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Preface

The present paper is concerned with some asymptotic properties for two
kinds of Monte Carlo iteration methods: the Expectation-Maximization
(EM) algorithm and the Metropolis-Hastings (MH) algorithm. '

The term, asymptotic has two meanings in this paper. In most works re-
lated to the asymptotic properties for those iteration methods, the meaning
of asymptotic is in the sense that the number of iterations goes to infinity.
In Chapter 3, we address this type of asymptotic property. On the other
hand, in Chapter 1 and 2, the meaning of asymptotic is that not only the
number of iterations, but also the number of observations goes to infinity.
Therefore, in the second meaning, we assume a large sample.

. In the first two chapters, we make a framework for the asymptotic theory
for the EM algorithm and the Gibbs sampler, which is a popular sub class
of the MH algorithm. There are three motivations.

First, using the framework, we can validate the convergence of the EM
algorithm and the Gibbs sampler. For the EM algorithm, we prove that
the sequence generated by the algorithm converges to the maximum likeli-
hood estimator. This type of convergence is hard to show in finite sample
size. For the Gibbs sampler, several previous works have already addressed
the validation issues for the convergence to the Bayesian estimator in finite
sample size. We give another sense of the convergence property. The former
convergence property is concerned with the behavior of the Gibbs sampler in
the region far from the true parameter of the parameter space. On the other
hand, the latter is concerned with the behavior around the true parameter.

Second, using the framework, we can validate some speed up methods
of the EM algorithm and the Gibbs sampler. There are a lot of speed up
methods for the EM algorithm and the Gibbs sampler. We validate these
speed up methods in the framework of the asymptotic theory.

Third, the framework may be beneficial for more complicated Monte
Carlo methods. We approximate the traditional algorithms by simple algo-
rithms. This approximation may be useful for the Monte Carlo EM algo-
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rithm or some adaptive Monte Carlo methods.

In Chapter 3, we develop the results on polynomial ergodicity of Markov
chains and apply to the MH algorithms based on a Langevin diffusion. When
a prescribed distribution p has heavy tails, the MH algorithms based on a
Langevin diffusion do not converge to p at any geometric rate. However
those Langevin based algorithms behave like the diffusion itself in the tail
area, and using this fact, we provide sufficient conditions of a polynomial
rate convergence. By the feature in the tail area, our results can be applied
to a large class of distributions to which p belongs. Then we show that
the convergence rate can be improved by a transformation. We also prove
central limit theorems for those algorithms.

I am grateful to Prof. Nakahiro Yoshida for his helpful comments and
corrected a lot of errors. He also suggested me to construct my result on reg-
ular statistical experiments not on independent and identically distributed
observations. ,

This work is in part supported by Grant-in-Aid for JSPS Fellows (19-
3140) and the 21st Century COE Program.



Common Notation

Let a and b be real numbers.
aVb:=maxa,b
aAb:=mina,b
at :=maxa,0
B¢(z): open ball with radius € centered at x in a metric space

n: sample size

N:={1,2,...,}
No:={0,1,2,...}
R: real line

R?: d-dimensional Euclidean space

I: (%1, %141, ..., Tm): subsequence of z = (zo,...,7)) for any

Tl =
0<i<m<k.

é(x; p, X): density of normal distribution with mean yu € RY, and the

covariance matrix ¥ € R%%d

For any signed measure v on a measurable space (Z,C), let

lv|ltv :== sup v(f)= sup /fz)y(dz
o {£:1£1<1} {£i1f1<1}

If (Z,,Cp, Pn) be a sequence of probability spaces, and (Z, : Z, — R%)
is a sequence of random variables, we write Z,, = op, (1) to mean

Km Pp(|Zn| >€) =0
n—o0

for any € > 0.

iii






Chapter 1

Asymptotic Properties for
the EM algorithm

1.1 Introduction

In this chapter, we are concerned with the asymptotic properties for some
EM algorithms in the large sample framework. Our meaning of asymptotic
is that both the number of iteration and the number of observation tend to
infinity. The main results in this chapter are convergence theorems, a vali-
dation of the rate matrix and its application to independent and identically
distributed observations. _

In the finite sample theory, the convergence properties had already been
established. The most important property is the existence of a monotone
convergence theorem ([43] and [4]. See also [24]). However, the theorem
does not tell us whether the sequence generated by the EM algorithm does
converge to the maximum likelihood estimator (MLE). It may converge to
a local maxima or a local minima of the likelihood function, and it may
not converge to any point (see Section 3.6 of [25]). On the other hand, in
the framework of the large sample theory, we can show that the sequence

“generated by the EM algorithm converges to the MLE, if we assume the
sequence starts from an estimator 7}, such that nl/2 (T, — 0o) is tight with
respect to Po(:) when 6y is the true value.

The rate matrix is used to measure the convergence rate of the EM
algorithms (for example, 7], [28] and [26]). Unfortunately, in our meaning
of convergence, we can not find any validation for the convergence rate in
previous works. On the other hand, in the large sample framework, it is
clear that the rate matrix determine the convergence rate.
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2 | CHAPTER 1. EM ASYMPTOTIC PROPERTIES

As we mentioned, we assume that the initial point of the sequence of
the EM algorithm T, satisfies above tightness condition. This is similar
to the case of the one-step estimator [5]. It is well known that the choice
of the initial point is very important for the performance of the algorithm.
Without this assumption, the sequence may not converge to the MLE. An
estimator satisfying the tightness condition exists in general (for example,
see [5]). In many cases, the moment estimator works well.

1.2 Matrix Algebra

In this section, we review some key elements of matrix algebra which will
be used in a later section. Consider the space C¢ with the inner product
(u,v), that is,

d B
(w,v) = > uiT; (u= (uy,...,uq)T,v = (v,...,09)7),
=1

and |u|? = (u,u).

Lemma 1.1. Let A,C € R%*? be positive definite matrices such that C — A
is nonnegative definite. Let K = C~Y(C — A). Then K and L = C~1/2(C —
A)C’"l/ 2 have the same eigenvalues and the same algebraic multiplicity for
each eigenvalue. Moreover, K is diagonalizable and each eigenvalue \ of K
is0< A< 1. : '

Proof. Let X be an eigenvalue of K and u be one of its eigenvectors. Then,
Ku = Au and we have (C' — A)u = ACu. It is easy to see that the sets of
eigenvalues of K and L are the same. Therefore, since L is nonnegative, A
is real and A > 0. Since A is positive definite, if A # 0, then (u, (C — A)u) =
Mu, Cu) > Au, (C — A)u) and hence A € (0,1). Therefore, A € [0,1) and
the claim follows.

o

Let dy,...,dy be integers such that Zi;l d; = d. Then, we divide any
d x d-matrix into k2 partitions, such that
M 1,1 .- M 1,k
M = : * .. E
Mk,l o M kk

where M; ; is a d; x d;-matrix. Let M be.denoted by (M; ;4,5 =1,...,k) =
(M; ;). We define some matrices related to the matrix M. Let diag(M)
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denote a d x d-matrix § = (S;;) such that S;; = 1yi=j3Mi,;, and M and
M* denote T = (T;;) and U = (Uy;) such that T;; = 1y5;3M;; and
For any d x d-matrix K, let |K||2 = supjp=q |Kh].

Lemma 1.2. Let A,C € R%*? be positive definite matrices such that C — A
is nonnegative definite. Let K = (C')~}(C'~A). Then there exists r € [0,1)
and that |X| < r for any eigenvalue X of K, and for any € > 0, there
exist a nonsingular matriz P and a lower triangular matriz A such that
K =P AP and |Ala <r+e.

Proof. Let A be an eigenvalue of K and u be one of its eigenvectors. Then,
Ku = u and we have (C' — A)u = AClu. We have (u, (C' — A)u) =
Ay, Clu), and its transpose (u, (C* — A)u) = A(u, C*u). Then we have

(1 = N){u, C'u) = (u, Au), and (1 — ) {u, C*u) = (u, Au).

Multiplying above equations by (I—X) or (1 —X), we obtain
11— A (u, Clu) = (1 — A)(u, Au), and |1 — A[>(u, C¥u) = (1= X){u, Au).
The sum of the two equations yields
0=|1 —‘>\|2(u, (D+ C)u) — (2= X = X){u, Au),

where D = diag(C). Since D is a positive definite matrix and C' — 4 is
nonnegative definite matrix, we have

0> |1 = A2(u, Au) — (2 = A — N)(u, Au) = (A2 — 1){u, Au).

Since A is positive definite matrix, there exists 0 < r < 1 such that for
any eigenvalue A of K, we have |\| < r. Therefore, there exist a nonsin-
gular matrix P; € C%¢ and a lower triangular matrix A; = (Myi38,0 =
1,...d) € C%4 such that K = P{'A;P; and |\;;| < r (for example,
see [12]). Fix any € € (0,1). Let s = max;z;|A1;;| V1. Take D =
diag((e/s), (¢/s)?, ..., (¢/s)?). Then we have

L €. ;i s
(DAID ™D = ()i

Let P = DP; and A = (N ;4,5 = 1,...,k) = PKP™1 = DA;D!. Then A
is also a lower triangular matrix, and |X;;| = |Areq| < 7, |Nij| < € (3> ),
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and Aj; =0 (i < j). For any u = (uy,...,uq)T € C% such that |u| = 1, we
- have

|Au|2 E'Z)\’]uﬂ <ZT’|U@|+GZIUJ|

i=1 j=1
d

= (r 2luzl2+27‘6Z|uzllua|+62 Z Jut][um])

=1 lm_.

ISH

211

< Z( 2|, |2+rez (luil® + |us]?) +—- Z (faal® + [um®))

=1 l m=1

’zl

d
Z((r + dre) |u1|2+z re + de?)|uj|?)

i=1 j=1 ,
r? + dre + d(re + de?) < 12 + 2de + d?€2.

Therefore, |A||3 < 72 + 2de + d?¢%. Since € > 0 is arbitrary, the conclusion
follows. (]

1.3 Regular Statistical Experiments

Suppose © is an open subset of R%. The parameter space © is equipped
with its Borel o-algebra F. Fix any 6y € ©. The element 6y will be used
as a true value of the following model. Consider a family of statistical
experiments &£, = (X, An, Py pn; h € Hy), where Hy, = n1/2(@ —0p). We set
Hpn = vn(F — bp).

1.3.1 Two-Stage EM Algorithm

Suppose a function Q...n : X, X Hy X Hyp — [—00,00) is Ap X Hp X Hp-
measurable. Let I(flp) and I5;(6o) be d x d-matrices, and I1,2(6o) = I(6p) +
Iy1(6o). Let Z, : &, — R be a sequence of random variables.

Assumption 1.3.1. The matriz I(6) is positive definite and Iy (6o) is
nonnegative definite, and (Zn;n € N) is Py ,,-tight.

Assumption 1.3.2. There exists M, — oo such that

sup . ~|Qx,g,h,n - Qz,g,h,n' = 0Py, (1)’
|hl,lg1< My
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where @x,g,h’n, is

(1, Zo + La(60)g) = 5(h, Ta(Bo)h) + 509, (60) ~ Lya (Bo))g) — {9, Ze)

We note a few comments about the assumptions. The matrix I 1,2(60) "1I2|1 (60)
plays an important role in the asymptotic theory. Suppose Assumption 1.3.1,
then I 9(60) "' I51(fo) is diagonalizable and all eigenvalues are nonnegative
and smaller than 1. See Lemma 1.1.

We are going to define the Expectation-Mazimization (EM) algorithm,
which was formulated in [7]. Fix any n € N. When we have an observation
z from Py, we define the EM algorithm starting from h € H,, as follows.
First, set ho = h, and go to step 1.

Step i The step consists of further two minor steps, Ezpectation-step (E-step)
and Mazximization-step (M-step).

E-step Calculate the value Qzp, ;,.n: Hn — RU{—0c0}.

M-step Maximize Qg n, ,nn With respect to h and set the maximizer
as h;. If there are more than two maximizers, select one of the
nearest maximizer from h;_;. Go to Step i + 1.

We call (h; = hgin;i € N) the sequence of the EM algorithm (starting
from h). Sometimes, the M-step is replaced by finding one of the roots of
0Qu,h;_1,h,n/Oh = 0. This minor change does not affect our results, so even
in this case, we also call it the sequence of the EM algorithm.

Lemma 1.3. Let (Z,,Cp,P,) (n = 1,2,...) be a sequence of probability
spaces. Let (Wp;n € N) be a sequence of P,-tight random variables on RY,
and let K = P™YAP be a d x d-matriz, where P is a nonsingular matriz and
Al = 7 for some r < 1. Let fn : Z, x RT — R? be a random function,
and let £ (2,h) = b and £ (2,h) = fulz, £ (2,R) (i = 0,1,2,...). If
there exist some M, — oo such that

sup |(fn(2,h) = Wa(2)) — K (h — Wa(2))] = op, (1)
|h|<My

then for some M), — oo, we have

sup sup (£ (2, h) = Wa(2)) — K*(h — Wa(2))| = op,(1).
|h|<M} i€EN
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Proof. Fix € > 0 and assume that n is large enough to be € < M,,. Taking
aset A, € C, as

M, }
4(1Vve)

{z; sup |(fu(z, h)=Wp(2))—K(h—W,(2))| < 6(14— T), [Wh(2)| <
[h|<Mp i ) ¢

then Pn(A,) — 1, where ¢ = ||P||ol|P~l2. Let €n(z,h) = (£9(2,h) —
Wa(2)) — K(f(z b (z,h) — Wp(z)), then we have

|(fn”(z h) = Wn(2)) — K'(h — Wa(2))]
—|ZKJ( (2, h) = Wa) — K(f757D (2, h) — Way)|
i—1

= > Kiei_jn(zh)| < sup lejn (2, h)|-
j=0 Jj=1,...,2

If |h| < Mp/4(1Vc) and z € Ay, we show that usmg induction, we have
|fn (z h)| <Mnforallz€N Whenz—O |f (z h)| = |h| £ M, and if

|fn (z,h)| < M, for j =1,. — 1, then
19 (2 )| < I( (2, h) (z)) = K'(h = W(2)| + [Wa(2)| + r'|h — Wa(2)|
M, M,
4y n o
4 + 4 + 2 M.
Hence the claim of the lemma follows for M/, = M, /4(1V¢). O

We note a few comments about the lemma. The matrix K is called the
rate matriz. The rate matrix K has the form K = P~'AP for all algorithms
in this paper, where P is a nonsingular matrix, and ||A|ls = r < 1. Then,
K| < ||P||||IP~t||r¢. Therefore, r is considered to be the upper bound of

the convergence rate of f,gl) (z,h). This r is called the rate of convergence of
fn:

Consider we want to compare two random functlons fn,1 and fy 2 with
the rate matrices K1 = P AP, and Ky = Py A2P2, where P; is a non-
singular matrix, and ||As]|2 < 1 for 4 = 1,2. The random function f, o is
preferable if ||A1]]2 > ||Az]|2, since the convergence rate of f, 2 is better than
that of fn,1~

Theorem 1.1. cht'Assumptions 1.8.1 and 1.3.2 be satisfied. Then for some
My — oo, for fn(z,g) = arg maX|p|< M, Qz,g,hn, we have :

e |(Fn(z, h) — I(00) ™" Zn(x)) — (I13(80)T211(80)) (A — I(80) " Zn(2))| = 0py o (1).
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In particular, for f(o)(:v, h) = h and f(ZH)( h) = fn(ac f(z)(x, h)) (¢ =
0,1,2,...), the following value tends in probabzlzty to 0 for some M), — oco:

sup sup |(f (2, h) — 1(60) ™" Zn(x)) = (I3 (80) L1 (80))" (h — I(60) ™ Zn(x))]-
|h|< M, iEN

Proof. Let yin(g) = I12(60) ™ (I31(60)g+ Zy). Then @m’g,h,n can be written
in the form: :

~5{h = 1n(9), 11 2(60) (h — n(9))) + Cn(a,9),

where Cp(x, g) is a constant which is not depend on A. Let
" :
Ien(g) = {h € R%; (= bn(9), 11,2(60) (h — pn(9))) < €}

Let r = || 11,2(60)~ 11'2|1(490)H2V1 and Ryn = Supjg| ni<2r, |Qz,g.0n—Qu g hnl-
If Ry < €, and |Il2(60)Z | < rMy, then f,(z,9) € Izcn(g) for any
lg| < Mh, since if h = fn(z,g) € Izen(9)° N B, (0), then

Qxag Hn g) n > Qx’g #n(g)vn —€= Cn(z, g) —€ > @ 7g,h n + € > Qw)g7hn'

Let s be the smallest eigenvalue of I1 2(6p) which is not 0. If h € Igen(g)
we have |h — un(g)|? < 2¢/s. Since € > 0 is arbitrary, the first claim follows.
Using Lemma 1.1, the second claim is easy corollary of Lemma 1.3. O

We state few comments about the theorem. The above sequence fr(f) (z,h)i=
L,... are equal to the sequence of EM algorithm starting from h in Py -
probability. Therefore, we can replace f,(z,g) by the one step of the EM
algorithm from g.

The local convergence rate of the EM algorithm is determined by J () =
Jo(6o) = I7 21(00)I2|1(00), which was already suggested by [7] and this fact
was used in a lot of papers, though we can not find any theoretical vahdatlon
The matrix 17, (90)1211(90) is the rate matrix for the algorithm.

1.3.2 Multi-Stage EM Algorithm

There are a number of multi-stage EM algorithms. We consider one of
them, the ezpectation-conditional mazimization (ECM ) algorithm, which
was introduced in [27].

Let © = ®F_,©;, where each ©; is an open subset of R% and "%, d; = d.
Using this representation, we write 6o = (fo,1,...,00%) and Hy, = ®Z=1Hn,,~'.
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We also divide d x d-matrix M into k2 partitions and define diag(M), M
and M*" as the definition after Lemma 1.1.

For simplicity, we use the notation him = (hy, hit1,...,hm) for a se-
quence h = (hg, h1,...), and for I,m € Ny, I < m. :

The algorithm is defined as follows. Assume that we have an observation
z from Py,. First, fix any A% = (h?,...,A2) € H,, and go to step 1.

Step i The step consists of further k£ + 1 minor steps, one E-step and k Con-
ditional Mazimization-steps (CM-steps).

E-step Calculate the value Q, pi-1., : H, — R. Go to 1st CM-step.
jth CM-step Find f € H, ; that maximize

Q hl 1 (hlj 17f1 ]+1 k) n’

and set h; = f. If there are more than two maximizers,
select one of the nearest maximizer from A*~1. Go to j + 1th
CM-step if j < k and go to step 7 + 1 when j = k.

We call (hi = hg,in;i € N) the sequence of the ECM algorithm (starting
from A?).
Note that, by deﬁmtlon, we have

Qm,g,(h1:i—1 yfrGit1:k),m

- J(f,fl 2(00)iif) +C

fa Zn i+ ZI2|1(00)'L i95 — ZII 2 90 z]h - Z Il 2(90)1,].9])

i<t J>i

where C'is a term which does not depend on f. The above function with re-
spect to f takes the maximum at f = (Il,g(eo)i,i)—l(Zm—zm I 5(00)i,;h;—

> j>i 11,2(00)1,595 +Z;c 1121(60)i,595). We will show that each maximization

of Q a b=V (B T ) with respect to f is almost equal to the maximiza-

tion of Qx7hz—1,(h1 svbRiLn Therefore, starting from g € R, after one

"~ E-step and k CM;steps, we have h € RY as follows as the result of one step -
iteration: ‘

h~E™Y(Z, - (C' = E)h — (C* — E)g + By),
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where B = I (fp), C = I 2(6p) and E = diag(I12(6)). We have Clh ~
Zn+(B+E—-C%)g = Z,+(C* —A)g, and hence, h—1(60) ™' Z, ~ J1(60)(g9—
I(60)~1Z,), where -

J1(60) = (I1,2(80)") " (T1,2(60)" — I(60))
This is the rate matrix of the algorithm.

Corollary 1.1. Let Assumptz’dns 1.8.1 and 1.3.2 be satisfied. For some
M, — oo, and for fn : Xy X H, — R? such that for h = (h1,...,hg) =
fn(x,g),

hy = argmax| <, Qz,g,(h.i-1,fgir1a)m (¢ =1, d),

we have

Sop |(fa(,9) = 1(80) " Zn(x)) — J1(80)(g — 1(80) ™ Zn(2))] = op, . (1).
9|<Mn

In partzcular fn )(x h) = h and f(H_l)(a:, h) = fo(z, (Z)(x, h)) (i=0,1,2,...).
the following value tends in probability to 0 for some M, — oco:

sup sup (i («, h) = 1(80) ™ Zn(x)) — J1(80)*(h — I(60) " Zn(2))!.
[h|<M, i€EN

Proof. For any i=1,...,k and |g| < My, let

fri(2, 9, hi1) = argl Hllglt)f[ Q"’,g (h1:i—1,R4:9541:8) M
Z

Using the same argument as Theorem 1.1, taking

gn,i(x,g>h1:i—l) (Il 2(90)11 nz 2112(90 Uh 2112(60 ,jgj+ZIz|1 90 1193)7

J<i J>i

the following value tends in P n-probability to O:

g sup '(fn,’i(x> g9, hl:i—-l) - gn,i(x, g, hl;i_l)l = OPO,n(l)'
|91, Am | < My, 1<I<k, 1<m<i—1 :

Therefore, we have

Sop |(£a(z,9) = 1(60) ™ Zn) — J1(60)(g = I(60) " Zn)| = 0Py, (1).
9|<Mn, ’ .

Let C = I 2(6p) and A = I(fp). Using Lemma 1.2, the second claim is easy
corollary of Lemma 1.3. , O
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We note a few comments about the corollary. We can insert E-step after
each CM-step in ECM algorithm, which is a special case of Multi Cycle ECM
(MCECM). Let

T2(00) = (diag(oy1(6o)) + I(60)") ~*(diag(Ta1(60)) + 1(60)" — I(60)).

Let C = diag(Iy1(00)) + I(6o) and A = I(fy). Then, using Lemma 1.2,
we can prove the same conclusion for the algorithm as Corollary 1.1 if we
replace J1(6y) by J2(6p).- :

We can compare these algorithms by the largest eigenvalue in absolute
value of the rate matrix. The order of the largest eigenvalues vary with a
change in the matrices, I(6y) and I5;(6o) (see [26]). We do not treat this
comparison in detail in this paper.

1.3.3 Point Estimation

We assume an estimator T}, : X, — H, to hold the following tightness
property: for any € > 0, there exists § > 0 such that

limsup Py (T € B5(0)€) <e.

n—oo

If the estimator is non-localized, that is, T), : X,, — ©, then assume the
following: for any e > 0, there exists § > 0 such that

lim sup Py, (n*%(T,, — 60) € Bs(60)°) < . (1.1)

n—oo

Corollafy 1.2. Let Assumption 1.8.1 be satisfied. Let K = P 1AP be

a d x d-matriz, where P is a nonsingular matriz and |||l = r for some

r < 1. Assume (1.1) holds for the mazimum likelihood estimator T, = én

and Ty, = Oz 0 = 0o+ hx,o,nn_l/ 2, Assume there exists a random function
fn: Xy x Hy — R2, such that for some My, — oo we have

sup sup| (£ (z, h) — I(60) ' Zy) — K'(h — 1(60) ™" Zn)| = 0p, (1),
[h| <My i€N ,

where £ (z,h) = h and f§70 (2, h) = fulz, fO(2,h)). If Oain = 00 +

,(f)(x, hzon)n~ Y2, then for any m, — oo, nl/Z(HI,mn,n 0,) = op, ,(1).

Proof. Easy. ) : O
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1.3.4 Some Extensions

There are a number of methods which speed up usual EM algorithm. These
speed up methods are divided into two groups. One group consists of those
methods which have a monotone convergence property (for example, [28]),
and the other consists of those which have not (for example, [20]). Even for
our large sample framework, which we only consider local property around
the true parameter, there are large differences between them. With the exis-
tence of monotone convergence property, our framework may be applicable
even in the case that we can not find a good initial guess hg o, since the
algorithm will modify the value to some good values as the number of the
iteration goes to infinity. In this subsection, we only consider one of the
former methods.

In this subsection, we assume that the parameter spaces ©, H,, can be
divided into two components @(a),H,(,a) € Rda,@(b),H,(,b) € R% and © =
0 x el H, = HT(La) X H,S”). The parameter space H,gb) is a dummy space,
that is, Pin, ny)m = Plha,gy)ns Where hg € H,(;’) and hp,gp € H,(Lb). The
parameter space ©® is © and ©®) has only one element in the previous
subsections. Therefore, the parameter space © in the EM algorithm we
considered should be replaced by ©(® in their notation.

Let 6o = (61%,6%). The PX-EM algorithm which is defined in [22],
is exactly the same procedure as in Subsection 1.3.1. In the notation of
the present subsection, the values in the space ©® is fixed throughout the
iteration in the EM algorithm. Note that in the PX-EM algorithm, the user
define the value Oéb). :

Let I(6o) and Io)1(fo) be d x d-matrices and I,2(60) = I(60) + Io1(6o)-
Let (Zn; X — R9) be a sequence of random variables.

For any d-dimensional vector h, we divide h into two parts, hq € R
and hy € R% such that h = (hg,hy)T. For any d x d matrix M such as
I(6o),I1,2(60), we divide M into 4 small matrices M;; (4,5 ‘= a,b), where
M; ; is a d; x d; matrix.

Assumption 1.3.3. The matriz I (60)a,q is a positive definite d, x d,-matriz,
and 1(00)a,b, 1(60)b,a, 1(00)s,p is 0. The matriz I5;(6o) is a positive definite
d x d-matriz, and I 2(60) = I(60) + Iy (60). A dy-dimensional sequence of
random variables (Zn;n € N) is Py p-tight.

Let popn = (I1(60) 55 2n, (I (90)£§)b,aZn)T. This value behaves as if it were
a MLE in the following corollary.

Corollary 1.3. Let Assumptions 1.3.2 and 1.3.3 be satisfied. Then for some
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My, — oo, for fo(z,g) = arg maxjs <, Qz,g,hn, we have

sup |(fn(z,h) = pan) — (11721(90)12!1(90))(}" = Ban)| = OPO,'n(]')'
|R|<Mp

In particular, flo)(m, h) = h and fy(,Hl)(x, h) = fu(z, f,(li)(z, h)) (:=0,1,2,...).
the following value tends in probability to 0 for some M,, — oo:

sup sup |(£{(z, h) = pan) — (I3 (60)Ia1(60)):(h — pi,n)|-
|h|< M}, i€EN

- “We note a few comments about the corollary. Since D = I 1 (60)I2j1(60)
has a form such that Do o = (A+ E)71E, D, = 0, Dy, = —(B_l)bﬂADa,a
and Dy = I, where A = I(60)a,a, B = Iy1(60) and E = Ba g — Bap B} Bya,
the following value tends in Py ,-probability to 0:

sup sup |(f(z,h)q — I(00)5 2 2Zn) — DE 4(ha — I(60) 71 Z)],
|h|<M}, iEN

where f,gi) (xz, h) = ( 2 (z, h)q, AY (z,h)p). Therefore, if we concentrate on
©,, the rate matrix of the model is Dg4. The model we considered in
Subsection 1.3.1 can be considered to be a restriction of the model to ©,.
Then, the rate matrix of the EM algorithm in Subsection 1.3.1 corresponds
to (A + Bgq) 'Bag. Then, the largest eigenvalue of the rate matrix of
PX-EM algorithm is smaller than that of the EM, since A~'/2B, ,A~1/2 —
A~1Y2EA-1/2 is positive definite. It means that in this sense, the PX-EM
algorithm is more efficient than the EM algorithm.

1.4 Independent and Identically Distributed Ob-
servations

- We consider the case of independent and identically distributed observations.
We take two parametric families (X, A, Pp; 0 € ©) and (Y, B, PQI; ;0 €0,z €

z,
X). Let 6y € © and H, = n1/2(9 —6p). We also take an experiment &, =
(Xny An, Pons h € Hy), where X, = X", A, = A" and Py, = Py s hm-1/2°
We assume some properties for the parametric families.

Assumption 1.4.1. There ezist a o-finite measure p on (X,A) and a fam-

ily of o-finite measures (,ug]l;:v € X) on (Y,B). We have Py < p, and Py

has a density dPy/du(z) = pe(z). We have Pi'; < ,u,;%ll, and Pi'ol has a

density de’lg / dui“(y) = pil,é(y).
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Assumption 1.4.2. For any B € B, lel(B) : X — [0,1] is A-measurable
and p’ '1(-) is A X B-measurable for any 6 € ©.

Under Assumptlons 1.4.1 and 1.4.2, let pi2(z,y) = ps(x)p“(y) and
ps = ps s, and let

1,2

Qs,t(x)zfylogp—’i%—; p2|1(d)

S )
We define u12(dzdy) = p(dz)p2 (dy).

Assumption 1.4.3. For § = 6, there ezist functions g : X — R? and
772'; Y — R? (z € X) such that, 77_’ ( ) is A x B-measurable and

/ |v/Pon(x) — v/po(z) — (ne(z), B)|? u(dz) — 0,

|2

pt?(dzdy) — 0 (b — 0).

2/1
/ VP5aen(@ ) = /057 () — (25 (), 1)
XY |h|2 ’
Under Assumption 1.4.3, we define matrices I(8) = (1(6); ;4,5 = 1,...,d)
and Iy (0) = (I31(0)i,5;4,5 =1,...,d) such as

1(9)s; = 4 /X 0,6(2)10,3(2)1s(d), (1.2)

Ii(0)i; =4 / e (W2 (b2 (dady),
AXY

where n(z) = (ng,1(x), ..., mp,a(z))” and 2y <y> (251 @), - 2y J)T
The following result is due to [15].

Lemma 1.4 (Hajek). Let Assumption 1.4.1 be satisfied, and for p-almost
all z, pe(x) be continuously differentiable around 6y. If py(z) exists and
po(z) > 0, let mo(x) = pj(x)/2pe(2)'/?, and ng(x) = 0 otherwise. Assume
the Fisher information matriz (1.2) exists and continuous around 6y. Then
the first condition of Assumption 1.4.3 follows. '

The following lemma is a simple modification of the above lemma.

Lemma 1 5. Let Assumption 1.4.1 be satzsﬁed and for pb —almost all
(z,y), let peo o(x y) be continuously differentiable around § = 6. If peo e(ac y)
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, 1,2 2/1 1,2 (1,
ezists and Peo,o(way) > 0, let nx!oo,e(y) = (poo 0(37,y))l/z(p;(fe(x,y))lﬂ; and

let 772161, 0(9) = 0 otherwise. Let 772':;0 772‘:)00 Assume for pb2-almost

all (x y) the Fisher information matriz I2|1(00, 0) = (Iy1(00,0)i45%,5 =
.,d) such that

2|1 2|1
4 /X N L L ()b (dedy)

. o 201 . 21 201
ezists and continuous around 0 = 0y, where 77¢|00 0= (nw|90 0.1 ,nmleo 0k)

Then the second condition of Assumption 1.4.3 follows.

Assumption 1.4.4. There ezist some € > 0, and some M € L?(P,,) such
that for any s,t,u,v € B¢(0y), we have

1Qs,u(z) — Qrw(z)] < M(z)(]s — t|2 + |u— 'U|2)1/2~

In the following lemma, we use

2]1

2|1 pm t 201
Qi) = | 1og S dP'(d)
Dz, s
We also define
n
Qw("),g,h,n = Z Q00+9n-1/2,00+hn_1/2 (:131),
i—-l »

2|1 2|1 .
(L‘("),ghn ZQeo_l_gn—l/'z,eo_'_hn_l/z(.'Ez),

where (™ = (z1,...,2,) € Xp.

Lemma 1.6. Let Assumptions 1.4.1, 1.4.2 and the second condition of As-
sumption 1 4.8 be satisfied. Then for any g,h € R9,

2/1 201 2 o
>/ \/pr,eo+gn_l/2<y>—\/p;,eﬁhn-m( ) iy (13)
i=1

tends in Popn-probability to (g — h, Iy (60)(g — h))/4.
Proof. If pg,(x) # 0, then let

2|1
— - B Mz.6 (y)
ngl) (1;) y) = \/pxli,00+gn—l/2(y) - \/pmi,90+hn—l/2 (y) —-n 1/2<g - h7 pﬁ/g(m) >7
. 90
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and s )( y) =n"Y2(g—h, n2|1 (y )/pe/ (z)). If pg,(z) = 0, then let s( )=

a:,00

3}12) = 0. Then (1.3) is Py p-almost surely

n
> / st (i, ) u2l (dy) -2 / s (i, y)s@ (i, y)u2l (dy)+ / @ (@i, )22 (dy).
i=1

The first term tends in Py ,-probability to 0 by the second condition of As-
sumption 1.4.3. The second term also tends to 0 by the Schwarz inequality.
The last term tends to

/ (g~ b ()24 (dady)

in Pyn-almost surely by the law of large numbers, and it is equal to (g —
h, I51(60)(g — h))/4 by the second condition of Assumption 1.4.3. O

Proposition 1.1. Let Assumptions 1.4.1-1.4.3 be satz’sﬁed Then, as n —
0, Qugin = Qg 070, (1), where Zn(x) = nV/2 I g, () /i (x:)
if p;.c/)Q(:ci) #0 (i =1,...,n) and Zn(z) = 0 otherwise. Moreover, under
Pon, Zn = N(O, I(eo)), and limy, PO,n(Qz,g,h,n) - PO,n(Qz,g,h,n) =0

Proof. By definition, Qg nn Qx g hn T (108 Ly n(z) —log Lgn(z)), where

Lp,, is the likelihood ratio, that is, log Ly (z) = 37, log(Pg, +hn-1/2 (i) /Doy (21)).
By the expansion of the likelihood ratio, such as Theorem 12.2.3 of [21], the
second term is

Lin o1, 1,
log 7 = (k= g, Zn) = 5{h, I(60)) + 5 {9, I(60)g) + 0, . (1)
g,n

and Zj tends to N(0,1(6p)) in Py ,-distribution. We consider an expansion

of Qzl’;, . Let
21
pm,00+hn—1/2 (y)
tg,h,n(x, y) = 2|1 - 1’

Py 6o+gn-1/2 (v)
2|1 2|1 .
then log(pgc',(,0 +,m_1/2(y)/px[90+gn_1/2(y)) = 2log(tgnn(z,y) + 1). Using a
Taylor expansion, we have '

|
log(y+1)=y— 5@/2 + y2r(y)
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where 7 is 0 < r(z) < 1/2 and r(z) — 0 as z — 0. Therefore, Q2|1 is

z,9,h,n
| 2(2}sélin<wz> — 552 () + 59 @),
where |
Sg(;f)z,n(x) = /tg,hn(w Y) x00+gn‘1/2(dy)
D@ = [ Buan) Pl
@) = [ rConn@ ) @) o).

By Lemma 1.6, we have

n
2
2nghn<xz Zsﬁ,},,n () — g{h— g T (60) (. )
=1
in Py ,-probability. We show that E s (x;) also in Py, probablhty to

z—l g h,n
0. The integral [ x, Pon(dz)| 327 (x;)| is bounded above by

zlghn

1,2
n/XXy (tgnn(z,y) (\/pgo 00+hn—1/2(33ay \/Peo Bo-+gn—1/2 (z, y)) (dzdy),

and the integrand is also bounded above by the sum of the following three
terms:

n 21 2
5 (\/ 00 Oo+hn—1/2 (SL' y \/pgo 6o+gn—1/2 (Il? y) -n 1/2<h -9 nz[oo(y») ’

nl/2

S (V8 m-r2@9) = 03 s s (20) = 072~ g, ())
x <h — 9,15 (),
r(tonn (@) (h — 9,725 (1))

The integral of the first term tends to 0 by Assumption 1.4.3, and the
second term also tends to 0 by the the Schwarz inequality. The convergence
of the last term is by the Lebesgue’s dominated convergence theorem since

7(tg,nn(,y)) tends in P‘g1 20 +hn—1/2-Probability, hence in Pelf-probability to

0. Therefore, Qugnn — 108 Lpn/Lgn — —((h — g),I51(60)(h — g))/2 in
Py »-probability and hence the first claim follows.
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The second claim about Z,, is obvious. We consider Pon(Qz,ghn —
log Lin/Lgn) — —((h—g), I (60)(h—g))/2. This proof is almost identical,
and we omit the detail. The convergence Py ,(log Lpn/Lgrn) — —(h,I(6)h)/2+
(9,1(60)g)/2 is obtained by a likelihood expansion theory, hence the third
claim follows, since Py (Zy,) = 0. O

Next we show that under Assumptions 1.4.1-1.4.4, Assumption 1.3.2
holds. We use the following maximal inequality to prove the fact. The
~ maximal inequality was studied for example, in [32], and this version of the
following lemma is from [41].

Consider the space L?(Z,C,P) = L?(P) with the L?norm ||f|: =
([z f(2)2P(d2))Y? (f € LQ(P)). The bracket [f,g] is a subset of L?(P)
which is defined as [f,g] = {h € L?(P); f(2) < h(2) < g(2)}. We call
~ the bracket [f,g], e-bracket if ||f — g||z2 < e. For any subset F of L2(P),
and for any § > 0, the bracket number N} (6, F) is the smallest number of
d-brackets needed to cover F. The bracket integral J 1(6, F) is defined as

)
J1(6,F) = / (log N[ | (e, F))Y/?de.
0

Lemma 1.7 (Maximal Inequality). Let F C L?(Z,C, P). Assume that for
some & > 0, there exists M € L%(P) such that |f| <M (f € F). Then we
have for some C > 0,

n-1/2 /X ] Pn(d(zl,..',xn))supIif(wi) - P
“Ml{M>n1/2a(6 }||L2
a(9)

where P and X™ denote the n product of P and X and a(6) = 6/(log(N (8, F))V
1)1/2, »

< C(J[ ](5 F)+

),

The following proposition is a simple modification of Theorem 5.39 of
[41].

Proposition 1.2. Under Assumptions 1.4.1-1.4.4, Assumption 1.3.2 holds.

Proof. Fix any compact set set K C R?%. Let Qutn = Qutyton and
Quitn = Qutytsn (t = (t1,t2) € K). Note that we have

Qw,t,n - am,t,n - PO,n(Qm,t,n - @x,t,n) = 0Py, (1) (1'4)
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for any fixed t € K, by Proposition 1.1. In fact, the left hand side of
(1.4) tends in Py,-probability to 0 uniformly in ¢ € K. It is enough to
show the tightness of the left hand side of (1.4). Since the tightness of
Qz.n — Pon(Qy.p) is clear, we show that for any 7,e > 0, there exists ¢
such that

lim sup PO,n( sup le,s,n - Q:c,t,n - PO,n(Qx,s,n - Qw,t,n)l > 6) <.
n—00 |s—t|<é,s,te K
(15)

Let gnt(z) = n1/2Q00+t1n_1/2790+t2n_1/z(av) for any x € X and ¢t =
(t1,t2) € K. Let FS = {gn;s — gns;t,s € K, |t — s| < 6}. Note that for
any f € F2, we have |f| < 6M. By Example 19.7 of [41], we have

Np (8¢ M|z, ]—“‘5) < CeH* (0 < e < d).

Therefore, we have

5

1
S|l
J1(61, ) = 6| M]| 2 /0 N ell M| 2, FE) de

1

3,2
< 6[{M||Lz/ ¥ V/—4dlog e + log Cé4dde
: 0

and the right hand side is bounded above. For any €¢; > 0, we can choose ;
such as J| ](61,.77,‘2) < €.
By Lemma 1.7, we have

| POn(supn 1/2|}:f(:cl) — Pyy(f)] > €)

i=1
< e—ln—l/Z / PO,n(d(xla Z2,.. Sup | Z f(xl P00 f)l

||M1{M>n1/2a(51)} ”Lz )
a(d1) '

The second term tends to 0 in the limit » — oo and the first term is bounded
above by Ce le;. The real number ¢; is arbitrary, hence the above value
tends to 0, and (1.5) holds. O

< e (61, FD) +



Chapter 2

“Asymptotic Properties for
the Gibbs Sampler

2.1 Introduction

In this chapter, we address some asymptotic properties for the Gibbs sam-
pler. The main results in this chapter are convergence theorem, validation
of a speed up method and its application to independent and identically
distributed observations. '

The convergence property for finite sample size has already been estab-
lished, which is based on the ergodicity of Markov chain (see [39], [23]). The
Markov chain made by the Gibbs sampler is Harris recurrent under fairly
general assumptions, and moreover, the chain is sometimes geometrically
ergodic. This convergence property is concerned with the behavior of the
Gibbs sampler in the region far from the true parameter of the parame-
ter space. This meaning of convergence can be considered to be a global
convergence. , ' ,

On the other hand, in the present paper, we address some properties
of the behavior of the Gibbs sampler around the true parameter. This
convergence property is a local convergence property. Therefore, these two
kinds of convergence are different properties for the Gibbs sampler and both
of which are useful. ~ ‘

The relative merits of the local convergence are as follows. In the present
study, we approximate the Gibbs sampler by a simple transition kernel,
which is defined by the score statistic and matrices which are related to
the Fisher information matrix. Therefore, we can measure the convergence
rate of the Gibbs sampler by simple statistics, and we can compare different

19
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kinds of Gibbs samplers by these simple transition kernels.

The most important assumption of our results is that, the initial guess
of the sequence of the Gibbs sampler is 6y ~ v, such that vy (B, (60))
tends in probability to 1 when n=Y/2M,, — oo for some M,, — oo.

In this chapter, both probability measure and transition kernel may de-
pend on the observations. We will assume the following measurability condi-
tions for those. Let (Z,C) and (7', T) be measurable spaces. In this chapter,
we assume that any family of probability measures v = (v,(S),z € 2,5 € T)
satisfies the following:

1. For any S € T, v.(S) : Z — [0,1] is C-measurable.
2. For any z € Z, v, is a probability measure on (T, 7).

A probability transition kernel K = (K,s(S);z € Z,s € T, S e 7T)is a
function such that: '

1. Forany S€ 7, K..(S): ZxT — [0,1] is C X T-measurable.
2. For any z € Z and s € T, K, ; is a probability measure on (7, 7).

We use the following notation about the kernel. If K has an invari-
ant probability distribution, we write it as K,. Fix z € Z. Let sq, s1,...
be a sequence of the Markov chain from K, .(-). Then we write the joint
distribution of (sg, ..., s;) depending on the distribution of sy as follows:

K gc;l) if so ~ v,(dt),

KED i o~ 85(dt),

Z,8

K% if 5o ~ K.

Itk = l, we write them as K f,,,, K f s and KF respectively. If K and v
does not depend on z, we drop z from the above symbols. Note that we
have K 27,, = v, by definition. '

2.2 Regular Statistical Experiments

Suppose © is an open subset of R%, and 6y € ©. The parameter space
© is equipped with its Borel o-algebra F. The element 6y will be used
as the true value of the following model. Consider a family of statistical
experiments €, = (X, An, Phn;h € Hy), where H, = n'/2(© — 6p). We set
Hp, = n'/2(F - 6p).
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We also consider other two families of statistical experiments &%ll =

(yn,Bn,Pj";,n;x € Xp,h € Hy) and E3% = (X X Y, An ¥ Bn, Py g, h €

H), where P72 (dz,dy) = Pyn(dz) P2} (dy). Let Py2 denote P2 .

Let (Fppn;z € X,), and (le,lg,n;x € An,y € Yn) be families of proba-
bility measures such that each F, and le,|2,n are probability measures on
(Hp,Hy). In Section 2.3, these families will be families of posterior distri-
butions.

We assume the following measurability condition.

Assumption 2.2.1. For any n € N and B € B,, P.?.l,L(B) is Ap X Hp,-

measurable. For any H € Hy, F. ,(H) is An-measurable, and F}%(H) 18
A, X Bp-measurable. ‘ .

2.2.1 Two-Stage Gibbs Samplér

We define the simplest Gibbs sampler. Assume we have an observation z
from- Py p,.

Step 0 Set ho € Hy, then, go to Step 1.

Step i Generate y; from pat Then, generate h; from FQ} 2 n and go to
P Yis

h’i—lﬁtan.
Step i + 1.

This procedure defines a Markov chain hg, h1, ho,.... Let F, . ,() =
Fou (") = (Fpnn(A);h € Hy, A € H,) denote its transition kernel.

Let I(6o) and I5);(6o) be d x d- matrices and (Z, : X, — R%n € N) be
a sequence of random variables. Let I15(60) = I(6) + Io1(6p). We assume
the following condition.

Assumption 2.2.2. The matrices 1(60) and Iy (6o) are positive definite
and (Zn;n € N) is tight with respect to Po,.

We are going to show that the transition kernel Fy ., tends to a simple
transition kernel of the following Markov chain hq, hy, ho, .. ..

Step 0 Set hg € RY, then, go to Step 1.

Step ¢ Generate g; from GZZB h;_, Where

G2} = N (I (60)h + 2, I (60))-

Then, generate h; from G}]lz = N(Ilg(eo)—lgi, 11,2(90)_1). )
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This procedure defines an AR process such that
hi — pn, = J(GO)(hi—l - ,U'n) + €n,

where pn = I(60)™ Zn, J(60) = I12(60) 151 (60) and (e;;i € N) is a
sequence random variables of independent and identically distributed as
N (0, I1,2(60) " Iy (B0) I1,2(60) ™ + I1,2(60)71).

- Let Gopn()) = Gog,n(-) = (Gonn(A);h € RE, A € B(R?)) denote the
transition kernel, which is '

Gahn = N(I1,2(00) "' (1211 (60) h+ Zn), T1,2(00) " Inj1 (80) I1,2(60) " +11.2(60)1).

For any probability measures P,Q on (Z,C), the Helhnger distance
H(P,Q) is defined as

HP,QP =3 [ (Vo) - ) ulde),
2€Z

where p is a o-finite measure on (Z,C) such that P < pu,Q < p and
p = dP/du, ¢ = dQ/du. Note that the Hellinger distance is smaller than 1,
and ‘

SIP — Qllv < H(P,Q)(2 — H(P,Q))2

Lemma 2.1. Let a, c be d-dimensional vectors, and B, D be positive definite
d x d-matrices. Let P = N(a,B) and @ = N(c,D). Then

H(P,Q)* =1 — det((B + D)/2)"/2 det(B)'/* det(D)"/*

X exp(—%(a —¢,(D+B) Ya-c)).

Proof. By definition, we have

H(P,QP=1- / é(z;0, B)*$(a;c, D) ?de
- Jre

_1 _/ det(BD)~1/* o~ (@-a,B 1 @-a)+@—eD2@—c)) /44,
R4 (27T)d/2 '

=1—det(BD) Y*det((B™ + D~1)/2)"1/2eF/4,
where R is

(B~ la + D_lc, (B'+ DY Y(B7la+ D)) — (a, B la) — (¢, D).
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Taking E = B~! 4+ D!, the first term is

(Ea+ D c—a), E"YB Y(a —c) + Ec))

=—(a—¢,DT'E7'B  a~¢)) + (D7Y(c—-a),c) + (a,Bra+ D).
Since D'E~'B~! = (D + B)~!, we have R = —(a — ¢, (D + B)"}(a — ¢))

and hence the claim follows. O

Lemma 2.2. Let X,Y,Z be d x d-matrices. Assume X and Z are positive
definite matrices. Let Il = N(0,X) and let V : R? x B(R?) — [0,1] be a
transition kernel such that Vi, = N(Yh,Z). Then ,

(a) 11 is the invariant probability measure for V if and only if Y XYT+Z =
' X. In particular, X — YXYT is positive definite.

(b) Assume II is the invariant probability measure for V, and there exists
a constant r < 1 such that there exist non-singular d x d-matriz P and
d x d-matriz A satisfyingY = P~YAP and |A||o = r. Then there exist
constants c1,co > 0 such that

I = Villzv < (e1 + e2|h?)r* (h € RY),
where V! is defined by Vi(-) = [, Vit (dg)V,(-) fori > 1 and Vi = 6.
Proof. The distribution [, II(dh)V4 is N(0,YXYT + Z). Then the first
claim is apparent.

We show the second claim. Let a = 0,B=X,c=Yh, and D =
X -YiX(Y")T. Then Il = N(a, B) and V} = N(c, D). We have

2730 - Vi3 < H(IL,Vi)? < 1 —det(B~Y/2DB~1/2)1/4 exp(—i—c’(D +B)7 L)
<1—det(B-Y2DB- /214 41— exp(—-ji(c, (D +B)"'¢))
<1—det(B~Y2pB~Y/2)1/4 4 i(c, (D + B) ¢),

since det((B + D)/2) < det(B). We calculate the upper bounds of 1 —
det(B~Y2DB~1/2)1/% and (c,(D + B)1¢c).
The matrix B~Y/2DB~1/2 = [ — X~1/2yiX (yH)T X~1/2 is positive defi-
nite, and if A is its eigenvalue and wu is its eigenvector, then
(1= M| = | X7V2yiX (vHT X2y
= |X"V2PTINPX(PTIATP)TX 12y
< X TBIPIB NP IBIX 2l Al ol
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Therefore, there exists a constant ¢ > 0 such that 1—Al<cr¥ LetneN
to be cr?* < 1 and let Aj,..., \q be the eigenvalues of B~/2DB~1/2, Then
for any i > n, we have

- 0<1—det(B™Y2DB /)14 = H)\l/4 <1—(1—er®)¥4 < %

for some c* > 0. Then there exists c1 > 0 such that 1—det(B~Y/2DB~1/2)1/4 <
273¢1r% for any i € N.

Let Dy = X —YXYT. Then D; is also a positive definite matrix, and
we have (D + B) — (D1 + B) = Y(X — Y1 X (Y 1)T)YT is nonnegative
definite. Therefore, ||(D + B)~ |2 < ||(D1 + B)™!||2, and we have
(c,(D+ B)™'¢) = (Y'h,(D + B)"'Y'h) = (P*A'Ph, (D + B)"'P~1A*Ph)
< APTHEIPIZID + B)~Hl2lhlPr? < 2 %colh|?r®
for co = 23||P7112||PJ13lI(2X — YXYT)~ ||z > 0. Hence the claim follows.

Let Gy = N(I(00) ™ Zn, 1(60)7Y).
Corollary 2.1. The distribution Gy, is the invariant distribution of Gg.. .

‘Proof. Let we denote A = I(6y), B = I2|1(00) and C = I;2(6y). Since
C = A+ B, we have C"1BA™! 4+ C~! = A1, and therefore,

C'BAT'BC™'+C'BCT' +C ' =(CT'BAT + CT)BCT + O
=AT'BC' 40t =4"h

Hence for X = A™}, Y = C7'B and Z = C~!BC~! + C~!, we have
YXYT+Z=X. | O

We assume the following conditions.

Assumption 2.2.3. For any h € R%; P0 hon and P2 are mutudlly contigu-

ous.

TL

Assumption 2.2.4. For any bounded continuous fuhction f:R*—>R,a
sequence of random variables (anl X, x Yp — R%n € N) satisfies the
following property: ‘

[, Pt [ PR @nrz @) - [ ehamswi—o. e
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Let Z2? = Z, + Z21.

Assumption 2.2.5.

lim Py2(dedy) | FL2, — G2, |lvv = 0.

z,y,n 1,2
n=00 J . x Y, o

Assumption 2.2.6. For POn almost all x, the transition kernel Fy . n has
an invariant probabzlzty distribution Fy p and that

n—oo

lim / Pon(d2)||Fom — Ganllrv = 0.
Xn
Assumption 2.2.7. There exists § > 0 such that for any €, — 0,

. 2|1
lim | Pon(de)  sup P2 — P2 v — 0.
oo Jx, |h—g|<en,|hl,lg|<on1/?

We note a few comments for the above assumptions. Assumption 2.2.4
2|1| pat

whn) @nd in particular,

is the asymptotic normality condition of L(

(Zﬁll;n € N)is Pol,’,f—tight. Assumptions 2.2.5 and 2.2.6 are related to the
Bernstein von-Mises theorem for &, and &2. In most applications of the
Gibbs sampler, &, and &Y% are experiments of independent and identically
distributed (i.i.d.) observations or experiments of time discrete Markov
chains. For the case of i.i.d. observations, the sufficient conditions of As-
sumptions 2.2.5 and 2.2.6 are studied for example, in [1], [42]. For the case
of Markov chains, those conditions are studied for example, in [3]. See also
[16], [41], [6] and [13]. In a later section, we treat some sufficient conditions
for the above assumptions for i.i.d. case.

Let (T,7) be a measurable space, and ¥ be any index set. Let (|| -
7.3k € N,u; € ¥) denote a family of semi-norms satisfying the following
conditions for any k,l € N and uy,...,uxt; € 0.

1. A real valued function || - ||}, . is a semi-norm on the linear space
Sk = {v;v is a signed measure on (T*, T*) with ||v||7.v < oo},
that is, for any v, u € S and a € R, we have

12+ sl < Ml + el 0

le 3., < ladlivlly, .
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2. [, < llvllTv for any v € Sg.

3. Let (Z,C) be a measurable space. If K = (K, 4(S);2z€ Z,s € T*,S e
T') satisfies K, 5 € S; for any z € Z,s € T* and K.(S):ZxTF =R
is C x T*-measurable, then ‘

(&) 1K Iy, : Z % T* — R is C x T*-measurable.
(b) for any p € Sk, the following property holds:

116(d8) Kz, (A5 sy < (A B sl ) -

Example 2.1. Let ||v|y,, = v|lTv for any ui,...,uk. Then it satisfies the
above conditions if T is countably generated. '

Example 2.2. If ¥ is a set of T-measurable functions u : T — R such that
lu| <1, then

iy, = | -~ v(dz)ua(z1) - - ug(zp)|
z2=(21,...,2%)EZF o

satisfies the above conditions.
In the following lemma, we also assume for any s,t € T, then s+t € T.

Lemma 2.3. Let (Z,,Cn, Py) be a sequence of probability spaces. LetU. ., =
(Ussn(S);2 € Znys € T,S € T) and V. = (V4(S);s € T,S € T) be
transition kernels and vy, pizn be probability measures on (T,T). Let
(Wy @ 2, — Tyn € N) be a sequence of random wvariables. Suppose for
any | € N, there ezist a test wp; : Z, — [0,1] and a finite measure A; on
(T, T) such that (1——wn,l)Vzl%n(A—Wn) <MN(A) (A€ T) and Pp(wpy) — 0.
Assume for any s € T, we have

/ Pr(d2)|Uz s+ Wnm — Vsswn [l — 0,

n

/ Pn(dz)llyz,n_ﬂz,n”:; -0 (UG \I/)

Then

Z,un ENTR

. 0:k Ok)x
Jim [ Pa@) UG - VAR, =0
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Proof. The case k = 0 is clear by the assumption, since U§°,,°,2 = v, and

},‘Z;,?Z = lzn. We assume that the case k = [ is proved. Then

“U(O A4+1) V(O I+1)

z,V,n 2,157 “uO 41

= IS = VI (ds1:0Us sn(dsis1) + VD (ds10) (Us,sym — Vi) (dsis) g,

< U = VI + [ VEn @V = il
< “Uéol/lzl VYZ%,Z) ”qu /Al (dS)”Uz’s.{_Wn’n - ‘/:9+Wn ||’>lkl,l+1 + 2wn»l7
and hence the case k =1+ 1 follows. , O

Lemma 2.4. Let Assumptions 2.2.1, 2.2.2 and 2.2.4 be satisfied. For any
bounded continuous function f : R% x R — C such that 0f(z,y)/0z exists
and contmuous, the following value tends in Po,n-pmbability to 0:

| P i), 28w - [ i zao)o)
Yn

Proof. For simplicity, suppose |f| S 1. Fix C > 0 and consider a test
wn,1 = 1{jz,>c}- We will show that the supremum over |z| < C of the
following value tends in Py n-probability to 0:

| / P (dy) f (s 222 (x,y)) - / GCldg)fza)l (22

By Assumption 2.2.4, the above value tends in P ,-probability to 0 for
any fixed 2. Choose a sequence of subsets of Bo(0), C1 € Ca C ... such
that for each n € N the number of elements of C,, is finite and Bx(0) C
Uzec, Bn-1(2). Then there exists m,, — oo such that the supremum over
Cm,, of (2.2) tends in Py ,-probability to 0. Taking wy 2(x) = 1{z)>¢}, and
let M = sup, yec2 |0 f(x,y)|, then the difference between the supremum
over |z| < C and the supremum over Cy,, of (2.2) is bounded above by

2 / Pﬁ,'in(dy)wnz(zz' (z,y)) +2 / G2 dg)wng(g)+2m"1M

Then the first and the second term tends to 0 if we let C = C, tend to oo.
On the other hand, we can choose Cy, — oo such that the third term tends
to 0. Hence, the claim follows. ’ O
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Theorem 2.1 (Bernstein-von Mises theorem for Gibbs sampler). Let As-
sumptions 2.2.1-2.2.5 be satisfied. Then

Lk 1k
[, Pontda I 6858 0,

for any h € R® and k € N. Moreover, under Assumptions 2.2.1-2.2.6, we
have

| Pon@)IF ~ 64y — 0.
Xn

Proof. We show [Py, da:)||F(1:k) ap ||Tv tends to 0 by induction.

z,h,n
First, we show the case k = 1. By the trlangular inequality, we obtain

2|1
||Fx,h,n - Gm,h,n”TV = ”/ a:|hn dy)le,IyQ,n(’) - Gw,h,n”TV
, 2 1 1 2 2|1 12
< PohallE = G Rallr) + 1B (G2 ()) = Gapaliny.

The expectation of the first term in the right hand side tends to 0 by As-
sumptions 2.2.3 and 2.2.5. The expectation of the second term in the right
hand side is

dG |12 dG .
2|1 Zy _ %rzhn
/ Pon(dz)( /R | / ha(dY) o (2) - —ERR()|dz).  (2.3)

For any z, taking f.(z1,22) = ¢(2; I1,2(60) "  (z1 + x2), I1,2(60) 1), then

dG1|2

le : 2|1 ' xhn
dLeb ( ) = fZ(Z'mZn ) a‘nd dL b G (dg)fz ’Vl?g)

For any sequence C,, > 0, (2.3) is

2 | Poa(an [ (L cthanstzas - |, Rt (2 22) e
<2 / Poata) [ ([ Gl iz 0)~ [ P2 120, 22
24)

P / Pon(de) G n(d2).
Xy BC'n (O)C
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- Let G, = C. Since f;(z,y) is bounded above with respect to (z, z1,%2),
using Fubini’s theorem, (2.4) is

~/Bc(0/ Py (dx) / G dg)fz (Zn,g) — /yPﬁ,lit,n(dy)fz(zn,Zgll))/-“dz,

and the integrand with respect to dz tends to 0 by Lemma 2.4, and hence,
(2.4) tends to 0 by the dominated convergence theorem. Therefore, we can
choose Cp, — oo such that (2.4) tends to 0.

For any € > 0, take C; > 0 and w,, = 1|1 Za(2)>c1) to belimsup,,_, . Pon(wn) <
€. Since there exists a finite measure A, on (R? B(R?)) such that (1 —
wn )Gy hn(dz) < Ap(dz). Then we have

lim sup/ Po,n(dx)/ Ge,hn(dz) < limsup(Pon(wn)+An(Be, (0)9)) < e.
n—00 n Bc,, (0)¢ n—oo
Hence (2.3) tends to 0, and the case k = 1 is proved.

Next, we consider the general case. Fix any k € N. Let S; be a shift
of a kernel K such that, S;(K)(A) = Kp—s(A — s). Set W,, = I(6y) 12,
Ur,.n = Sw, (Fx,-,n), V. = Sw, (Goc,~,n)’ and‘ Ven = Mzn = 5h(' - Wn)-
Let Fypn = df0p (h ¢ Hyp). Then we can apply Lemma 2.3 and hence
the first claim follows. For the second claim, set vy = Fyn(- — Wy,) and
p=Gen(-— Wp). O

We state some comments about the theorem. The local convergence
rate are determined by the normal kernel G;.. . This fact was stated using
simple models by some authors (for example, [33]). By Theorem 2.1 and
Lemma 2.2, for some n € N, we have for any i > n,

|Fen — Fy plltv = Gam — GL p pllTv + 0R, (1) < Ver + C2|hl27“2’ + 0Py (

for some ci, co > 0, where r is the largest eigenvalue of J(6p). Therefore, 7
is considered to be the rate of convergence of the marginal distribution of
Fx,.,n.

2.2.2 Multi-Stage Gibbs Sampler

We define the Mult1-stage Gibbs sampler. Fix some k € N and di,...,di €
N such that E "1 d; =d. Let (6, F) = ®"_,(6;, F;) where ©; C R%. Using
this representation, we write (Hy, H,) = ®f=1(Hm~, Hpni), and

Zn(@) = (Znp (@), ., Zni(@)),

Zy2(z,y) = (2 2(:': V) es Zy i (3,1))-
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For each i = 1,...,k, let (FQ,I;,ZW x € Xn,y € Vo, h = (h1,...,hg) €

H,,) be a family of probablhty measure on (Hn i, Hn,;) which does not depend
on h;. We assume the following.

Assumption 2.2.8. For any i = 1,...,k, we have for Leb-almost all h €
RY,
[ Paaan | - Gl e o,

where G;!i’i (ge R% heRY) is

N(I2(00);7 O Dol 90)m —9), 12(60); ;)
JF#i

Note that G;Ei’i does note depend on h;.
Lemma 2.5. Let Assumptions 2.2.3 and 2.2.5 be satisfied. Assume Fy |y n

is absolutely continuous wzth respect to the Lebesgue measure for any n and
P —almost all z,y. Let f ,y, n(h) denote de,y,n/dLeb and if

Fal2  (husicq, Hog, higrk) = /H FH2 o (h1io1, 9, hitia)dg # 0,

_ then let
pli2i _ fa}g,n(hl:i—hg, hiy1k) d
x’yYhin( ) - 1|2
fm,y,n(hl:i—l, Hn,i> hi—i—l:k)
and F:cl |y’h n = 0f0) otherwise. Then Assumption 2.2.8 holds.

Proof. The following value tends in Pol, ﬁ-probability to 0 by Assumption
2.2.5:

/ |g;|§,2 (Pasie1, Hngy higrn) = fol2 0 (Rrict, Hug, Rigrn)|dhaio1dhig1g,
2.5)
Where 9, |1 5 18 dGlI2 »/dLeb. We define

9Z|1 2 (P1-1,w, hiy1:k)

(GY23 )*(dw) = Ly (Hy)

zh2p 12
Bt 9yva(hrim1, s higre)

dw.
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For any bounded set K c R?, and for a large n € N such that K C Hy,
we have

12 1|2, 1|2,
| / G;y(dh)uaz'l; - Fx'y,;nnw

1 2
" Zl 2(hlz 1>an>hz+1 k)

/ Gli2 (@dn)| fii (h1i—1, w, hip1:k) duw — FU2%

12 12 RS “TV
o le 2 (-1, Hn gy hiy1x) HLR
112 112, 102,

+ [ GG ) - 6% v,

The first term in the right hand side is bounded above by ||G1I2 ;,Izin v,
and the second term is bounded above by (2.5). Therefore, the first and the

second term tends in PO1 »-probability to 0. The third term is

/G1|2 dh)2 12(h1:i—1,Hni,hi+1:k)
1,2
? ;'122(’11@ 1, R%, hiy 1)

< 2Glzlf,2(Rd1 X oo X Hp i X - X R9%).

Fix C > 0 and consider a test w = 1 {1z4?>cy- Then there exists a finite
 measure A such that (1 - o.J)G1I2 < A. Then, the third term is bounded by

wH+ARH x - x Hf, x- de) Then we can choose C, — oo instead

of fixed C, such that the third term tends in P0 n-probablhty to 0. Hence
we have

/Po,,(dx / G1I2 2(dh) “C,vll%gh —F;Iyzfl;n”TV — 0.

Using the test w, there exists a constant ¢ such that Leb < ¢(1 —w)GIZIiZ

n

. on K. Therefore, we have

/K /Po,n(dx)nalzlf;;’ = FM2 iydh = 0.
Hence the claim follows. . Od

Assume that we have an observation z from Pp,.
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Step 0 Set h® = (hY,...,hY) € H,, then, go to Step 1.

Step i Generate 3* from Pj(lzl_l) . Then, for j =1,...,k, genefate h; from
1125

i (pi i -
et (R hS Then set h = (h},...,h},) and go to Step i + 1.

This procedure defines a Markov chain h!,h2, ..., and let Fiz,.n(-) denote
its transition kernel. We are going to show that this transition kernel tends
to a simple transition kernel of the following Markov chain k!, A2, ...

Step 0 Set h° € R%, then, go to Step 1.

Step i Generate g; from GZIn,hi— = (I2|1(60)h’ 1y Zn,I2|1(00)) Then,

12,5 Then set At =

0T J = Lyeeon Ry generate fuy dfrom GG izt

(h%,...,h%) and go to Step i + 1.
Lé‘c G1,z,n(-) denote the transition kernel, that is,
N((C)™Y(B +C' = C)(g ~ I(60) " Zn), (C) (B + diag(C)) ((CH ~H)T),

where B = Iy;(6o) and C = I13(6o). Then Gupn = N(I(60)"1Zs, I(60)) is
the invariant distribution of G1,4,.» by Lemma 2.2.

Proposition 2.1. Let Assumptions 2.2.1-2.2.5, and 2.2.8 be satisfied. Then
for Leb-almost all h = (hq, ..., h),

Lk Lk
/x Pon ()P, ngl)zn”TV — 0.
Moreover, under Assumptions 2.2.1-2.2. 6, and 2.2.8, we have

1:k (1:k
| Pont@I 5 - G v o

Proof. We show the case k£ = 1.

|F12hn — Glmhn“TV

leftn HF1,|y2,lf1 et k),n( dfi)) — Grzhn(dfy - - dfe) TV

211 1125 plizi 12, ‘
= Z “Px h.n H GZI 2 fly 1,hy. k)( fj)( Yy (Frii-1,hak) m Gzi’,?y(fl:i—hhi{k)(dfz))“TV
i=1

+ B2, 4 Halz'f; Gronn (@) = Crapnldfy - dfi) v
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Fix ¢ > 0 and let wn(z) = 17, (x)[>c}- For any € > 0, take ¢ > 0 to be
lim sup,,_, POn(wn) < e. Then there exists a finite measure \; on ®1 _IR%

112,
such that (1 —wy) [TjZ; GZl’g (fl:j—l,hj:k)(dfj) < Ai. Then, the expectation

of the first term in the right hand side tends to 0 by Assumption 2.2.8. The
expectation of the second term also tends to 0 by Lemma, 2.4.

The case of £ > 1 is almost identical to Theorem 2.1. The remaining
convergence also follows from the same reason. O

The comparison with the two-stage Gibbs sampler is not clear. In this
case, ‘

J1(60) = (I1,2(60)") " (I1,2(80)" — I(60)),
$1(60) = (11,2(60)") ™ (Ia1(60) + diag(I1,2(80)))((I1,2(60)") ~1)7.

As we mentioned in Section 1.3.2 that the order of the largest eigenvalue of
Jo(fo) and J1(6o) vary with a change in the matrices I(6o) and Iy (6o).

2.2.3 Convergence of Marginaln Distribution

Lemma 2.6. For any h € R%, andwyj, : &y — [0, 1], we assume J Pon(dz)wn pn(z) —
0. For any €, — 0, and for any compact set K of R%, we also assume

/ Pon(dz) sup |wnp —wnpgs| — 0.
heK,|b|<en
Then, there exists a sequence M, — oo such that
lim [ Pon(dr) sup wpp=0.
n—oo, |h| <My,

‘Proof. For M >0, define Cy c C; C --- C Bjs(0) such that C; has a finite
number of elements, and Bj;(0) C Upec,; B;-1(h) for any ¢ € N. Then we
obtain

/Po,n(dav Sup wpp < /POn dz) sup wppt sup |wn,p—wn,hts] — 0
|R|<M heCrmy, |6]<myt,|hl<M

for some m,, — oo. Hence, there exists M,, — oo such that J Pon(dz) SUD|h|< M;, Wn,h
tends to 0.

We assume that a probability measure Vg n satisfies the following prop-
“erty: for any € > 0, there exists 6 > 0 such that

lim sup Py n(Vac n(Bs(0)%)) < e (2.6)

n—oo
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Lemma 2.7. Let Uy, ., and V. be transition kernels on (RY, B(RY)) with
invariant dzstmbutwn Urn and V. Let vy p be a probability measure on
(R4, B(RY)) satisfying (2.6). Assume there ezists a sequence of random
variable (Wp;n € N) such that (Wy,) is Py, -tight and

/X PO,n(dx)”Ur,n = Vl]Tv —0, / PO,n(d$)||Um,h+Wn,n = Vhsw, llTv — 0.

n

Moreover, for any e, — 0, and for any compact set K of R%, we have

/X Pon(dz)  sup (1Uz,ht Wi 0= Uz g4 Wi |l v+ Vit wr, = Vogwr, lTv) — 0,

h,geK,|h—g|<en
(2.7)
and limy_,co suppe |V — Vi [lrv = 0 for any compact set K C R%. Then for
any l, — oo, we have

3 In —
Jim [ Pon(de)Va — Ul sl =0.
Proof. Since U, is the invariant distribution of Uy, n, |Ugn — Uglc,u,n”TV
is decreasing function with respect to I. Therefore, we fix I, = [ sufficiently
large. By triangular inequality,

”Ux,n z I/,n“TV < ”UGU n V”TV + “V Vz% I/,n”TV + ” T,umn T alc,u,nl(lT\éj
2.
where Ufc s V; vn denote the k-th marginal distribution of each Markov
chain Uy,.p, V. starting from hy ~ Vgn. The first term integrated by Ppp
tends to 0 by assumption. We show that the integral of the second term
and the third term with respect to Py, tend to 0 as n — oo. First, we show
the convergence of the second term. Fix any € > 0. By consistency of Van

there exists M > 0 and N € N such that
/ Po,n(dz) (Ve n(Ba(0)9) < €/2 (N < n).
Therefore we have

[ Panl@s) IV = Visalie < [ Poataa) [ IV = Vilrvven(an)

<e+ sup ||V- V}f”TV;
heB(0)
and the right hand side does not depend on n. When [ — 00, by assumption,
the right hand side tends to e. Since € > 0 is arbitrary, the integral with
respect to Py, of the second term in (2.8) tends to 0.
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Next, we show that the integral with respect to Py, of the third term in
(2.8) also tends to 0. We have

V2 in = UsnllTy < 200 (Bar(Wa)®) + Sup IVasw = Uspiwp nllTv-
<

Let wp n(z) = ||V} W, Uglc,h+wn,n||TV, then by assumption and Lemma, 2.3,

[ Pon(dz)wpn(x) — 0. By assumption, we have

lwhn(7) = won (@) < UzhtWoin = Uz g4 wonllTv + | Varw, — Vgarw, lTv-

Taking |h—g| < €n — 0, by Lemma 2.6, we have [ Po»(dz) supj < ur, Whn(z) —
0 for some M,, — oc. Then the claim follows. O

Corollary 2.2. Let Assumptions 2.2.1-2.2.8 be satzsﬁed If u = (ux T €
Xn,n € N) satisfies (2.6), then for any I, — oo,

/ Pon(de) | Fyan — Fin v — 0 (i = 0,1),
Xn

Proof. Fix any ¢ = 0,1. Let Ss be a shift of a kernel K such that,
SS(K)h(A) = Kh_s(A - S). Set Wn = I(eo)_1Zn, Ux’.,n = SWn(Fi’z,.’n),
V.= Sw,(Gig,n), and vy n = pzn(- — Wy). Using Lemma 2.7, it is enough
to show that the convergence (2.7) holds. By definition

2(1
— Fly o allrv < 1P2Y P2 iy,

therefore, the convergence of the first term in the left hand side of (2.7)
follows by Assumption 2.2.8. Since Vi, = N(Ah, B) for some d x d-matrix
A, B, by Lemma 2.1, the second term in the left hand side is

”Fi,x,h,n

IV = Vgllty < H(Va, Vg)? = 2(1 — exp(—(A(h — g), BT A(h — g))/8)).

Therefore, by Lemma 2.6, then the claim follows by Lemma 2.7. O

2.2.4 Point Estimation

Let dg,dp € Ng such that dg +dj, = d. Let K.(-) : R% x B(R%) — [0, 1] be
a probability transition kernel. For the above transition kernel K.(-), we will
define another probability transition kernel K*(-) : R% x B(R%) — [0,1] to
be

Kyn =Kyr (9€R%, hy, hy € R%)

K2 (Ax R™) = Ky(A) (g € R%, h e R*, 4 € BR%Y)).
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If the transition kernel K.(-) has an invariant probability measure K,
then for any fixed h € R%, KM2(-) = [qa, K(dg*) K, L 2h( -) is an invariant

probability measure of K?(-). For any probablhty measure von (R%, B(R%)),

we define a probability measure vK?(-) = [pa, v/( plies 1.2 ()

Assume we have ((g1,h%),..., (g™, k™)) from (K121 2)(1 ™) we define
the Gibbs sampling estimator hm as follows. Let A' = (hi,..., h%) and
™ = (A],...,hg). Let Y < h® < ... < ™ denote the ordered
sequence of hy,..., k™. Then for any i = 1,...,d, we define

—m r) when m =25 +1
hi (h) = { (hgj) + ;lgj+1))/2 when m =‘2j. 29)

Lemma 2.8. Let Uy,.n and V. be probability transition kernels on (R%, B(R%))
with invariant measures Uy, and V. Assume for any k € N, we have

/ Pom(dx)(U;:g)(l:k) = (Vl,z)(m).
Xn

We assume the existence of vy n, which is a probability measure, such that
for any 1, — oo,

n—oo

lim / Pon(d)[[U%, — Usnllrv = .  (2.10)
Xn

Further assume that the transition kernel V12 is positive Harris recurrent
and fOT any € > 0, Ci = fVl’Q(d((gh cee agd)? (hh SRR hd)))l{hize} < 1/2
foranyi=1,...,d. Then, for anyl, — oo and v"? = VUQ},’.%n, we have

[, Pontae)( [ @222, dlo, ) (o, (1] A1) =
Proof. Fix anyi=1,...,d. For any € > 0, we have

I
{(z,9,h) € X, x R, Fl(h) > ¢} = {xg,h)Zl{h,>} 5}

l

= {(ﬁL’,g, h)? 7 Z(l{hzze} - Ce) Z 5 — Ce}.

=1

Therefore, by Chebyshev’s inequality, we have

l
gy L 1 L a1 .
Uz (i) 2 &) < (5 = )OI (G D Ly — T
j=1
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For any m <[ and any sequence (a;;j € N), we have

l [t/m]-1 l
Z Z Z ajm+k) + Z ag
j=1 Jj=0 k=1 j=[l/m]m+1

where [z] denotes the largest integer smaller than z.

For h = ‘(hl,...,hd), let a;(h) = l{hize} - Ci (1 = 1,...,d). First,
consider the case vz, = Uy p. Since Ug%:% is the invariant measure of Ug}f "
we have

1 & l—[l/m]m
12) (1:0) INF < 12(1m) il M Al Ml
(Uzin ‘( nga (W) Uys) m E= t 4+ 7 .

Therefore, for any I, — oo and m € N, we have

timsup [ Pou(da) ([ (U220 dlg, R (1) > o)

n—oo JXx,

< (g e tmsp [ Pu(an)( [ 020 (ela. ) i o l9)°)
X =

= (- [ g, h))(%;axhj))#

Then by ergodicity of the transition kernel, the right hand side tends to 0
when m — co. Therefore the claim follows when vy, = Uac,n‘. ,

Next, we show that for any v, , satisfying (2.10), the same conclusion
holds. For any m, — oo such that my/l,, — 0, we have

1 —m
ln]z:;a] 2:: n nl — My _Z'n;naj

Then, the first term is negligible, and the integral of the second term is

l
N (1: lp — My 1 d )
/(Uifl,z,n)(l'ln)(d(ga R))(( = 7 )l — Z ai(hﬂ))+
. n n n j=mn
ln—m
m. . _ 1 n n .
< IUZen = Uz v + / (Ugrm)En=m) (d(g, M) 2w

The first term tends to 0 by assumption. The second term also tends to 0
by the previous arguments. O
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In the following corollary, we set Fm (gt h), n(dgdh) Fy g+ n(dg)(5 (h).

Corollary 2.3. Let Assumptions 2.2.1-2.2.8 be satisfied. For any l,, — oo,
and for vy such that (2.6), we have

/X n Pon(dz) ( /H o FGuh @m) (B (k) = m(Fy.p)| Ai)) —0(i=0,1).

where m(u) is the one of its median of the measure p.

Proof. Fix any i = 0,1. Let S; be a shift of a kernel K such that,
Ss(K)n(A) = Kp—s(A—s). Set Wy = I(00)"*Zpn, Uz.n = Sw,(Fiz.-n),
V. = Sw, (Giz,n), and pzpn = vgpn(- — Wy). Then, this is easy corollary of
Lemma 2.8. Note that [ Py, (dz)|m(Gz,) — m(Fyn)| A1 tends to 0 by the
second condition of Assumption 2.2.5. ‘ v O

Corollary 2.4. Let Assumptions 2.2.1-2.2.8 be satisfied. For any l,, — 0o,
and for vy, such that (2.6), and taking 5 =6y + Rt/ 2 we have

/ Fon(dz) /H Ffi’:n(dh)( V2 — 8| A1) — 0 (i =0,1),

where 6, = 0y + m(Fw,n)n‘l/z.

Proof. Easy. ‘ , O

2.2.5 Some Speed Up Methods

We consider some speed up methods. The Rao-Blackwellization is one of
them which was introduced by [11]. Consider we have an observatlon z from
F 0,n-

Step 0 Set go € Hy, then, go to Step 1.
Step i Generate y; from szil_l

ate g; from Fy ,IyQi,n and go to Step ¢ + 1.

1,z Then, compute h; = [ gF%J;,n(dg), gener-
‘This iteration defines a Markov chain (g1, h1), (g2, h2),.... Let Fa}?n denote
the transition kernel. :

Step 0 Set gg =g € R‘?, then, go to Step 1.

Step ¢ Generate f; from G“Zl1 _and compute h; = I1 5(6p) "' f;. Then, gen-
p nagz—l )

erate g; from G ;; 12,
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This iteration defines a Markov chain (g1, h1), (g2, ho),.... Let Gglc’,%n
denote the transition kernel. ‘ :
For any signed measure v on (R*, B(R¥?)) and for any ULy .n e, Uk € RY,
let : ‘
k
= ’ v(d L, dzg)|.
, [Vllur = | Rix xR exp Z; ug, zj))v(dz1, . )]
Assumption 2.2.9. We have
. 1,2 1|2 12 —
dm [ Bdedy)| [ erian - [ 6] -

Proposition 2.2. Under Assumptions 2.2.1to 2.2.5 and 2.2.9, we have

. 1,2 1k 1,2 1:k _

and if Assumption 2.2.6 is also satisﬁed then

“m/ Pou(da)[|(FL2) 1) — (GL2) @R, g,

n—oo

Proof. We show the case k = 1.

1,2
||Fx (g7h))n G.’L‘ (g h),n”ul:Z ‘
12
:/ P%;n(dy)“(s{ftlelZn(dt)} 5{11,2(00)_1Z,}L’2}“u1 + ||F1,l:3n GZI;L@”uz
1 P26, (@G 000 = GE (dnh) s

The second term integrated by Py, tends to 0 by Assumptions 2.2.3 and
2.2.5, and the last term tends to 0 by Lemma 2.4. By a Taylor expansion,
the first term is

15 ey — izl bl | [ ¢F2 )~ [ G2

Therefore by Assumption 2.2.9 the above value tends to 0, and hence the
- case k =1 is proved. :

In the general case, we use a shift of a kernel and Lemma 2.3. For any
kernel Ky . n = (Kg(gn)n(A);g,h € R4, A € B(R™)), we define a shift
Ss(Kz,-n) (g,1)(A) = va(g_s’h_s)(A — (s,8)). Set Wy, = I(60) "1 Zp, Up.p =
- Sw, (le,’?,n), V.= Sw, (Galc?,n)’ Vgn = Fm,h(‘ - Wn) and Mz = Gm,n(' - Wn)
Then we can apply Lemma 2.3 and hence the claim follows. O
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We note a few comments about this proposition. First, in generally,
(F;fg’h) n-)(““) does not tend to (Gi’%g B -n)(”“) in || - [|rv sense, since ngng,n
may be a probability measure on a discrete space and therefore h; = h; (x, ys)

may be a random variable taking discrete values.

The Rao-Blackwellization use only (hq, hsg,...,h;) for estimation and
define ;" as (2.9). This marginal distribution tends to a Markov chain of
kernel Gaz,. n, which is

J2(60) = Jo(6o) |

Za(6o) = I1,2(60) ™ (I3j1(Bo) + I1(80) I1,2(60) " Iyy1(60)) T1,2(60) .
Then det(Z2(6p)) < det(X0(o)), since det(So(6p))/ det(Zo(o)) is equal to
det(Ia1(6o))/ det(I1,2(8o)) and det(I1(f)) < det(I1,2(6p)). Therefore, in
this sense, the Rao-Blackwellization method is more efficient than the Gibbs
sampler defined in Subsection 2.2.1. Note that if det(I5;(6o)) is small rela-
tive to det(I(6p)), then the Rao-Blackwellization is efficient, but det (I21(00))

is large relative to det(I(6p)), then the difference between the Gibbs sampler
and its Rao-Blackwellization method is small.

Corollary 2.5. Let assumptions 2.2.1-2.2.9 be satisfied. Let vy, be a mea-
sure such that (2.6), We define v1? = Vx,nF,}fn. For any 1, — oo we have

[ Ponta)([ | (FE2 )00 g, )" ()~ m(Fe ) A1) — 0.
Xn{ Hyr

Corollary 2.6. Let aésumptions 2.2.1-2.2.9 be satisfied. Let vy p be a mea-
sure such that (2.6), We define v1? = z/m,nFéf n. For any l, — oo, taking

0, =6p+ El"n‘l/z, we have

. —ln =
/ Py (de) /H (F222 ) ) (d(g, h)) (n2[B — a AT) — 0,

where 0y, = 0o + m(Fyn)n'/2.

Note that improvement by the Rao-Blackwellization has already been
addressed in [23] in another sense.

2.3 Independent and Identically Distributed Ob-
servations

We consider independent and identically distributed observations. As in Sec-
tion 1.4, we take two parametric families (X, A, P;0 € ©), ()J,B,Pj};;e €
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O,z € X). Let 6 € ©. We set X = X", Ay = A", Py = B2,
2]1 21
Yp =YY" B, = B™ and lehn(dy) = [T, Px!,eo+hn_1/2(dyi)
: 2

We also define Pa 5(dzdy) = Py(da) Pyly(dy) and Py =By oo
and we write P0 b = P1 ? and Phl’,zm = Pl’2

Let Assumption 1.4.3 be satisfied. Let 7 779 Y, y) = 2170 Y(z,y) /p %(g, )1/ 2
ifp102(as y)Y/2 > 0 and 779I (z,y) = 0 otherwise. Let Z2' = n=1/2 Z" 1 7790 (w,,yz)
if we have observations (xl, va:n) and y1,...,Yn) .

Proposition 2.3. Under Assumption 1.4.3, Assumption 2.2.4 is satisfied.

Proof. First, we show that for (Pp,)*-almost all (z1,2,...) € X®,

2/1
£(z2 p(all e om) = N (0, I1(60)).
This claim will follow from the following three propertles by the Lindeberg
Central Limit Theorem (for example, Theorem 27.2 of [2]). We show

[ B2 il .00, = 0 (Pay s ),

ny /y PP (dy) (i i, ), B — {, Lopy (Bo) ),

i=1
-1 2|1 2|1 9
1y /y ) T 010) L g = O

in Ppn-almost surely. The first equation follows by Assumption 1.4.3 and
the second convergence follows by the law of large numbers. The last con-
vergence also follows by the law of large numbers, and hence, the claim
follows. v

Let € > 0. For simplicity, let |f| < 1. By the expansion of the likelihood
ratio, we have

n 21 .
Py goin-12, W)
log ccz,t902+'n, v2p\Yi) (h, Z,%Il) _ —1—(h, I1(60)h) + Rn(R)
Z . 2

i=1 Pxi,oo(%)

where Ry, (h) tends in Pol, ﬁ—pr_obability to 0. Let wyp = 1R, (h)>¢ and for
some M > 0, let ¢ : R¢ — [0, 1] be a continuous function such that (w) = 0
if |lw| > M and ¢(w) = 1 if |[w| < M/2. Then the integrand of (2.1) with
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respect to Py, (dx) is

JRARCICACE / G2 (dw) () = Zra
where r( ) ,4=1,...,6 are

) = /y Pj,',t,n(dwf(z,%“(x, y))n (2, )
@ = / P2 (dy) F(Z2% (2, )0 (22 (2, 9)) (1 — wn(z, )
Vn

= [ PR 2 ) ex(h, 22 = 50 Ta00)h)
x (exp(Ra(h)) = 1)(1 = $(Za")(1 — wn)
=~ [ PR 2 e, sl Z3%) = 5(h Ty (B0 (1 = $(ZE

= /y E2nd) (220 ) exp({ Z2) = 5, T (B0)))(1 = (221
A Gal (dw) f(w) (1 — ¢(w))

- [ Gihaw) sy,
2/1

Since Zp'" is tight with respect to PO1 3 , we can choose C, M > 0 such that

limsup,,_,o | Pon( dx)lrn )| < eand |rn | <e. By contiguity, [ Pon( dx)(|r(1)|+
|r(4) < CfP(?l;n (dzdy)wn tends to 0, and |rn )| < 1— e~ The conver-
gence of [ Po,n(d:c)|rn)| — 0 is from Lindeberg Central Limit Theorem.
Then, choose appropriate €, — 0 instead of ¢, the claim follows. |

Assumption 2.3.1. If s # t, then Ps # P;.

Assumption 2.3.2. There ezists an integer n and a test wp, = wp(T1,...,Tn)
on (X", A™), such that there ezists a constant g € (0,1/2) and a compact
subset K of © such that

P (wn) < e, PV (1 — wn) < e (V6 € K©).

Assumption 2.3.3. The prior distribution Q is absolutely continuous with
respect to the Lebesgue measure, and its derivative is continuous, positive
and bounded around 6.
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Assumption 2.3.4. For some € > 0, there ezists a constant C > 0 and for
any s,t € Bc(6p), we have

H(PAL, P2 < M(z)|s — 1),
where M(x) € L2(Pgo).

We define the families of probability measure (Fyn; ¢ € X,,) and (Farpn; @ €
Xn,y € Vn) as follows:

feo+An—1/2 P ( )Q(ds) f00+An‘1/2 Psl,g(xa y)Q(ds)
Jo P()Q(dt) Jo P2 (z,y)Qdt)

The following is the Bernstein von-Mises Theorem for independent and iden-
tically distributed observations. This version of the Bernstein von-Mises
Theorem is proved in [6]. Note that the existence of uniformly consistent
test for (Py;0 € ©) imply the existence of the test for (Pe1 2.0 € ©).

Frn(4) =

Fpyn(A) =

Proposition 2.4 (Bernstein von-Miese’s Theorem for i.i.d.). Under As-
sumptions 1.4.3 and 2.3.1-2.8.3, Assumptions 2.2.5 and 2.2.6 are satisfied.

Proposition 2.5. Under Assumption 2.3.4, Assumption 2.2.7 holds.

Proof. Using the Hellinger distance, we obtain the following:

IB2 , — P2 iy

T 21 2l1
N /|prlz,00+hn‘1/2 (%) Hp | 00+gn_1/2(y1)|HM2|1(dyz
21 21 21 1/2
H\/ :1:, Oo+hn—1/2 yz H\/ 331,90-1-971_1/2 yl ) H/"l'z] (dyl )
2 2 1/2
= 2(2(1 - H pa:i,00+hn—1/2(y’) 2 00+gn‘1/2 (vi HM (dys) )
i=1

n
1 1/2
_03/2(1 _ _ 1 21 2/1 2
=2 (1 H(l 2H(P.’L‘i,90+hn‘1/2’ Pxi,00+gn-1/2) )) :
i=1

By Assumptioh 2.3.4, when |h — g| < € for some € > 0, the last term is
bounded above by the following value:

93/2 (1 _ H(l‘ _ M_én_)ez)>1/2~

i=1
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Therefore, by the Schwarz inequality, we have

fx PO'n d.’II 23/2( H(l M(«Tz )1/2

(O

<292( / Pon(dz)(1 - ﬁa - M—éii)EGQ)))l/ ’

=1
— 23/2(1 — exp(— Py, (M?/2)e?))1/2.

Therefore, taking € = €, — 0, Assumption 2.2.7 holds. O



Chapter 3

The Metropolis-Hastings
Algorithm for a Fat-tail
Target Distribution

3.1 Introduction

Various forms of Markov chain Monte Carlo methods are widely used for sim-
ulation of a probability density p(z)dz on (R?, B(R?)), and the Metropolis-
Hastings algorithms form a popular sub-class of those.

In order to describe the Metropolis-Hastings algorithms for the target
distribution p, we first consider a candidate transition kernel Q which gen-
erates potential transition for a discrete time Markov chain. In this paper
we will assume that there exists a measurable (in both variables) function
q(z,y) such that Q(z,dy) = q(z, y)dy.

In the Metropolis-Hastings algorithm, a candidate transition is accepted
with probability a(z,y) = min{1,p(y)q(y, z)/(p(z)q(z,y))}, otherwise, the
jump is rejected and the chain remains its original state. Thus the actual
Metropolis-Hastings chain (M7;n € No) starting from Mg = z is defined
as follows: ' :

Yi o~ aMg_y,y)dy (n e N)
e Yr with probability a(MZ_,,Y*) (3.1)
n My 1 with probability 1 — a(M7_;,Y;F).

In this paper, we mainly consider two classes of the Metropolis-Hastings
algorithms. One is called “random-walk based”, in which

q(z,y) = ¢*(z —y), (3.2)

45
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where the ¢* is a probability density on R%. The other is called Metropolis
adjusted Langevin algorithm or simply, Langevin algorithm whose candidate
transition kernel is '

Q(z,dy) ~ N(z + 5 (Wlogp(w» h), (3:3)

where h is a positive constant, and V denotes the gradient operator. This
class is motivated by the Langevin diffusion satisfied by

R
dX; = dB; + §Vlogp(Xt)dt; Xo ==z, (3.4)

for a Brownian motion (Bt € RT). The Langevin algorithm and other
Langevin diffusion based algorithms are studied in, for example, [14], [36],
[37], [38] and [34]. :

We are concerned with the rate of convergence of these algorithms for
a probability density p(z)dz. It is known that the rate of convergence de-
pends on the tail of the distribution p(z)dz (cf. [29], [35]). For example,
the tail of p needs to be uniformly exponential for geometric ergodicity for
the Metropolis-Hastings algorithms based on random-walk candidate distri-
butions (Theorem 3.3 of [29]). The similar statement was proved in [36] for
the Langevin algorithm.

In this paper, we assume that p has heavy tails. The Metropolis-Hastings
algorithms when p has heavy tails were studied in, for example, [8] and
[10]. A significant step in this direction was made by [17], which served
as a basis of the present study. They showed that the random-walk with
.Gaussian increment based algorithm and the Langevin algorithm converge
at the same polynomial rate to p with heavy tails. Moreover, they showed
that the convergence rate of a random-walk based algorithm is improved
by using a distribution with heavier tails. Their results can be validated
for a certain class of probability distribution p. The class of functions they
considered consists of p that satisfying

pa) = TEL (o~ o) (35)

with 1 > d where |-| denotes the Euclidean norm and [ is a normalized slowly
varying function such that {(z) — a > 0 (z — o0). Therefore, p should be a
‘symmetric function in the limit. It is not easy to relax the condition. The
difficulty comes from the fact that if the target is not symmetric, then the
acceptance ratio is difficult to treat.
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We show that when p has heavy tails, the behavior of the Langevin algo-
rithm in the tail area in R? is similar to that of the Langevin diffusion itself.
For this fact, almost all proposal is accepted in the tail area and polynomial
rate of convergence of the Langevin algorithm follows from ergodicity of the
Langevin diffusion. We do not have to assume technical conditions for p.
We only assume that the probability density p is C? and

lim [Vlegp(z)| =0, lim ||[VIViegp(z)|| =

where ||(a; ;)i j=1,..4ll = ( fj ~1 aw)l/2 and V7 f(z) denotes the Jacobi ma-
trix for the vector f(z). Then we propose an algorithm with transformation,
which transform heavy tails of p into lighter tails, and by using that we can
improve the convergence rate. The convergence rate is the same for the
random-walk based algorithm with heavier increment distribution, which is
proposed in [17], though this'convergence for the new algorlthm is validated
for a wider class of target distributions.

In Section 3.2, we formulate central limit theorems for Markov chains
with polynomial ergodicity. Those results are used for concrete examples in
Section 3.4. In Section 3.3, which is the main part of this chapter, we prove
generalized version of a polynomial rate of convergence for the Langevin al-
gorithm. Then we propose an improved algorithm and prove its convergence.
In Section 3.4 we demonstrate the efficiency of our methods by numerical
calculations.

3.2 Markov Chain and its Polynomial Ergodicity

- Let (92, F,P) be a probability space and (E,£) a measurable space where
€ is a countably generated o-algebra. Let (X,;n € Np) be a discrete time
Markov chain having state space (E,£). The transition kernel of (X,;n €
Np) is denoted by P:

P(X, € A|Xp_1) = P(Xp-1,A4) as.

This transition kernel P can be interpreted as a linear operator on a function
space by defining Pf(z) = [ P(z,dy)f(y). If P, P, are two kernels, their
product P; P, is defined by (P, P)(z, A) = [ Pi(z,dy)Ps(y, A). The iterates
P" is defined by P! = P and P* = P*1p.

Markov chain will be assumed to be irreducible, aperiodic and positive
Harris recurrent; for definitions, see [30]. Note that for the Metropolis-
Hastings algorithms (3.1), if p(z) and g¢(z,y) > 0 are continuous in both



48 : CHAPTER 3. MH ALGORITHM FOR FAT TAIL

variables, then the Markov chain is p(z)dz-irreducible, aperiodic and any
compact set of positive Lebesgue measure is a small set (Lemma 1.2 of [29]).
Hitting time 74 of a set A € & is defined by 74 = inf{n > 1;X, € A}.
Hitting times of a petite set play an important role in the ergodicity of
Markov chain. A subset £T of £ is defined by

Et = {A € £; A has a positive measure by an irreducibility measure}.

Let V : E — R* be an £-measurable function. Let || - ||y be a norm over
the space of signed measures on (E,£) to R defined by

lv|lv := sup [v(f)| (v: signed measure).
ISV

When V = 1, the norm corresponds to the total variation.
Sub-geometric rate of convergence is studied in, for example, by [40], [9],
[17], [18] and [8]. In [18], they proved the following theorem.

Theorem 3.1 (Jarner and Roberts). Suppose a Markov chain (X,;n € Ny)
with transition kernel P is irreducible and aperiodic. Suppose that there exist
an E-measurable function V : E — [1,00), constants ¢,b > 0, 0 < v < 1,
and a small set C, such that :

PV(z) <V(z) — cV(z)" + blo(z). (3.6)

Then there exists a probability measure II and the following polynomial con-
vergence property* holds for any x € E where 1 < 8 < 1/(1 — v) and
Va(e) = V(a)'=10-).

(n+ 1) P"(z,) = Ty, — 0. (3.7)

In particular, /(1 — ) is the polynomial order of convergence in total
variation norm.

A central limit theorem is said to hold for f if II(|f|) < oo and there
exists 0 < 02 < oo such that

Sg(ﬁf_) % N(0,0%) (n — ),

where f = f —TI(f) and S,(f) = o1 f(Xi). We need some lemmas to
prove central limit theorems. These lemmas are closely related to Theorem
11.3.9 of [30], Proposition 3.1 of [40] and Theorem 3.2 of [18]. First lemma,
is merely a modification of Theorem 3.2 of [18].
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Lemma 3.1. Let A,C € & W;: E — [1,00) (i =0,1,...,k) and PW; —
W,~§WZ~+1+@~10, 1=0,1,...,k. Then for anyl=0,1,2,...,k, we have

Ta—1
W1 (X)) < UWo(z +Zﬁm Z (n+m (Xn)]-

Bl
m=0
(3.8)

In particular, if A,C € E* and C is a petite set, then there ezists a constant
c < oo such that for any l =0,1,2,...,k, we have

T4—1

(n+l)

TAl

Ex[z

Proof. At the first step, from the assumption PWp— Wy < W1+ Bolc and
using Theorem 11.3.2 of [30], we obtain

+z)

Wit (Xn)] < UWo(z) + c. (3.9)

Ta—1 ' Ta—1

Eo[ ) Wi(Xn)] < Wo(2) + foBe[ Y 1c(Xan))-
n=0 n=0
At the [-th step, we have
(n—l-l) (n+l ! (n l) (n+1-1)
~ T W< - AL A
PW, — =) wi W+1 +1 =1 Wi
n+1)!
4 , )/Bl10~
n!
Then using Theorem 11.3.2 of [30], we obtain
TA— 1 TA— 1
(n -l—l (n+1- 1 !
B[y W) < el Y S )
n=0
TA— 1
+6E Xn)]- (3.10)

From this fact, the first claim of the lemma can be obtained easily by using
induction. Second claim is sup, E;[>"745" 1¢(X,)] < oo, which is stated in
Theorem 11.3.11 of [30]. \ O

Lemma 3.2. Let (P, V., C, b, c) satisfy the drift condition (3.6), A,C € £+
and C be a petite set. Then for any n € (0,1], there exist constants c1, ca
such that for any (not necessarily integer) | € [0,m/(1 — ) — 1], we have

Ta—1

E[ Y (n+ 1)'VrUHDO0(X )] < ¢ V() + . (3.11)
n=0
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In particular, if we take l = n/(1 — ) — 1, then we have
E,[r l+1(] I+ 1)(aV"(z) + c3). (3.12)

Proof. From Lemma 3.5 of [18], for any integer k € [0,7/(1—7)), there exist
constants cg, by, such that PV1—*(1-7) _ yn-k(1-7) < —c V(1)) 4
bilc. Then from the previous lemma, for any integer I € [0,7/(1 —v)) and
for some ¢ > 0, we have

1
E [TAZ n+l) Ninaidve Bl HC <UIV'(z
x k
+c.

Since (n+1)" < (n+1)!/n! we obtain (3.11) for any integer [ € [0,7/(1—7)).
Next we consider the equation for any real number ! € [0,77/(1 —~) —1]. For
any t € [l — 1,1), we know

n+1 n+1l n+1
(V(x)(l"Y)) * (V(x)(l—v)) = (V(x)(l—'y)) ) (3.13)
hence the claim follows. O

In the following theorem, LP = LP(E, &,1II) denotes the space of ppoWer
integrable functions f, [ |f(z)|PII(dz) < oo.

Theorem 3.2. Let (P,V,~,C,b,c) satisfy the drift condition (3.6), and C €
ET and C is a petite set. Then for any n > 1/2 such that TH(VI+21=1) | for
any e > (1 —7)/(n—(1=7)), a central limit theorem for the Markov chain
holds for any f which is in L**€ or |f| < d VY11 where d is a positive
constant.

Proof. First, we show the measure A(dz) = (ILI|5)(dz) = |f(x)|(dx) is
|f|-regular for any f € L?*'¢ where € is in the above range. If the claim
holds, then using Theorem 7.6 of [31] this Markov chain has a central limit
theorem.

Consider f € L?*¢. For any A € £, using Holder’s inequality, and for

any p,q > 1 such that p~! 4+ ¢! = 1, we have
T4—1 o
E\[D X)) = D EnlfI(Xo)lf1(Xn)Linera)]
n=0 n= 0

IA

Z IIfIILp(En[|f|(X0)Q1{n<TA}])%,

n=0
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Since 1(n<r,y < (Ta/n)" for any r > 1 and 3 € (0, 1], we have
En[|fI(X0)"Lin<ray] < Enllf1(X0)*Enl{ner,yFo]] -
Bn(l1(Xo)"Enl(22) 7 | 7]

__B_
< B VEn[|f|(Xo0) (VP (Xo) + )]
Then for any p/, ¢’ > 1 such that p'~! + ¢'~! = 1, we have

Enllf|(Xo)V?(Xo)] < [Iflle(EalV® (Xo))])ee .

Sufficient conditions for Ex[S"745"|f|(X,)] < oo are f € LP = LP'9, g =
7+2n—1 and ¢(1 —+) < 8. We can find 3 and p, q,p’, ¢ which satisfy the
above sufficient conditions for any f € L?*€. Hence the claim follows.

The case of |f| < d V77! is quite similar. The only difference is the
- last inequality. In this case we do not have to use Hélder’s inequality but
the inequality |f| < d VY11 O

IN

If a Markov chain is geometrically ergodic, then integrability condition of
the drift function like the above is not necessary. However, in sub-geometric
case, we need it. Since we know II(V7) < oo from the drift condition,
n = 1/2 requires no assumption for the integrability of V. In the case
n = 1/2, central limit theorems for the Markov chain are already showed in
Theorem 9 of [19], which uses a mixing theory.

Markov chain is said to be reversible when II(dz) P(z, dy) = II(dy) P(y, dz).
Metropolis-Hastings chain is reversible. We can show a slight extension of
the above result when the Markov chain is reversible. ‘

Theorem 3.3. Let (P,V,~,C,b,c) satisfy the drift condition (3.6), and C €
ET and C be a petite set. Further, we assume that the Markov chain is
reversible. Then for any n > 1/2 such that I(V'T211) < oo, and for
e=1-79)/(n—(1-1)), the Markov chain has a central limit theorem for
any f € L**e. ‘

Proof. The proof of the theorem uses the same argument as above. Since
the Markov chain is reversible, we have

TA—1

EALY 1] < BrlLpnerg 1 F1(X0)21 EnlLpnery £1(Xn)
n=0

n=0
= ZEH[l{n<TA}|f|(XO)2] = EH[7'A|f!(Xo)2].
n=0

Using Lemma 3.2, and Schwarz’s inequality, the claim follows. |



52 CHAPTER 3. MH ALGORITHM FOR FAT TAIL

3.3 Algorithm and Main Theorems

3.3.1 Langevin Algorithms

Let (92, F,(Ft)t>0,P) be a filtered probability space. Let p : R — R
be a strictly positive C! function and consider the stochastic differential
equation (3.4). Under certain conditions, there exists a unique solution to
the stochastic differential equation and the solution has an invariant measure
p(z)dz. Let (Y;7;n € No) be an Euler-Maruyama discretization of (X¥;t €
R™), that is, :

Y = VAW, + hb(YE )); YE =, (3.14)

where W, := h_‘l/z(B;m-—Bh(n_l)). In [36], they proved that if |V log p(x)| —
0 (Jz| — oo) then the Langevin algorithm does not converge at geometric
rate (Theorem 4.2 of [36]). We are going to prove its polynomial rate of
convergence. First, we show polynomial ergodicity for this Markov chain,
the candidate chain of the Langevin algorithm.

Theorem 3.4. Let p : R? — R be a C' function. Suppose there exists
n >d, such that .

lim sup(z, V log p(z)) < —n, ' llim |V logp(z)| = 0. (3.15)
= 2|00 ,

|z| =00

Then the Euler-Maruyama discretization (Y,%;n € No) satisfies the drift
condition (3.6) for any h > 0,2<s<2+n—d, V(z) = (|Jz]2+1)¥2, y =
(s —2)/s and a compact set C of positive Lebesque measure. In particular,
~ the upper bound of the polynomial convergence rate of the total variation
norm is (n —d)/2.

Proof. It is enough to show

. PV(z) - V()
limsup ————= < 0, 3.16
TV (310
since C' = {|z| < N} is a small set for any N > 0. Let (XF,t € [0,1]) be
a stochastic process satisfying dXF = dB; + b(z)dt, where B; is a standard
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Brownian motion. Then £(X}) = E(Yf” ) and
PV(z)-V(z) = E[V(X;”f) - ( )]

h_d ’
1 oV o
— XJH - z T4 yT,j
i/ 3 "+ 3B XD, X2
s ‘ & .y
- 7E[/ (|Xt””|2+1)5_1(22Xf"b’(a:)+s—-2+d)
0 i=1

—(IX&2 +1)272d4).

Since X{¥ = z+ By +1tb(x), after some calculations such as lim sup E[(| X¢|? +
1)"] - |z|7>" < 1, we have '

P _
lim sup M = hmsup — 22:1:,bz )+s—2+d)
|z|—00 (‘T)7 |z]—o00 i—1
h
< 32 (—n+s—24+4d).
When 2 <'s < 2+n—d, imsup|y|_o(PV(z) — V(2))/V(z)” < 0 by the
above inequality. . O

In [10], they have already addressed polynomial ergodicity of a tempered
Langevin diffusion. Their results are more general than our results though
they do not consider Markov chains but continuous stochastic processes.
Roughly speaking, our theorem corresponds to the discretization of Theorem
16 of [10] when a parameter d = 0 in a sense of the rate of convergence in
Il -norm,

Next we show the convergence of the Langevin algorithm. Let (MZ;n €
Njp) be the Metropolis-Hastings chain of the Langevin algorlthm starting
from M§ = z, that is,

(YE = MZ_+ VAW, +hb(MZ_))
M = Y? with probability a(MZ_;,Y,* - (3.17)
¥_1 with probability 1 — a(M,”f 1, Y7E).

where b = Vlogp(z)/2 and g(z,y) is the density of the transition kernel
(3.3), that is, , ~
1 ly — x — hb(x)|?
q(z,y) = exp(— )- (3.18)
| (2hm)% 2h
This Langevin algorithm does not have geometrical ergodicity but poly-
nomial ergodicity.
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Theorem 3.5. Let p: R? — R be a C? function satisfying (3.15) and

lim ||[VIVlogp(z)| = 0. (3.19)
|z|—o00

Then the Metropolis-Hastings chain of the Langevin algorithm (MZ;n € No)
satisfies the drift condition (3.6) for2 < s < 2+n—d, V(z) = (Jz|>+1)%/2,
v = (s —2)/s and a compact set C. In particular, the upper bound of the
polynomial convergence rate for the total variation norm is (n —d)/2.

Proof. We know by Theorem 3.4, there exist constants ¢ < 1,0 > 0 and a
compact set C' of positive Lebesgue measure satisfying

PV(z) = E[V(XPa(w,XD)]+EV (@)1 - az, X))
= E[V(XD)] - E[(V(X]) - V(2))(1 - a(z, XF))]
< V(z)— V(@) +blo(z) — B[(V(XE) - V(@)1 — alz, X)),

where dX{ = dB;+b(z)dt. Hence it is enough to show lim|g|_, [E[(V (Y{) -
V(z))(1—oa(z, X}))]|/V(x)?” = 0 when v = (s —2)/s. By Schwarz’s inequal-
ity,

B{(V(X})-V (@) (1-a(z, X})))| < BIV(X})-V (@) FE[(1-a(e, X7))?

Since the first term, limsup E[(V (X7) — V(m))2]%V(x)“7 < 1, we will check
imE[(1 - a(z, X))?)7 = 0. Let (z,3) = p(v)a(y, 2)/ (p(x)a(x,y), then

E[(1 - o(z, X7))"] < E[(1-B(z,XF))’] < Ellog B(z, X5)?]

= E[(logp(X}) — logp(x) + log (X}, z) — log q(z, X}))]

— El(logp(XF) - logn(z) — (4(a) + DX (X3 —2)
LX) ~ b))

It is easy to check lim E[((b(z)—b(XF))T (Xf—z))?] = 0 and im E[(|b(X¥)|?>-
[b(z)|?)?] = 0. The remainder of the above is

E[(log p(X};) — logp(z) — 2b(2) (X — 2))*] =

h_d 2
Ologp, .. Ologp 16’ logp
E(( | >t - o e

(2))dX7" + (X7)dt)?,
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and the main part of the above equation is

h & dlogp, o ;
B[} 3Gt (X6 ~ T )iy =

h 4 (6] » (0]
B[ > (TG xp) - LB ) an

8logp o Ologp
<E (X,
o, DGR ) - SRy

We want to show the last term in the above goes to 0 if |z]| — oo. For any
€ > 0, there exist 01, 2,3 > 0 such that

T 2 €
197V logp(@)|* < 555 (2] > 81)
hib(z)| < 61 A1 (Jz| > d2)

. €
sup |V log p(¢)|*4dP( sup |By| > 63) < 5
£€R4 0<t<h

where Cf, = E[supg<;<(|Wy| + 1)?] which is a bounded constant by Doob’s
inequality. Let |z| > 61 + 02 + 83, then we divide the term into two parts,

Ologp alogp
E[ sup E (o ( 7 - ())2(1{supo<tsh|Bt|>6s}+1{supo<t<h|Bt|sas})]-
0<t<hi{ = Ss

The first term is bounded above by 4d supgcga ||V 1og p(€)||*P (supo<;<p, | Bt| >
03) < €/2. By a Taylor expansion, the second term is bounded above by

d
6 logp 9 9
E[ sup XF -z < —E[sup |[XFf -2z
[OStSh; 2; |>61 8.’E ax (€)|| t H) ] — 2Ch [OStIS) I t | ]
< 5 E| sup. (W] + tlb(z)])?] <
2C'h 0<t<
Hence E[supg<i<p, S (ag;lp(Xx) - 6—5’&2(@)2] goes to 0. O

When d = 1 and the target distribution can be written in the form
p(z) = C|z|™" when |z| is large enough, [17] have already proved the same
result. Moreover the proof of [17] is the basis of the proof of Theorem 3.5,

- though the assumptions of Theorem 3.5 is more general.

l\')lm
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When d > 1, [17] have also proved that the random-walk based Metropolis-
Hastings algorithms have the same order of convergence as the Langevin
algorithm when the increment distributions of the random-walks have light
tails (Proposition 3.5 in [17]). The random-walk based algorithms are sim-
pler than the Langevin algorithm in the sense of computer calculation, it
is better to use the former algorithms if the convergence theorem can be
validated for a wide class of target distributions p. However their results for
random walk based algorithms are validated for a smaller class of target dis-
tributions. They assumed our assumptions and a roundness property about
A(z) = {y;p(xz) < p(y)} and A(z) should be a convex set when |z| is large
enough in their paper. For example, the two-dimensional probability distri-
bution function p(z, y) o< (z*+y2+1)~! does not satisfy the extra properties.
This distribution function satisfies (3.15), (3.19) and n = 2, but A(z) is not
a convex set. In fact, the distribution satisfies limsup |z| - |Vlog 7(z)| < 00
and limsup |z|2 - ||VTV log 7(z)|| < oo.

Many probability distributions which have heavy tails satisfy property
(3.15), (3.19). For example, Student’s ¢ distribution satisfies the properties.

Example 3.1 (Multivariate Student’s ¢ distribution). Consider following
d-dimensional Student’s t distribution with m > 0 degrees of freedom,

p(z) = _T59) -(det )73 (1 + (z =) 57 o Wy-=2 590
L'(F)(mm)2 m -

It satisfies imsupy,| .o || |V log p(z)| < 0o, lim sup|,|_,c T - Vlegp(z) <
~(m + d) and limsupy, ., |z|?|VTViogp(z)|| < co. The proof uses the
" fact that for the positive definite matriz X, there exists X > 0 such that
MNz|? < TS 1z, By Theorem 3.3, the Langevin algorithm with proposal p
has a central limit theorem for L2T€ with € > 4/(m — 2).

Example 3.2 (An example which does not satisfy (3.15)). Consider the
following probability distribution function: "

d
L d
p(m)ocil;[ll_{_x% (x=(:§1,...,wd)€R).

This function satisfy the left hand side of (3.15) but right hand side of it.
Since

NlH

2x;
1
|V log p(z Z(l +x

if we take x = (0,t,...,t) and t — oo, then |Vlogp(z)| — 2.
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3.3.2 Transformed Langevin Algorithm -

We introduce a transformation of a Markov chain (MZ;n € Ny) by a func-
tion F : R* — R4, Suppose there is a C? function f R — R which holds
f'(z) >0, f(0) = 0 and lim;—o f(z)/z # 0 such that

[ fahg e £0
F(x)_{ 0 ifz=0.

Then F is a C? function with det VI F(z) > 0. Under certain conditions,
if a Markov chain (M7;n € Np) with an invariant measure p*(z)dz :=
p(F(z)) det VI F(z)dx satlsﬁes (3.6), then (F'(MZ);n € Ny) has an invariant
measure p(z)dz and satisfies (3.6) (Proposition 3.1).

Let p be a d-dimensional probability distribution function and and V :
R¢ — [0,00) be a norm-like function, that is, for any r > 0, {; V(z) <r}
is a relatively compact set.

Proposition 3.1. Let |[F~!(z)| be a norm-like function. Let p(z) > 0
be a C! function and Q*(z,dy) = ¢*(z,y)dy be a tmnsztzon kernel where
q*(z,y) > 0 is continuous in both variables. Let (M};n € Ng) be a Metropolis-
Hastings chain with a candidate kernel Q* and an mvamant measure p*(z)dz.
Suppose there exist a compact set C* with positive Lebesque measure, a func-
tion V* : R4 — [1,00) and constants 0 < < 1, b,c > 0 such that the drift
condition (8.6) holds. Then for (M, = F(M} ),n € Ny), there exist con-
stants 7,b,c, a compact set C O C* with positive Lebesque measure such
that the drift condition (3.6) for C, V =V*o F~1,

Proof. Denote the transition kernel of (M};n € Ng) by P* and that of
(Myp;n € No) by P. First, we show that (M,;n € Np) is a Metropohs—
.Hastings chain with the candidate kernel

Qle, dy) = q(z,y)dy = ¢"(F~\(z), F~1(y)) det VI F~1(y)dy,

and the invariant probability measure p(w)dm Let (Y5;n € Np) be a
candidate chain of (M;;n € Ny) and denote the acceptance ratio for the
Metropolis-Hastings chain by o*. Let Y, := F(Y}¥), then

P(he Al = [ a0y = [ sy,
F-1(A) A
“hence @ is its transmon kernel. Let a(z,y) =1 /\p(y)q(y, z)/(p(x)q(x,y))

then

P'Wew.2) _,  pF@)FW),F) _
p*(z)g*(z,y) =1A p(F(z))q(F(z),F(y)) (F(z), F(y)),

a*(z,y) =1A
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and it proves the first claim. Because g is strictly positive and continuous in
both variables by its definition, (Mpy;n € Ny) is irreducible and any compact
set with positive Lebesgue measure is a small set by Lemma 1.2 of [29]. By
the conditions ‘

PV —V*< eV 4blge = P(VoF)—VoF <c(VoF) +blo
= PV -V <V +ble«(Fz)) (z € RY).

Since C* is a compact set, there is r > 0 such that C* C {|z| < r}, then
{F~!(z) € C*} c {|F~1(z)| < r} and if we take C = {[F~1(z)] < r}, then
C is a compact set since |F'~!| is a norm-like function. We can take C' large
enough to have positive Lebesgue measure, hence C is a small set. Then for
C, V, v,b,c, the drift condition (3.6) holds. O

We take f(z) = 2% (z > 1) and set properly to satisfy above
conditions when z < 1. When |z| > 1, VIF(z) = (I; + /(2 — r)z -
2T /|z|?)|z|"/?") and det VT F(z) = (2/(2 — 7))|z|4/(=T). When (MZne
Ny) is from the Langevin algorithm we call this transform algorithm, the
transformed Langevin algorithm.

For practical purpose, it is convenient to take f(z) = z(z < 1) and it
is enough to establish the following conclusion, though it does not a C?
function. We restrict f to be a C? function in our proof since it simplifies
our proof. .

Theorem 3.6. Let p be a C? function that satisfies

lim sup(z, Vlogp(z)) < —n, ' (3.21)
|z|—00
lim |z|2 - |Viegp(z)| =0, (3.22)
lim |z|" - ||[VTVlogp(z)|| = 0. ‘ - (3.23)
|z|—o0

Consider the Transformed Langevin algorithm by F when 0 < r < 2. Then
the drift condition (3.6) holds for 2 < s < 2+ (n—d)(2/(2—71)), V(z) =
(JF~Y ()2 +1)*/2 and v = (s — 2)/s. In particular, the upper bound of the
polynomial order of convergence in total variation norm is (n—d)/(2 —r).

Proof. If p* satisfies the properties (3.15) and (3.19), by using Theorem
3.5 for (M%;n € Ny), the claim follows by Proposition 3.1. Through
the proof, we assume |z| > 1. By the definition of p*, Vlegp*(z) =
(VIF(z))T - (Vlogp)(F(z)) + Vlogdet VI F(z). Because 27 - VI F(z) =
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(2/(2 = r))F ()T, Viogdet VI F(z) = (dr/(2 — r))z/|z|* and |VTF(z)]| -
|z| < (dY? + /(2 = r))|F(x)|, we obtain
' 2 dr
T, * - _Z T,
z" - Vlogp*(x) 5 TF(:v) Viogp(F(z)) + 5

2] - [Viogp™(@)] < (d7 + 5—=)|F ()| - |V log p(F(2))| +

dr
9 _

Let n* = (1 — r/2)"1(n — rd/2), then the following properties hold since
|F(@)["? = |F(x)|/|2]:

limsupz? - Vlegp*(z) < —n*, lim |a:|%|Vlogp*(x)| =0.

|| =00 |z|—o0
Next we show that |[VTV logp*(z)| goes to 0 in the limit. We take some
steps to calculate it. In the following calculations, we sometimes drop the
operator “.” and the state  to simplify the inequalities and equations. First,
divide |[VTVlogp*(z)| into two parts, |V (VT F(z))TV log p(F(z))| and
VTV logdet VT F(z)||. About the second term, it is easy to see

1|2 VTV logdet VI F(z)|| < (dr(2 — r))(dY? + 2).
Now consider the first term. We have

VI(VIF(2)") - Viogp(F(2))) = V7 (|2l 77 V log p(F (x)))

+5 . -~V (12|27 %2 2T Viegp(F(2)).  (3.24)
Then the first term in the above is V log p(F) V7 |z|"/ =) 4 |2|"/?=")VT(V log p(F)).
The norm of the first term in it is smaller than (r/(2 — r))|F(z)| - |z|~2 -

|V logp(F(z))| and the second term is

T

2=V (Viogp(F@))| < |e|7% |97V log p(F()) VT F(2)|
< (@ + z)IF @3 VTV log p(F ()],

—r
hence both of them converge to 0. Finally, we show that the norm of the
second term in (3.24) goes to 0 in the limit. We write
A= VT (ja|7= 2T Viogp(F(z))) = 22T Vlogp(F(z))VT|z|z7 >
+]z|77 "2V (22T V log p(F(z))).
Since ‘
V(22" Viogp(F(z))) = az"(V"(Vlegp(F(z)))
+27V log p(F(z))I4 + Vlog p(F(z)) z,
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we obtain

ZP|All < |2[4|Viogp(F)| - VT |z|7 2 |
2|7 (|| VTV log p(F)) || - VT F| + 2|V log p(F)|(d2 + 1))

r 1 1 r
< (gt a2 - DIF|[Viegp(F)| + (d2 + 5—)|F[*| V'V logp(F)|.

Then by (3.22) and (3.23), ||A|| converges to 0. O

As we showed in Example 3.1, the Langevin algorithm with m degree
of freedom Student’s ¢ proposal distribution has a central limit theorem for
L*™¢ with € > 4/(m — 2). On the other hand, transformed chain has a
central limit theorem for L?*€ with € > 2(2 —r)/(m — (2 — 1)).

In [17], they proved the same kind of improvements of the rate of con-
vergence in another way. We transformed the chain to gain the heaviness
‘of the tail. On the other hand, they weighted g* of the transition kernel
Q(z,dy) = ¢*(|z — y|)dy. They took ¢* as a probability distribution func-
tion of Student’s ¢ distributions instead of normal distributions. However
they supposed stronger conditions, which is described in (3.5).

We can transform the random-walks based Metropolis-Hastings algo-
rithm instead of the Langevin algorithm as Theorem 3.6. However we can-
not prove the improvements like this theorem without some extra conditions,
for example, A(z) = {p(y) > p(z)} should be a convex set. I cannot make
out whether these difficulties are avoidable or are essential problems for the
schemes. o

3.4 Calculation

We now check the performance of the Metropolis-Hastings algorithms. In
practice, we should choose good parameters. As stated in the previous
subsection, we use f as f(z) =z (z < 1).

Example 3.3 (Multivariate ¢ distribution). Consider the multivariate t dis-
tribution (8.20) with the degree of freedom m = 3, mean pu = (2,2)T and

2 1
(2 1),
Start point Xo = (2,3). We produced M = 100,000 parallel Markov chains
(X = ( {'fn,Xg‘n)T;n € No) (m=1,...,M) by four algorithms below for
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‘each and calculated mean squared error

. M N
(Xnz19(X7") — (g))? »
MSEny = Y - , : 3.25
o mzzjl N M (3.25)

We took N = 500,1000,2500 for each and g(z,y) = x. We consider the
following algorithms:

¢ Random-walk with Gaussian increment distribution based algorithm.
(Table 3.1) ’

e Langevin algorithm. (Table 3.2)

e Random-walk with Student’s t increment distribution (degree of free-
dom is 1) based algorithm. (Table 3.3)

o Transformed Langevin algorithm (r =1). (Table 3.4)
e Transformed Langevin algorithm (r =1.2). (Table 3.5)

These algorithms have central limit theorems for L*t€ by Theorem 8.3,
where the value of € differs as follows: € > 4 for the first and second al-
gorithms, € > 1 for the third and fourth, and € > 8/11 for the last one.
Therefore in this case, Markov chain produced by the last algorithm have a
central limit theorem, but we can not say anything about the others using
Theorem 3.8. _

In Tables 3.1 through 3.5, transformed algorithm r = 1.2 works well in
this case. 'However you should choose good parameters to obtain such an
improvement. When r = 1.2, the algorithm behaves badly for h = 10.

Examplé 3.4. The following example is anti-convex probability distribution:

p(z,y) ( (3.26)

x4+ y2 4+ 1)3°

In this example, n = 6.
We consider the following algorithms:

e Random-walk with Gaussian increment distribution based algorithm.
(Table 3.6)

e Langevin algorithm. (Table 3.7)

e Random-walk with Student’s t increment distribution (degree of free-
dom is 1) based algorithm. (Table 3.8)
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o Transformed Langevin algorithm (r =1). (Table 8.9)

Some of these algorithms have central limit theorems for L*T¢ where the
value of € differs as follows: € > 8/5 for the second algorithm, € > 4/7 for
the last one. Since this probability distribution is not symmetric, we do not
know whether other algorithms have a central limit theorem.
~ In Tables 3.6 through 3.9, we used the same starting point Xy and the
same number of parallel Markov chains M as the previous ezample. The
first algorithm is not so bad and the second algorithm is better than the last
one. Transformation does not always show improvements.

3.5 Conclusion

The purpose of this paper is to introduce the Metropolis-Hastings algo-
rithms that can deal with a wide class of heavy-tailed target distributions.
We proved the convergence rate and sufficient conditions for convergence
for these algorithms. The transformed algorithm is of the same rate of con-
vergence as the heavy-tailed proposal random-walk algorithm, though the
latter algorithm needs strong assumptions for the target. v

Next, we want to prove the differences between the random-walk with
Gaussian increment distribution based algorithm and the Langevin algo-
rithm. Nun/iezical calculation suggests that the asymptotic variance of the
estimator II(f)y = N1 2521 f(MZ) of the Langevin algorithm is smaller
than that of the random-walk based algorithm when the target distribu-
tion is not symmetric. Therefore symmetricity seems to be an important
condition for the latter algorithm.
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Table 3.1: Example 3.3: Random-walk with Gaussian increment distribution
based algorithm.

h=30 h=40 h=50

N=500 111.70 95.69  90.83
N=1000 100.23 101.83 105.98
N=2500 159.91 267.78 127.22

Table 3.2: Example 3.3: Langevin algorithm.

h=30 h=40 h=50
N=500 113.62 121.6 123.18
N=1000 157.27 120.72 137.58
N=2500 165.95 143.11 172.00

Table 3.3: Example 3.3: Random-walk with Student’s ¢ increment distribu-
tion (degree of freedom is 1) based algorithm.

] h=8 h=10. h=12
N=500 138,55 134.16 129.60
N=1000 139.53 143.13 144.25
N=2500 147.98 144.21 145.02

Table 3.4: Example 3.3: Transformed Langevin algorithm by r = 1.

h=1 h=2 h=3 h=10

N=500 4565 33.59 4593 4575
N=1000 48.24 3548 4867 903.19
N=2500 49.14 40.15 45.83 2149.07
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Table 3.5: Example 3.3: Transformed Langevin algorithm by r = 1.2.

h=1 'h=12 h=14
N=500 41.71 41.02 43.61
N=1000 42.59 41.87 43.28
N=2500 4291 44.08 42.54

Table 3.6: Example 3.4: Random-wadk with Gaussian mcrement distribution
based algorithm. '

h=0.5 h=1 h=15

N=500 2121 2.024 2.246
N=1000 2.109 2.038 2.256
N=2500 2.124 2.025 2.258

Table 3.7: Example 3.4: Langevin algorithm.

h=0.25 h=0.50 h=0.75
N=500 1.064 0.569 0.688
N=1000 1.070 0.566 0.689
N=2500 1.074 0.570 0.688

Table 3.8: Example 3.4: Random-walk with Student’s ¢ increment dlstrlbu-
tion (degree of freedom is 1) based algorithm.

h=0.05 h=0.1 h=0.2
N=500 4.906 4.782  4.817
N=1000 4.943 4.821  4.875
N 2500  5.018 4.851 4.931
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Table 3.9: Example 3.4: Transformed Langevin algorithm by r = 1.

h=0.06 h=0.08 h=0.10
N=500 1.309 1.222 1.324
N=1000 1.312 1.222 1.325
N=2500 - 1.328 1.226 1.328
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