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Abstract — In Malaysia, seagrasses commonly inhabit shallow intertidal waters, semi enclosed lagoons, mangroves, coral reef flats 
and shoals in subtidal zones. Seagrass meadows have widely been surveyed by field sampling methods. As an alternative 
means to field-based surveys, airborne and/or satellite based sensors have been used to produce cost-effective and, more impor-
tantly, repetitive sources of information on seagrass distribution over wider areas. The satellite-based sensors Landsat imagery 
have been used as relatively economic alternatives to aerial photographs to produce seagrass cover maps and change analysis. 
Two radiometric image enhancement techniques (ETs)—histogram equalization (HE) and manual enhancement (ME) were ap-
plied on the series of Landsat images for comparative analysis and assessing ability of ETs to recognize seagrass meadows 
within the subtidal and intertidal coastal waters of the Sungai Pulai estuary, Johor Straits, Malaysia. With a view to find rela-
tions between Mean Sea Level Tide Heights (MSLTHs) and results of ETs, actual 33 multi-date (1989–2014) images with a wide 
range of MSLTH regimes (−0.281 to 0.234 m) during image acquisition time, were processed by applying ETs. The ME substan-
tially improved image quality compared to the HE, enabled detection of Seluyong seagrass meadows in intertidal mudflat, Mer-
ambong, Tanjung Adang Darat, Tanjung Adang Laut shoals in the subtidal areas. Seagrass meadows were ‘easy-to-recognize’ 
without noticeable variations due to MSLTH differences from the enhanced images acquired during extreme lowest spring tide 
height, −0.218 m and above until MSLTH at −0.085 m; found ‘difficult-to-recognize’ at full extent between −0.067 to −0.003 m and 
‘not-recognizable’ above MSLTH. ETs would be ineffective if applied to images acquired higher than MSLTH (0.007 to 0.234 m). 
The proposed ET is found to provide a consistent and quantitative areal cover for seagrass mapping and understand past 
changes from multi-date image analyses.
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Introduction
Seagrass is widely distributed from tropical to subtropi-

cal coastal waters around the world. In Malaysia, seagrasses 
commonly inhabit shallow intertidal waters (Japar Sidik and 
Muta Harah 2003, Norhadi 1993), semi enclosed lagoon 
(Muta Harah et al. 2000), mangrove, coral reef flat (Japar 
Sidik et al. 2001) and shoal in subtidal zones (Japar Sidik et 
al. 2006); and are an important source of ecosystem goods 
and services for people dependent on coastal resources (Japar 
Sidik and Muta Harah 2011, Japar Sidik et al. 2006). The an-
thropogenic perturbations and natural causal agents have 

caused an average loss of 110 km2 per year which is equiva-
lent to 29% worldwide seagrass beds since the 19th century 
(GBO-3 2010). For the conservation and management of sea-
grass resources it is necessary to conduct periodic monitoring 
by field survey or applying remote sensing techniques (see 
review of Fortes, 2012 for remote sensing techniques).

Seagrass meadows have widely been surveyed by field 
sampling methods (Japar Sidik et al. 2006, Muta Harah and 
Japar Sidik 2013). As an alternative means to field-based sur-
veys, airborne and/or satellite based sensors have been used 
to produce cost-effective and, more importantly, repetitive 
sources of information on seagrass distribution over wider 
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areas (Baumstark et al. 2013, Büttger et al. 2014). The satel-
lite-based sensors Landsat imagery have been used as rela-
tively economic alternatives to aerial photographs to produce 

seagrass cover maps and change analysis (Bouvet et al. 2003, 
Lyons et al. 2012). There are advantages and limitations of 
each technology due to spatial, spectral and temporal resolu-

Table 1. Advantage and limitations of remote sensing technologies and field-based data collection techniques for seagrass applica-
tions (Ferwerda et al. 2007, Xu and Zhao 2014, Brown et al. 2011, Malthus and Mumby 2003, Wang and Philpot 2007, Petus et al. 
2014). Notes: TM=Thematic Mapper; ETM=Enhanced Thematic Mapper; SPOT=Satellite Pour l’Observation de la Terre; 
ALOS=Advanced Land Observing Satellite; ASTER=Advanced Spaceborne Thermal Emission and Reflection Radiometer; 
MODIS=Moderate-resolution Imaging Spectroradiometer; MERIS=MEdium Resolution Imaging Spectrometer; LiDAR=LIght Detection 
And Ranging; CASI=Compact Airborne Spectrographic Imager.

Platform Sensor type (example) Advantages Constraints on application

Satellite Hyperspectral (Hyperion) High spectral (220 bands; 400–2,500 nm) 
and radiometric resolutions (16 bits) offer 
to match the rich spectral and spatial di-
versities; can potentially detect fine differ-
ences in spectral signatures; provide de-
tailed fine spectral resolution data used to 
detect subtle differences in spectral reflec-
tance; used for cover maps and measure 
leaf area index;

Less useful in highly turbid locations; 
limited to optically shallow waters 
(<20 m);

Multispectral - high resolution 
(IKONOS, QuickBird, World-
View)

High spectral (2 band; 450–600 nm) and spa-
tial (0.5–4 m) resolutions can reduce the 
number of mixed pixels; able to mapping 
at species composition level; match the 
rich spectral and spatial diversities;

Fewer water-penetrating bands  
costly compared to medium resolu-
tion for large spatial cover (>60 km) 
mapping; limited by water clarity;

Multispectral - medium resolu-
tion (Landsat TM, ETM+, 
SPOT, ALOS, ASTER)

Spatial (10–30 m) and spectral resolutions 
(450–690 nm) are effective for repeatable 
mapping and monitoring across geograph-
ical scales; provides the large area cover-
age and longest continuous datasets; used 
for coarse descriptive level mapping in op-
tically shallow water;

Poor spatial and spectral capabilities 
when useful signature can fall out-
side spectral ranges of visible 
bands; subtidal vegetation map-
ping is limited by water clarity; not 
possible for turbid water; cloud 
cover reduces number of images 
available;

Multispectral - low resolution 
(MODIS, MERIS)

Low spatial resolution (250–500 m) with high 
spectral resolution (400–900 nm) enable to 
produce large spatial cover map and 
change analysis;

Unable to provide finer spatial details 
due to low spatial resolution; lim-
ited by water clarity and frequently 
result in systematic underestima-
tion of the extent of seagrasses;

Aircraft Laser (LiDAR) Capable to measure bottom types at greater 
depth limit (1.5–60 m); can penetrate cloud 
cover;

Infrared region affected by water ab-
sorption (water column); tide levels 
introduce measurement errors; 
provide monochromic map with 
one variable (bottom reflectance);

Hyperspectral (CASI, HyMap) Offer information at many more spectral 
bands (~200 bands; 400–2,500 nm) located 
around typical absorption ranges provide 
more detailed distribution information of 
species and habitat;

Generally restricted to depths <6 m;

Photographic film Enable finer habitat discrimination; Smaller area coverage than satellite;

Boat Acoustic (single and multi-
beam)

Used to map seagrass cover in areas with 
high seagrass biomass; mapping in deep 
water (>100 m); unconstrained by optical 
water properties;

Depends on seagrass species and 
biomass; limited use in shallow 
water (<0.5 m); clouds, strong 
winds, breaking waves; do not 
offer synoptic measurements over 
large areas;

Field Visual (automatic underwater 
vehicle, diving, snorkeling, 
georeferenced photo and 
video)

Enable finer habitat discrimination; high data 
accuracy;

High time-cost and labor intensive; 
enable smaller area than remote 
sensing mapping.
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tions across the remote sensing techniques and field-based 
survey for seagrass habitat mapping (Table 1).

The baseline knowledge on seagrass distribution derived 
from seabed habitat mapping is the key to understanding the 
present condition of seagrass communities in marine 
environments for sustainable management (Japar Sidik et al. 
2006, Jagtap 1991, Muta Harah and Japar Sidik 2013). 
Moderate-resolution data such as Landsat (Yahya et al. 2010, 
Freeman et al. 2008, Hashim et al. 2001), SPOT (Barillé et 
al. 2010, Chen et al. 2013) and ALOS (Komatsu et al. 2009) 
have been routinely used to map seagrass resources in 
relatively shallow and clear waters. The Landsat is the only 
satellite that provides continuous global inventory data since 
1972 (Wulder et al. 2008) on 16-day repeat cycle at no cost 
with 30 m pixel resolution, offers to map seagrass  
meadows from local (Yahya et al. 2010) to regional scale 
(Torres-Pulliza et al. 2013) and monitoring spatial and 
temporal changes (Lyons et al. 2012). Techniques developed 
for assessing changes in the seagrass environment are limited 
by existing approaches, because traditional image-based 
interpretations (pixel based classifications) of multispectral 
remote sensing data are typically sensor specific, site specific 
and often time specific (Kutser et al. 2006).

Issues related to water clarity (suspended materials, 
chlorophyll and colored dissolved organic matter) and depth 
limits are considered as major constraints for submerged 
aquatic vegetation mapping using optical remote sensing 
technologies (Wolter et al. 2005). To examine this inherent 
constrains of optical remote sensing, image enhancement 
techniques (ETs) are employed, as evident from recent re-
searches. For example, integrated spatial and spectral en-
hancement techniques were demonstrated as an alternative 
method for mapping seagrass extent and density from high-

resolution IKONOS imageries (Baumstark et al. 2012). Few 
studies documented applications of ETs on Landsat image to 
generate seagrass distribution map and monitor spatial and 
temporal changes (Knudby et al. 2010). Mapping of shallow 
and turbid seagrass habitats continues to be a challenge 
(Huang et al. 2014). Further research is required on the use 
of ETs and their ability to discriminate seagrass from other 
substrate under different coastal water settings (Baumstark et 
al. 2012). Hence, the aim of current study is to investigate 
the efficacy of using image ETs for detection boundary delin-
eation and areal cover quantification of seagrass meadows in 
the subtidal and intertidal coastal areas of Sungai Pulai estu-
ary, Johor Straits, Malaysia.

Data and methods

Study area
The open funnel shaped Sungai Pulai estuary, Johor 

Strait, Malaysia (1°13′–22′N, 103°31′–37′E) (Fig. 1) is situ-
ated on the south coast of Peninsular Malaysia was selected 
for this study. The estuary is relatively shallow (average 
depth 2.7 m) and water is highly turbid (Case II) (Annalet-
chumy et al. 2005). The tide is diurnal (2 low and 2 high 
tides in a 24 hours) and asymmetrical, ranging from −0.36 m 
during lowest spring tide to 3.2 m during spring tide. Sea-
grass meadows, namely Merambong shoal (henceforth 
termed as MS), Tanjung Adang Laut shoal (TALS) and Tan-
jung Adang Darat shoal (TADS) extend from the inland to 
the estuary of the Sungai Pulai river (Japar Sidik and Muta 
Harah 2003). They are characterized by soft sediment sub-
strata, seagrass resources (seagrasses and macroalgae) and 
mangrove forests in the north (Japar Sidik et al. 2006). Enha-

Fig. 1. Location of study site; image subset (panel a) showing Merambong shoal, Johor port and surrounding areas; focused region 
(panel b) used for analysis; red color box indicates location of the focused region for TM8 acquired on June 27, 2013.
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lus acoroides and Halophila ovalis complex dominate the 
seagrass meadow (Cob et al. 2009).

Satellite data and analysis
Images of three Landsat satellite sensors—Landsat 5 

(TM5), Landsat 7 (ETM+) and Landsat 8 (TM8) were used 
in this study. The single tile of WRS2 (Worldwide Reference 
System) path 125 row 59 cover the Sungai Pulai estuary and 
surrounding subtidal and intertidal areas. A total of 33 multi-
date (1989–2014) images were downloaded from the web-
server of Earthexplorer (http://earthexplorer.usgs.gov/). 
Scene attributes and values pertaining to this study were re-
corded from the metadata file (Table 2). All scenes were pro-
cessed to L1T (Level 1 terrain corrected; geometrically cor-
rected) by EROS data center. TM5 and ETM+ have three 
visible spectral bands (blue, green and red) for B1, B2 and 
B3, while TM8 have for B2, B3 and B4. These visible bands 
were used to generate true-color composites. Image subsets 

were cropped out from the whole scene to ease further analy-
sis (Fig. 1 panel a). The Sungai Pulai estuary with surround-
ing subtidal and intertidal areas where seagrass meadows 
exist in higher concentration was marked as focused region 
(Fig. 1 panel b).

The Mean Sea Level Tide Height (MSLTH) predictive 
data were taken from the web interface facility at http://
www.worldwidetide.com/. The interface holds the barotropic 
ocean tide height of every coordinate, following model de-
veloped by Egbert and Erofeeva (2002). The approximate 
center coordinate of Merambong shoal seagrass meadow 
(1°19ʹ58.8ʺN, 103°35′59.6″E) was considered to be the refer-
ence point for predicting MSLTH during each scene acquisi-
tion time. The MSLTH ranges −0.281 to 0.234 m (Fig. 2). For 
the convenience of identification of respective images and 
presenting research results, all images were coded according 
to descending order of MSLTH (Table 2) in this paper.

Table 2. Sensor type, attribute and values of all Landsat images and input images employed for filling ETM+ SLC-off data-gaps in 
this study. Notes: UT=Universal Time; SC=Scene code.

Sensor Acquisition date
Time
 (UT)

Sun elevation 
(degrees)

Sun azimuth 
(degrees)

SC
SLC-off  

gap-fill input

TM5 September 13, 1989 02 : 42 55.71 85.31 S22
TM5 April 4, 1994 02 : 36 52.40 82.76 S17
TM5 June 26, 1995 02 : 22 44.68 57.77 S29
TM5 September 3, 1997 02 : 48 56.03 78.55 S23
TM5 March 19, 2000 02 : 50 54.79 92.87 S33
TM5 August 5, 2004 02 : 59 54.48 62.28 S6
TM5 May 4, 2005 03 : 03 57.86 61.50 S20
TM5 May 10, 2007 03 : 11 58.78 57.46 S15
TM5 February 8, 2009 03 : 02 52.74 117.39 S31
ETM+SLC-on September 1, 1999 03 : 09 60.71 75.16 S2
ETM+SLC-on April 28, 2000 03 : 08 59.48 63.82 S18
ETM+SLC-on September 3, 2000 03 : 07 60.61 77.29 S9
ETM+SLC-on April 15, 2001 03 : 06 59.76 72.93 S5
ETM+SLC-on April 2, 2002 03 : 05 59.39 82.95 S4
ETM+SLC-on May 23, 2003 03 : 05 56.10 53.83 S13
ETM+SLC-off May 9, 2004 03 : 05 57.66 58.62 S1 S6
ETM+SLC-off July 12, 2004 03 : 05 53.63 53.42 S19 S20
ETM+SLC-off January 20, 2005 03 : 06 51.80 126.04 S24 S26
ETM+SLC-off March 9, 2005 03 : 06 57.45 100.63 S32 S31
ETM+SLC-off April 10, 2005 03 : 06 59.68 76.59 S26 S27
ETM+SLC-off March 12, 2006 03 : 06 57.89 98.71 S27 S26
ETM+SLC-off May 31, 2006 03 : 06 55.36 51.67 S3 S1
ETM+SLC-off July 18, 2006 03 : 06 54.04 54.72 S16 S15
ETM+SLC-off November 23, 2006 03 : 06 56.54 131.93 S25 S26
ETM+SLC-off April 16, 2007 03 : 07 59.73 72.47 S30 S27
ETM+SLC-off June 8, 2009 03 : 07 54.71 50.45 S28 S31
ETM+SLC-off March 7, 2010 03 : 08 57.77 102.41 S7 S8
ETM+SLC-off April 13, 2012 03 : 10 60.79 73.66 S8 S12
ETM+SLC-off April 29, 2012 03 : 11 59.80 62.82 S12 S8
TM8 June 27, 2013 03 : 18 55.92 47.98 S10
TM8 February 6, 2014 03 : 17 55.80 121.16 S11
TM8 February 22, 2014 03 : 17 58.04 112.12 S14
TM8 March 26, 2014 03 : 16 61.94 88.15 S21
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Image enhancement techniques
Two radiometric ETs—histogram equalization (HE) and 

manual enhancement (ME) were applied on the test images. 
Radiometric contrast enhancement basically transforms the 
histogram of the data, increasing contrast in some areas (con-
sidered as gain) and decreasing it in others and thus contrast 
can be lost between some Digital Numbers (DNs), while 
gained on others (Faust 1989). The histogram equalization is 
a non-linear stretch which transforms actual DNs to output 
Grey Level (GLs) space using Cumulative Distribution Func-
tion (CDF) (Eqn. 1) (Cihlar et al. 2001).

GL=255CDF (DN) (1)

The ETs were applied on all actual images without any 
pre-processing (radiometric calibration, atmospheric or wa-
ter-column corrections) except for the Weighted Linear Re-
gression (WLR) algorithm integrated with Laplacian Prior 
Regularization Method (LPRM) (Zeng et al. 2013), were ap-
plied for filling data gaps in ETM+ SLC-off images. Closer 
image acquisition dates and similar MSLTH was considered 
while selecting image pairs for SLC-off data gap filling pro-
cess because Gullström et al. (2006) has demonstrated that 
such image pairs do not require water column correction 
(Lyzenga 1978) due to small differences of water depth. Fur-
thermore, there were no remarkable seagrass cover changes 
between the closer dates - a practical assumption, were con-

sidered prior to further image processing and seagrass cover-
age mapping in this study. The primary (ETM+ SLC-off 
image to be gap filled) and input (filler image of other date) 
images in the gap-filling process are listed in Table 2. The 
regularization parameter and maximum number of iteration 
were set to 0.01 and 600 respectively during implementation 
of LPRM method. The ETs techniques were applied using 
image enhancement tools of ENVI 5.0 (Exelis Visual Infor-
mation Solutions, Inc., Boulder, USA). After several trials of 
adjusting brightness, contrast and transparency (sharpness in 
ENVI) of the satellite images, light to deep black seagrass 
meadows were clearly distinguishable from the non-seagrass 
habitats, i.e., deep to light blue water body in the subtidal 
areas and whitish (comparatively more brighter than inter-
tidal seagrass cover) mudflat/sandy substrates in the inter-
tidal areas. Similar methodological approach of color and 
textural contrasts were usually applied (e.g., Dolch et al. 
2013) for visual interpretation of aerial color photograph 
with a view to identify seagrass meadows for intertidal muld-
flats. Thus, the perceived color contrast of the targeted 
objects allowed achieving the optimal level of true-color 
composite image brightness, contrast and sharpness controls 
as a result of ME in this study. The ME was applied manu-
ally by adjusting brightness, contrast and sharpness control 
tools from the respective ‘default’ values as 50, 20 and 10 of 
ENVI. Corresponding contrast levels for each scene are 
given in Table 3. The default function of ENVI (256 bins) 
was applied for automatic enhanced image generation by 
HE. The optimum contrast efforts achieved by employing the 
ETs, were not guided by the changes of multi-date MSLTHs 
and the GPS points that trace spatial extent of Merambong 
and Tanjung Adang Laut shoals. The later were used for map 
classification accuracy assessment (described in the section 
below).

ETs were applied only to improve the visual quality of 
the displayed image, the results of ETs cannot be compared 
by quantitative analysis (see page 206 of Schowengerdt and 
Schowengerdt 2007). Therefore, all the enhanced images 
were visually inspected and subjectively categorized based 
on image quality (IQ). Here, the ‘image quality’ referred to 
subjective level of targeted object distinctiveness to recog-
nize/separate from surrounding non-targeted objects, image 
without loss of information, less noise and presence of sharp 
edge around the surrounding object, as described by 
Lillesand et al. (2008). IQ in regard to visual quality to 
recognize targeted objects (seagrass meadow, water body and 
mudflat areas) were thus, subjectively categorized as a) easy-
to-recognize (er), b) difficult-to-recognize (dr) and c) not-
recognizable (nr). The ET that delivered images with 
distinctive seagrass boundary at full extent, least noise and 
displayed clear borderline between water body and the sea-
grass meadows for subtidal areas and mudflat from intertidal 
seagrass meadows, were assessed as ‘er’ quality image. In 

Fig. 2. Predicted MSLTH (m) data ranging from extreme low-
est spring tide (S1=−0.281 m) to extreme highest spring tide 
(S33=0.234 m). MSLTH thresholds marked by dashed lines, 
illustrating ability to recognize seagrass meadows (SMs): er for 
‘easy-to-recognize’, dr for ‘difficult-to-recognize’ or nr for ‘not-rec-
ognizable’.
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contrast, complete inability to display the distinctive charac-
teristics of seagrass meadows were assessed as ‘nr’ image. 
The ‘dr’ IQ were marked when spatial extent of seagrass 
meadows were partly distinguishable; there is loss of sea-
grass spatial extent information compared to ‘er’ image and 
better visual quality than non-distinguishable targeted object 
of ‘nr’ image category.

Seagrass meadow boundary delineation and areal 
cover measurement

On-screen digitization approach has previously been 
used to classify seagrass from other substrates and boundary 
delineation. For example, meadow boundary was delineated 
by either color (RGB) or greyscale (black and white) color 
contrasts from aerial photography based on the color and tex-
ture of seagrass (e.g., Cuttriss et al. 2013), using true-color 

composites of Landsat imagery (B3, B2 and B1 layer stacks) 
based on visual interpretation made by local fishers (Lauer 
and Aswani 2008). Knudby et al. (2010) identified presence 
or absence of specific seagrass meadow from pixel bright-
ness differences using the multi-temporal georeferenced 
images.

Separation of continuous features, i.e., sand, seagrass 
and water body was determined by visual assessment of 
cover; producing polygons around visually interpolated and 
extrapolated seagrass boundaries (Roelfsema et al. 2009) 
using the enhanced images and local knowledge. Manual 
digitization approach (see Roelfsema et al. 2013 and refer-
ences therein), based on characteristics color contrasts was 
conducted for distinguishing the targeted objects. True color 
composites of enhanced images provided black with 48–62 
of red (R), 51–52 of green (G) and 45–60 of blue (B) to dark 
brown with 92–112 of R, 75–92 of G and 90–105 of B for 
seagrass, that was distinguishable from dark blue with 55–66 
of R, 78–90 of G and 91–102 of B to light blue with 117–119 
of R, 191–193 of G and 190–240 of B surrounding water 
bodies in the subtidal areas and white with 208–231 of R, 
189–195 of G and 178–180 of B to pink with 156–164 of R, 
129–142 of G and 114–124 of B multitude of colors for sand 
in the subtidal areas. These color contrasts were used to sepa-
rate objects, create polygons for specific seagrass cover and 
quantify areal cover. These visual assessments of seagrass 
cover map were implemented for twenty ME and HE pre-
processed images acquired MSLTH −0.003 to −0.281 m (S1 
to S20) and thus, clearly delineated MS, TALS and TADS 
seagrass meadow boundaries (Fig. 2) from non-seagrass sub-
strates in this study.

Seagrass meadow delineation accuracy assessment
To locate the boundary of seagrass meadows a hand 

held GPS machine Colorado 300 was used. A total of 46 for 
MS and 37 for TALS GPS readings were taken on July 07, 
2012 and March 31, 2013, respectively. During data collec-
tion, the MSLTH ranged from −0.231 m to −0.210 m on July 
07, 2012 and −0.327 to −0.297 m on March 31, 2013. 
Ground truth GPS points were used as a source of reference 
data where polygon data were derived by joining those GPS 
data points for both MS and TALS. Another two polygons of 
MS and TALS seagrass meadows were generated by con-
necting GPS readings around the seagrass meadows from the 
produced enhanced images. Seagrass map accuracy was 
measured through comparing the input and the reference im-
ages. Thus, seagrass map accuracy was based on pixels inter-
secting the reference and input polygons. Five images ac-
quired close to the GPS data collection dates, such as S8, 
S10, S11, S12 and S14 (Table 2) were used for developing 
confusion matrix and accuracy assessment. Map accuracy 
was estimated by means of overall accuracy along with Co-
hen’s kappa, an alternative measure of accuracy between ref-

Table 3. The saturation contrast stretch values used for each 
actual image to achieve optimum enhanced image by ME tech-
nique.

ME

Brightness Contrast Sharpness

S1 63 32 11
S2 84 59 17
S3 87 66 16
S4 66 42 20
S5 62 34 17
S6 67 40 15
S7 62 39 15
S8 80 40 22
S9 75 45 15
S10 56 26 16
S11 67 36 14
S12 89 64 20
S13 74 61 18
S14 69 49 25
S15 70 33 16
S16 68 27 15
S17 87 50 16
S18 85 64 18
S19 92 61 17
S20 69 44 16
S21 90 54 18
S22 69 39 18
S23 60 32 16
S24 64 32 15
S25 57 30 16
S26 56 27 13
S27 55 29 12
S28 60 27 12
S29 63 29 18
S30 76 34 14
S31 50 26 12
S32 60 30 11
S33 60 28 13
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erence and resulting maps as informed by Cohen (1960) and 
Congalton (1991).

Results

Results of ETs to recognize subtidal and intertidal 
seagrass meadows

Results for HE and ME methods are presented in Table 
4 and example data is illustrated in Fig. 3, to demonstrate the 
relations between visual recognition ability for subtidal and 
intertidal seagrass meadows with MSLTH changes from 
across the rows, while results among ETs are compared 
along the corresponding image in columns.

Image ETs substantially improved IQ compared to ac-
tual true-color composites as evident from the results ob-
tained from optimally enhanced images irrespective of 
MSLTH regimes (panel a versus panel b or c in Fig. 3). Sea-
grass meadows were ‘easy-to-recognize’ (Fig. 2) from darker 
pixel visual impact than surrounding objects. For example, 
TADS (marked as d in Fig. 3) and ‘Seluyong mudflat with 
seagrass meadow’ (marked as b in Fig. 3) became recogniz-
able as separate seagrass meadow when image contrast 
matches with MS and TALS. Multi-date images confirmed 
that information. HE in most cases over brightened particu-
larly around the brighter object edges such as bare sand/mud-
flat areas and consequently failed to provide adequate Seluy-
ong seagrass information (Table 4 and Fig. 3). Comparison 

Table 4. Comparison of results of ET for ability to recognize intertidal and mudflat seagrass meadows. Notes: SC=Scene code; 
a=MS, b=seagrass with mudflat, c=TALS, d=TADS, er=easy-to-recognize, dr=difficult-to-recognize, nr=not-recognizable.

SC
MSLTH 

(m)

Outcome of the ET

ConstrainHE ME

a b c d a b c d

S33 0.234 nr nr nr nr nr nr nr nr Water column above MSL resulted inability to recognize sea-
grass meadows with ETs

S32 0.196 nr nr nr nr nr nr nr nr
S31 0.189 nr nr nr nr nr nr nr nr
S30 0.163 nr nr nr nr nr nr nr nr
S29 0.138 nr nr nr nr nr nr nr nr
S28 0.135 nr nr nr nr nr nr nr nr
S27 0.134 nr nr nr nr nr nr nr nr
S26 0.116 nr nr nr nr nr nr nr nr
S25 0.114 nr nr nr nr nr nr nr nr
S24 0.102 nr nr nr nr nr nr nr nr
S23 0.099 nr nr nr nr nr nr nr nr
S22 0.082 nr nr nr nr nr nr nr nr
S21 0.007 nr nr nr nr nr nr nr nr
S20 −0.003 dr nr nr nr dr nr nr nr
S19 −0.005 dr dr nr* nr dr dr nr* nr *Pixel noise constrained ability to recognize seagrass at c
S18 −0.031 er dr* er er er dr* er er *HE over-brightened image texture at b
S17 −0.067 er dr* nr nr er dr* nr nr *Cloud and cloud shadow cover hindered seagrass detection at b
S16 −0.085 er dr* er nr er dr* er nr *Cloud and cloud shadow cover hindered seagrass detection at b
S15 −0.118 er er er nr er er er nr
S14 −0.163 er er dr* nr er dr* er nr *Cloud and cloud shadow cover hindered seagrass detection at b
S13 −0.163 er dr* er er er dr* er er *Cloud and cloud shadow cover hindered seagrass detection at b
S12 −0.164 er er er nr er er er nr
S11 −0.173 er er er nr er er er nr
S10 −0.173 er dr* dr* nr er er er nr *HE over-brightened image texture at b and c
S9 −0.180 er dr* er er er er er er *HE over-brightened image texture at b
S8 −0.186 er er er nr er er er nr
S7 −0.192 dr* er er nr er er er nr *HE over-brightened image texture at b
S6 −0.199 er er dr* nr er er dr* nr *Cloud cover hindered seagrass detection at c
S5 −0.212 er er dr* dr er er dr* dr *Cloud and cloud shadow cover hindered seagrass detection at c
S4 −0.232 er dr* dr* dr* er dr* dr* dr* *Cloud and cloud shadow cover hindered seagrass detection at 

b, c, d
S3 −0.256 er dr* er nr er dr* er nr *Cloud cover partly obscured seagrass at b
S2 −0.271 er dr* er er er dr* er er *Cloud cover partly obscured seagrass at b
S1 −0.281 er dr* dr* er er er er nr *HE over-brightened image texture at b and c
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Fig. 3. Six actual (panel A) true-color composites example data of the focused region, illustrating ability of Landsat images to recog-
nize spatial distribution of subtidal and intertidal seagrass meadows from results of HE (panel B) and ME (panel C) acquired in different 
dates at MSLTH regimes; seagrass meadows are marked by (a) at MS, (b) Seluyong mudflat with seagrass meadow, (c) TALS and (d) at 
TADS; mudflat extent as mf and non-seagrass/water body areas as nsg; zoomed-in view are taken from corresponding images illus-
trates results for intertidal mudflat with seagrass cover (top) and MS (bottom).
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of multi-date images acquired at gradual decreased MSLTH 
demonstrated that they are closely related specially at higher 
MSLTH regimes. Seagrass meadows were ‘easy-to-recog-
nize’ without noticeable variations due to MSLTH differ-
ences from the enhanced images acquired during extreme 
lowest spring tide height, −0.218 m and above until MSLTH 
at −0.085 m; also found ‘difficult-to-recognize’ at full extent 
between −0.067 to −0.003 m MSLTH and ‘not-recognizable’ 
(Fig. 2) above −0.003 m MSLTH. For example, there were 
no differences among image darkness due to presence of sea-
grass at MS as illustrated with zoomed-in view for S1 to S16 
through S4 (bottom three rows of Fig. 3) while MSLTH dif-
ference was about 2 m between the maxima and minima. Re-
sults of HE and ME have proved ability to recognize all tar-
geted objects from −0.281 m (S1) to −0.085 m (S16) 
MSLTH, while this MSLTH upper limit increased to 
−0.031 m and seagrass meadows were ‘difficult-to-recognize’ 
(Fig. 2) compared to former MSLTH for the enhanced im-
ages. MS was easy-to-recognize compared to TALS and 
mudflat from all images. Constant MS areal cover should 
also be noticeable from the multi-date enhanced images for 
all ETs, indicates no abrupt changes occurred in MS areal 
cover. TADS was recognizable from the images S4, 5, 9, 13 
and 18 acquired from 1994 until 2003 while MSLTH ranges 
from −0.232 m to −0.031 m.

Visibility of mudflat was influenced by MSLTH regimes 

as evident from comparative analysis of both unenhanced 
and enhanced images. The width of mudflat was most clearly 
distinguishable from the edge of water body and mudflat at 
the lowest MSLTH (−0.281 m in this study), later gradually 
decreases with rising MSLTHs and at −0.005 m and above 
this substrate type was visible. The seagrass meadow at mf in 
Fig. 3 shows that Seluyong seagrass meadow areal cover de-
tection was equivalently affected as of mudflat areas by 
MSLTH regimes but the degree of visibility varied with color 
contrast modified by ETs.

Seagrass areal cover and delineation accuracy 
assessment

Tables 5 presents total area of MS, TALS and TADS, 
Table 6 yearly cover change (%) and Table 7 presents results 
of mapping accuracy regard to ETs for MS and TALS. All 
the ETs produced visually similar quality images for MS, 
TALS and TADS which lead to clearly delineate their bound-
aries and precise measurement of areal cover (Fig. 4). Total 
area results per ET are nearly identical. There were negligi-
ble differences between areal cover measured from ME and 
HE pre-processed images (Table 5). The manually enhanced 
(ME) image of April 4, 1994 showed that TADS had the big-
gest areal cover with 40.3 ha than the MS (25.1 ha) followed 
by TALS (24.8 ha). TADS had experienced 30% (about 
13 ha) seagrass spatial cover loss, while MS and TALS had 

Table 5. Total seagrass meadow area (ha) results per ET. Data are presented in ascending order of scene acquisition date. Notes: 
SC=Scene code; SAD=Scene Acquisition Date; diff.=seagrass areal cover difference derived from polygon area between ME and 
HE results; - diff. when ME>HE; GT=groundtruthing; nr=not-recognizable because of non-existence of seagrass meadow; nr*=not-
recognizable because of either cloud cover or higher MSLTH than threshold level.

SC
MSLTH 

(m)
SAD

MS TALS TADS

GT
HE ME

diff. 
(%)

HE ME
diff. 
(%)

HE ME
diff. 
(%)

S17 −0.067 April 4, 1994 24.78 25.11 −1.3 23.48 24.75 −5.4 38.76 40.32 −4.0 No
S2 −0.271 September 1, 1999 25.77 26.53 −2.9 23.61 23.88 −1.1 37.11 37.64 −1.4 No
S18 −0.031 April 28, 2000 21.66 22.50 −3.7 23.04 23.55 −2.2 39.56 39.75 −0.5 No
S9 −0.18 September 3, 2000 23.62 23.68 0.3 23.87 23.24 2.6 12.26 12.96 −5.4 No
S5 −0.212 April 15, 2001 26.55 27.09 −2.0 15.03 15.84 −5.4 nr* nr* No
S4 −0.232 April 2, 2002 23.88 24.39 −2.1 14.89 13.61 8.6 12.32 12.94 −5.0 No
S13 −0.163 May 23, 2003 24.77 25.65 −3.6 10.57 11.19 −5.9 12.3 12.88 −4.7 No
S1 −0.281 May 9, 2004 28.35 29.43 −3.8 11.56 12.46 −7.8 nr nr No
S19 −0.005 July 12, 2004 22.38 23.44 −4.7 nr* nr* nr nr No
S6 −0.199 August 5, 2004 22.44 23.13 −3.1 11.82 11.69 1.1 nr nr No
S20 −0.003 May 4, 2005 16.74 17.82 −6.5 nr nr nr nr No
S3 −0.256 May 31, 2006 23.61 24.84 −5.2 11.89 11.33 4.7 nr nr No
S16 −0.085 July 18, 2006 29.89 29.06 2.8 11.02 11.54 −4.7 nr nr No
S15 −0.118 May 10, 2007 29.69 29.81 −0.4 10.36 10.63 −2.6 nr nr No
S7 −0.192 March 7, 2010 29.5 30.24 −2.5 11.42 11.83 −3.6 nr nr No
S8 −0.186 April 13, 2012 26.01 26.19 −0.7 11.64 11.79 −1.3 nr nr Yes
S12 −0.164 April 29, 2012 26.2 26.23 −0.1 11.06 12.22 −10.5 nr nr Yes
S10 −0.173 June 27, 2013 27.04 27.88 −3.1 11.22 11.61 −3.5 nr nr Yes
S11 −0.173 February 6, 2014 25.3 26.36 −4.2 11.62 12.32 −6.0 nr nr Yes
S14 −0.163 February 22, 2014 26.54 27.42 −3.3 11.4 11.52 −1.1 nr nr Yes
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almost the same spatial extent with 23.7 ha and 23.2 ha 
respectively, as evident from the image of September 3, 
2000. Although subsequent multi-date image analysis specif-

ically images acquired on April 2, 2002 and May 23, 2003 
showed existence of TADS but the complete loss of that 
seagrass meadow became evident from the image of May 9, 
2004. In the years between 2006 and 2007 remained nearly 
stable with average areal cover of 27.9 ha for MS and 11.2 ha 
for TALS. No remarkable variations of MS and TALS 
seagrass spatial cover changes were evident from April 13, 
2012 through June 27, 2013 until February 22, 2014 where, 
total areal cover measurements were ranging from 26.2–
27.9 ha for MS and 11.5–12.3 ha for TALS (Table 5). An 
analysis of percent cover change per year presented in Table 
6 for MS, TALS and TADS showed that in general, there 
were slow gain or loss of seagrass spatial cover when com-
pared between 1994 and different years. The results showed 
that MS was found to be stable (estimated from % cover 
change year−1); not temporally dynamic having both losses 
and gains within low ranges as between 1.70 to (–) 1.71 for 
gain and loss in May 09, 2004 and April 28, 2000 respec-
tively. Similar stable cover change was also measured for 
TALS in between the years 1994 and all along different years 
acquired on May 23, 2003 until February 22, 2014, whilst, 
5.1% loss year−1 occurred in April 15, 2001. Both the slow 
and dynamic trend of TADS seagrass loss year−1 was found 
until April 28, 2000 (0.2 to −1.2%) and September 03, 2000 
(10.6%), respectively.

The total areal cover for MS and TALS meadows were 
further re-validated by mapping accuracy assessment mea-
sures. The OA ranges between 87.54 to 99.99% for ME 
while 87.52–99.99% for HE (Table 7). All OAs were above 
85%, indicating good delineation scheme.

Discussion

Seagrass recognition from enhanced image
The results indicated that there were significant 

improvements in IQ compared to actual image (without 
enhancement). Illustrations (Fig. 3) have demonstrated the 
ability of Landsat to distinctively recognize seagrass from 
surrounding substrate types. Similarly, simple display of 
true-color composites and classified images of TM5 and 
ETM+ were used successfully for monitoring spatial extent 
of coral, algae and seagrass dominating Chumbe islands in 

Table 6. Yearly percent cover change analysis between manu-
ally enhanced Landsat images acquired on April 4, 1994 from 
different years for MS, TALS and TADS; a positive figure indi-
cates seagrass cover gain between images; nm*=spatial extent 
is non-measurable because of either cloud cover or higher 
MSLTH than threshold level.

Year
Areal cover change per year (%)

MS TALS TADS

April 4, 1994– 
September 1, 1999

1.04 −0.65 −1.23

April 4, 1994– 
April 28, 2000

−1.71 −0.80 −0.23

April 4, 1994–
September 3, 2000

−0.89 −0.95 −10.57

April 4, 1994– 
April 15, 2001

1.12 −5.12 nm*

April 4, 1994– 
April 2, 2002

−0.36 −5.63 −8.49

April 4, 1994– 
May 23, 2003

0.24 −5.99 −7.45

April 4, 1994– 
May 9, 2004

1.70 −4.91

April 4, 1994– 
July 12, 2004

−0.65 nm*

April 4, 1994– 
August 5, 2004

−0.76 −5.10

April 4, 1994– 
May 31, 2006

−0.09 −4.46

April 4, 1994– 
July 18, 2006

1.28 −4.34

April 4, 1994– 
May 10, 2007

1.43 −4.35

April 4, 1994– 
April 13, 2012

0.24 −2.90

April 4, 1994– 
April 29, 2012

0.25 −2.80

April 4, 1994– 
June 27, 2013

0.57 −2.76

April 4, 1994– 
February 6, 2014

0.25 −2.53

April 4, 1994– 
February 22, 2014

0.46 −2.69

Table 7. Seagrass meadow delineation accuracy per ET. Data are presented in ascending order of scene acquisition date.

SC MSLTH (m) Scene acquisition date
HE ME

OA (%) Kappa OA (%) Kappa

S8 −0.186 April 13, 2012 99.99 0.8119 99.99 0.8812
S12 −0.164 April 29, 2012 99.99 0.7855 99.99 0.7107
S10 −0.173 June 27, 2013 87.52 0.7411 87.54 0.7962
S11 −0.173 February 6, 2014 88.07 0.7105 89.91 0.7537
S14 −0.163 February 22, 2014 89.66 0.7763 89.10 0.9554
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Zanzibar, and also proved to be effective tool over the super-
vised classification method (Knudby et al. 2010). The 
authors did not assess the tide height (MSLTH) that deter-
mines magnitude of detection in their methodology and thus, 
results could not be compared with this study. Potential use 
of ETs on Landsat images to discriminate seagrass from 
other substrate types and monitor seagrass cover changes are 
witnessed from other researches (Gullström et al. 2006, 
Knudby et al. 2010, Palandro et al. 2003, Torres-Pulliza et al. 
2013, Wabnitz et al. 2008). The present study illustrated the 
enhanced image can detect seagrass meadow including 
Seluyong mudflat, which was not previously documented 
(Muta Harah and Japar Sidik 2013). The seagrass/algae 
distribution maps on the sand/mud flat area for the Straits of 
Malacca was conducted using SPOT and Landsat data ac-
quired at low tide where images were analyzed with hierar-
chical unsupervised classification, followed by contextual 
editing for discriminating seagrass from surrounding 
substrates (sand/mudflat) and other vegetation (algae) (Ping 
Chen et al. 2013). The authors also noted that two usual 
causes such as water turbidity and depth made the classifica-
tion scheme difficult and to achieve mapping accuracy at 
adequate level. To avoid water depth and clarity problems 
optimal set of Landsat images acquired at low tide heights 
were used for ecoregional scale seagrass mapping in the 
Lesser Sunda ecoregion (Torres-Pulliza et al. 2013). Thus, 
previous studies also indicated the capability of Landsat 
imageries that, when acquired at low tide heights were less 
challenging for seagrass distribution mapping from local to 
large spatial scale, compared to images acquired at high tide 
heights.

Seagrass recognition ability and MSLTH relations
Although image ET substantially improved image qual-

ity so as to visually recognize seagrass meadows, in most 
cases, HE over brightened the images in the mudflat area and 
eventually reduced clear visibility for Seluyong seagrass 
cover information extraction, as evident from the present 
study results (Fig. 3). Similarly, Kaliraj and Chandrasekar 
(2012) failed to discriminate between sand dunes and 
beaches because HE homogeneously brightened the objects. 
The results HE while assessed in terms of total areal cover of 
seagrass meadows indicated the ability to detect small sized 
seagrass patches like TALS (11.52–12.32 ha for ME; Table 5) 
within the MSLTH threshold limit (above −0.085 m) with 
negligible difference than ME. The present study found 
MSLTH threshold as −0.085 m at which all ETs produced 
quality image; gradually degrade image visual quality from 
‘easy-to-recognize (er)’ to ‘difficult-to-recognize (dr)’ until 
−0.003 m (Fig. 2). All ETs showed inability to recognize sub-
tidal and intertidal seagrass meadows at the higher levels of 
MSLTH (Fig. 3 and Table 4). It can commonly be stated that 
image enhancement techniques can be an efficient tool for 

the seagrass meadows those emerge to the sea surface during 
the low MSLTH. However, a particular range (threshold) of 
MSLTH could not be proposed for achieving an optimally 
enhanced image because MSLTH may fluctuate with topog-
raphy of the seagrass beds. In this study, we limited influence 
of water quality and depth effect by considering optically 
shallow (turbid) water areas of 2.7 m average MSL depth. 
Therefore, our MSLTH thresholds are valid for only inter-
tidal and shallow subtidal areas similar to Sungai Pulai estu-
ary, where water depth ranges between 2.0–3.4 m (retrieved 
from http://www.worldwidetide.com) and Secchi disk depth 
is 0.5–1.0 m. Interpretations of seagrass detection and subse-
quent analysis of cover changes in areas deeper than our case 
study site will limit the detection of seagrass meadow 
changes. Nevertheless, the results of ETs support the com-
monly held assumptions: a) if the sea depth is higher, com-
bined with steep slope (topographic feature) than Sungai 
Pulai estuary, the threshold will change to small value and b) 
if the water clarity is optically deep, i.e., underwater visibil-
ity is clearer than Sungai Pulai estuary, the threshold will 
change to high value. Therefore, considering the on-the-
ground scenarios, especially with respect to water depth and 
clarity being inherent complex environmental characteristics 
of the seagrass occurring areas outside the Sungai Pulai estu-
ary, is obvious and simultaneously MSLTH threshold will 
change. The greater advantage of improving image quality 
through ETs still persist and will add value to the existing 
image processing method and knowledge for seagrass appli-
cations.

Results also indicate that a particular range (threshold) 
of brightness, contrast and sharpness values (Table 3) and 
could not be proposed for achieving an optimally enhanced 
image because actual source IQ may fluctuate with sensors 
type (TM5 often provide poor quality images than ETM+ or 
TM8), solar illumination during image acquisition time and 
other local environmental settings. Image ETs still have 
promising results and this study provides practical informa-
tion through qualitative and quantitative analysis that will 
provide useful input for further research.

The present study was performed without any correction 
applied to the multi-date images, acquired at a range of 
MSLTHs. However, ETs would be ineffective if applied to 
images acquired higher than MSL. Variations in water depth 
and clarity due to MSLTHs and study locations are also 
expected and will require water depth corrections. Water 
quality corrections are difficult to conduct accurately in the 
coastal water settings (Hu et al. 2001). It may be possible to 
apply instead ETs to improve visual quality of different 
images and extract seagrass information, acquired at closer 
MSLTHs.

In summary, this study suggests ME approach as more 
appropriate ET for seagrass applications based on following 
superior characteristics: a) retained all information which is 
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needed to recognize target from subjectively categorized 
quality image, able to visualize finer details of image content 
including presence of significant contrasts between targeted 
(seagrass, water body, mudflat) and unwanted (terrestrial) 
objects and detect seagrass meadows and quantitatively 
estimate the areal cover; b) equally treat 8-bits (TM5 and 
ETM+) and 16-bits (TM8) quantized data, help to generate 
equally distinctive targeted objects to discriminate valid 
number of classes for both intertidal and subtidal areas 
without loss of important seagrass areal cover information; 
d) potential to provide seagrass aerial cover change detection 
results similar in precision than more complex methods 
demanding absolute corrections (Andréfouët et al. 2001).

Benefits and constrains of ETs
The results of image ETs support the literature (Japar 

Sidik et al. 2006, Jagtap 1991, Muta Harah and Japar Sidik 
2013) that described the consistent areal cover of MS and 
TALS, degradation of TADS after 2003 due to natural accu-
mulation of thick gluttonous anoxic silt over that seagrass 
meadow. The multi-date image analysis witnessed the addi-
tional cause of sudden disappearance of TADS could be the 
land reclamation for extending facilities of Johor port (Fig. 
1). The recent Landsat 8 image acquired at −0.191 m MSLTH 
during image acquisition time of July 16, 2014 shows the 
risk of MS seagrass habitat loss due to coastal land reclama-
tion activity, began in early March, 2014 (Fig. 4 panel c). 
Sand deposits for land reclamation divided the MS into two 
segments—the landward northern (13.95 ha) and the seaward 
southern part (11.16 ha), reduced areal coverage from total 
27 ha to 25.1 ha, i.e., a loss of 1.8 ha (~7%) seagrass bed, as 
estimated from optimally enhanced image. The complete loss 
of MS and including the nearby TALS is obvious once the 
proposed 49 ha land reclamation project will end. The detri-
mental impact for expansion of port (Port of Hastings) on 
seagrass habitats are evident in the recent impact assessment 
report, prepared for the Victorian National Parks Association 
Inc. (Kirkman 2013). There is considerable evidence that 
Posidonia meadows, and similar slow-growing seagrasses 
elsewhere in the world, can take decades to recover after a 
major disturbance (Kirkman 1997). This is not only conse-
quence for Posidonia meadows but could also happen for 
seagrass meadows like TADS and MS. Once the TADS was 
disturbed may not naturally will be recovered even after 14 
years as evident from change analysis of multi-date images 
2003 to 2014, in this study. Furthermore, the static and con-
sistent natural distribution of MS and TALS indicated that 
seagrass meadows were somewhat acclimated to the sub-
strate they inhabit, any efforts to restore them with a view to 
regrow in somewhere else may not be successful (Japar Sidik 
and Muta Harah 2003).

The present study suggests a simple, straightforward and 
working-time saving approach of Landsat image analysis and 

Fig. 4. Focused region of the study area from the TM8 image 
acquired on February 06, 2014 at −0.173 m MSLTH, illustrating 
results of HE (panel A) and ME (panel B) enhanced images and 
seagrass meadow detection technique for generating classified 
image; on-screen digitized and GPS-track data are marked by 
yellow and red polygons, respectively for MS (a) and TALS (c); 
location of Seluyong mudflat with seagrass is marked by b; 
TADS location is marked by d; loss of MS cover due to land rec-
lamation activity is marked by cyan polygon in panel C from the 
manually enhanced (ME) TM8 image acquired on July 16, 2014.
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interpretation technique that effectively improved the process 
of detection, boundary delineation and spatial extent 
quantification of seagrass meadows in turbid coastal waters 
of Sungai Pulai estuary, Malaysia. This paper outlined this 
alternative approach with comparable results among the ETs 
applied. The ME showed greater ability to recognize seagrass 
meadows than the HE. Selection of appropriate multi-date 
images based on MSLTH thresholds during image acquisi-
tion time for running image ETs, can be used to identify ap-
plicability of this alternative image processing routines 
(manual digitization of imagery) and generate seagrass distri-
bution maps with acceptable accuracy (OA=87.54–99.99% 
for ME). The MSLTH data is obtainable from the website on 
per-pixel basis. The tools used for ETs is commonly avail-
able in free image processing software, such as QGIS (http://
www.qgis.org), ImageJ (http://imagej.nih.gov/ij/), Bilko 
(http://www.ncl.ac.uk/tcmweb/bilko/index.shtml); indicate 
reproducibility of this approach for other case-specific stud-
ies.

These results of image ETs are however restricted by 
several uncontrolled factors. First: the quality of source 
image in terms of actual image brightness and contrast, for 
example, if blurred or noisy, will increase tasking difficulties 
for achieving quality image. Second: presence of cloud and 
cloud shadow cover over the targeted object (constrains re-
ported in Table 4) is not repairable by applying ETs (Knudby 
et al. 2010). However, IQ issues are common when dealing 
with optical remote sensing.

Conclusion and future research

The manual ET from this study propose the alternative 
to operationally map seagrass habitats for subtidal and inter-
tidal areas, provide local tide level during image acquisition 
time as critical environmental information for level of detec-
tion and map seagrass distribution from historical Landsat 
data sets; a critical input for monitoring and managing sea-
grass ecosystem health over space and time. The proposed 
approach extracts such information that includes a retrospec-
tive and baseline database of seagrass resources and presents 
the ability of multi-date Landsat images to provide us not 
only the estimate of seagrass areal cover change but also de-
scribe type of changes such as gain/loss, ecological process 
such as natural recovery (re-colonization) status after natural 
or human induced (land reclamation) disturbances and con-
servation issues (restoration). Other seagrass applications 
may be possible but must be considered on a case-by-case 
basis according to the seagrass bed topographic properties 
and environmental settings (water depth). Our future re-
search plan is to test feasibility and transferability of the pro-
posed ETs; re-validate it by applying to seagrass meadows 
of other locations with varying topography, water depth 

(MSLTH) and clarity conditions. Information derived from 
image ET can then be used for seagrass ecosystem health as-
sessment, modeling and for better understanding of the eco-
logical dynamics of seagrass communities.

Acknowledgements
This work was supported by the ScienceFund under Grant 

[project code: 04-01-04-SF1171] from the Ministry of Science, 
Technology and Innovation (MOSTI), Malaysia. This research was 
also a collaboration with the Asian Core program of Japan Society 
for the Promotion of Science (JSPS) and Establishment of research 
and education network on Coastal Marine Science in South East 
Asia. The authors would like to thank the Editor-in-Chief (Tomo-
hiko Kawamura) and two anonymous reviewers, whose constructive 
comments and inputs significantly improved the paper.

Literature Cited
Andréfouët, S., Muller-Karger, F. E. E., Hochberg, J., Hu, C. and 

Carder, K. L. 2001. Change detection in shallow coral reef en-
vironments using Landsat 7 ETM+ data. Remote Sensing En-
viron. 78: 150–162.

Annaletchumy, L., Japar Sidik, B., Muta Harah, Z. and Arshad, A. 
2005. Morphology of Halophila ovalis (R.Br.) Hook. f. from 
Peninsular and East Malaysia. Pertanika J. Trop. Agric. Sci. 28: 
1–11.

Barillé, L., Robin, M., Harin, N., Bargain, A. and Launeau, P. 2010. 
Increase in seagrass distribution at Bourgneuf Bay (France) de-
tected by spatial remote sensing. Aquat. Bot. 92: 185–194.

Baumstark, R., Dixon, B., Carlson, P., Palandro, D. and Kolasa, K. 
2012. Alternative spatially enhanced integrative techniques for 
mapping seagrass in Florida’s marine ecosystem. Int. J. Re-
mote Sensing 34: 1248–1264.

Bouvet, G., Ferraris, J. and Andréfouët, S. 2003. Evaluation of 
large-scale unsupervised classification of New Caledonia reef 
ecosystems using Landsat 7 ETM+ imagery. Oceanol. Acta 26: 
281–290.

Brown, C. J., S. Smith, J., Lawton, P. and Anderson, J. T. 2011. Ben-
thic habitat mapping: A review of progress towards improved 
understanding of the spatial ecology of the seafloor using 
acoustic techniques. Estuarine, Coastal Shelf Sci. 92: 502–520.

Büttger, H., Nehls, G. and Stoddard, P. 2014. The history of inter-
tidal blue mussel beds in the North Frisian Wadden Sea in the 
20th century: Can we define reference conditions for conserva-
tion targets by analysing aerial photographs? J. Sea Res. 87: 
91–102.

Chen, P., C., Liew, S. C., Lim, R. and Kwoh, L. K. 2013. Coastal 
and marine habitat mapping for the straits of Malacca using 
SPOT and Landsat data. Geoscience Remote Sensing Symp. 
(IGARSS): 2431–2434.

Cihlar, J., Okouneva, G., Beaubien, J. and Latifovic, R. 2001. A new 
histogram quantization algorithm for land cover mapping. Int. 
J. Remote Sensing 22: 2151–2169.

Cob, Z. C., Arshad, A., Japar Sidik, B. and Ghaffar, M. A. 2009. 
Species description and distribution of Strombus (Mollusca: 
Strombidae) in Johor Straits and its surrounding areas. Sains 
Malaysiana 38: 39–46.

Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales. 



Coastal Marine Science 38

40

Educ. Psychol. Meas. 20: 37–46.
Congalton, R. G. 1991. A review of assessing the accuracy of classi-

fications of remotely sensed data. Remote Sensing Environ. 37: 
35–46.

Cuttriss, A. K., Prince, J. B. and Castley, J. G. 2013. Seagrass com-
munities in southern Moreton Bay, Australia: Coverage and 
fragmentation trends between 1987 and 2005. Aquat. Bot. 108: 
41–47.

Dolch, T., Buschbaum, C. and Reise, K. 2013. Persisting intertidal 
seagrass beds in the northern Wadden Sea since the 1930s. J. 
Sea Res. 82: 134–141.

Egbert, G. D. and S. Erofeeva, Y. 2002. Efficient inverse modeling 
of barotropic ocean tides. J. Atmos. Oceanic Technol. 19: 183–
204.

Faust, N. L. 1989. Image Enhancement. In Encyclopedia of Com-
puter Science and Technology. Kent, A. and J. Williams, G. 
(eds.), pp. 1–416, Marcel Dekker, Inc., New York.

Ferwerda, J., Leeuw, J., Atzberger, C. and Vekerdy, Z. 2007. Satel-
lite-based monitoring of tropical seagrass vegetation: current 
techniques and future developments. Hydrobiologia 591: 59–
71.

Fortes, M. D. 2012. Historical review of seagrass research in the 
Philippines. Coastal Marine Sci. 35: 178–181.

Freeman, A. S., Short, F. T., Isnain, I. F., Razak, A. and Coles, R. G. 
2008. Seagrass on the edge: Land-use practices threaten 
coastal seagrass communities in Sabah, Malaysia. Biol. Con-
serv. 141: 2993–3005.

GBO-3. 2010. Global Biodiversity Outlook 3. Available online at 
http://www.cbd.int/gbo3/ (accessed on April 28, 2014).

Gullström, M., Lundén, B., Bodin, M., Kangwe, J., Öhman, M. C., 
Mtolera, M. S. P. and Björk, M. 2006. Assessment of changes 
in the seagrass-dominated submerged vegetation of tropical 
Chwaka Bay (Zanzibar) using satellite remote sensing. Estua-
rine, Coastal Shelf Sci. 67: 399–408.

Hashim, M., Rahman, R. A., Muhammad, M. and Rasib, A.W. 2001. 
Spectral characteristics of seagrass with Landsat TM in North-
ern Sabah coastline, Malaysia. In 22nd Asian Conference on 
Remote Sensing, 5–9 November 2001, Singapore, pp. 128–
132.

Hu, C., Muller-Karger, F. E., Andrefouet, S. and Carder, K. L. 2001. 
Atmospheric correction and cross-calibration of LANDSAT-7/
ETM+ imagery over aquatic environments: A multiplatform 
approach using SeaWiFS/MODIS. Remote Sensing Environ. 
78: 99–107.

Huang, C., Peng, Y., Lang, M., Yeo, I. and McCarty, G. 2014. Wet-
land inundation mapping and change monitoring using Landsat 
and airborne LiDAR data. Remote Sensing Environ. 141: 231–
242.

Jagtap, T. G. 1991. Distribution of seagrasses along the Indian coast. 
Aquat. Bot. 40: 379–386.

Japar Sidik, B., Muta Harah, Z., Kanamoto, Z. and Mohd. Pauzi, A. 
2001. Seagrass communities of the Straits of Malacca. In 
Aquatic resource and environmental studies of the Straits of 
Malacca: Current research and reviews. Japar Sidik, B., Ar-
shad, A. Tan, S. G., Daud, S. K. Jambari, H. A. and Sugiyama, 
S. (eds.), pp. 81–98, Malacca Straits Research and Develop-
ment Centre (MASDEC), Universiti Putra Malaysia, Serdang, 
Malaysia.

Japar Sidik, B. and Muta Harah, Z. 2011. Seagrasses in Malaysia. In 
Seagrasses: Resource Status and Trends in Indonesia, Japan, 
Malaysia, Thailand and Vietnam. Ogawa, H., Japar Sidik, B. 
and Muta Harah, Z. (eds.), pp. 22–37, Seizando-Shoten Pub-
lishing Co., Ltd., Tokyo.

Japar Sidik, B. and Muta Harah, Z. 2003. Seagrasses in Malaysia. In 
World Atlas of Seagrasses. Green, E. P. and Short, F. T. (eds.), 
Chapter 14, pp. 152–160, University of California Press, 
Berkeley, Los Angeles, London.

Japar Sidik, B., Muta Harah, Z. and Arshad, A. 2006. Distribution 
and significance of seagrass ecosystems in Malaysia. Aquat. 
Ecosyst. Health Manag. 9: 203–214.

Kaliraj, S. and Chandrasekar, N. 2012. Spectral recognition tech-
niques and MLC of IRS P6 LISS III image for coastal land-
forms extraction along south west coast of Tamilnadu, India. 
Bonfring Int. J. Adv. Image Proc. 2: 1–7.

Kirkman, H. 2013. Impact of proposed Port of Hastings expansion 
on seagrass, mangroves and salt marsh. Report to Victorian 
National Parks Association, Melbourne Victoria.

Kirkman, H. 1997. Seagrasses of Australia. Australia: State of the 
Environment Technical Paper Series (Estuaries and the Sea), 
Department of the Environment, Canberra.

Knudby, A., Newman, C., Shaghude, Y. and Muhando, C. 2010. 
Simple and effective monitoring of historic changes in near-
shore environments using the free archive of Landsat imagery. 
Int. J. Appl. Earth Observ. Geoinform. 12 Suppl. 1: 116–122.

Komatsu, T., Sagawa, T., Rhomdhane, H. B., Fukuda, M., Boisnier, 
E., Ishida, K., Belsher, T., Sakanishi, Y., Mohd, M. I. S., 
Ahmad, S. Lanuru, M., Mustapha, K. B. and Hattour, A. 2009. 
Utilization of ALOS AVNIR-2 data for mapping coastal habi-
tats: Examples of seagrass beds from boreal to tropical waters. 
Proceedings of the ALOS PI Symposium, 3–7 November 2008, 
Island of Rhodes, Greece, SP-664, European Space Agency, 
January 2009.

Kutser, T., Vahtmäe, E. and Martin, G. 2006. Assessing suitability of 
multispectral satellites for mapping benthic macroalgal cover 
in turbid coastal waters by means of model simulations. Estua-
rine, Coastal Shelf Sci. 67: 521–529.

Lauer, M. and Aswani, S. 2008. Integrating indigenous ecological 
knowledge and multi-spectral image classification for marine 
habitat mapping in oceania. Ocean Coastal Manag. 51: 495–
504.

Lillesand, T., Kiefer, R.W. and Chipman, J. 2008. Remote sensing 
and image interpretation. John Wiley and Sons, New York, 
USA.

Lyons, M. B., Phinn, S. R. and Roelfsema, C. M. 2012. Long term 
land cover and seagrass mapping using Landsat and object-
based image analysis from 1972 to 2010 in the coastal environ-
ment of South East Queensland, Australia. ISPRS J. Photo-
gram. Remote Sensing 71: 34–46.

Lyzenga, D. R. 1978. Passive remote sensing techniques for map-
ping water depth and bottom features. Appl. Optics 17: 379–
383.

Malthus, T. J. and Mumby, P. J. 2003. Remote sensing of the coastal 
zone: An overview and priorities for future research. Int. J. Re-
mote Sensing 24: 2805–2815.

Muta Harah, Z. and Japar Sidik, B. 2013. Occurrence and distribu-
tion of seagrasses in waters of Perhentian Island Archipelago, 



Hossain M. S. et al.: Landsat image enhancement techniques for seagrass detection and distribution mapping

41

Malaysia. J. Fish. Aquat. Sci. 8: 441–451.
Muta Harah, Z., Japar Sidik, B., Law, A. T. and Hishamuddin, O. 

2000. Seedling of Halophila beccarii Aschers. in Peninsular 
Malaysia. Biologia Marina Mediterranea 7: 99–102.

Norhadi, I. 1993. Preliminary study of seagrass flora of Sabah, Ma-
laysia. Pertanika J. Trop. Agric. Sci. 16: 111–118.

Palandro, D., Andréfouët, S., Muller-Karger, F. E., Dustan, P., Hu, 
C. and Hallock, P. 2003. Detection of changes in coral reef 
communities using Landsat-5 TM and Landsat-7 ETM+ data. 
Can. J. Remote Sensing 29: 201–209.

Petus, C., Collier, C., Devlin, M., Rasheed, M. and McKenna, S. 
2014. Using MODIS data for understanding changes in sea-
grass meadow health: A case study in the Great Barrier Reef 
(Australia). Marine Environ. Res. 98: 68–85.

Roelfsema, C. M., Phinn, S. R., Udy, N. and Maxwell, P. 2009. An 
integrated field and remote sensing approach for mapping sea-
grass cover, Moreton bay, Australia. J. Spatial Sci. 54: 45–62.

Roelfsema, C., Kovacs, E. M., Saunders, M. I., Phinn, S., Lyons, M. 
and P. Maxwell. 2013. Challenges of remote sensing for 
quantifying changes in large complex seagrass environments. 
Estuarine, Coastal Shelf Sci 133: 161–171.

Schowengerdt, R. A. and Schowengerdt, R. A. 2007. Spectral trans-
forms. In Remote sensing: models and methods for image pro-
cessing. pp. 183–228, Elsevier, Amsterdam, Netherlands.

Torres-Pulliza, D., Wilson, J. R., Darmawan, A., Campbell, S. J. and 
Andréfouët, S. 2013. Ecoregional scale seagrass mapping: A 
tool to support resilient MPA network design in the Coral Tri-
angle. Ocean Coastal Manag. 80: 55–64.

Wabnitz, C. C., Andréfouët, S., Torres-Pulliza, D., Müller-Karger, F. 

E. and Kramer, P. A. 2008. Regional-scale seagrass habitat 
mapping in the Wider Caribbean region using Landsat sensors: 
Applications to conservation and ecology. Remote Sensing En-
viron. 112: 3455–3467.

Wang, C. and Philpot, W. D. 2007. Using airborne bathymetric lidar 
to detect bottom type variation in shallow waters. Remote 
Sensing Environ. 106: 123–135.

Wolter, P. T., Johnston, C. A. and Niemi, G. J. 2005. Mapping sub-
mergent aquatic vegetation in the US Great Lakes using Quick-
bird satellite data. Int. J. Remote Sensing 26: 5255–5274.

Wulder, M. A., Ortlepp, S. M., White, J. C. and Maxwell, S. 2008. 
Evaluation of Landsat-7 SLC-off image products for forest 
change detection. Can. J. Remote Sensing 34: 93–99.

Xu, J. and Zhao, D. 2014. Review of coral reef ecosystem remote 
sensing. Acta Ecol. Sinica 34: 19–25.

Yahya, N. N., Mohd, M. I. S., Ahmad, S. and Komatsu, T. 2010. 
Seagrass and seaweed mapping using ALOS AVNIR-2 and 
Landsat-5 TM satellite data. Paper Presented at Malaysian Re-
mote Sensing Society Conference, April 28–29 2010, Kuala 
Lumpur, Malaysia. Available on-line at: http://www.fksg.utm.
my/remote_sensing/Remote%20Sensing%20Publications/2010/
seegrass%20and%20seeweed%20mapping%20using%20alos% 
20avnir-2%20%28ibrahim%20seeni%29.pdf (accessed on June 
5, 2014).

Zeng, C., Shen, H. and Zhang, L. 2013. Recovering missing pixels 
for Landsat ETM + SLC-off imagery using multi-temporal re-
gression analysis and a regularization method. Remote Sensing 
Environ. 131: 182–194.


