) as in Figure 
2 such that g • vi = vo(i), where 

a = (3, 4)(5, 7, 6, 8)(9, 11, 13, 15,17, 19, 21, 23)(10, 12,14, 16, 18, 20, 22, 24). 
                                             (3.13) 

Moreover, NG ® Q is generated by 

s W1 = V1, W2 = V2, W3 = V3 + V4, W4 = E vi, 
                            i=5(3 .14) 

     77 

                  W5 = E V9+2i, W6 = E V10+2i 
          i=0 i=0 

over Q, and NG is generated by 

               w1, w2, w3, w4,w5,1(w1 — w2 + w5 — w6) (3.15) 

3 over Z. The Gramian matrix of NG under the basis (3.15) is

(3.16)

From (3.16), we can check that q(NG) is isomorphic to (3.12). 
The case (VI). There exists a numbering of R(N, A+) as in Figure 3 such 

that g • vi = VU(i), where 

a =. (3, 4)(5, 6, 7, 8)(9,10, 11, 12,13, 14, 15, 16) (17, 18,19, 20, 21, 22, 23, 24). 
                                            (3.17)
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3.3 Example

 Figure 2: AT'2 

Moreover, NG 0 Q is generated by 

48 

w1 = V1, W2 = V2, W3 = E vi7 W4 = E Vi~ 
i=3 i=5 

16 24 

w5= vi, W6= vi 

                i=9 i=17 

over Q, and NG is generated by 

    w1, W2, w3,1(w1 + w2 + w3 + w4),1(w4 + w5),l(4 + w6) 
  222w 

over Z. The Gramian matrix of NG under the basis (3.19) is

(3.18)

(3.19)

(3.20)

From (3.20), we can check that q(NG) is isomorphic to (3.12).

Figure 3: AT24 

The type of the root sublattice of NG, i.e. the sublattice generated by 

vectors v E NG such that (v, v) = —2, in each case is as follows. 

case (II) (IV) (VI)(3 .21) 
root type A3 A1 ED A2 AT2 
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case  (II) (IV) (VI) 
root type A3 A1 ®A2 A®2

1



 3.4 Consequences from the list of Ai

Hence the condition (2) in Definition 3.1 is satisfied. The condition (3) is 
satisfied by Lemma 3.5. By the above argument, we have 

          q(NG) ^_' (-1/2) ED (-1/4) ®(1°/801/8(3.22) 
in each case. Let L be a lattice defined by 

L = (2) ® (4) ® g 8 . (3.23) 

Then we have sign L = (3, 1) and q(L) ̂ _' —q(NG). By Lemma 1.2, there exists 
a primitive embedding NG -* A such that (NG)~ ̂ _' L. Thus the condition 
(4) is satisfied. Therefore, we have (G, N) E N in the cases (II), (IV) and 
(VI). 

3.4 Consequences from the list of A[ 

Let Q denote the set defined by 

Q = {(5, q) I 3G E L such that U = [G], q ̂ _' q(AG)}. (3.24) 

By Lemma 3.2, we have 

Q = {(0, q) 3(G, N) E N such that U = [G], q ^_' q(NG)}. (3.25) 

Let denote the natural equivalence relation on Q, i.e., (CU , q) ~ (C5', q') when 
                                                     = 0' and q "' q'. By (3.25) and the list of q((Ni)Gii) for (Gii, Ni) E JU, we 

have the following: 

Proposition 3.7. For C5 E OZ3 P, we have 

                              1 if Q81 T24 
          ({q('5, q) E Q}/isom) =22 f0 — Qs, T24•(3.26) 

Remark 3.8. From the Xiao's list [26], we have 00K3 P = 79. By the above 
proposition, 0 (Q/ = 81. In Table 10.2, we list a complete representative 

qn ) } of Q/ N. Our numbering coincides with that in [26]. 

  By (3.25), we have the natural map 

M -* Q; (G, N) ([G], q(N))• (3.27) 

In Table 10.6, the type of the root sublattice of NG for each (G, N) E N. is 
given. From the table, we have the following:
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Proposition 3.9. Let Q° denote the subset of Q which is defined by 

 Q° = {(Q3  q) E Q 0581. (3.28) 

There exists a section a : 2° —* 7r-1(Q°) of 7 with the following properties. 
Here we denote a(2°)  by Al'. 

(1) Let (G, N) E Al and (G', N') E Al'. If 7r(G, N) _ 7r(G', N') and NG ̂ _' 
(N')G', then (G, N) ^' (G', N'). 

(2) Let (G, N) E Al'. If [G] 53, then N is of type A®24 
Proof. For each (0, q) E Q°, we can chose a('5, q) E Al case by case. As an 
example, we consider the case of C8 = 0314 (see Subsection 3.3). By the table 
(3.21), the root types of NG for (G, N) E Al with [G] = C8 are different from 
each other. Therefore, NG are not isomorphic to each other. Hence we can 

chose (G, N) of the case (VI), in which N is of type A®24, as o-(014, q14)• 
Similarly, for (G, N) e Al with 7r(G, N) = (On, qn), the isomorphism classes 
of NG can be distinguished by looking the root types except for the cases 

n = 32, 41, 56. For the cases n = 32, 41, 56, we can distinguish them by looking 

the root types and the numbers of vectors v E NG such that (v, v) = —4. As 
a consequence, we can choose (G, N) enclosed by boxes in Table 10.6. The 
choice of a is not unique.^

4 Uniqueness of coinvariant lattices AG

Let S denote the set of G-lattices which is defined by 

S = {(G, S) I 3G' E ,C such that (G, 8) ^' (G', AG,)}. (4.1) 

Note that G C 00(S) by Lemma 1.3(3). In this section, we apply the result 
in the previous section to prove the following: 

Theorem 4.1. The natural map cp : S/isom Q/ — is bijective. 

Proof. The surjectivity of co is trivial. We shall show the injectivity. Let 

(0, q) E Q. Suppose that (G, 8) E 5, [G] = U and q(S) ^' q. We show that 
(G, S) is uniquely determined up to isomorphism. 

(1) The case 0358. By Proposition 3.9, there exists an element 
(F, N) e Al' such that [F] = CU and q(Nr) q. We show that (G, S) 
(F, Nr). By Lemma 1.2, q(S) ^_' q q(Nr) ^_' —q(Nr). Again by Lemma 
1.2, there exists a primitive embedding S — N' of S into a Niemeier lattice 
N' such that (5))., NF. By Lemma 1.3, the action of G on S is extended 
to that on N' such that (N')G = S and (N')G"_'N". Thus (G, N') E Al 
(see Definition 3.1). By Proposition 3.9, we have (G, N') ^' (F, N). Hence 
(G, S) = (G, (N')G)  (F, NO).
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 (2) The case U = 058.  From Table 10.4, we find that 0343 C 058 and 
c(!43) = c(0358). Hence there exists a subgroup G'43 of G such that [G1143] = 
543• Since c(1343) = c(058), we have (C43, S) e S. Let G43 E L be as in 

Lemma 8.8. By (1) and Proposition 3.7, (G', S') E S such that [C'] = 043 
is unique up to isomorphism. Therefore, we have (G43, S) L (C43, AG43)• 
By the condition (2) in Lemma 8.8, there exists a unique subgroup G58 of 
00 (AG48) such that [G58] = 058 up to conjugacy in O (AG48) . Hence (G, S) ^_' 
(G58, AG43 ) .^ 

Definition 4.2. Let (0, q) E Q. By Theorem 4.1, there exists a unique 
element (G, 8) E S such that [G] = 3 and q(S) ^' q up to isomorphism. 
The lattice S determined by this conditions is denoted by S(5, q). Since 
G C O0(S), CU is a subgroup of [O0(S(0, q))]. 

By the definition of S(0, q), we have 

AG S([% q(AG))(4.2) 

for G E L. 

Corollary 4.3. Let (O, q), (115', q') E Q. If CU C 3', q '" q' and c(5) = G(CU'), 
then S(O3, q) "_' S (IV , q'). 

Proof. Let G' E L. such that [G'] = 3' and q(AG,)'~'q'. Then AG/'_"S(0' , q'). 
Let G be the subgroup of G' which corresponds to the subgroup 5 of C3'. Since 

c(G) = c(G'), we have S(Ci, q) ^' AG = AG/ _ S(0', q'). ^ 

Remark 4.4. In Table 10.4, we give the trees of 

Ts = {en I S(On, qn) ̂ _' S}(4.3) 

for Ts with V.'s > 2. From Tables 10.2 and 10.4, we find that there exist 
exactly 40 isomorphism classes of lattices S(CUn, qn) (or AG for G E L). Also, 
we can check that the natural map 

{S (CU, q) I (0, q) E Q}/isom -* {q ( 5, q) E Q, q '" q(S(U, q))}/isom (4.4) 

is bijective. 

Definition 4.5. Let (0, q) E Q. We define Clos(0, q) by 

              Clos(11, q) = ([Oo(S(0, q))], q).(4.5) 

Note that CU is a subgroup of Po (S(0, q))] (see Definition 4.2).
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 For ((, q) E Q, there exists an element G E ,C such that ([G], q(AG)) ~ 

(C3, q). Since S([G], q(AG)) ^_' AG, we have 

Clos(U, q) = ([Oo(AG)], q) = ([Clos(G)], q) (4.6) 

(see Definition 2.9). In particular, we have Clos(115, q) E Q. Let Qoios denote 
the subset of Q which is defined by

2clos = {(0,q) E Q I Clos(0, q) = (5,q)}.(4.7) 

For G e r, we have G E £cios if and only if ([G], q (AG ) ) E Qclos • 

Corollary 4.6. The map 

2olos/ {AG G E £}/isom(4.8) 

which is induced by the correspondence (0, q) H S(0, q) is bijective. 

Proof. The inverse map of (4.8) is the map induced by the correspondence 
S -' ([00(S)], q(S)).E 

Corollary 4.7. Let (5, q) E Q. Then we have Clos(03, q) = (05', q), where' ' 
is the unique maximal element in 

{CU" E 077  ('5", q") E Q,'5 c U5", q"~ q", c(0) = c (el )}. (4.9) 

Moreover, we have the following. 

(1) If U5 E {Q8, T24}, i.e., (115,q) (On, qn) for n E {12, 13, 37, 38}, then 
we have the follwoing table.

 n  m ~=LIm

12 Q8 12 Q8
13 Q8 40 Q8 * Q8
37 T24 77 T192

38 T24 54 T48

(4.7)

(4.8)

 Here m is determined by (3m, q?2) Clos(0, q). 

(2) If U {Q8, T24}, then Q3' is the unique maximal element in 

{C " E (UK3 p I C5 C Y', c(CU) = c(U")}. (4.10) 

Proof. For any element 6" in (4.9), we have S(0, q) S(0" ,  q") by Corollary 
4.3. Hence 0" C C~ = [O0(S(0, q))]. Therefore, the former part of the 
corollary follows. We can check the latter part by Proposition 3.7 and Table 

10.4.^ 
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 5 Property O(AG) = O(q(AC)) 

This section is devoted to prove the following theorem, which gives a sufficient 

condition for G E L such that 0(AG) = 0 (q (AG ) ) . 

Theorem 5.1. Let G e L. with c(G) = rank AG > 17 (see Proposition 2.10). 
Then 0(AG) = 0(q(AG)) if and only if [Clos(G)] E {548, 051}. In particular, 
if c(G) = rank AG = 19, then 0(AG) = 0(q(AG))• 

Since c(34s) = c(051) = 18 by Table 10.2, the latter part of the theorem 
follows from the former part.

5.1 Criterion of 0(L) = 0(q(L)) 

We prepare for a criterion of the property 0(L) = 0(q(L)). 

Lemma 5.2. Let H be a group and K1, K2 subgroups of H. If K1 C K2 and 
#K1\H/K2 = 1, then K2 = H. 

Proof. By the second assumption, any element in H is of the form k1k2 with 
ki E Ki. Hence K2 = , H by the first assumption.^ 

Proposition 5.3. Let L1 be a non-degenerate even lattice. Then 0(L1) = 
0(q(L1)) if and only if there exists a non-degenerate even lattice L2 satisfying 
the following conditions. 

(1) There exists an essentially unique even unimodular lattice F C Li ED L2 
which contains Li primitively. Here the uniqueness of F means that for 
another F', there exist isomorphisms (pi e 0(Li) for i = 1, 2 such that 
(Pi ® cp2 induces an isomorphism F —* F'. 

(2) The restriction map 0(F, L2) —÷ 0(L2) is surjective (see (1.2)). 

Proof. Assume that there exists L2 satisfying the conditions (1) and (2). Let 
7 E Isom(q(Li), —q(L2)) be the isomorphism corresponding to F (see Lamma 
1.2). The condition (1) implies that 

0(L2)\ Isom(q(Li), —q(L2))/0(Li)  7-1o0(L2)o7\ 0(q(Li))/0(Li) (5.1) 

is a one point set by Lemma 1.2. On the other hand, the condition (2) implies 
that for any cp2 E 0(L2), there exists an automorphism (pi  E 0(L1) such that 

 o oi o 7-1 =Tp2 by Lemma 1.2. Hence 7-1 o O(L2)o7 C 0(L1). By Lemma 
5.2,we have 0(L1)=O(q(L1)). 

Conversely, assume that 0(L1) = O (q (Li ) ) . Then any non-degenerate 
even lattice L2 with q(L2) '_" —q(Li) satisfies the conditions (1) and (2) by 
Lemma 1.2. For example, we can take L1(-1) as L2.^
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5.2 Proof of Theorem 5.1

5.2 Proof of Theorem 5.1 

 Now we apply Proposition 5.3 to prove Theorem 5.1. Let Co  E L. We may 

assume that Co E .Cclos. By Lemma 3.2, AG° ^_' NG for some (G, N) E Al' 
such that [Go] = [G]. To prove Theorem 5.1, it is sufficient to show that 
the conditions (1) and (2) in Proposition 5.3 are satisfied for L1 = NG and 
L2=NG. 

We check that the condition (1) is satisfied as follows. Let N' C (NG ) l ® 

(NG)v be a Niemeier lattce which contains NG and NG primitively. By 
Lemma 1.3, the action of G on NG is extended to that on N' such that 

(N')G = NG. We have (G, N') E Al by Definition 3.1. By Proposition 3.9, 
(G, N) ^_' (G, N'). The uniqueness of N is shown. 

  Before showing the condition (2), we prepare for a couple of lemmas. 

Lemma 5.4. Let I' be an even unimodular lattice and L1 a primitive non-

degenerate sublattice of F. Then the kernel of the restriction map 71 : 0(1', (L1)r) -~ 
0((L1 )r ) coincides with 00(L1), which is considerd as a subgroup of 0(F, (L1)r ). 

Proof. By Lemma 1.3(1), we have 00(L1) C Ker(F). The converse follows 
from Lemma 1.3(2).^ 

Let A+ be a set of positive roots of N which is stable under the action of 

G. Since N is of type A®24, 0(N, A+) ^' M24 and the Weyl group W of N 
is isomorphic to C2 4 

Lemma 5.5. In the above setting, we have a semi-direct product 

0(N, NG) = C2 >a NM24 (G) c 0(N) = W X M24, (5.2) 

where n = rank NG = 24 — c(G) and NM24 (G) is the normalizer subgroup of 
G in M24. 

Proof. Set {vi,... , v24} = R(N, A+) and W' = 0(N, NG) f1 W. The action 
of G decomposes R(N, A+) into n orbits 01, ... , O,-. The invariant lattice 
NG is generated by EvEO;v over Q. Let w E W. Then w is of the form 

24 

w = f T (vi)ei, ei E {0, 1},(5.3) 
i=1 

where T(v) is the reflection of v. Since 

          2424 

            w aivi _ E(-1)eiaivi,(5.4) 
i=1 i=1 

W' is generated byUVEO ~T(v)and W'^' C. . By Lemma 5.4, we have 
G a 0(N, NG). Hence 0(N, NG)/W' C NM24 (G). For g E NM24 (G), we

22 December 6, 2010



 have gG • vi = Gg • vi.  Therefore, for any j,  g Oi  = Of  for  some j', and 
NM24 (G) C 0(N, NC). The assertion follows from this. ^ 

  Now we check the condition (2) of Proposition 5.3. By the above lemma, 
we can determine the order of H from the order of NM24 (G). We can compute 
the order of NM24 (C) by using GAP. On the other hand, we can also determine 
the order of O (NG) as follows: Let B = (bii) E Mn (Z) be the Gramian 
matrix of NG. Then O(NG) is identified with the matrix group M consisting 
of P E Mn (Z) such that tPBP = B. Let S denote the set consisting of 
column vectors v E Zn such that tvBv = bii for some i. Then any element 

P E M is of the form (vi • • • vn) with vi E S. Since NG is negative definite, 
there exists a positive number A such that —M — A A. 1, is positive definite. 
For any v = (vi) E S, we can see that < (max{ (bii I }/A)1/2 for all j. 
Thus we can enumerate all elements in S and M in finite steps. Practically, 

we should take M with smaller Ail (cf. the reduction theory of quadratic 
forms). Also, we should take larger A. For example, we start with A = 1. If 
—M-1 , is not positive definite, then we try A = 99/100, 98/100, • • • . Finally, 
we get A such that —M — A A. ln is positive definite. For our NG, whose rank 

is < 24 — 17 = 7 by the assumption of the theorem, we can determine the 

order of O(NC) in practical time by this method. The author used Maxima 
for this computation. The result is the following: 

Proposition 5.6. For (G, N) e Al such that G = 00(N0), c(G) > 17, 
[G] 048, 351 and N is of type A®24, we have 10(N, NG)I /I GI = I O(NG)I • 

For example, we consider the case 080, in which 03 = F384. There exists 
exactly one element (G, N) E Al such that [G] = F384. The Niemeier lattice 
N is of type A®24. We have I NM24 (G)/GI = 2 and O(NG) = 64. Since 
.c(G)= 19, we have O(N,NG)I/GI= O(NG)I=64byLemma5.5. 

We shall finish the proof of Theorem 5.1. Since G= Oo(NG), the restric-
tion map O(N, NG) —4 O(NG) induces an injective map O(N, NG)/G 
O (NG ) . By the above proposition, this map is actually bijective, i.e., the 
restiction map O(N, NG) —j O(NG) is surjective, and the condition (2) is 
satisfied. Now we have checked the conditions (1) and (2), and it follows that 
O(NG) = O(qNG)•

6 Uniqueness of invariant lattices AG 

This section is devoted to prove the following:

Proposition 6.1. Set E = {65, L2(7), 2t6 }. For (0,q) E 2 (see (3.24)), we 
have.

(6.1)
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The Gramian matrices of AG are given in Table 10.3. 

 Proof. Let G E L. such that [G] = CU and q(AG) ^' q. By Lemma 1.2, q(AG) ^_' 
—q(AG) —q. 

First we consider the case rank AG > 3. Since sign A = (3, 19) and AG is 
negative definite, AG is indefinite in this case. From Table 10.3, we can check 
that the conditions (1) and (2) in Theorem 1.7 for AG are satisfied. Hence 
the assertion follows from Theorem 1.7. We can directly find the Gramian 
matrices of AG with the given signature and discriminant form for each case. 

  Next we consider the case rank AG = 3. In this case, AG is positive definite. 
From the table of definite ternary forms [20], we can check that there exists a 
unique positive definite even lattice K of rank 3 such that q(K) ^' —q up to 
isomorphism, except for the cases 0 = 65, L2 (7), Qt6. If C5 = 65, L2 (7), 2t6, 
there exist exactly two positive definite even lattices K1, K2 of rank 3 such 

that q(KZ) —q up to isomorphism. For each i = 1, 2, there exists a primitive 
embedding AG — A such that (AG)-Al- ^_' K2 by Lemma 1.2. By Lemma 1.3, the 
action of G on AG is extended to that on A such that AG ^' K2. This action 

is an element in L by Definition 2.5. Therefore, the assertion follows. ^

7 Property O(AG) = O(q(AG)) 

 This section is devoted to prove the following: 

 Theorem 7.1. Let G E L. If rank AG > 4, or equivalently, c(G) < 18 (see 
Proposition 2.10), then O(AG) = O(q(AG)). 

We may assume that G E ,Cclos by replacing G by Clos(G) if necessary. 
 Then AG^'S(°3n) qn) for some (On, qn) *e 2,10s (see Section 4). We can check 

 that AG satisfies the conditions (1) and (2) in Theorem 1.8 from Table 10.3, 
 except for the following nine cases: 

n = 26, 30, 32, 33, 40, 46, 48, 56, 61. (7.1) 

Hence we have 0(AG) = O (q (AG ) ) except for these nine cases. 
For example, in the case n = 65, we find that 

                AG.^,4 2)ED (4) ED (-8),(7.2) 
                     2 4 

         q(AG) ~ —q65-L'-2v(2)(2) ® qi2) (4) 3 q72) (8) ED q+3) (3) (7.3) 
 from Table 10.3. Since 

rank AG=4>l(A(AG)3)+2=3,(7.4) 

the condition (1) is satisfied. On the other hand, since v(2)(2) appears in the 
 orthogonal decomposition (7.3) of q(AG), the condition (2) is satisfied.
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7.1 Preparation for the cases (7.1)

 7.1 Preparation for the cases (7.1) 

 Before studying the cases (7.1), we recall some properties of the spinor norm 

 (see e.g. [4]).  Let L be a non-degenerate lattice. For any cp E 0(L  ® Q), cp is 
 written as a composition of reflections: 

cp = flT(v),  vi E L ®Q, (vi, vi) 0. (7.5) 
i=1 

Here T(v) E 0(L ® Q) is the reflection of v, which is defined by 

                             2(v,w)                  T(
v)•w=w— (

v,v) v.(7.6) 

The spinor norm 9((p) of co is defined by 

r 

            8((p) = r(v2, v2) mod (Qx )2 E Qx /(Qx )2, (7.7) 
i=1 

 which is independent of the choice of the expression (7.5). We define a map 
f and a subgroup 0'(L) C 0(L) by 

f = det x0 : O(L) —f {±1} x Qx/(Qx)2(7.8) 
and O'(L) = Ker(f). Note that if L = L1 ® L2, then f (O(Li)) C f (O(L)). 
We can define the spinor norm 9p ( cpp) E Q /0:2'02  of cop E 0(L 0 Q ) in a 

  similar way. Moreover, we define 

fp = det xOp : 0(Lp) -* {+1} x Q/(Q)2 (7.9) 

and O'(Lp) = Ker(fp), where Lp = L 0 Z. 
' To deal with the cases (7.1), we use the following proposition, which is a 

consequence of Strong Approximation Theorem of quadratic forms (cf. [4]). 

Proposition 7.2. Let L be an indefinite even lattice of rank > 3. We set 
00(Lp) = Ker(O(Lp) -* O(q(Lp))) and d = disc(L). If the natural map 

               0(L)TT  fp(O(Lp))(7.10) 
                              pidfp(00(-4)) 

is surjective, then O(L) = 0(q(L)). 
  Proof. We have a natural commutative diagram 

0 — 0'(L) — 0(L) --> f (O(L)) —> 0 
JaJ.0J7 

    0 —>H0'(Lp)H  0(Lp)fp(O(Lp))~ 0 
          0(L)                    00 (Lfp(o0(Lp)) 

      pldpPldpId. 

                                             (7.11) 
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7.1 Preparation for the cases (7.1)

 where O(L)  = O' (Lp) f1 O0 (Lp). The rows in (7.11) are exact. Since

O(q(L)) _ fJ O(q(L)p) ~ fl 
pldplc/

O(Lp)
00(4) (7.12)

by Theorem 1.10, it is sufficient to show that is surjective. Since [O' (Lp) : 
O/(Lp)] < oo, each coset of O'(Lp)/ O'(Lp) is open dense subset of O'(Lp) in 
p-adic topology. By Strong Approximation Theorem of quadratic forms (cf. 
[4]), the image of O'(L) in Lipid O'(Lp) is dense. Therefore, a is surjective. On 
the other hand, is surjective by the assumption. By chasing the diagram, 
/3 is surjective.^ 

For f (O(L)) and fp(O0(Lp)), we have the following: 

Lemma 7.3. Let L(p) be a non-degenerate even lattice over Z. 

(1) If v E L(p) satisfies a = (v, v) E Zp U 2Zp , then T(v) e 00 (L(P) ) and 
fp(T(v)) = (-1,a) E fp(O0(Lp))• 

(2) If L() contains U = (° o ) as a sublattice, then

fp(Oo(L(p))) p J2 :_ ((1, Z2 /(Z2)2), (-1, 2)) if p = 2,  := {+1} x Zx/(Zx)2 otherwise :=

(3) If p = 2 and L(2) contains V = (i 2 ) as a sublattice, then 

f2 (O0 (L(2) )) D J2.

(7.13)

(7.14)

Proof. Let v, a be as in (1). Since T(v) • w = w — (2(v, w)/a)v and 2/a E 7p , 
we have T(v) • w E L() for w E L(P). Hence T(v) E 0(L(P)). If w E (L(p))v, 
then (v, w) E Zp, thus T(v) • w w mod L(P). Hence T(v) E O0 (L(1) ). Since 
the determinant of any reflection is euqal to —1, we have fp(T(v)) = (-1, a). 
This proves (I). 

Let (ei, e2) be a basis of U such that (ei, ei) = 0 and (e1, e2) = 1. For 
xEZp, set vx=e1+xe2. We have (vx,vx)=2xE2Zp. By(1),T(vx)E 
O0 (L()) and f p (T (vx)) = (-1,2x). We can check that the group generated 
by elements of the form (-1, 2x) is J2 (resp. Jp) if p = 2 (resp. p 2). 

The proof of (3) is similar to (2), and we omit it.^ 

Lemma 7.4. Let L be a non-degenerate even lattice. 

(1) f(-1L) = CC-1)rankLdisc(L)). 

(2) f (O(U(t))) = ((-1, ±20), where U(t) = (?6).
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7.2 Proof of Theorem 7.1 for the cases (7.1)

Proof. Let (e1,..., er) be an orthogonal basis of L 0 Q, where r = rank L. 
Then, —1L=f?1 T(ei) and f1(ei,ei)-disc(L) mod (Q)2. Therefore, 

 f(-1L)  =  ((-1)r, disc(L)). This proves (1). 
Let (e1, e2) be a basis of U(t) such that (ei, ei) = 0 and (e1, e2) = t. Then, 

0(U(t))^'(Z/2Z)2 is generated by T(ei±e2). Therefore, f (0(U (t))) = 
((-1, ±2t)). This proves (2).^

7.2 Proof of Theorem 7.1 for the cases (7.1) 

We set L = AG, r = rank L and d = disc(L). We shall show that the 
map (7.10) is surjective in each case in (7.1). In other words, we show that 
Lipid fp(O(Lp)) is generated by the images of O(L) and Llpid fp(00(Lp)). In 
fact, we have fp(O(Lp)) = Np except fot the case n = 61, where 

Np={±1} xQp/(Qp)2.(7.15)

Recall that the map (a, b, c)1—> (-1)a3b2cinduces an isomorphism (Z/2Z)3-* 
Q /(Q)2.Moreover, the map (a, b)EPpb induces an isomorphism (Z/2Z)2 
QP/(~p)2if p 2, where ep is a non-square p-adic unit. Let (e1,..., er) be 
a basis of L whose Gramian matrix is given by Table 10.3. We say a is rep-

resented by L if there exists a vector v E L such that (v, v) = a. We denote 
f (O(L)) and fp(00(Lp)) by I and I respectively. 

(1) The case n = 26. We have

L8 0ED(2)ED(4), d=-29. (7.16)

Since 2 and 6 are represented by L, we have (-1, 2), (-1, 6) E /2 by Lemma 
7.3(1). By Lemma 7.4(2), (-1, ±16) = (-1, ±1) E I. We can check that the 
images of these four elements generate N2. (In what follows, we omit "the 
image (s) of" for simplicity.) 

(2) The case n = 30. We have

  ( 3) 2 ), d = 361E1)2(7.17)

By Lemma 7.4(2), (-1, ±6) E I. Since T(e5) E 0(L), we have f (T(e5)) = 

(-1, 2) E I. We can check that these three elements generate N3. 
  (3) The case n = 32. We have

L(05)(46I ,d =22,53 (7.18)

Since L2 contains U, we have J2 C 12 by Lemma 7.3(2). Since 4 is represented 
by L, we have (-1, 4) = (-1,1) E /5 by Lemma 7.3(1). By Lemma 7.4(2),
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7.2 Proof of Theorem 7.1 for the cases (7.1)

 Therefore, the images of I,12, /5 contain the follwoing elements.

From this, we can check that 1,12,15 generate N2 x N5. 
  (4) The case n = 33. We have

(7.19)

By Lemma 7.4(2), (-1, ±14) E I. Since T(e3) E 0(L), we have (-1,2) E I. 
We can check that these three elements generate N7. 

(5) The case n = 40. We have

(7.20)

Let co = T(ei)T(ei 2e2) E 0(L2). Then, modulo L2, we have

(7.21)

(7.22)

Hence co E 00(L2) and f2(co) = (-1,4) • (-1,20) = (1,5) E /2. Since 
T(ei), T(e4), T(ei -}- e2) E 0(L), we have (-1, ±4), (-1, 8) E I. We can check 
that these four elements generate N2. 

  (6) The case n = 46. We have

(7.23)

Since L2 contains V, we have J2 C /2 by Lemma 7.3(3). Since T(e3 + e4) E 
00(L2), we have f2(T(e3 + e4)) = (-1, —12) = (-1,3) E I2. Hence /2 = N2. 
Since T(el), T(e3), T(e4) E 0(L), (-1, 2), (-1, 6), (-1, —18) E I. From this, 
we can check that 1,12 generate N2 x N3. 

  (7) The case n = 48. We have

(7.24)
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 Since L2 contains U, (0,4/(4)2),  (-1, 2)) C /2 by Lemma 7.3(2). By 
Lemma 7.4(2), (-1, ±6) e I. Since T(ei), T(ei-{-e2) e 0(L), (-1,12), (-1, 36) E 
I. Therefore, the images of 1,12 contains the follwoing elements.

From this, we can check that I, I2 generate N2 x N3. 

(8) The case n = 56. We have 

L ^' (4)63 ® (-8), d = —29. (7.25)

By the argument in the case n = 40, cp = T(ei)T(ei -I- 2e2) E 00(L2) and 
f2(40) = (1,3) E I2. Since T(e1), T(e4), T(el+e2) E 0(L), (-1,a), (-1, -8), (-1, 8) E 
I. We can check that these four elements generate N2. 

  (9) The case n = 61. We have

(7.26)

Since L2 contains U, J := ((1, Z / )2), (-1, 2)) C /2 by Lemma 7.3(2). 
By Theorem 3.14(1) of [1], f2(0(L2)) C J, thus I2 = f2(0(L2)) = J. Since 
T(ei) E 0(L), (-1,8) = (-1, 2) e I. By Lemma 7.4(2), (-1, ±6) E I. From 
this, we can check that I, /2 generate f 2 (O (L2 ) ) x N3 . 
  Thus, we have proved Theorem 7.1.

8 Uniqueness of symplectic actions on the K3 lattice

In this section, we use the results in the previous sections to prove Main 
Th enrPm

8.1 The case c(G) < 18 

Proposition 8.1. The natural map

(8.1)

is bijective. 

Proof. The surjectivity follows from the definition of S (see (4.1)). Let 

(G, S) e S such that c(G) < 18. Suppose that Gi E .0 and (Gi, AGi) ̂ ' (G, S) 
for i = 1, 2. To prove the injectivity, it is sufficient to show that G1 and G2 
are conjugate in O(A). By Proposition 6.1, AG1 r=" AG2. By Theorem 7.1,
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8.2 The case c(G) = 19

0(AG1) = O(q(AG1)). Therefore, a primitive embedding AG, -* A such that 

(AG1)-AL AG' is unique up to isomorphism and the restriction map 

0(A, AG,) —f O (AG1)(8.2) 

is surjective by Lemma 1.2. Thus we may assume that AG1 = AG, after re-

placing G1 by cpG1cp-1 for some cp E 0(A) if necessary. Since (G1,AG1) ^' 
(G2, AG2), G1 and G2 are conjugate as subgroups of 0(AG1). Since the re-
striction map (8.2) is surjective, G1 and G2 are conjugate in 0(A). ^

8.2 The case c(G) = 19 

Lemma 8.2. Let G1, G2 E £ such that [G1] = [G2], Clos(G1) = Clos(G2) 
and c(Gi) = 19. If [Clos(Gi)] A.4,4, F384, then G1 and G2 are conjugate in 
Clos(Gi) . 

Proof. It is sufficient to consider the case Gi C Clos(Gi). By Tables 10.2 and 
10.4, we find that fj = [Clos(Gi)] = T48, H192, T192, M20. Using GAP, we can 
check that there exists a unique subgroup C5 of,fj up to conjugacy in ,fj such 
that CU = [Gi] . The assertion follows from this.^ 

Now we consider subgroups U of 214,4 or F384 such that c(0) = 19. In 
[14], Mukai constructed K3 surfaces which admit finite maximal symplec-
tic actions. We use two K3 surfaces from [14], on which 214,4 or F384 acts 
symplectically. 

Let X be a surface in P5 which is defined by the following equations: 

x2 + y2 + z2 = \/u2,(8.3) 

X2 + Cy2 + (2z2 = \v2,(8.4) 

x2 + (2y2 + Cz2 = fdw2,(8.5) 

where = exp(2RmJ-1/3) and x, y, z, u, v, w are homogeneous coordinates of 
1P'5. Since X is a smooth complete intersection of type (2,2,2) in P5, X is a 
K3 surface. Let G denote the subgroup of PGL(6, C) which is generated by 

(x:y:z:u:V:w) (—x:—y:z:u:v:w), (8.6) 

(x:y:z:u:v:w) (x:y:z:—u:—v:w), (8.7) 

(x:y:z:u:V:w) (y:z:x:u:(v:(2w), (8.8) 

(x:y:z:u:v:w) (x:(2y:Cz:v:w:u), (8.9) 

(x:y:z:u:V:w) (—x:—z:—y:u:w:v). (8.10) 

Then G acts on X symplectically and [G] = 2(4,4. Moreover, let G denote the 
group generated by G and 

g:(x:y:z:u:v:w)H(u.v.w:x:z:y). (8.11)
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 8.2 The case c(G) = 19

Then G acts on X and g*wx = \/-1wx. Using GAP, we can prove the 
following: 

Lemma 8.3. Suppose that C5 E 0K3' is a subgroup of 24,4 and c(U) = 19. 
Then there exists a unique subgroup K of G such that [K] = 115 up to conjugacy 
in O. 

Let Y be a surface in 1P3 which is defined by the following equation: 

x4+y4+z4+t4=0,(8.12) 

where x, y, z, t are homogeneous coordinates of P3. Since Y is a smooth quartic 

surface in P3, Y is a K3 surface. Let H denote the subgroup of PGL(4, C) 
which is generated by 

(x : y : z : t) i--* (ix : —iy : z : t), (8.13) 

(x : y : z : t) (y : x : z : t), (8.14) 

(x:y:z:t)H(y:z:t:x),(8.15) 

where i = Then H acts on Y symplectically and [H] = F384. Moreover, 
let H denote the group generated by H and 

h:(x:y:z:t)F (ix :y:z:t). (8.16) 

Then H acts on Y and h*Wy = iwy. Again using GAP, we can prove the 

following: 

Lemma 8.4. Suppose that 115 E UK3 p is a subgroup of F384 and c(5) = 19. 
Then there exists a unique subgroup K of H such that [K] = 115 up to conjugacy 
in H. 

Remark 8.5. Since GAP is good at handling permutation groups, we re-

alize G and H as quotients of permutation groups in GAP. For example, 

the subgroup of PGL(2, C) which is generated by (x : y) H ((x : y) and 

(x : y) H (y : x) is realized as 

((1, 2, 3), (1, 4)(2, 5)(3, 6))/((1, 2, 3)(4, 5, 6)). (8.17) 

Remark 8.6. By a similar argument in [7], we can show that the projective 
automorphism groups of X and Y are G and H, respectively. However, since 

X and Y have Picard number 20, the automorphism groups of X and Y are 

infinite groups by [23]. 

By considering induced actions on H2 (X, Z) and H2 (Y, Z), we have the 
following:
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 8.2 The case c(G) = 19

Lemma 8.7. Consider G and H as a 'subgroup of 0(A).  Suppose that 0 is a 
subgroup of 2t4,4 (resp. F384) such that c('5) = 19. Then there exists a unique 
subgroup K of G (resp. H) up to conjugacy in 0(A) such that [K] _ 0. 

  We use the following lemma in the proof of Theorem 4.1. 

Lemma 8.8. There exists an element G43 E ,C which satisfies the following: 

1. [G43] = 043; 

2. There exists a unique subgroup C58 of 0 (AG„ ) up to conjugacy in 
0 (AG43 ) such that [G58] = 558 

Proof. Fix an identification H2 (Y, Z) = A. By Table 10.4, there exists a 
subgroup C43 of H such that [G43] = 043. Since c(043) = c(H) = 19, we have 
Ac43 = AH. Hence Oo (AG43) = H. Since H a H, we have H C 0(A, AG43 ) • 
By Lemma 8.4 and Table 10.4, the condition (2) is satisfied. ^ 

  We have the following by the above lemmas. 

Proposition 8.9. Set E = {65i L2(7), 2t6} C C5K3 p. The natural map 

{G E G c(G) = 19, [G] E}/conj —f {(G, S) e S c(G) = 19, [G] 0 E}/isom 
                                            (8.18) 

is bijective. 

Proof. The surjectivity follows from the definition of S (see (4.1)). Let 
(G, S) E S such that c(G) = 19 and [G] 0 E. Suppose that Gi E L and 
(Gi, Act) ^_' (G, S) for i = 1, 2. To prove the injectivity, it is sufficient to 
show that G1 and G2 are conjugate in O(A). By Proposition 6.1, Ac1 ̂ ' AG2. 
By Theorem 5.1, O(AG1) = O(q(AG1)). Therefore, a primitive embedding 
AG, -* A such that (AG1)-AL ^_' AG1 is unique up to isomorphism by Lemma 
1.2. Thus we may assume that Ac1 = AG2 after replacing G1 by cpGlcp-1 for 

some cp E 0(A) if necessary. Hence [Clos(G1)] = [Clos(G2)]• 

(1) The case [Clos(Gi)] %4,4, F384. By Lemma 8.2, G1 and G2 are 
conjugate in Clos(Gi) (C 0(A)). 

(2) The case [Clos(Gi)] = 2t4,4 (resp. F384). By the above argument, 
we have AG, = AG (resp. AH) for some identification A = .H2 (X, 7) (resp. 
H2 (Y, Z)). Hence Clos (Gi) = G (resp. H). By Lemma 8.7, G1 and G2 are 
conjugate in 0(A). 

^ Proposition 8.10. For 0 = 65, L2(7), 2t6i there exist exactly two elements 
G1, G2 in L up to conjugacy in 0(A) such that [Gil = 0. We have AG1 ̂ _' AG2 7 
q(AG1) ̂ _' q(AG2 ) and AG1 AG2 .
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8.3 Proof of the Main Theorem

Proof. By Proposition 3.7 and Theorem 4.1, there exists a unique element 
 (Go, 8) E S up to isomorphism such that [Go] = 5.  Since is a maximal 

element in OK3 p, 00(S) = Co. By Theorem 5.1, 0(S) = 0(q(S)). By 
Lemma 1.2 and Proposition 6.1, there exist exactly two primitive sublattices 

A1, A2 of A up to 0(A) such that Ai ^_' S. Let G E J2 such that [G] = 0. Then 
AG "' S. Hence, we may assume that AG = Ai (i E {1, 2}) after replacing G 
by cpGcp-1 for some cp E 0(A) if necessary. This implies the assertion. ^

8.3 Proof of the Main Theorem 

Theorem 8.11. Let E CU K3 P . 

(1) If CU = Q8, T24, there exist exactly two elements G1, G2 in L up to 
conjugacy in 0(A) such that [Gi] = 0. We have the following table, by 
changing numbering of G1, G2 if necessary (see Corollary 4.7).

 C case  [Clos(G1)] disc(AG1) case [Clos(G2)] disc(AG2 )
Q8
T24

012
077

Q8
T192

—512

—192
040
054

Q8 * Q8
T48

-1024

—384

 (2) If U = 651 L2(7),  216, there exist exactly two elements Gi, G2 in ,C up to 
    conjugacy in 0(A) such that [Gil = 5. We have AG,'~'AG2,q(AG1)^—' 

q(AG2) and AG1 AG2 

(3) Otherwise, there exists a unique G e L up to conjugacy in 0(A) such 
that [G] = 3. 

Proof. By Theorem 4.1, (G, S) E S is determined uniquely up to isomorphism 
by [G] and q(S). The assertions (1) and (3) follow from Propositions 8.1, 8.9 
and Table 10.2. The asserion (2) is the same as Proposition 8.10. ^

9 Applications

Combining Xioa's result (Theorem 0.3), the following theorem is a direct 
consequence of Theorem 8.11 and grobal Torelli theorem for K3 surfaces. 

Theorem 9.1. Let 03 E 0Z p. Set E1 = {Q8, T24}, E2 = {65, L2(7), 2t6}. 

1. If CU 0 El U E2i then the moduli of K3 surfaces with 0-actions is con-
     nected.

2. If Xi is a K3 surface with a symplectic 0i-action (i = 1, 2) such that 
Ui E2 and 01\X1 and 32\X2 have the same A-D-E-configuration of 
the singularities, then 01 = 32 and X1 and X2 are G-deformable.
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 3. Let 0  E E2. Then there exist K3 surfaces X1 and X2 with sympelctic 
0-actions such that X1 and X2 are not 0-deformable. 

4. If a K3 surface admits a symplectic action of type (5, q) E Q, then the 
action is extended to Clos(0, q).

10 Tables

10.1 Niemeier lattices

root type  o(N2,~2 )1 O(Ni, A )2 02)I
1 D24 1 1 1

2 D16 ® Es 1 1 1

3 E®3s 1 e3 6

4 A24 2 1 2

5 D®212 1 62 2

6 A17 ED 2 1 2

7 Dlo ® E®2 1 62 2

8 A15 ®D9 2 1 2

9 D®38 1 03 6

10 A®22

1

2 62 4

11 A11®D7EDE6 2 1 2

12 E®46 2 64 48

13 A®2®D6 2 62 4

14 D®46 1 64 24

15 Ag 3 2 e3 12

16 Z17ED75 2 62X62 8

17 A®4 2 4 24

18 A®4 ® D4 2 64 48

19 D®64 3 66 2160

20 A®6

4

2 e5 240

21 A®83 2 IF2 x GL (3, F2) 2688

22 A®12

2

2 M12 190080

23 A®24

1

1 M24 244823040

 1O.2 Abstract groups and discriminant forms 

We give the list of a complete representative { (2n,, q)} of Q/ r. Recall that 

Q = {(3, q) ]G E L such that C5 = [G], q '_" q(AG)} 
_ {(C3, q) ](G , N) E N such that C5 = [G], q ^_' q(NG)}
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10.2  Abstract  groups and discriminant forms

and (0, q) N (0', q') when 3 = 0', q q' (see Subsection 3.4). For q : A(q) -* 
Q/2Z, we denote the order of A(q) by We use the following notation (cf. 
[5]): 

            a+n=q(P) (al®n'a—n=q(P) (a)®n-1 ® q(P) (a), 
b In_u(2) (b)®n, bIIn_u(2) (b)6)72-1 6),(2) (b), bctr=q(Lr()d,t,1(b)), 

where p is an odd prime, a = pk,b = 2k and Lrdte is a (unique) unimodular 
lattice over Z2 which has the invariants r, d, t, e defined in Proposition 1.6 (see 
Section 1). For example, 

A(q63) -' (Z/2)®3 ® Z/3Z ® Z/9Z, 

          q63(-1/2) ®11/21/2(2/3) ® (2/9). 

In the list, e.g. q5 is isomorphic to qi6 •
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10.2 Abstract groups and discriminant forms

 n

 

I Ln  '5n

 

len l qn c(113n)
1 2 C2 256 2+8II 8

2 3 C3 729 3+6 12

3 4 C2 1024 64-2"IIII 12

4 4 C4 1024 2+2 4+42 ' II 14

5 5 C5 625 016 16

6 6 D6 972 32+52II, 14

7 6 C6 1296 018 16

8 7 C7 343 033 18

9 8 C2 1024 2+6 4+2II , 2 14

10 8 D8 1024 4+5 15

11 8 C2 X C4 1024 022 16

12 8 Q8 512 38
1—T2II—2'27,17

13 8 Q8 1024 040 17

14 8 C8 512 026 18

15 9 C2

3

729 030 16

16 10 D10 625 5+4 16

17 12 214 576 21I2741I273+2 16

18 12 D12 1296 2+4,3+4II 16

19 12 C2 X C6 1728 061 18

20 12 Q12 432 061 18

21 16 C2 512 2+6 8+1II , 1 15

22 16 C2 X D8 1024 2+24+4II'o 16

23 16 r2 c1 512 039 17

24 16 Q8 * C4 1024 040 17

25 16 C2

4

1024 075 18

26 16 SD16 512 2714+12'47'81 18

27 16 C2 XQ8 256 075 18

28 16 r2d 256 080 19

29 16 Q16 256 080 19

30 18 3,3 729 3+4, 9-1 16

31 18 C3 X D6 972 048 18

32 20 Hol(C5) 500 262,5+3 18

33 21 C7XaC3 343 7+3 18

34 24 64 576 43+3, 3+2 17

35 24 C2 X %4 576 051 18

36 24 C3 Xa D8 432 061 18

37 24 T24 192 077 19

38 24 T24 384 054 19

39 32 24C2 512 212'4o2'°71 17

40 32 Q8 * Q8 1024 4+57 17
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10.2 Abstract groups and discriminant forms

41 32  r7a1 512 056 18

42 32 r4 C2 256 075 18

43 32 r7a2 256 080 19

44 32 r3e 256 080 19

45 32 r6a2 256 080 19

46 36 32 C4 324 262,3+2,9-1 18

47 36 C3 X 9t4 432 061 18

48 36 63 ,3 972 2211, 3+3, 9-1 18

49 48 24C3 384 2114, 811, 3-1 17

50 48 42C3 256 075 18

51 48 C2X64 5769+2' 4-2f--2, 3+2 18

52 48 22(C2XC6) 288 078 19

53 48 22Q12 288 078 19

54 48 T48 384 )+1 Q-2 3-1
7 19

55 60 2t5 3002 21I ~3+1, 5-2 18

56 64 r25a1 512 4+38+15~1 18

57 64 r13a1 256 075 18

58 64 r22a1 256 080 19

59 64 r23a2 256 080 19

60 64 r26a2 256 080 19

61 72 2t4 ,3 432 42-31I,3 18

62 72 N72 324 411, 3+2, 9-1 19

63 72 M9 216 27-3, 3-1, 9-1 19

64 80 24C5 160 081 19

65 96 24D6 384 +1-I-12
T-I2,4781,3-1 18

66 96 24C6 384 076 19

67 96 42D6 256 080 19

68 96 23D12 288 078 19

69 96 (Q8 * (28) X C3 192 077 19

70 120 e5 300 431,3+1,5-2 19

71 128 F128 256 080 19

72 144 444 288 078 19

73 160 42D10 160 081 19

74 168 L2(7) 196 4l+1,7+2 19

75 192 42%4 256
2—22

1I' °6 18

76 192 H192 384 442~071,3-1 19

77 192 T192 192 47-3, 3+1 19

78 288 2t4,4 288 2+2 8+1 3+2 19

79 360 21,6 180 4-51>3+2>5+1 19

80 384 F384 256 4+18+27,6 19

81 960 M20 160 21-12,811,5-1 19
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10.3 Invariant lattices AG

10.3 Invariant lattices AG

U _ Co 1)    1 0} (10.1)

 For abelian G E L,  the Gramian matrices of AG are determined in [6].

 r  d  q Gramian matrix

1 14 -256 2+~II U®3 e E8 (-2)
2 10 -729 3+6 U ® U(3)®2 e A2 (-1)®2
3 10 -1024 6-22

1I41I U ® U(2)®2 G D4(-2)
4 8 -1024 2+2 4+46 ' II U G U(4)®2 ® (-2)6)2
6 8 -972 2112 , 3-5 U(3) ED A2(2) e A2(_1)®2
9 8 -1024 2+6I,[,4-P U(2)(93 G (-4)62
10 7 1024 4+57 U G (4)e2 G (-4) ®3

12 5 512 213,81I2 C6 2 22 6 -2 1®(-2)®2
2 -2 6

16 6 -625 5+4 U G U(5)82
17 6 -576 2II2'4II2'3+2 UGA2(2) GA2(-4)
18 6 -1296 2+4~3+4II U G U(6)62
21 7 512 2+68+1II~7 U(2)®3 G (-8)
22 6 -1024 2+24+4II'O U(2) G .(4)6)2 G (-4)®2
26 4 -512 21 1'41-1,I2 U(8) G (2) G (4)
30 6 -729 3+4, 9+1 U(3)e2G(30)
32 4 -500 2225+3 U(5) G (2 6 )
33 4 -343 7-3 u(7) (N)
34 5 576 4+33+25, U G A2(2) G (-12)
39 5 512 2I2, 46F2, .8-1E1U(2)G(4)G(-4)G(8)
40 5 1024 4+51 (4)E93 G (-4)®2
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10.3 Invariant lattices AG

46 4 -324 2-2, 3+2, 9+1  A2  ED  (6)  e  (-18)
48 4 -972 2-2~3-39+1II U(3) ED A2(6)
49 5 384 2T-14,8t1,3+11I4,871,3+1U(2) ® A2(2) ® (-8)
51 4 -576 2I2, 4t2,3+2 U(2) ® (12)6)2

54 3 384 2+1;81-2,3+11
2 0 0 ) •
O 16 8
O 8 16

55 4 -300 2-1-22II,35 U®A2(10)
56 4 -512 4+38+13~7 (4)63 ® (-8)
61 4 -432 4II23+3

,

U(3) ED A2(4)

62

63

3

3

324

216

41-1,3+2,9+1

21-3,3+1,9+1

(6 3 3 )3 6 3
3312

(2 0 0 )O 12 6
O 6 12

65 4 -384 2I-I2,4-11-1,8p, 3+1 A2(2) ® (4) ® (-8)

70

74

3

3

300

196

C1,3-1,5-2

4+17+27~
(0 00)'\2 1 16)(
0081\218/

4020

75 4 -256 2-22
1I '°2

O420
2244
O040

76 3 384 4-48+1,3+11 (40 0O 8 0
O012

77 3 192 t13, 3-1
400
O84
O48

78 3 288 2I2 8;1, 3+2
844
482
428

79 3 180 4-1'3+2>5+13 (0012)J'(068
80 3 256 4+18+21~2 (400O80

O08

81 3 160 2II2, 871, 5-1
40 2 )
O4 2
2212

l
i

39 December 6, 2010



10.4 Trees of groups with common invariant lattices

 10.4 Trees of groups with common invariant lattices

10.5 Extensions 

maximal:54, 62, 63, 70, 74, 76, 77, 78, 79, 80, 81

I

40 December 6, 2010

it



10.6 Root types of NG

 n extensions

1
 3, 4, 6, 9,  10,  12,  16,  17,  18,  21, 22, 26, 30, 32, 34, 39, 40, 46, 48, 49, 51,

54, 55, 56, 61, 62, 63, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81

2
6,17,18, 30, 33, 34, 46, 48, 49, 51, 54, 55, 61, 62, 63, 65, 70, 74, 75, 76,

77, 78, 79, 80, 81

3
9,10,17,18, 21, 22, 26, 34, 39, 40, 48, 49, 51, 54, 55, 56, 61, 62, 65, 70,

74, 75, 76, 77, 78, 79, 80, 81

4
10, 12, 22, 26, 32, 34, 39, 40, 46, 51, 54, 56, 61, 62, 63, 65, 70, 74, 75, 76,

77, 78, 79, 80, 81

6 18, 30, 34, 46, 48, 51, 54, 55, 61, 62, 63, 65, 70, 74, 76, 77, 78, 79, 80, 81

9 21, 22, 39, 40, 49, 51, 56, 65, 75, 76, 77, 78, 80, 81

10 22, 26, 34, 39, 40, 51, 54, 56, 61, 62, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81

12 26, 54, 63, 75, 80, 81

16 32, 55, 70, 79, 81

17 34, 49, 51, 55, 61, 65, 70, 74, 75, 76, 77, 78, 79, 80, 81

18 48, 51, 54, 61, 62, 70, 76, 77, 78

21 39, 49, 56, 65, 75, 76, 77, 78, 80, 81

22 39, 40, 51, 56, 65, 75, 76, 77, 78, 80, 81

26 54, 80

30 46, 48, 61, 62, 63, 78, 79

32 70

33 74

34 51, 61, 65, 70, 74, 76, 77, 78, 79, 80, 81

39 56, 65, 75, 76, 77, 78, 80, 81

40 56, 76, 77, 80

46 62, 63, 79

48 62

49 65, 75, 76, 78, 80, 81

51 76, 77, 78

55 70, 79, 81

56 76, 77, 80

61 78

65 76, 78, 80, 81

75 80, 81

 10.6 Root types of NG 

We give the type of the root sublattice of NG, which is generated by vectors 

v E NG with (v, v) = —2, for (G, N) E if such that [G] = On, and q(NG) ^' 
qn (see Table 10.2). In the list, elements in Al' are enclosed by boxes (see 
Proposition 3.9) and the number of vectors v E NG with (v, v) _ —4 are given
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10.6 Root types of NG

 for the cases n = 32, 41, 56. As for Niemeier lattices N = Ni,  see Table 10.1.

n=1

i3789
.`°type E8"~'~9r8 e D8 D8 

i 11~2~213 14

type Aire D4 ED D6 Dm . Da y6. ®iu ED D6 Dr
6i 1511I1618 

 type A8 A®8 ED  D®2 A®4 ED  A7 D4 ® D5 A®'2 ® D4
i 1819192021

type A®3® A3 ED A5 .m4E92 AT2 A163 44

i 2122 23 

type A®4® A®2 x2_ x1 .,

 n=2

i 12 14 17 18 19 19 21 22  23

type E6 D6 A6 A2 ED A5 A®6 D4 ED AT2 AT2 Ar A!'

 n=3

i 12 1616_819 19 21

type®~1teDA~°m.'1u~~"—3341A®2 D®2 A®44~ 

i21 21 212223 23 

type Al A3 ®_ _1_ _s_ _2 A1A1

 n=4

i 13 18 19 20 21 22  23

type D5 D4 AT'A?2W`4 _m'W`3A®2ED A®2 Al'

 n=5,16

i 19 20 22  23

typeD4_4_2A

 n=6

n=7,18

19 19 21 22 23i 12 18 

type D4 A®{E'A2_T2A3Ai4 A2 Al
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 10.6 Root types of NG

n=8,33

n=9

 z 21  2

type A3  A7

 i 21 21 23 23 23

type AED4

i

 1 AT2

1

AED4

1

,18
1

 n = 10

 Z 18 19 21 21 22 23 23

type A3 A®2 A®4

1

A®2 ED A3 AT2 Ar2

1

AED4

1

 n=11,22

 21 1231 23
A®4 AT2 A®4

 n = 12

 z 18  22 123
type D4  A®3EDA2 Ar4

1

 n = 13, 24, 28, 29, 37, 40, 43, 44, 45, 59, 60, 67, 69, 71, 77, 80

n = 14, 26

n = 15, 30

 i 23

type ,32

 Z 18 22  123
type A3 A1 ®A2 A®2

1

 i 19 22

 

I 23
type AT'

2

A®3

2

Al

 n  =  17

 2 19 19 21 21 22 23 23  23

type AT'

2

A2 ED A3 A®2

3

AT2 A®2 AE4

1

Al

 n = 19, 20, 36, 47, 61

n = 21

 z 19

 

1 23a
type A®2

2

AW

 i 23  123
type AEB4

1

AV
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10.6 Root types of NG

 n = 23, 39

n = 25, 27, 42, 50, 57, 75

n=31

 i

 

123 23 23

type A®2

1

AED4

1

A.

i

 2 1 23 1
type 14.4

1

 z 19 19 22 I23
type A2 A2 A2 Al

n = 32

 n  =  34

 z 19 20 20 22

 

123
type A3 AT'

1

A4 A1 ®A2 AT'

1

0{7) E NG I (v, v) _ -4} 14 22

 Z 19 19 21 21 21

type A®2

2

 A2 ® A3 A®2 A®2 ED A3 A3

2 22 23 23 23 23

type ®A2

2

Al2 A®2 A®3

1

A

 n = 35, 51

 i 21 21

 

1231 23 23

type AT'

1

A®4

1

Al AT2

1

A®2

1

 n = 38, 54

 z 18 22  123
type A2 A2 Al

 n = 41

n=46

 z 23 23 1 23
type Ar2

1

AT2

1

A®2

1

1{v E NG 1 (v, v) = —4} 26 26 42

22 22  23

1

A®W242A1 W AT2A

 n=48

 z 19 22

 

1 23
type A2 A2 Al

 n  = 49

 i 23 23  123
type Al A®4

1

A®5

1
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10.6 Root types of NG

n = 52, 53, 68, 72, 78

 z 23 23

type  Al ,2

n = 55

 z 19 22 22 23

 

1  23  1
type D4 A2 A®z

2

Air

1

A®41

n =56

 2 23

 

1 23
type A®2

1

A®z

1

#{v E NG 1 (v, v) = -4} 26 42

 n = 58
23 23

type A®2

1

A®z

1

 n  =  62

 2 22

 

I 23 I
type A2 Al

 n = 63

n = 64, 73, 81

 z 22  22 1231
type A®~

1

 A®2 ® A2 A®s

1

 %  23 1 231
type Ar3 A®4

 n = 65

 i 23 23 23  123  1
type Al Ar2 Air

1

Ar4

1

 n=66,76

 23 23 123
A1 A1 A®2

 n  =  70

 i 19 22 23  12_437j
type A3 A2 Al  A

 n=74
 '1 21 23  23

type A3 AV' Al

 n=79

 i 22 23  12I
type AT2

2

A®2 A
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