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ABSTRACT

Atmospheric turbidity is defined as the ratio of optical thickness of the haze atmo-
sphere as opposed to molecules, it is widely used in the computer graphics and vision
community for modeling the outdoor illumination.

This thesis proposes a novel method for estimating the atmospheric turbidity and
provides three applications. Specifically, the atmospheric turbidity is estimated by
matching the brightness distribution between a sky model and an actual image. By
using the estimated turbidity, we recover the spectral sensitivity and white-balance
parameters of digital cameras from sky images, render the virtual object with turbidity-
based aerial perspective calculation, estimate the reflectance of outdoor diffuse object
from a single perspective image.

Camera spectral sensitivity plays an important role for many physics-based com-
puter vision methods, such as demosaicing, color correction and illumination estima-
tion. However, less attention has been paid to estimating the spectral sensitivity. This is
unfortunate, because this parameter significantly affect the image colors. We have pro-
posed a novel method for estimating the spectral sensitivity from images. A basic idea
is to use a sky image from which the spectra of the sky can be inferred. Given the input
image, the atmospheric turbidity is estimated by fitting the brightness distribution to
a sky model. Assuming the sun direction with respect to the camera view direction
can be estimated, the sky spectra is calculated from the estimated turbidity. Having
obtained the pairs of image RGB values and corresponding spectra, the spectral sensi-
tivity is calculated by using basis-functions. The basis functions are extracted from the
database which consists of collected spectral sensitivities of different digital cameras.
The utilization of the basis functions makes the estimation accurate and robust.

Virtual object rendering has been widely used in the academy, the architecture, the
entertainment and the heritage preservation. Aerial perspective plays an important
rule for making the rendered image appear realistic, especially when the object is
distant from the camera. The aerial perspective is caused by the scattering of particles
in the atmosphere, it models the slight color change of distant object. The virtual object
rendering with the aerial perspective effect is described. The spectral radiance of the sun
and skylight is first calculated from the estimated turbidity, and the aerial perspective
effect is calculated as the summation of in-scattered and out-scattered light along the
camera view direction. Experimental results shows the accuracy of this technique.

Three-dimension models have been widely used in many fields. The reflectance is
necessary for making a realistic 3D model. However, how to estimate the accurate re-
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flectance still remains a challenge, especially for outdoor objects, because it is difficult
to precisely model the outdoor illumination. Many trials have been made to capture
the outdoor illumination, but these methods need expensive equipments and massive
calibrations. We propose a novel method for estimating the reflectance of outdoor
diffuse object from a single perspective image. The atmospheric turbidity is first esti-
mated from the input image, and then the whole illumination condition is recovered
from the estimated turbidity. The reflectance is calculated from the surface radiance
and irradiance value. The proposed method also solves the problem of inter-reflection,
which exists between concave surfaces. We assume the object surface consists of hun-
dreds of small facets, and the inter-reflection is calculated as the incoming light energy
from all other facets. Experimental results show the accuracy achieved by the proposed
method.

The main contributions of this thesis are that a novel atmospheric turbidity estimation
method and its three applications. It can be summarized by the four following points:
First, the atmospheric turbidity is estimated by matching the brightness distributions
between a sky model and an actual image. Second, the estimated atmospheric turbidity
is used for recovering the camera spectral sensitivity and white balance parameters.
Third, the estimated atmospheric turbidity is used to calculate the aerial perspective
effect which makes the rendered image appear realistic. Fourth, the estimated atmo-
spheric turbidity is used to model the outdoor illumination environment for estimating
the reflectance of outdoor diffuse object.
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Chapter 1

Introduction

1.1 Background
The sky appearance is determined by scattering and absorption of solar irradiance

due to various particles suspended in the atmosphere. The particle density changes
according to many aspects, such as the weather condition, the cosmic bombardment
and the oceans. The atmospheric turbidity is a heuristic parameter used for describing
the characteristic of sky. Atmospheric turbidity is the ratio of the optical thickness
of the haze atmosphere as opposed to the optical thickness of the atmosphere with
molecules, it is widely used for modeling the characteristics of the sun and sky in
the computer graphics and vision community. After acquiring the turbidity, we could
calculate the spectral sensitivity of digital cameras, render the virtual object with the
aerial perspective effect and estimate the surface reflectance of outdoor diffuse object.

Spectral Sensitivity Estimation Spectral sensitivity plays an important role for many
computer vision applications, such as demosaicing (Brainard, 1994), color correc-
tion (Vrhel and Trussell, 1994) and illumination estimation algorithms (Freeman and
Brainard, 1995; Maloney and Wandell, 1996). CCD (Charge Coupled Device) sensors
usually provide only single response at each pixel, demosaicing is used to recover re-
sponse of R, G and B channels based on the spectral sensitivity for each pixel. Color
correction is a method that correct the obtained image to compensate for the effects of
the recording illumination. Illumination estimation is used for recovering the illumina-
tion by acquiring different images under different illumination environments. Spectral
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sensitivity is also an essential characteristic for color constancy methods. Captured
appearance of object is different according to different illumination conditions. Color
constancy method is used to remove the influence of light source and retrieve object
surface color under standard illumination.

In computer vision and graphics research fields, a few methods that estimate the
spectral sensitivity have been proposed. Vora et al (1997) measured the spectral sen-
sitivity of two digital cameras: Kodak DCS-200 and Kodak DCS-420. In this paper,
the target is illuminated by the monochromator which could produce narrow-band
illumination. While changing the wavelength, the images and spectra are simultane-
ously captured by camera and spectrometer, respectively. The spectral sensitivity is
calculated by dividing the image intensity by the measured spectra. Hardeberg et al.
proposed a method that estimates spectral sensitivity by inverting the system of linear
equations obtained by image intensities and known spectral reflectance (Hardeberg
et al, 1998), while it has not been applied to real data because of the instability.

All these proposed methods of spectral sensitivity estimation require the image
intensity as input. The image intensity is not linearly related to scene radiance because
of the gamma function. In order to obtain the precise measurement of scene radiance
to estimate the spectral sensitivity, the gamma function (also called as camera response
function) must be estimated first. While less attention has been paid for estimating
the spectral sensitivity, much attention has been paid for camera response estimation.
Mann and Picard (1995) proposed a method that assumes the response functions can be
approximated by gamma correction functions. Debevec and Malik (1997) estimate re-
sponse functions with a non-parametric representation using a smoothness constraint.
Takamatsu et al (2008) proposed a method for estimating camera response functions
by maximizing the image similarity measurement defined as the integral of the proba-
bilistic intensity similarity.

Virtual Object Rendering Virtual object rendering can insert virtual object created by
computer graphics models into a real scene, hence it is widely used in many fields: the
academy, the architecture, the entertainment and the heritage preservation. The shape
information, the reflection properties and the illumination are required for rendering
process. The aerial perspective effect is very important for making the rendered image
appear realistic, especially when the object is far away from the camera.

For the seamless integration of virtual object with a real scene, it is crucial to achieve
the illumination consistency. Two kinds of methods were proposed for estimating the
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illumination condition. The first kind directly measures the illumination environment:
Debevec (1998) uses the calibrated spheres for capturing the illumination, Sato et al
(1999a) uses the camera attached with fish-eye lens for acquiring the illumination
distribution. The other kind recovers the illumination environment from the shadows
(Sato et al, 1999b; Kakuta et al, 2004).

Despite of illumination environment, much effort has been made for calculat-
ing the aerial perspective effect. Kaneda et al (1991) and Klassen (1987) discuss the
aerial perspective effect and explicitly model it as a particular case of light scattering.
These methods could be applied to various atmospheric conditions, however they are
computer-intensive. Ward (1994) calculates the aerial perspective effect in the Radiance
rendering system by assuming the ambient illumination is constant. It is an efficient
approximation of aerial perspective, but it fails for different view directions or sun
positions. Ebert et al (1998) model the aerial perspective by the Rayleigh scattering
which caused by the particles with diameter smaller than the wavelength. The object
color is calculated as the summation of surface color and weighted sky color when it is
distant from the camera. The weight becomes larger when it moves further away.

Surface Reflectance Estimation Computer vision and graphics techniques to create
a realistic model of a real world object have attracted interest from a wide range of
research fields and industries in recent years. To simulate the accurate appearance of
an object, shape and optical information are necessary. Acquiring shape information
has been facilitated by the development of sensors and the progress of data process-
ing algorithms, while estimating surface reflectance properties remains a challenge,
especially for outdoor objects.

Several modeling methods with range sensors were proposed (Neugebauer and
Klein, 1999; Bernardini et al, 2001); however those methods created surface textures
by simply blending images taken from multiple views. Meanwhile, physics-based
reflectance estimation methods (Dana et al, 1999; Machida et al, 2003), photometric
stereo techniques (Basri and Jacobs, 2001; Hertzmann and Seitz, 2005; Chen et al, 2006),
and image-based rendering techniques (Winnemoller et al, 2005) have been proposed to
create more physically correct object appearances. Physics-based reflectance estimation
is based on physical reflection models (Cook and Torrance, 1981) and estimates the
parameters of the models by fitting the data to them. The methods have achieved
highly accurate re-renderings, yet they need accurately calibrated illuminations and
cameras. Photometric stereo is a method that captures images under three different
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lighting conditions and estimates the surface reflectance and the surface normal of the
shape. It assumes a known distant point light source, and therefore it is unsuitable for
outdoor conditions. Image-based rendering is a technique that samples appearances
under a number of different lighting conditions, and re-renders the appearance by
interpolating the images. Creating such a number of different illumination conditions
is impractical for an outdoor environment, and so it is difficult to be applied to outdoor
objects.

Debvec et al (2000) proposed a method to obtain the reflectance function with the
position of light sources known. To extend this idea to outdoor scenes, Yu and Malik
(1998) measured the illumination of the scene by acquiring photographs of the sky
and the surrounding environments. Most recently, Debevec et al (2004) introduced a
novel lighting measurement apparatus than can record the high dynamic range of both,
sunlit and cloudy environments, using a set of specular and diffuse calibrated spheres.
With the captured illumination, proposed method estimates spatially varying surface
reflectance. Weiss (2001) proposed a method to decompose an image into a reflectance
image and an illumination image by assuming the change caused by reflectance re-
mains constant in the image sequence, while the change caused by illumination varies
depending on time. Therefore, by taking the median of derivative filter outputs of input
images, the reflectance image can be estimated. Matsushita et al (2004) extended the
idea so that it can handle non-Lambertian surfaces, and proposed an illumination nor-
malization scheme utilizing the illumination eigen space and a shadow interpolation
method based on shadow hulls.

1.1.1 Spectral Sensitivity Estimation

Spectral sensitivity of digital cameras can be calculated from the atmospheric tur-
bidity. Spectral sensitivity is non-trivial information for many computer vision applica-
tions. Different cameras usually produce differently-colored images for the same scene
due to the different characteristics of the spectral sensitivities.

Spectral sensitivity is the response of a sensor to monochromatic light as a func-
tions of wavelength, also known as spectral response. This paper defines the spectral
sensitivity on each RGB channel with the wavelength varying from 400 nanometers to
700 nanometers. The spectral sensitivity is normalized among three channels, therefore
the maximum value is 1.0. Figure 1.1 shows the images captured by three different
consumer cameras. As shown in the Figure, also indicated numerically by the chro-
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(a) Canon IXY 900 IS. (b) Casio EX-Z 1050.

(c) Panasonic DMC-FX 100.

Figure 1.1: The color difference of images taken by different cameras. The left, mid-
dle and right images are taken by Canon IXY 900 IS, Casio EX-Z 1050 and Panasonic
DMC-FX 100, respectively. The images were adjusted to have the same scale of in-
tensity values, to emphasize the color differences. The averaged chromaticity values
(r, g, b) of the red squares are (0.45, 0.32, 0.23) for Canon, (0.39, 0.32, 0.29) for Casio, and
(0.41, 0.32, 0.27) for Panasonic. The color difference results from the difference in camera
spectral sensitivities and white balance settings.
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maticity values of the red squares, colors of a scene vary depending on the cameras,
due to the difference of the spectral sensitivities and white-balance settings.

Spectral sensitivity can be measured by dividing the image intensity by the corre-
sponding spectral radiance with two special equipments, spectrometer and monochro-
mator. Vora et al (1997) measured the spectral sensitivity of two digital cameras: Kodak
DCS-200 and Kodak DCS-420 in this way. Image intensity is not linearly related to scene
radiance recorded at the camera sensor, it must be linearized first in order to calculate
the spectral sensitivity. In this paper, the camera response function is determined by
stimulating the camera with varying intensities of a single light source obtained with
ND filters (neutral density filters). The image intensity of camera Kodak DCS-200 was
verified to be linear over most of the visible spectra range, a linearized curve of camera
Kodak DCS-420 was also developed. The spectral sensitivity for these cameras are
determined by stimulating them with very narrow-band illumination produced by a
monochromator, while simultaneously capturing the images and spectra by these cam-
eras and the spectrometer, respectively. This measurement is conceptually very simple
and can be very accurate. However, the equipment required to produce sufficiently
intense narrow-band illumination at uniformly spaced wavelengths is expensive and
not readily available.

1.1.2 Virtual Object Rendering

The virtual object can be realistically rendered by using the atmospheric turbidity.
Virtual object rendering is used in many fields, especially in the field of recreating
those lost cultural heritage objects. The lost objects are difficult to rebuild because of
the cost and archaeological concerns. Instead of rebuilding the heritage objects, it is
more convenient and economical to create them by the computer graphics models.

Fig. 1.2 shows the rendered image of the ancient capital of Asukakyo. The capital
of Asukakyo does not actually exist now, as shown in Fig. 1.2 (a), however we could
create the capital by the computer graphics models and insert it into the real scene by
virtual object rendering. This makes it appear there is a real capital standing next to
the hill’s bottom as shown in Fig. 1.2 (b).

It requires the following three parameters for accurate virtual object rendering: the
object shape information, the reflectance properties and the illumination. The object
can be created by the computer graphics models. The reflectance properties can be
manually set when creating the models. Compared to the first two parameters, the illu-
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(a) A real scene.

(b) Rendered image with a virtual capital of Asukakyo inserted.

Figure 1.2: Virtual object rendering: insert the capital of Asukakyo into a real scene.
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mination is not easily acquired, because it is complicated especially for outdoor objects.
The most accurate method for recovering the illumination environment is to directly
measure it (Debevec, 1998; Sato et al, 1999a), this method needs some equipments such
as the calibrated sphere or fish-eye lens. The other way to acquire the illumination is
to estimate from shadows (Sato et al, 1999b; Kakuta et al, 2004). The aerial perspective
is also important for rendering the virtual object especially when it is distant from the
camera. Aerial perspective is caused by the light scattering, and it models the slight
color change of object. Ward (1994) models the aerial perspective effect by assuming
the ambient illumination is constant, it is efficient but can not calculate correctly when
the view direction or sun position changes. Ebert et al (1998) calculates the aerial per-
spective by the Rayleigh scattering. In their method, the object color is calculated as
the linear combination of surface color and sky color.

1.1.3 Reflectance Estimation

The surface reflectance of object can be estimated from the atmospheric turbidity.
With the acquisition of shape information of diffuse object, we need to estimate the
absolute surface reflectance for recovering the appearance of the object under a novel
illumination condition. Reflectance is the ratio of reflected light to the incident electro-
magnetic radiation, i.e., how much light a material will reflect regarding the incident
light. This thesis defines the reflectance on each RGB channel; the maximum reflectance
(no absorption) is (1.0, 1.0, 1.0) for (R, G, B). Figure 1.3 shows an example of surface
reflectance. We can clearly see that the surface reflectance is the most essential com-
ponent in terms of the object’s surface property. However, we have to take the shape
information into account.

For directly estimating surface reflectance properties, three components are nec-
essary: the shape of a target object, the actual appearance of the object, and the illu-
mination environment. Shape information and actual appearance can be obtained by
range and image sensors, respectively. Two methods of recovering surface reflectance
of outdoor objects measured the above three components. Yu and Malik (1998) the first
who handled outdoor objects, took photographs of the sun and sky to measure their
radiance distribution. As they used a normal camera, they included landmarks in each
photograph so that they could use them to recover the camera pose later. Debevec et al
(2004), the second and the latest to solve the outdoor problem, used a specific apparatus
to measure the outside illumination. They used a mirrored sphere to image the sky
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(a) Appearance. (b) Shape and illumination.

(c) Surface reflectance.

Figure 1.3: The object’s appearance is determined by its shape, surrounding illumina-
tion, and surface reflectance.
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and clouds, a shiny black sphere to indicate the position of the sun, and a diffuse gray
sphere to indirectly measure the intensity of the sun. These methods need elaborate
procedures and do not take the inter-reflection into account. Consequently, these meth-
ods could not be applied for outdoor objects which have concave parts. Because the
inter-reflection effect is not negligible for the concave objects.

For concave objects or objects with concave parts, a point of object surface receives
light from both light source and other points on the surface. The latter (reflection
between points on object surface) is called as inter-reflection effect. Therefore, light
rays that we observe for concave object is the result of reflections repeated between
surface points infinitely. It is difficult to trace back those recursive reflections from the
observation.

1.2 Thesis Overview
Chapter 2 describes the proposed method for estimating the atmospheric turbidity.

Turbidity is a very important factor for modeling the outdoor illumination. It is esti-
mated by matching the brightness distribution between a sky model (Preetham et al,
1999) and an actual image. An assumption is introduced here, that the image intensity
is proportional to the sky brightness no matter what the camera and the white-balance
parameters are. By using this assumption, we could estimate the same turbidity from
images captured by different cameras. The validation for turbidity estimation is also
provided in this chapter.

Chapter 3 proposes a method for estimating the spectral sensitivity and white-
balance jointly from sky images. After briefly reviewing the related work, we explains
how to calculate the sky spectra by using estimated turbidity. With the pairs of image
RGB values and corresponding spectra, the spectral sensitivity is calculated by using
basis functions. The utilization of basis functions reduce the number of unknowns
and makes the estimation robust. The proposed method is first evaluated with raw
images, since they are affected by minimal built-in color processing; then it is evaluated
with images downloaded from the Internet. An application of spectral sensitivity,
namely, the color correction is introduced. The color captured by one camera could
be transfered into that of another by using the color correction. We also provides the
limitation of the proposed method in this chapter.

Chapter 4 describes the virtual object rendering technique based on the turbidity.
Related work is introduced first, then the method for calculating the aerial perspective
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effect is explained. The aerial perspective effect is caused by the particles suspended in
the atmosphere and it slightly changes the object appearance especially when it is far
away from the camera. Aerial perspective is calculated as the summation of in-scattered
and out-scattered light along the view direction. The rendering process which takes
the aerial perspective into account is also explained. This technique is applied to the
Asukakyo project which restores the ancient capital of Asukakyo.

Chapter 5 describes the proposed method for estimating the surface reflectance of
outdoor diffuse object from a single perspective image. After briefly reviewing the
related work, the illumination estimation from perspective image is introduced. Then,
the surface radiance and irradiance value is computed from the recovered illumination.
The inter-reflection exists in the concave object. By assuming the object surface consists
of small facets, the inter-reflection is calculated as the sum of incoming light energy
from all the other points. Next, the evaluation of illumination estimation is provided
and the proposed method is applied to real outdoor object.

Chapter 6 provides the summaries and contributions of this dissertation and dis-
cusses possible future research directions.
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Chapter 2

Atmospheric Turbidity Estimation and
its Evaluations

2.1 Introduction
The appearance of sky, e.g. the color and the clearness, is determined by scattering

and absorption of solar irradiance due to air molecules, aerosols, ozone, water va-
por and mixed gases, where some of them change according to the climate condition
(Chaiwiwatworakul and Chirarattananon, 2004). Aerosols are attributed to many fac-
tors, such as volcanic eruptions, forest fires, etc.; thus, they are difficult to characterize
precisely. However, a single heuristic parameter, namely turbidity, has been studied
and used in the atmospheric sciences (Preetham et al, 1999). Atmospheric turbidity is
defined as the ratio of optical thickness of haze as opposed to molecules. The sky ap-
pearance with different turbidity values are shown in Fig. 2.1. The higher the turbidity
value is, more scattering happens in the sky, hence makes the sky appear whiter.

In this chapter, we explains the proposed method for estimating the atmospheric
turbidity. We first applies the proposed method to the omni-directional images and
evaluate the performance. Then we extend it to estimate the turbidity value from
rectilinear images and provide the evaluations.

There are a few assumptions used in the proposed method. First, it assumes the
presence of sky in the input images. Ideally, it expects a clear sky; however, it performs
quite robustly even when the sky is hazy or partially cloudy. Second, it assumes that
the sun direction with respect to the camera viewing direction can be extracted. If
we have the camera at hand, we can arrange the camera in sun a way that we can
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extract the information from the image. However, if we do not have the camera at
hand (e.g., we utilize images available on the Internet), the EXIF tag (the time when
the image is taken), the site geo-location and the pose of a reference object in the site
are necessary to determine the camera view direction and the sun direction. While the
requirement of geo-location and the reference object sounds restrictive, if we apply the
method for landmark objects, such information can normally be obtained. Moreover,
on-line services like Google Earth or Google Map can also be used to determine the
geo-location of the site.

It should be noted that several methods of computer vision have utilized the ra-
diometric sky model. Yu and Malik (1998) use the Perez et al.’s sky model (Perez et al,
1993) to calculate the sky radiance from photographs, in the context of recovering the
photometric properties of architectural scenes. The work of Lalonde et al (2010) is the
most similar to the proposed method, since it utilizes the visible portion of the sky and
estimates turbidity to localize clouds in the sky images. However, the method (Lalonde
et al, 2010) cannot be used directly for our purpose, since its optimization is based on
xyY color space. To convert image RGB into xyY, a linear matrix must be estimated
from known camera sensitivities and white-balance settings, which are obviously un-
known in our case. Thus, instead of using xyY, we use the linear correlation between
the relative intensity (i.e., the ratio of a sample point’s intensity over a reference point’s
intensity) and relative sky brightness. By fitting the relative intensity between pixels
to that of the sky model, the proposed method can estimate the turbidity, which we
consider to be an improvement over the method of Lalonde et al (2010).

2.2 Turbidity Estimation from Omni-directional Image

and its Evaluations
To estimate the turbidity, our basic idea is to match the brightness distribution

between an actual image and the sky model proposed by Preetham et al (1999). They
derive the correlation between the brightness distribution and the turbidity based on
the simulations of a variety of sun positions and turbidity values. According to them,
the luminance Y of the sky in any viewing direction with respect to the luminance at
the zenith Yz is given by:

Y =
F (θ, γ)
F (0, θs)

Yz, (2.1)
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(a) T=2.0. (b) T=3.0. (c) T=4.0

(a) T=5.0. (b) T=6.0. (c) T=7.0

(a) T=8.0. (b) T=9.0. (c) T=10.0

Figure 2.1: Simulated sky appearance of Canon 5D camera with different turbidity
values, higher turbidity value implies more scattering happens, hence makes the sky
appear whiter.
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whereF (., .) is the sky brightness distribution function of turbidity developed by Perez
et al (1993), θs is the zenith angle of the sun, θ is the zenith angle of view direction,
and γ is the angle of the sun direction with respect to the camera viewing direction, as
shown in Fig. 2.2, see more details for calculating sky luminance in Appendix B.

Figure 2.2: The coordinates for specifying the sun position and the viewing direction
in the sky hemisphere.

Thus, to estimate turbidity (T), our method minimizes the following error function:

Err =
n∑

i=1

∣∣∣∣∣∣ Yi(T)
Yre f (T)

− Ji

Jre f

∣∣∣∣∣∣, (2.2)

where n represents the number of sample points and Y/Yre f is the luminance ratio of
the sky, which can be calculated from F (θ, γ)/F (θre f , γre f ), given the sun direction and
the turbidity. Yre f is the luminance of a reference point, and we found that it can be the
zenith as in Eq. (2.1), or any other point in the visible sky portion. J is the total intensity of
a pixel:

J = Ir + Ig + Ib, (2.3)

where Ic is the image intensity for RGB color channels. Jre f is the total intensity of a
reference pixel. Since we assume the camera’s gamma function is linear, the image
intensity ratio (Ji/Jre f ) is proportional to the luminance ratio of the sky (Yi/Yre f ), re-
gardless of the camera sensitivities and white-balance settings. The error function is
minimized by Particle Swarm Optimization (Kennedy and Eberhart, 1995), which is
more robust than the Levenberg-Marquardt algorithm.
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When the image is taken by a fish-eye lens or an omni-directional camera, the sun
is visible in the captured image. Here, the pose of the camera with respect to the sun is
calibrated, for instance, we assume that the optical axis of the camera is perpendicular
to the ground. For calculating the sun direction, we extract the saturated area of the
captured image as the circumsolar area and fit it as an ellipse. The sun position is then
considered as the center of the extracted ellipse.

Having determined the sun direction, we sample the intensity distribution for the
sky model and actual image. The directions are sampled from uniformly distributed
patches of the upper hemisphere, the icosahedron is used to partition the hemisphere.

The brightness of sampled view directions from the sky model and the captured
image are calculated, with extracted sun direction. Turbidity is estimated by matching
the two brightness distributions.

The currently used sky model does not provide the equations for calculating the
brightness of cloudy pixels. Therefore, when the clouds present in the captured image,
we have to remove them from sampling. The RANSAC approach is used to automat-
ically remove the clouds. Specifically, we randomly choose twenty adjacent sampled
view directions as the hypothetical inliers, and estimate the turbidity value by matching
the brightness distribution of these view directions. If the estimated turbidity value is
too large, there is a high probability the majority of the inliers are cloudy pixels, there-
fore we terminate the procedure and go to the next iteration. The estimated turbidity
value is used to test all the other sample view directions, the error between the sky
brightness from sky model and the image intensity is calculated, if the brightness error
of one view direction is smaller that the threshold, we consider it as a inlier and put it
into the hypothetical inlier set. Then, the turbidity value is re-estimated from the new
inlier set and calculate the error between the brightness from the sky model and actual
image. This procedure is repeated until the maximum iteration. Turbidity is estimated
from the inlier set which has smallest brightness error.

The performance of the proposed method for estimating the atmospheric turbidity
is evaluated. We provide two evaluations for the turbidity estimation from omni-
directional images: the turbidity estimation method and the accuracy of sky appearance
from the sky model. The comparison between the proposed method and the previous
method is also provided.

Robustness to noises The robustness of the proposed method for estimating the
turbidity is evaluated. We tried two sets of input images with different turbidity
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(a) 2% noise. (b) 3% noise. (c) 5% noise.

Figure 2.3: The simulated input images of Canon 5D for evaluating the robustness
of the turbidity estimation method. These images are simulated with lower turbidity
values (T=2.0) compared to those images in Fig. 2.4, and they have different noises.
The noises are manually added to the brightness ratios.

(a) 2% noise. (b) 3% noise. (c) 5% noise.

Figure 2.4: The simulated input images of Canon 5D for evaluating the robustness of
the turbidity estimation method. These images are simulated with higher turbidity
values (T=4.0) compared to those images in Fig. 2.3, and they have different noises.
The noises are manually added to the brightness ratios.
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(a) Canon 5D image. (b) Nikon D1x image.

Figure 2.5: Input images for verifying the correlation between the sky luminance and
image intensity. The input images are captured by two different cameras at the same
time. Due to different characteristics of the spectral sensitivities, the captured images
have different colors. About 120 points are uniformly sampled from these input images
for the verification.
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(a) Canon 5D camera. (b) Nikon D1x camera.

Figure 2.6: Verification of the correlation between sky luminance and image intensity.
The horizontal axis is the sky luminance calculated from the sky model, the vertical
axis is the image intensity calculated as the summation of R, G and B values.
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(a) WB as “Daylight”. (b) WB as “Fluorescent”.

Figure 2.7: The simulated input images of Canon 5D with different white-balance
settings, these images have the same turbidity value.

(a) Input image. (b) The proposed method. (c) Lalonde et al.’s method.
White-balance as “Daylight”.

(d) Input image. (e) The proposed method. (f) Lalonde et al.’s method.
White-balance as “Fluorescent”.

Figure 2.8: The comparison between the proposed method and Lalonde et al.’s
method (Lalonde et al, 2010).
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values, one set is simulated with turbidity value 2.0 and the other is simulated with
turbidity 4.0. Then, we manually add 2%, 3% and 5% noises to the input images and
estimate the turbidity from them. The input images are shown in Fig. 2.3 and Fig. 2.4,
respectively. The estimated turbidity values from the first set of input images are 2.02,
2.04 and 2.07, for the second set of input images are 4.03, 4.05 and 4.07. This proves the
atmospheric turbidity estimation is robust to noises.

Verification of the linear correlation between the image intensity and sky brightness
Assuming we capture the same scene with different cameras or different white-balance
parameters, the color of captured images are different according to different charac-
teristics of the spectral sensitivity. Note that, following the common assumption in
computational color constancy (i.e., von Kries transformation), we assume the cameras
automatically multiply the spectral sensitivity of each color channel with different scal-
ing factors according to different white-balance settings. However, the image intensity
is proportional to the sky brightness regardless of the camera spectral sensitivity and
white-balance settings, if knowing the camera gamma function. The image intensity is
calculated as the summation of R, G and B values and the sky brightness is calculated
from the estimated turbidity. In order to clarify this, we verify the linear correlation
between the image intensity and sky brightness.

The verification is performed with two different cameras: Nikon D1x and Canon
5D. The input images are shown in Fig. 2.5 (a) and (b). The images are captured with
the gamma turned off. We sampled about 120 points which uniformly distributed on
the sky dome. The verification results are shown in Fig. 2.6. The plotted data for both
cameras form a straight line. This proves the image intensity is linearly correlated with
the sky brightness.

Whether the same scene provide the same turbidity value Based on the linear cor-
relation between the image intensity and sky brightness, the proposed method obtain
the same turbidity value from the same scene captured by different cameras or with
different white-balance settings.

Whether the images of the same scene captured by different cameras provide the
same turbidity value is evaluated. The input images are shown in Fig. 2.5. These two
images are captured at the same time by Canon 5D and Nikon D1x. The estimated
turbidity value is 2.2 for both images.

Whether the images captured with different white-balance parameters provide the
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same turbidity is also evaluated. We simulated two images with same turbidity values
(T=2.0) but different white-balance settings. The input images are shown in Fig. 2.7.
Fig. 2.7 (a) shows the simulated image with the white-balance setting as “Daylight”, and
Fig. 2.7 (b) shows the simulated image with the white-balance setting as “Fluorescent”.
The estimated turbidity is 2.03 for both input images.

The comparison between the proposed method and the previous method We com-
pared the proposed turbidity estimation method with Lalonde et al.’s method (Lalonde
et al, 2010). The proposed method is based on brightness distribution, while Lalonde
et al.’s is based on the xyY color space. Supposing we capture the same scene by
two different cameras or with two different white-balance settings, then the calculated
xyY values are different according to different RGB values. Therefore, the estimated
turbidity values are different, which cannot be correct since the scene is exactly the
same. The proposed method can handle this problem, because the image intensity is
linearly correlated with the sky brightness. Using the two methods, we fitted the sky
model to images from the estimated turbidity values. The result is shown in Fig. 2.8.
Fig. 2.8 (a) and (d) are the input images simulated from sky model with turbidity 2.0
(manually set), the white-balance parameters are set as “Daylight” and “Fluorescent”,
respectively. The estimated turbidity values by the proposed method are 2.03 for both
input images, while the turbidity values by Lalonde et al.’s method are 2.32 and 1.41.
The simulated sky appearance from the estimated turbidity values are shown in Fig. 2.8
(b), (c), (e) and (f). The result of the proposed method is much more similar to the input
images.

Evaluation of the accuracy of sky appearance The accuracy of the sky appearance
simulated from the sky model (Preetham et al, 1999) might pose an issue in the ap-
plications, therefore we evaluated it by comparing the chromaticity produced by the
sky model with the actual sky chromaticity. The result is shown in Fig. 2.9, where
(a) shows the actual sky image captured by the spherical camera Ladybug2, and (b)
is the simulated sky appearance from the sky model. The image intensity in (b) is
adjusted so that their average becomes equal to that in (a). The red points in Fig. 2.9
show the sample points. We took 18 sample points which uniformly distributed on the
upper hemisphere for comparing the chromaticity values. The comparison is summa-
rized in Fig. 2.10. Here, the chromaticity values are calculated as Ic/(Ir + Ig + Ib) where
c = {r, g, b}. Looking at the 18 sampled points, the simulated sky image models the real
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(a) Captured image.

(b) Simulated sky appearance from sky model.

Figure 2.9: Comparison of the sky appearance from the captured and simulated image.
The camera used was Ladybug2. The pixel values in the simulated sky image are
calculated from the estimated turbidity. The red points show the eighteen sample
points which uniformly distributed on the upper hemisphere.
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image considerably accurate.
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Figure 2.10: Numerical evaluation of the sky appearance: the comparison between
captured and simulated sky image.

2.3 Turbidity Estimation from Rectilinear Image and its

Evaluation
The atmospheric turbidity from rectilinear image is estimated in the same manner

as from the omni-directional image, by using Eq. (2.2). However, the sun direction and
camera view direction is calculated differently, because unlike the omni-directional
image, the sun is usually not captured and the camera view direction is unknown for
the rectilinear image.

The sun direction is calculated from the time stamp and the site geo-location (lon-
gitude and latitude), when it is not visible in the input image. The time stamp is
acquired from the EXIF tag. The geo-location is obtained from Google Earth. Details
for calculating the sun direction when it is not visible are provided in Appendix A.

In order to estimate the camera view direction, we collect images that include a
reference object with known pose. The pose (orientation angle) of a reference object is
in many cases searchable on the Internet, particularly for a landmark object, such as
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the Statue of Liberty, the Eiffel tower, etc. Then, the camera view direction with respect
to the reference object is recovered using a few images that contain the reference object
by using the SfM (structure from motion) algorithm. Having manually acquired the
pose of the reference object, the camera view direction in the world coordinate system
with respect to the sun is recovered.

Google Earth can be used to estimate the pose of the reference object. The orientation
angle is calculated by drawing a line between two specified points, as shown in Fig. 2.11.
However, this estimation is less accurate than the actual on-site measurement (which for
some landmark objects is available on the Internet). The inaccuracy in the orientation
angle is 6 degrees, which in the end, decreases the accuracy of estimated turbidity value
approximately 3%.

Figure 2.11: Estimating the orientation angle by Google Earth.

The same as the omni-directional image, when the cloud present in the rectilinear
image, we use the RANSAC approach to automatically remove them.

The accuracy of estimated turbidity from rectilinear image greatly depends on the
sun direction and camera view direction. We evaluated these two parameters. In order
to verify whether the partial sky provide enough information for turbidity estimation,
we compared the turbidity value estimated from part of an omni-directional image
with that from the whole image.
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Robustness to the sun direction estimation We evaluate the robustness of turbidity
estimation by adding noises to the sun direction. For rectilinear images, the sun direc-
tion is calculated from the time stamp and the geo-location (longitude and latitude).
The evaluation result is shown in Table. 2.1.

Table 2.1: Errors of the estimated turbidity values by manually adding noises to the
sun direction.

Noise in the sun direction Error of estimated turbidity

5 degree 3%
10 degree 5%
15 degree 9%

Number of images acquired for consistent camera view direction estimation For
rectilinear images, the camera view direction is estimated by using the structure from
motion algorithm, and this algorithm requires multiple images as input, therefore we
evaluated how many images can be used for consistent estimation of camera view
direction. The result is shown in Fig. 2.12, where (a) shows the result for the elevation
angle (θ) and (b) shows the result for the azimuth angle (ϕ). We tried as many as 300
input images and the SfM algorithm starts to converge at about 50 images.

Robustness to the camera view direction estimation We evaluate the robustness of
turbidity estimation by adding noises to the camera view direction. For rectilinear
images, the camera view direction is calculated by using the structure from motion
algorithm. The evaluation result is shown in Table. 2.2.

Table 2.2: Errors of the estimated turbidity values by manually adding noises to the
camera view direction.

Noise in the camera view direction Error of estimated turbidity

5 degree 4%
10 degree 7%
15 degree 11%
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Figure 2.12: Verification of the correlation between sky luminance and image intensity.
The horizontal axis is the sky luminance calculated from the sky model, the vertical
axis is the image intensity calculated as the summation of R, G and B values.

Whether the partial sky provide enough information Unlike the omni-directional
image, only partial sky is captured in the rectilinear image, we evaluate whether par-
tial sky provide enough information for the turbidity estimation. The input images
are shown in Fig. 2.13, where (a) is the captured omni-directional image by the spher-
ical camera Ladybug2, (b), (c) and (d) show different parts cropped from the omni-
directional image. The sun position is extracted from the omni-directional image when
estimating the turbidity from images of different parts ((b), (c) and (d)). The estimated
turbidity values from images (b), (c) and (d) are the same as that from image (a).

We also verify the image size necessary for the turbidity estimation. Three images
with different sizes are used in the verification. These images are cropped from the
area near the center of captured omni-directional image. The input images are shown
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(a) Captured omni-directional image by Ladybug2.

(b) Right part. (c) Near the sun area.

(d) Near the image center.
Different parts cut from the captured omni-directional image.

Figure 2.13: The verification of whether partial sky provide enough information for
atmospheric turbidity estimation.
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(a) 1000*500. (b) 600*300. (c) 200*100.

Figure 2.14: Input images with different sizes for the verification.

Table 2.3: Estimated turbidity values from input images with different sizes.

Image size Estimated turbidity value

3800*1900 2.2
1000*500 2.21
600*300 2.23
200*100 2.25

in Fig. 2.14. The verification result is shown in Table. 2.3. The estimated turbidity
value from the captured omni-directional image with the size as 3800*1900 (Fig. 2.13
(a)) is 2.2, the estimated turbidity values from the cropped image with different sizes
are similar to that from the omni-directional image.

2.4 Summary
This chapter explains the proposed method for estimating the atmospheric turbidity

and provides various evaluations. The atmospheric turbidity is estimated by fitting
the brightness distribution of captured image to a sky model. The proposed method
is first applied to the omni-directional image, and the performance is evaluated: the
robustness to noises, whether it acquire the same turbidity from the same scene captured
by different cameras or with different white-balance settings, the comparison between
the proposed method and previous method and the accuracy of sky appearance from
sky model. Then, the turbidity estimation is extended for the rectilinear image and
multiple evaluations are provided: robustness to the sun direction estimation, number
of images used for consistent camera view direction estimation and whether the partial
sky provide enough information.
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Chapter 3

Spectral Sensitivity and White Balance
Estimation from Sky Images

Spectral sensitivity is calculated from the atmospheric turbidity value. Specifically,
the spectral radiance is calculated from the turbidity, the image RGB values are obtained
from the input image, the spectral sensitivity is estimated from the pairs of image RGB
values and corresponding spectral radiance. Photometric camera calibration is often
required in physics-based computer vision. There have been a number of studies to
estimate camera response functions and vignetting effect from images; however less
attention has been paid to camera sensitivities and white-balance settings. This is
unfortunate, since those two properties significantly affect the values of image colors.
Motivated by this lack of attention, we introduces a method to estimate spectral sen-
sitivities and white-balance setting jointly from images. The basic idea is to use sky
images from which the spectral radiance of the sky can be inferred. The turbidity is
estimated by fitting the image intensity distribution to a sky model. Then the spectral
radiance of the sky is calculated from the estimated turbidity. Having obtained the
pairs of RGB values and their spectral radiance, we estimates the camera spectral sen-
sitivity together with white balance setting. Pre-computed basis functions of camera
spectral sensitivities are used in the proposed method for robust estimation. The pro-
posed method to estimate spectral sensitivities and white balance setting is novel and
practical, since, unlike the existing methods, it requires sky images without additional
hardware, assuming the geo-location of the captured sky is known. Experimental
results using various real images show the effectiveness of the proposed method.
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3.1 Introduction
Photometrically calibrating a camera is necessary, particularly when applying

physics-based computer vision methods, such as photometric stereo (Woodham, 1980;
Ikeuchi, 1981; Higo et al, 2009), shape from shading (Horn, 1989; Ikeuchi and Horn,
1981; Zhang et al, 1999), color constancy (Maloney and Wandell, 1986; D’Zmura and
Lennie, 1986; Forsyth, 1990; Finlayson et al, 1994; Hordley, 2006; van de Weijer et al, 2007;
Tan et al, 2004; Kawakami and Ikeuchi, 2009), illumination estimation (Ramamoorthi
and Hanrahan, 2001; Sato et al, 2003b; Li et al, 2003; Lalonde et al, 2009), and surface
reflectance estimation (Shafer, 1985; Nayar et al, 1991; Tominaga, 1996; Sato et al, 1997;
Debvec et al, 2000; Nishino et al, 2001; Hara et al, 2005; Haber et al, 2009). There have
been a number of studies on automatic calibration of camera response functions and
vignetting correction (Lin et al, 2004; Takamatsu et al, 2008; Kuthirummal et al, 2008).
Those methods calibrate images so that obtained pixel values strictly reflect radiance
of a scene.

Less attention has been paid to estimating camera sensitivities and white-balance
settings, although both of them are crucial for color calibration between different types
of cameras. The lack of attention is because physics-based methods usually assume
images are captured by identical cameras; thus, color space used in the whole process
is consistent. However, color calibration becomes an issue, when different types of
cameras are used, since otherwise identical radiance will result in different pixel values.
Regarding the recent popularity of digital cameras, it would be of great benefit if
multiple cameras that have different characteristics can be used for inputs.

The intensity formation of each channel of colored images can be modeled as:

Ic =

∫
Ω

L(λ)qc(λ)dλ, (3.1)

where Ic is the intensity at channel c, with c ∈ {r, g, b}, Ω is the range of the visible
wavelength, and L is the incoming spectral radiance. qc = kcq′c, with q′c and kc are
the spectral sensitivity and white balance for c-color channel, respectively. In this
equation, we ignore the camera gain. Note that, following the common assumption
in computational color constancy (i.e., von Kries transformation), we assume cameras
automatically multiply the intensity of each color channel with different scaling factors
(kc), according to different white balance settings.

Based on the last equation, our goal is to estimate qc from given Ic. This means that
from image intensity values, we intend to estimate the spectral sensitivity and white
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balance setting together, without any intention to separate them (qc = kcq′c). Note that,
kc is estimated up to a scale. Doing so, it is still possible to achieve our goal on images
taken by different white balance settings, since the relative white balance values can be
obtained from qc.

In the literature, one of the basic techniques to achieve the goal is to use a monochro-
mator (Vora et al, 1997), a special device that can transmit a selected narrow band of
wavelengths of light. The method provides accurate estimation, and hence is commonly
used. Other methods that do not use a monochromator require both input images and
the corresponding spectral radiances (Hubel et al, 1994; Sharma and Trussell, 1993;
Finlayson et al, 1998; Barnard and Funt, 2002; Ebner, 2007; Thomson and Westland,
2001).

Unlike the existing methods, in this chapter, we introduce a novel method that uses
images without requiring additional devices. The basic idea of our proposed method
is, first, to estimate the sky spectral radiance L(λ) through a sky image Ic, and then
to obtain the mixture of the spectral sensitivities and white balance, qc(λ), by solving
Eq. (3.1). To our knowledge, the whole idea of this approach particularly the use of
images alone is novel.

To estimate the sky spectral radiance, we calculate the turbidity of the sky from
image intensity distribution, assuming the sun direction with respect to the camera
viewing direction can be extracted. The calculated turbidity provides the CIE chro-
maticities that can then be converted to the spectral radiance using the CIE’s formula.

Having the input sky image and its corresponding spectra, we estimate the spectral
sensitivities by solving the linear system derived from Eq. (3.1). However, this solution
can be unstable if the variances of the input colors are small, which is the case for sky
images. To overcome the problem, we utilize pre-computed basis functions.

3.1.1 Related Work

Most of the existing methods of spectral sensitivity estimation (Barnard and Funt,
2002; Thomson and Westland, 2001) solve the linear system derived from Eq. (3.1), given
a number of spectra and their corresponding RGB values. However, such estimation
is often unstable, since spectral representations of materials and illumination live in a
low dimensional space (Slater and Healey, 1998; Parkkinen et al, 1989), which implies
that the dimension of spectra is not sufficient to recover high-dimensional spectral
sensitivity information. To make the estimation stable, further constraints are required



34 Chapter 3 Spectral Sensitivity and White Balance Estimation from Sky Images

in the optimization process, and the existing methods mostly differ in the constraints
they use.

Pratt and Mancill (1976) impose a smoothing matrix on pseudo matrix inversion,
compare it with the Wiener estimation, and claim that the Wiener estimation produces
a better result. Hubel et al (1994) later confirm that Wiener estimation does provide
a smoother result than pseudo matrix inversion. Sharma and Trussell (1993) use a
formulation based on set theory, introducing a constraint set that sensitivity must
satisfy, such as non-negativity, smoothness, and error variance. Finlayson et al (1998)
express spectral sensitivities by a linear combination of the first 9 or 15 Fourier basis
functions, and use a modality constraint such that the sensitivity becomes unimodal
or bimodal. Barnard and Funt (2002) use all the constraints, replacing the absolute
intensity error with the relative intensity error, and estimate the sensitivity and the
camera response function at once. Ebner (2007) use an evolution strategy along with
the positivity and the smoothness constraints. Thomson and Westland (2001) use the
Gram-Charlier expansion (Frieden, 1983) for basis functions to reduce the dimension
of spectral sensitivities. Non-linear fitting is performed in their method.

The main limitations of the mentioned methods are as follows:

1. The global optimum cannot be guaranteed.

2. The requirement of the spectral radiance is often problematic if the camera is not
at hand, or if no additional devices (such as a monochromator or spectrometer)
are available.

Contrary to the existing methods, in computing the spectral sensitivities we do not
use an iterative technique. Importantly, our method does not require known spectral
radiance.

3.2 Estimating Sky Spectral Radiance
A spectral sensitivity can be estimated if we have both image RGB values and the

corresponding spectra, which are, respectively, Ic and L(λ) in Eq. (3.1). Suppose that we
have a set of RGB values and their corresponding spectra, then we can rewrite Eq. (3.1)
as follows:

I = qtL, (3.2)

where I is a 3× n matrix, with n representing the number of pixels. L is a w× n spectral
matrix, with w representing the wavelengths. q is a w × 3 camera-sensitivity matrix.
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Mathematically, provided with sufficient data for I and L, we can estimate q by
operating IL+, where L+ is the pseudo inverse of L. However, it becomes intractable to
estimate q when we have an image I but have no spectra L.

To overcome this problem, we propose to infer spectra from pixel values. In
fact, images of the sky provide such information. They provide clues to estimate
turbidity, from which we can obtain the spectra. Having obtained the sky spectra
and corresponding RGB values, we have L and I. Thus, we can estimate the spectral
sensitivities qt by solving Eq. (3.2).
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Figure 3.1: The plot of three basis functions S0, S1 and S2 used for calculating the
spectral radiance of sky pixels.

Preetham et al (1999) also introduce the correlation of turbidity and the CIE chro-
maticity (x and y). The CIE chromaticity can be calculated as follows:

x = xz
F (θ, γ)
F (0, θs)

, and y = yz
F (θ, γ)
F (0, θs)

, (3.3)

where xz and yz represent the zenith chromaticities, and are functions of turbidity. F (., .),
θs, θ, and γ have the same meaning as in the previous subsection. For computing x
and y in detail, see Appendix C.

Having obtained x and y in Eq. (3.3), spectra of the sky can be calculated using
known basis functions of daylights (Judd et al, 1964; Wyszecki and Stiles, 1982). The
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sky spectrum SD(λ) is given by a linear combination of the mean spectrum S0(λ) and
the first two eigenvector functions S1(λ) and S2(λ). Namely,

SD(λ) = S0(λ) +M1S1(λ) +M2S2(λ), (3.4)

where scalar coefficients M1 and M2 are determined by chromaticity values x and y.
Computing M1 and M2 from x and y is given in Appendix C. The data of three basis
functions S0(λ), S1(λ) and S2(λ) can be found in (Judd et al, 1964; Wyszecki and Stiles,
1982), and the plot is shown in Fig. 3.1.

3.3 Estimating Spectral Sensitivity
Given a number of input image RGB values and the corresponding spectra, the

spectral sensitivities can be estimated using the matrix inversion as in Eq. (3.2). How-
ever, the rank of the matrix L has to be at least w, to calculate the pseudo inverse L+

stably. In our case, the representation of the sky spectral radiance is three dimensional
since we calculate the spectral radiance using the basis functions in Eq. (3.4). This
means that the direct matrix inversion method would produce erroneous results.

To solve the problem, we propose to use a set of basis functions computed from
known spectral sensitivities. In many cases, the spectral sensitivities of cameras are
different but their variances will not be extremely large, meaning that their representa-
tion may lie in a very low dimensional space, similar to the illumination basis functions
(Slater and Healey, 1998). Basis functions can reduce the dimension and thus the num-
ber of unknowns. Therefore, this method generally provides robust and more accurate
results than the direct matrix inversion method.

3.3.1 Estimation Using Basis Functions

Spectral sensitivity can be robustly estimated from Eq. (3.2) by using the basis
functions of spectral sensitivity owing to its low dimensionality. Let us assume that the
spectral sensitivity can be approximated by a linear combination of a small number of
basis functions:

qc(λ) =
d∑

i=1

bc
i B

c
i (λ), (3.5)

where d is the number of the basis functions, bc
i is the coefficient and Bc

i (λ) is the basis
function with c ∈ {r, g, b}.
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By substituting the equation into Eq. (3.1), we can derive

Ic =

∫
Ω

L(λ)
d∑

i=1

(bc
i B

c
i (λ))dλ

=

d∑
i=1

bc
i

∫
Ω

L(λ)Bc
i (λ)dλ (3.6)

where Ic is the image intensity for RGB channels.
If we use another notation Ec

i to describe the multiplication of spectrum data and
basis function of spectral sensitivity, namely,

Ec
i =

∫
Ω

L(λ)Bc
i (λ)dλ, (3.7)

then by substituting Eq. (3.7) into (3.6), we obtain

Ic =

d∑
i=1

bc
i E

c
i . (3.8)

Now, let us suppose that we have N set of data (image intensities and spectra). By
using the matrix notation, we can describe Eq. (3.8) as

I = bE, (3.9)

where I is the N × 3 matrix, b is the 3 × d coefficient matrix, and E is the d ×N matrix.
Consequently, this coefficient matrix b can be expressed as

b = IE+ (3.10)

where E+ is the pseudo inverse of the matrix E.

3.3.2 Basis Functions from a Database

The rank of the multiplication matrix (E) has to be larger than the number of basis
functions (d) to make the estimation robust. Since the estimated spectral radiance is at
most rank three, we use three-dimensional basis functions for the spectral sensitivity
estimation.

In order to extract the basis functions, we collected several digital cameras to
make a database and measured their spectral sensitivities, including a few spectral
sensitivities drawn from the literature (Vora et al, 1997; Buil, 2005). Cameras included
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in the database are Sony DXC 930, Kodak DCS 420, Sony DXC 9000, Canon 10D,
Nikon D70, and Kodak DCS 460. Those used for the experiments are not included.
This spectral sensitivity database is publicly available at our website (Zhao, 2011). By
applying principal component analysis, the eigenvectors can be extracted.
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(a) Red channel. (b) Green channel.
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Figure 3.2: Extracted basis functions of red, green and blue channels from our sensitivity
database.

The percentages of eigenvalues for each color channel are shown in Table 3.1. The
sum of the first three eigenvalues is about 93% for all three channels. This means that
the first three vectors cover 93% information of the database. Based on this, the first
three eigenvectors are used as basis functions, which are shown in Fig. 3.2.

3.4 Experimental Results
In our experiment, we first evaluated our method with raw images, since they are

affected by minimal built-in color processing. The raw images are captured by three
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Table 3.1: The percentages of the first four eigenvalues for each color channel.
Eigenvalues Percentage %

R G B R G B

6.52 8.58 6.60 68.1 73.6 61.7
1.81 1.54 1.98 19.0 13.2 18.4
0.50 0.72 1.22 5.18 6.16 11.3
0.34 0.36 0.44 3.57 3.08 4.07

different cameras: Ladybug2, Canon 5D, and Nikon D1x. In this evaluation, we tested
both omni-directional images and perspective images, which were either rectified from
an omni-directional image or taken by a camera with a normal lens.

Second, we evaluated our method with images downloaded from the Internet. The
images are captured by three different cameras: Canon EOS Rebel XTi, Canon 5D,
Canon 5D Mark II. The color post-processing is compensated by a calibration method
(Chakrabarti et al, 2009) that considers the camera-response function and color matrix
conversion, and then applies calibrated images for spectral sensitivities and white-
balance estimation.

3.4.1 Raw Images

3.4.1.1 Omni-directional Images

Our proposed method was first evaluated with images of clear sky of the three
different cameras: Ladybug2, Canon 5D, and Nikon D1x. Ladybug2 captures the
panorama image, the fish-eye lens was attached to Canon 5D and Nikon D1x. Therefore,
the whole upper hemisphere was captured. Fig. 3.3 (a), (d), and (g) show the captured
images. The images were taken almost at the same time, with the gamma function
turned off. The method proposed by Barnard and Funt (2002) was implemented for
comparison. In their method, the spectral sensitivity is optimized from relative intensity
error along with the constraint sets. We used the same input data for both their and
our method. This input data is the estimated sky spectra from our proposed method.

Fig. 3.4 (a), (d), and (g) show the estimated results. The ground-truth of these
cameras was measured by using a monochromator. Our method was able to estimate
the same turbidity values, around 2.2 ± 0.02 through different cameras with different
RGB values.
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The mean error and RMSE of both our and Barnard et al.’s methods are shown in
Table 3.2, which evaluates their performance. Here, the maximum values of estimated
spectral sensitivities are normalized to 1.0. The largest mean error of our method is
less than 3.5%, while that of Barnard et al.’s is 7%. Our method also has a smaller
standard deviation. The result of our method achieves higher accuracy because it uses
the basis functions extracted from collected spectral sensitivities of different cameras.
The experiment shows our method works well for clear sky images.

The method was also evaluated with different sky conditions as shown in Fig. 3.3:
(b) partially cloudy sky, (c) thin cloudy sky, (e) hazy sky, and (h) significantly cloudy
sky. For Fig. 3.3 (b) and (c), a RANSAC-type algorithm, was used to exclude the outliers
(cloud pixels). For other images, we estimated sky turbidity from the sample pixels by
PSO (particle swarm optimization) (Kennedy and Eberhart, 1995), because it is likely
to reach the global optimum. Estimated turbidity for those weather conditions were
about 2, 3, 4 and 12, respectively. The recovered spectral sensitivities are shown in
Fig. 3.4 (b), (c), (e), and (h). A large error occurs in (h) because the whole sky is covered
by thick cloud that does not fit Preetham et al.’s model.

In the experiment, we also wanted to know whether the proposed method is ef-
fective in estimating the white balance setting by using two images taken from the
same camera (thus the same spectral sensitivities) but different white balance settings.
Fig. 3.3 (e) and (f) show such images. The estimated spectral sensitivities are shown in
Fig. 3.4 (e) and (f). As expected, the shape of the spectral sensitivities are the same, and
they differ only in the magnitude.

3.4.1.2 Perspective images

We tested our method with perspective images (images rectified from omni-directional
images) and images taken from ordinary cameras. To show that narrower field-of-view
also works with the method, first, we used the rectified spherical image shown in
Fig. 3.3 (i). This image is a part of Fig. 3.3 (a). The recovered sensitivity is shown in
Fig. 3.4 (i). The performance did not change much compared to (a), although only
partial sky is visible. We tested three different directions in (a), and had similar results
from them. The estimated sun position in (a) was used here.

Second, we show that the method can handle images where the sun is not visible
and the camera poses are unknown. Fig. 3.5 (a) shows captured images with a reference
object whose pose and geo-location are known. We captured 16 images in total, and
recovered each camera pose with respect to the reference object. The sun position was
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(a) Clear. (b) Partially cloudy. (c) Thin cloudy.

Ladybug2.

(d) Clear. (e) Hazy plus “Daylight” WB. (f) Hazy plus “Cloudy” WB.

Canon 5D.

(g) Clear. (h) Significantly cloudy. (i) Rectified image.

Nikon D1x. Ladybug2.

Figure 3.3: Various sky conditions captured by three different omni-directional cameras:
the top row shows the images of Ladybug2, the second row shows the images of Canon
5D. The first two images of the bottom row are captured by Nikon D1x and the third
one is rectified from image (a).
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(a) Clear. (b) Partially cloudy. (c) Thin cloudy.

Ladybug2.
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(d) Clear. (e) Hazy plus “Daylight” WB. (f) Hazy plus “Cloudy” WB.

Canon 5D.
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(g) Clear. (h) Extremely cloudy. (i) Rectified image.

Nikon D1x. Ladybug2.

Figure 3.4: Sensitivity estimation results using the input images shown in Fig. 3.3.
Ground-truth (“GT”), estimated sensitivities of our method (“Estimated”), and the
method of Barnard and Funt (2002) (“Barnard”) are shown for three different cameras:
Ladybug2, Canon 5D and Nikon D1x.
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Table 3.2: Evaluation of estimated spectral sensitivity from omni-directional images:
Mean error and RMSE.

Different Mean error RMSE
Cameras Ours Barnard’s Ours Barnard’s

Canon 5D(R) 0.0235 0.0469 0.0317 0.0734
Canon 5D(G) 0.0190 0.0380 0.0247 0.0594
Canon 5D(B) 0.0085 0.0276 0.0140 0.0411
Ladybug2(R) 0.0193 0.0378 0.0258 0.0621
Ladybug2(G) 0.0120 0.0462 0.0225 0.0525
Ladybug2(B) 0.0145 0.0341 0.0203 0.0512
Nikon D1x(R) 0.0343 0.0701 0.0359 0.0921
Nikon D1x(G) 0.0136 0.0285 0.0168 0.0431
Nikon D1x(B) 0.0162 0.0311 0.0263 0.0401
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(a) Rectilinear images. (b) Estimated result.

Figure 3.5: Rectilinear images with a reference object from multiple views of Nikon
D1x and estimated spectral sensitivity. We captured about 30 images and six of them
are shown in (a). These images are used for recovering the camera parameters. The
spectral sensitivity estimation only requires any one of the captured images.
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estimated from the time stamp in the EXIF tag. The gamma function was turned off in
the experiment. The estimated spectral sensitivity is shown in Fig. 3.5 (b).

3.4.2 In-camera Processed Images

General images such as those available on the Internet are much more problematic
compared with the images we tested in Section 3.4.1, since the camera response function
(gamma function) has to be estimated and the images are usually taken by cameras
that have built-in color processing (Ramanath et al, 2005).

We evaluated our method with images downloaded from the Internet, captured by
three different cameras: Canon EOS Rebel XTi, Canon 5D, Canon 5D Mark II. Fig. 3.6
shows these images of the Statue of Liberty downloaded from a photo-sharing site.
These images are JPEG compressed and are taken with internal camera processing.
Chakrabarti et al (2009) invented an empirical camera model which converts the JPEG
image back to raw image. We implemented the method described in this paper to
photometrically calibrate the camera (response function and internal color processing).
The camera pose and the sun direction were estimated in the same manner as in the
previous experiment (Fig. 3.5 (a)), while 187 images were used here. The method was
also evaluated by different sky conditions: clear skies (Fig. 3.6 (a), (g), and (i)), cloudy
skies (Fig. 3.6 (c) and (e)), and hazy sky (Fig. 3.6 (k)).

The estimated spectral sensitivities are also shown in Fig. 3.6. Evaluation result are
shown in Table 3.3. The mean error for RGB channels is larger than the results from
omni-directional images because of the residual errors of the internal color processing,
the estimation of the response function, and data compression.

We used the Macbeth color chart to evaluate the accuracy of estimated spectral
sensitivity. Specifically, we captured the spectral radiance of the first 18 color patches
and used estimated spectral sensitivity to predict the image intensity. The predicted
and captured image intensity is plotted into 2D space. We found that if the error of
estimated spectral sensitivity is less than 5%, then the plotted data forms an almost
perfect straight line. This proves that the sensitivity estimation achieves high accuracy.

3.5 Applications of Estimated Spectral Sensitivity
The estimated spectral sensitivity is used for many applications, such as correct-

ing the color between different cameras, rendering the virtual object and recovering
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(a) Input 1.
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(b) Result from Input 1.

(c) Input 2.
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(d) Result from Input 2.

Canon EOS Rebel XTi.

(e) Input 3.
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(f) Result from Input 3.

(g) Input 4.
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(h) Result from Input 4.

Canon 5D.

(i) Input 5.
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(j) Result from Input 5.
(k) Input 6.
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(l) Result from Input 6.

Canon 5D Mark II.

Figure 3.6: Sensitivity estimation results on the images downloaded from the Internet.
Three different cameras were tested: the top row shows the images of Canon EOS
Rebel XTi, the second row shows those of Canon 5D, and the bottom row shows those
of Canon 5D Mark II. (a), (c), (e), (g), (i), (k) are the input images, and (b), (d), (f),
(h), (j), (l) are the corresponding results. All input images are downloaded from the
Internet. (“GT”) in the graphs refers to the ground truth, and (“Estimated”) refers to
the estimated sensitivities.
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Table 3.3: Evaluation of estimated spectral sensitivity from Internet images: Mean error
and RMSE.

Different input images Mean error RMSE

Canon Rebel XTi 1 (R) 0.0359 0.0501
Canon Rebel XTi 1 (G) 0.0161 0.0230
Canon Rebel XTi 1 (B) 0.0108 0.0142
Canon Rebel XTi 2 (R) 0.0370 0.0511
Canon Rebel XTi 2 (G) 0.0121 0.0181
Canon Rebel XTi 2 (B) 0.0097 0.0146

Canon 5D 1 (R) 0.0414 0.0579
Canon 5D 1 (G) 0.0175 0.0262
Canon 5D 1 (B) 0.0151 0.0351
Canon 5D 2 (R) 0.0410 0.0578
Canon 5D 2 (G) 0.0223 0.0327
Canon 5D 2 (B) 0.0151 0.0348

Canon 5D Mark II 1 (R) 0.0406 0.0642
Canon 5D Mark II 1 (G) 0.0220 0.0329
Canon 5D Mark II 1 (B) 0.0176 0.0237
Canon 5D Mark II 2 (R) 0.0388 0.0634
Canon 5D Mark II 2 (G) 0.0206 0.0326
Canon 5D Mark II 2 (B) 0.0175 0.0235

the outdoor illumination environment. The details for correcting the color between
different cameras are provided here.

One of the applications of estimating spectral sensitivities and white balance setting
is to correct the colors between different cameras. The purpose of this color correction
is similar to color transfer (Reinhard et al, 2001). Thus, we intended to compare the
results of color correction using our estimated spectral sensitivities and white balance
with those of color transfer.

Before showing the comparisons, here we briefly discuss our color correction. By
discretizing Eq. (3.1) and using matrix notation, we can rewrite it as follows:

In×3 = Ln×wQw×3B3×3 = En×3B3×3, (3.11)
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Figure 3.7: Extracted basis functions common for all three channels from our sensitivity
database.

where I is the intensity matrix, L is the matrix of spectral radiance, Q is the matrix
of basis functions for spectral sensitivities, B is the coefficient matrix, and E is the
multiplication of L and Q. Note that the basis functions used here are different from
those extracted in Sec. 3.3.2, in the sense that now we use the same basis for the
three color channels. n is the number of surfaces, and w is the number of sampled
wavelengths.

Suppose we have an image captured by one camera, denoted as I1 = EB1, then the
same scene captured by another camera is expressed as:

I2 = EB2 = I1B−1
1 B2. (3.12)

Since B1 and B2 are computable if both sensitivities are known, color conversion from
one image to another is possible via the above equation. Fig. 3.7 shows extracted basis
functions common for the three channels.

Color correction result for the Statue of Liberty is shown in Fig. 3.8. In the figure,
(a) and (b) show the source and target images, and (d) is the result of our method. We
also implemented Reinhard et al.’s color transfer algorithm (Reinhard et al, 2001) for
comparison. Fig. 3.8 (c) is the result of their method. Since the proposed method is
based on the physical cameras’ characteristics, it produces visually better results, e.g.,
in the chest area, or in the platform of the statue.

The quantitative evaluation is shown in Fig. 3.9. We sampled six points as shown
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(a) Source. (b) Target. (c) Color transfer. (d) Our method.

Figure 3.8: Color correction between different cameras: (a) is the source image captured
by Canon 5D, (b) is the target image captured by Canon EOS Rebel XTi, (c) shows the
result of color transfer (Reinhard et al, 2001), (d) shows the result of our color correction
method.
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(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 3.9: Chromaticity evaluation between images shown in Fig. 3.8. “target image,”
“color transfer,” and “our method” represent chromaticities of (b), (c), and (d) in Fig. 3.8.
The result of our method is close to the target image except for point 4, because it lies
in the shadow region of the target image (b).
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(a) Linearized Casio. (b) Linearized Panasonic. (c) Color correction result.

Figure 3.10: Color correction between different cameras: (a) is the target image captured
by Casio, (b) is the source image captured by Panasonic, (c) shows the color correction
result from Panasonic (b) to Casio (a).
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(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 3.11: Chromaticity evaluation between images shown in Fig. 3.10. “Casio,”
“Pana,” and “Pana2Casio” represent chromaticities of (a), (b), and (c). The performance
is evaluated on four points.
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(a) Linearized Casio. (b) Linearized Canon. (c) Color correction result.

Figure 3.12: Color correction between different cameras: (a) is the target image captured
by Casio, (b) is the source image captured by Canon, (c) shows the color correction result
from Canon (b) to Casio (a).
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(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 3.13: Chromaticity evaluation between images shown in Fig. 3.12. “Casio,”
“Canon,” and “Canon2Casio” represent chromaticities of (a), (b), and (c). The perfor-
mance is evaluated on four points.

in Fig. 3.8 (a), and compared the chromaticity of those points of three images (b), (c),
and (d): In Fig. 3.9, “target image,” “color transfer,” and “our method” represent the
chromaticity of the target image, the result of color transfer, and the proposed color
correction. Chromaticity is calculated as Ic/(Ir + Ig + Ib). The chromaticity values of
the proposed method are close to those of the target image, except for the point 4, a
point lies in the shadow region of the target image. The proposed color correction
method performs better because it is based on estimated camera spectral sensitivities.
Meanwhile, the color transfer method by Reinhard et al. is based on the Gaussian color
distribution of two images.

Note that, while Fig. 3.8 (b) was captured only one hour later than (a), their color
appears significantly different. By assuming that the illumination did not change that
much, the difference must be due to the difference of the camera properties, such as
spectral sensitivities and white balance. Thus, we consider that the proposed method
is useful in applications where color calibration between cameras is necessary.

Another two examples of color correction for the clock tower are shown in Fig. 3.10
and 3.12. Here, (a) and (b) are gamma-corrected images from Fig. 1.1, and (c) shows
the result of our method for two different cameras. Quantitative evaluations are shown
in Fig. 3.11 and 3.13. “Casio,” “Pana,” “Pana2Casio,” “Canon,” and “Canon2Casio”
represent the chromaticity values of Casio, Panasonic, color corrected from Panasonic to
Casio, Canon, and color corrected from Canon to Casio, respectively. The performance
is evaluated on the four sample points as shown in Fig. 3.10 (a) and 3.12 (a). We find
that our method achieved high accuracy.
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(a) Original. (b) Manual color balance. (c) Manual color adjustment.
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(d) Estimated spectral sensitivity from (b). (e) Estimated spectral sensitivity from (c).

Figure 3.14: Manually processed image and estimated spectral sensitivities for Canon
EOS Rebel XTi: (a) is the original image, (b) is manually processed image by changing
color balance, (c) is manually processed image by increasing the pixel value of green
channel, (d) shows estimated spectral sensitivity from (b), (e) shows estimated spectral
sensitivity from (c).
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3.6 Discussion
Many images, particularly those available on the Internet, have been processed

further by image processing software, such as the Adobe Photoshop. To clarify the
limitation of the method, we created such modified images: the color balance is changed
for the first one (multiplying each color channel by a constant), the hue is manually
adjusted for the second one (increasing the pixel values of the green channel to make
it greenish), and then estimated the spectral sensitivities from them. The result is
shown in Fig. 3.14. Fig. 3.14 (a) shows the original image, (b) shows the manually
color balanced image, (c) shows the manually hue-adjusted image, (d) and (e) show the
estimated results. Estimated spectral sensitivity from image (b) is close to the ground-
truth. However, estimated spectral sensitivity from image (c) has large errors compared
to the ground-truth, because the turbidity is deviated by the hue modification. Some
operations performed on the input image by the Photoshop do not conflict with the
spectral sensitivity estimation. How to automatically filter out the contaminated images
is our future work.

3.7 Summary
In this chapter, we have proposed a novel method to estimate spectral sensitivities

and white balance of digital cameras solely from images. This problem is important,
since different cameras and settings can give different color values, although the in-
coming lights are identical. This would significantly benefit physics-based computer
vision or computer vision in general, particularly for future research where the images
on the Internet become valuable.

To conclude, our contributions in this paper are (1) the novel method that uses
solely images for spectral sensitivity and white balance estimation, (2) a database of
spectral sensitivities that is publicly available, (3) an improved atmospheric turbidity
estimation that handles a wide variety of cameras, and (4) spectral sensitivity-based
color correction between different cameras.
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Chapter 4

Virtual Object Rendering with Aerial
Perspective Effect

The virtual object is realistically inserted into a real scene by using the estimated
atmospheric turbidity. Specifically, the aerial perspective is modeled by the turbidity.
Virtual object rendering has been widely used in many fields, such as the academy, the
architecture, the entertainment and the heritage preservation. Aerial perspective plays
an important role for making the object appear realistic especially when the object is far
away from the camera. This chapter describes the virtual object rendering technique
with taking the aerial perspective effect into account. The atmospheric turbidity is first
estimated by matching the brightness distributions, then the spectral radiance of the
sun and skylight is calculated from the estimated turbidity, the aerial perspective effect
is calculated as the summation of in-scattered and out-scattered spectral radiance along
the camera view direction. Experimental results show the accuracy of this technique.

4.1 Introduction
Recently, the virtual object rendering which inserts the computer graphics models

into a real scene has become popular (Azuma, 1997; Azuma et al, 2001). The virtual
object rendering can be used in many fields, such as the academy, the architecture, the
medical industry and the entertainment. It also has been widely used for representing
lost cultural heritage objects, for instance, the virtual Asukakyo project which restores
the ancient capital of Asukakyo to its original state (Ikeuchi, 2007; Kakuta et al, 2004).



54 Chapter 4 Virtual Object Rendering with Aerial Perspective Effect

These lost objects are difficult to rebuild due to the problem of cost and archaeological
concerns. Instead, rather than rebuilding the cultural heritage objects, it would be
preferable to exhibit computer graphics models of them to visitors, hereby increasing
the visitor’s understanding of the significance of the historical sites.

The virtual object rendering needs the geometry and illumination condition for
seamlessly insert the virtual object into a real scene. The geometry information is
obtained from the computer graphics models and the illumination can be either cap-
tured by using omni-directional camera (Okura et al, 2008) or estimated from the cast
shadows (Sato et al, 2003b). The geometry information and the illumination condition
guarantee the rendered image appear real, for instance, make the cast shadow of the
virtual object match that of other objects in the scene.

Besides the geometry information and the illumination condition, the aerial per-
spective effect also makes the rendered object appear realistic, especially when the
object is far away from the camera. The aerial perspective effect is caused by the scat-
tering of particles suspended in the atmosphere. It is proved that the efficient and
accurate way to calculate the aerial perspective effect is from the atmospheric turbidity
(Preetham et al, 1999). Therefore, the problem for realistically rendering the appearance
of distant object is how to estimate the turbidity value.

In this chapter, the turbidity is estimated by matching the brightness distributions
between the actual image and the sky model. After acquiring the turbidity, the spectral
radiance of the sun and the sky is calculated. The aerial perspective is caused by the
scattering of particles, therefore, it is calculated as the summation of in-scattered and
out-scattered light along the view direction.

4.1.1 Related Work

The illumination condition is very important for seamlessly integrating the com-
puter graphics models with the real scene. Much effort has been made for recovering
the illumination environment. Debevec (1998) uses the calibrated sphere to measure
the global illumination for inserting new objects into real scene. Sato et al (1999a)
propose to use the fish-eye lens for capturing the radiance distribution of a real scene
automatically and superimpose virtual object. Lalonde et al (2009) describe a novel
method for estimating the outdoor illumination from multiple cues of the input image:
the sky pixels, the shading information and the casted shadows. They report that no
single cue could provide robust estimation while the combination of these cues produce
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reliable results.
Despite of the illumination estimation, many methods relate to calculating the aerial

perspective effect have been proposed, because the aerial perspective effect makes the
rendered object appear realistic, especially when it is far away from the camera. Klassen
(1987) presents a lighting model with the scattering effect which is caused by suspended
particles, and use the lighting model for rendering fog under general lighting condi-
tions. Kaneda et al (1991) use the aerial perspective for displaying the appearance
of a building under various weather conditions. The aerial perspective is explicitly
calculated from Klassen’s atmosphere scattering model. Ward (1994) integrates the
aerial perspective effect into the Radiance rendering software. In his method, the aerial
perspective is calculated by assuming the ambient illumination is constant and inde-
pendent of the varies of viewing direction. This approximation is efficient, but it can
not handle the changes in view directions and sun positions. Ebert et al (1998) use
a similar approach as in this chapter, the aerial perspective is calculated by using the
Rayleigh scattering. The object color is calculated as the linear combination of surface
color and weighted sky color. The weight factor varies as the object moves further
away from the camera.

4.2 Aerial Perspective Calculation
Aerial perspective describes the appearance of object due to light scattering when

the object is far away from the camera. The aerial perspective plays an important
role for making the rendered image appear realistic. The importance of this effect
is emphasized by the psychologists and artists. Psychologists prove that the aerial
perspective effect is the only absolute depth cue available when the object is distant
(Goldstein, 1980). Painters use the aerial perspective to create the illusion of depth for
distant objects in their paintings.

Fig. 4.1 shows the aerial perspective effect due to the light scattering. Fig. 4.2
roughly shows how the aerial perspective effect changes the color of object surface:
Fig. 4.2 (a) is the rendered image of outdoor scene without the aerial perspective effect,
while Fig. 4.2 (b) shows the rendered image with aerial perspective effect. The color of
the ground slightly changes due to the light scattering in Fig. 4.2 (b).

Aerial perspective exists when the object is distant from the camera, it is caused by
the light scattering along the view direction. The aerial perspective is calculated from
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Figure 4.1: The object color changes due to the light scattering when the object is distant
to the camera. In scattering effect adds light along the view direction, and out-scattering
effect removes light along the view direction (Preetham et al, 1999).

(a) Image without aerial perspective. (b) Image with aerial perspective.

Figure 4.2: How the aerial perspective change the object color: (a) shows the rendered
image of outdoor scene without aerial perspective, (b) shows the rendered image with
aerial perspective (Preetham et al, 1999).
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Figure 4.3: The parameters used for calculating the aerial perspective effect: L(0) is the
reflected light at the object surface, L(s) is the reflected light after scattering, θ is the
elevation angle of the camera, ϕ is the azimuth angle of the camera, h0 is the height of
the camera, h(x) is the height of point x, ω is the solid angle used for calculating the
in-scattering light at point x (Preetham et al, 1999).

the in-scattering light and out-scattering light (Preetham et al, 1999):

L(s) = L0τ + Lin, (4.1)

where L0 is the reflected spectral radiance at the object surface, Lin is the in-scattering
light, τ is the extinction factor along the distance s from the object to the camera,
the multiplication L0τ describes the out-scattering light. The parameters used in this
Equation is shown in Fig. 4.3.

The light scattering occurs because of the existence of various particles in the
atmosphere. According to different particles, different scattering equations are applied.
Specifically, the particles in the atmosphere could be roughly divided into two kind:
the molecules which has the diameter smaller than the wavelength of light and the haze
which has the diameter bigger than the wavelength of light. Rayleigh scattering is used
for describing the molecule scattering and Mie scattering is used for haze scattering.
For both particles, the density varies according to the height, hence the scattering
coefficients also vary according to the height. In order to make the computation
tractable, an assumption is introduced here: the particle density varies exponentially
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to the height. The scattering coefficient at the height h is described as:

β(h) = β0e−αh

= β0e−α(h0+xcosθ)

= β0u(x), (4.2)

where, β0 is the scattering coefficient at earth’s surface, α is the exponential decay
constant, u(x) is the ratio of scattering coefficient at height h to the earth’s surface. The
other scattering term is used for describing the in-scattering effect. The fraction of light
scattered into the viewing direction (θ, ϕ) from a solid angle ω is described as:

β(ω, θ, ϕ, h(x)) = β0(ω, θ, ϕ)u(x). (4.3)

4.2.1 Out-scattering Coefficient

The out-scattering coefficient is calculated as L0τ, L0 is the reflected light at object
surface and τ is the extinction factor which describes the attenuation along the view
direction. By using the assumption that the attenuation decreases exponentially to the
height, the extinction factor over a distance s is given by:

τ = e−
∫ s

0 βdx. (4.4)

By substituting the βwith Eq. 4.2, we get:

τ = e−
∫ s

0 β0u(x)dx

= e−β0e−αh0 (1−e−αscosθ)
αcosθ . (4.5)

The atmosphere contains two different particles, different particle has different
scattering coefficient β0 and decay constant α. The scattering effect of one particle
is independent of the other particle, therefore, the total extinction factor of haze and
molecule is calculated as the multiplication:

τtotal = τhaze · τmolecule

= e−β0,he−αhh0 (1−e−αhscosθ)
αhcosθ · e−β0,me−αmh0 (1−e−αmscosθ)

αmcosθ . (4.6)

The scattering coefficients at the earth’s surface for haze (β0,h) and molecules (β0,m)
are described as:

β0,h = 0.434c(T)π(
2π
λ

)v−2k, (4.7)

β0,m =
8π3(n2 − 1)2

3Nλ4 (
6 + 3pn

6 − 7pn
), (4.8)
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Figure 4.4: Spectral radiance(k) used for calculating the scattering coefficient of
haze(β0,h) at the earth’s surface.

where c is the concentration factor which is determined by turbidity T as (0.6544T −
0.6510) ∗ 10−16 and v is Junge’s exponent with a value of 4 for the sky model, the data
of spectra k is plotted in Fig. 4.4, n is the refractive index of air with the value of 1.0003
for the visible spectra, N is the number of molecules per unit volume with the value of
2.545 ∗ 1025, pn is the depolarization factor with the standard value of 0.035 for air. The
value of exponential decay constants for haze (αh) and molecules (αm) are 0.8333 and
0.1136, respectively.

4.2.2 In-scattering Coefficient

The sun and sky light scatter into every point along the view direction. Let us denote
the spectral radiance of the sun and sky in the directionω as L(ω) and the light scattered
into the viewing direction (θ, ϕ) at point x as E(θ, ϕ, x). The in-scatter light at point x is
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Table 4.1: The Mie scattering term η(θ) used for calculating the angular scattering
coefficient of haze.

θ \ λ 400 450 550 650 850

1 4.192 4.193 4.177 4.147 4.072
4 3.311 3.319 3.329 3.335 3.339
7 2.860 2.868 2.878 2.883 2.888
10 2.518 2.527 2.536 2.542 2.547
30 1.122 1.129 1.138 1.142 1.147
60 3.324 3.373 0.3433 0.3467 0.3502
80 0.1644 0.1682 0.173 0.1757 0.1785
90 0.1239 0.1275 0.1320 0.1346 0.1373
110 0.08734 0.09111 0.09591 0.09871 0.10167
120 0.08242 0.08652 0.09179 0.09488 0.09816
130 0.08313 0.08767 0.09352 0.09697 0.10065
150 0.09701 0.1024 0.1095 0.1137 0.1182
180 0.1307 0.1368 0.1447 0.1495 0.1566

described as the multiplication of L(ω) and angular scattering coefficient(Eq. 4.3):

E(θ, ϕ, x) =
∫

L(ω)β(ω, θ, ϕ, h)dω

=

∫
L(ω)β0(ω, θ, ϕ)u(x)dω

= E0(θ, ϕ)u(x), (4.9)

where E0(θ, ϕ) is the light scattered into the viewing direction (θ, ϕ) at earth’s ground
and is expressed as:

E0(θ, ϕ) =
∫

L(ω)β0(ω, θ, ϕ)dω, (4.10)

β0(ω, θ, ϕ) is the angular scattering coefficients for haze and molecules at the earth’s
surface and is calculated as:

βh(θ) = 0.434c(T)(
2π
λ

)v−2 1
2
η(θ), (4.11)

βm(θ) =
π2(n2 − 1)2

2Nλ4 (
6 + 3pn

6 − 7pn
)(1 + cos2θ), (4.12)

where the parameters n, N, pn, c and v have the same meaning as used in Eq.( 4.8), the
values of the scattering term η(θ) for Mie scattering is shown in Table. 4.1.
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Let us define the extinction factor τ (Eq. 4.6) from the object surface to the point x
along the viewing direction as τ(0 . . . x), the total light scattering into the view direction
for one particle is described as:

Lin =

∫ s

0
E(θ, ϕ, x)τ(0 . . . x)dx

=

∫ s

0
E0(θ, ϕ)u(x)τ(0 . . . x)dx. (4.13)

The atmosphere contains two kinds of particles: the haze and the molecules. There-
fore, the total light scattering into the view direction is calculated as the summation of
the in-scattering of the two particles:

Lin =

∫ s

0
E0

h(θ, ϕ)uh(x)τ(0 . . . x)dx +
∫ s

0
E0

m(θ, ϕ)um(x)τ(0 . . . x)dx

= E0
h(θ, ϕ)Hh + E0

m(θ, ϕ)Hm, (4.14)

where H for two different particles is calculated as:

Hh =

∫ s

0
uh(x)τ(0 . . . x)dx, (4.15)

Hm =

∫ s

0
um(x)τ(0 . . . x)dx. (4.16)

Eq. (4.14) describes how to estimate the in-scattering light with a distance s along
the viewing direction. E0

h and E0
m are calculated from the Eq. (4.10), Hh and Hm are

calculated analogously. The equations for computing Hh is shown as follows. The K
and M are defined as:

K = −
β0

αcosθ
, (4.17)

M = e−αh0 . (4.18)

By substituting K and M in Eq. (4.6), we get:

τ = e−Kh(Mh−uh(s))e−Km(Mm−um(s)). (4.19)

Then Eq. (4.15) is rewritten as:

Hh =

∫ s

0
uh(x)e−Kh(Mh−uh(x))e−Km(Mm−um(x))dx. (4.20)
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When the distance s is considered small or the viewing direction is close to the horizon,
then |scosθ≪ 1|. The extinction coefficient is calculated as:

e−K(M−u(x)) = e−βM
1−e−αxcosθ
αcosθ

≈ e−βMx. (4.21)

Thus

Hh =

∫ s

0
uh(x)e−Kh(Mh−uh(x))e−Km(Mm−um(x))dx

=

∫ s

0
e−Mhe−αhxcosθe−βhMhxe−βmMmxdx

= e−Mh
1 − e−(αhcosθ+βhMh+βmMm)s

αhcosθ + βhMh + βmMm
. (4.22)

However, when the conditional term |scosθ ≪ 1| is not satisfied, Hh can not be
calculated by using the Eq. (4.22). Under this situation, Hh could be only calculated
from the integrals. This is too impractical to be used for efficiently rendering the object
appearance. In order to solve this problem, the approximations for the Eq. (4.20) are
introduced. The function v is defined as:

v = uh(x) = e−αh(h0+xcosθ). (4.23)

Therefore, we get
dv = −αhcosθuh(x)dx. (4.24)

Then the Eq. (4.20) is written as:

Hh = −
1

αhcosθ

∫ uh(s)

uh(0)
e−Kh(Mh−v)e−Km(Mm−um(x))dv. (4.25)

The second term of the integral f (x) = e−Km(Mm−um(x)) in Eq. (4.25) is substituted by a
Hermite cubic polynomial g(v) = Av3 +Bv2 +Cv+D. The coefficients A, B, C and D for
the cubic equivalent are determined such that g(v) interpolates the position and slope
of the endpoints of f (x). By using the approximations, the integral is described as:

Hh = − 1
αhcosθ

∫ uh(s)

uh(0)
e−Kh(Mh−v)g(v)dv

= − 1
αhcosθ

[e−Kh(Mh−v)(
g(v)
Kh
− g′(v)

K2
h

+
g′′(v)

K3
h

− g′′′(v)
K4

h

)]uh(s)
Mh

= − 1
αhcosθ

((e−Kh(Mh−uh(s)))(
g(uh(s))

Kh
− g′(uh(s))

K2
h

+
g′′(uh(s))

K3
h

− g′′′(uh(s))
K4

h

) −

(
g(Mh)

Kh
− g′(Mh)

K2
h

+
g′′(Mh)

K3
h

− g′′′(Mh)
K4

h

)). (4.26)
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The parameters A, B, C and D in the function g(v) = Av3 +Bv2 +Cv+D to approximate
f (x) = e−Km(Mm−um(x)) are determined by the solution of the following linear equations:

M3
h M2

h Mh 1
uh(s)3 uh(s)2 uh(s) 1
3M2

h 2Mh 1 0
3uh(s)2 2uh(s) 1 0




A
B
C
D

 =


1
f (s)
f ′(0)
f ′(s)

 . (4.27)

4.3 Virtual Object Rendering
The rendering process requires the following inputs for realistic object appearance:

(1) the object shape, (2) the object surface reflectance, (3) the illumination and (4) the
aerial perspective calculation.

The shape information is obtained from the computer graphics models, because
the capital does not exist now. Fig. 4.5 shows the view of the whole capital. In the
created models, this ancient capital consists of five different parts: the Ishigami, the
Asukadera, the Asukaike, the Kiyomiharanomiya and the Ebinoko. Fig. 4.6 and 4.7
shows the parts of the Kiyomiharanomiya and the Ebinoko, respectively. One palace
of the Kiyomiharanomiya is shown in Fig. 4.8. The reflectance of the created models
are manually set.

Figure 4.5: The ancient capital of Asukakyo created by computer graphics models.
The whole capital consists of five different parts: the Ishigami, the Asukadera, the
Asukaike, the Kiyomiharanomiya and the Ebinoko.

The illumination environment (the spectral radiance of the sun and the sky) is
estimated from the atmospheric turbidity. Specifically, we first capture the omni-
directional image with the spherical camera Ladybug2, the turbidity is estimated by
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Figure 4.6: One part of the ancient capital: the Kiyomiharanomiya.

Figure 4.7: One part of the ancient capital: the Ebinoko.
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Figure 4.8: One palace of the Kiyomiharanomiya.

matching the brightness distribution of the captured image and the sky model, then
the estimated turbidity is used for calculating the spectral radiance of the sun and
the chromaticity values xy of the sky pixels, the spectral radiance of the sky light is
calculated from the xy values by using three basis functions for outdoor illumination.

After acquiring the shape information and illumination condition, the object ap-
pearance is rendered. When the object is illuminated by a light source, the reflected
light will go through the camera lens and recorded by the charged couple device (CCD).
Then the recored value by the camera is described as:

Ic =

∫
Ω

L(λ)qc(λ)dλ, (4.28)

where Ic is the recorded RGB values, c stands for R, G and B color channels, Ω is the
visible wavelength with the value from 380nm to 780nm, L(λ) is the reflected spectral
radiance at the object surface, qc(λ) is the spectral sensitivity. The aerial perspective
effect of distant object is described as:

Ls = L0τ + Lin. (4.29)
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By substituting Eq. (4.29) into Eq. (4.28), we get:

Ic =

∫
Ω

(L0τ + Lin)qc(λ)dλ

=

∫
Ω

L0τqc(λ)dλ +
∫
Ω

Linqc(λ)dλ. (4.30)

In Eq. (4.30), the first term describes the out-scattering effect and the second term
describes the in-scattering effect. Note that L0 is the reflected spectral radiance at the
object’s surface and is calculated as:

L0 = Llight · R, (4.31)

where Llight is the spectral radiance of illumination and R is the spectral reflectance
of object. The models are created by computer graphics, hence, we do not have the
spectral reflectance. This makes the problem intractable. However, if assuming that the
camera spectral sensitivity can be approximated by a Dirac’s delta function (narrow-
band assumption), the wavelength λ can be considered as a constant. The first term
becomes: ∫

Ω

L0τqc(λ)dλ ≃
∫
Ω

L0qc(λ)dλ ·
∫
Ω

τqc(λ)dλ

≃ I′ · Γ, (4.32)

where I′ is the object appearance when the camera is close (without taking the aerial
perspective into account) and calculated as

∫
Ω

L0qc(λ)dλ, Γ is calculated as
∫
Ω
τqc(λ)dλ.

Thus, Eq. (4.30) is rewritten as:

Ic = I′ · Γ +
∫
Ω

Linqc(λ)dλ, (4.33)

where I′ can be calculated from the shape information and reflectance with known
illumination, the equations for calculating τ and Lin are introduced in the previous
section.

4.4 Experiment
The ancient capital Asukakyo lies in the Nara prefecture, there is a small hill called

as the Amakashioka near the ruin of Asukakyo. The image is taken on the top of this
hill. Fig. 4.9 shows the location of the ancient capital and the Amakashioka hill. The
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Figure 4.9: The location of the ancient capital Asukakyo and the Amakashioka where
we take the image.

Figure 4.10: Captured omni-directional image on the top of Amakashioka.
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(a) Without aerial perspective.

(b) Wavelength based aerial perspective.

(c) RGB based aerial perspective.

Figure 4.11: Rendered images with and without aerial perspective, red points in (a)
show the sample points for the evaluation.
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(a) Red channel. (b) Green channel.
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(c) Blue channel.

Figure 4.12: Numerical evaluation of chromaticity values of rendered images with and
without aerial perspective.

red line in Fig. 4.9 shows the camera view direction. The straight line distance from the
Amakashioka hill to the Asukakyo is about 900 meters according to the Google map.

The captured omni-directional image is shown in Fig. 4.10, the red rectangle shows
the area where the Asukakyo lies. The sun direction is extracted from the longitude,
the latitude and the time when the image is captured.

The experiment results are shown in Fig. 4.11. Fig. 4.11 (a) shows the rendered image
without taking the aerial perspective into account, (b) shows the rendered image with
wavelength based aerial perspective calculation and (c) shows the rendered image with
RGB color channel based aerial perspective calculation. Compared to the wavelength
based aerial perspective, the RGB color channel based aerial perspective calculates the
in-scattering and out-scattering effect by taking integral over the RGB channels instead
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of the wavelengths. We implemented the RGB color channel based aerial perspective
for efficiency. Note those two hills behind the Asukakyo, they appear hazy due to the
aerial perspective. The aerial perspective effect is calculated in (b) and (c), therefore
they also appear hazy. It becomes obvious when comparing to the rendered image
without aerial perspective.

The numerical evaluation is shown in Fig. 4.12. We took six sample points as shown
in Fig. 4.11 (a). The chromaticity values of these six sample points from rendered
images with and without aerial perspective are compared. The chromaticity values
for RGB color channels are calculated as Ic/(Ir + Ig + Ib). In Fig. 4.12, the red column
represents the chromaticity from rendered image without aerial perspective, the green
column represents the chromaticity from rendered image with wavelength-based aerial
perspective and the blue column represents the chromaticity from rendered image with
RGB-based aerial perspective. The chromaticity values from rendered images with
aerial perspective are different from that of rendered image without aerial perspective.
The chromaticity values from rendered image with RGB-based aerial perspective are
close to that from rendered image with wavelength-based aerial perspective.

4.5 Summary
This chapter introduces the virtual object rendering with aerial perspective effect.

The aerial perspective models the slight color change of object when it is distant from
the camera, and make the rendered image appear realistic. We first estimate the turbid-
ity from input image and calculate the xy chromaticity values of the sky, the spectral
radiance of the sun is calculated from the turbidity and the spectral radiance of the
sky is calculated from the xy chromaticity values by using the basis functions of out-
door illumination, the aerial perspective effect is calculated from the in-scattered and
out-scattered spectral radiance of sun and sky along the camera viewing direction. Ex-
periment results show the accuracy achieved by the turbidity-based aerial perspective
calculation.



71

Chapter 5

Reflectance Estimation from a Single
Perspective Image

The surface reflectance is calculated from the illumination, which is recovered
from the estimated turbidity value. Computer vision and graphics techniques need
the accurate reflectance properties to create a realistic three-dimensional model of a
real world object. This chapter proposes a practical method to estimate the surface
reflectance parameters of outdoor diffuse object from a single perspective image. The
basic idea is to recover the whole illumination condition from the sky portion captured
in the perspective image. The atmospheric turbidity is estimated from the sky portion,
the spectral radiance of the sun and sky light is calculated from the estimated turbidity.
The inter-reflection exists for concave objects. The inter-reflection problem is solved by
assuming the object surface consists of hundreds of small facets. The inter-reflection
effect on one facet is calculated as the sum of incoming light energy from all the other
facets. Experimental results show the accuracy achieved by the proposed method.

5.1 Introduction
To create a realistic model of a real world object by computer vision and graphics

techniques has attracted interest from a wide range of research fields and industries in
recent years. Shape and reflectance properties of the object are necessary to simulate
the accurate appearance of an object. As a result of significant advancement of range
sensors and data processing algorithms, shape of an object becomes acquirable without
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much difficulties (Ikeuchi and Miyazaki, 2008; Ikeuchi et al, 2007). However, obtaining
the reflectance properties of the object remains a challenge, especially for outdoor
objects, because it is hard to precisely model the outdoor illumination.

Much effort has been made for acquiring the outdoor illumination condition (De-
bevec et al, 2004; Okura et al, 2008). These methods need expensive equipments or
massive calibrations. They are not applicable when only a single perspective image is
available. Lalonde et al (2009) propose to estimate the outdoor illumination from single
perspective image. They use multiple cues from the input image: the sky pixels, the
shading information and the casted shadows. They also report that no single cue could
provide robust estimation while the combination of all three cues make the estimation
reliable. However, not all those three cues are always available in the input image.

Unlike the existing methods, the proposed method need a single perspective image
and a sky portion captured for the reflectance estimation. The basic idea is to recover the
whole illumination from the sky portion captured in the perspective image. Specifically,
we first estimate the atmospheric turbidity from input image, then calculate the spectral
radiance of the sun and the skylight from estimated turbidity.

This chapter proposes a practical method to estimate the reflectance parameters
of an outdoor diffuse object from a single perspective image. Assuming the partial
sky is captured in the input image, we first estimate the turbidity, then the spectral
radiance of the sun and sky light is calculated based on the sky model (Preetham et al,
1999). The inter-reflection exists for concave objects. By dividing the object surface
into hundreds of small facets, the inter-reflection effect on one facet is calculated as the
sum of incoming light energy from all the other facets. Experimental results show the
accuracy of the proposed method.

5.1.1 Related Work

In the late 1990s, several modeling methods with range sensors were proposed (Pulli
et al, 1997; Neugebauer and Klein, 1999; Lensch et al, 2000; Wang et al, 2001; Bernardini
et al, 2001). However, those methods created surface textures by simply blending
images taken from multiple views. Meanwhile, physics-based reflectance estimation
methods (Dana et al, 1999; Sato et al, 1997; Lin and Lee, 1999; Machida et al, 2003), image-
based rendering techniques (Sato et al, 2003a; Winnemoller et al, 2005), and techniques
to measure the BRDF (Bidirectional Reflectance Distribution Function) (Ward, 1992;
Dana, 2001) have been studied to create a more physically correct object appearance
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compared with those created in the early 1990s. Those methods have achieved highly
accurate re-renderings, yet they were designed for an indoor environment where one
can easily control lighting conditions.

Demands for extracting surface properties under outdoor circumstances are in-
creasing (Ikeuchi et al, 2007), and several methods that can handle outdoor images
have been proposed. A few use images of monitoring cameras placed outdoors. Weiss
(2001) derived intrinsic images, which are images representing surface albedo, by as-
suming that the sudden change caused by reflectance remains constant in the image
sequence, while that caused by illumination varies depending on the time. There-
fore, by taking the median of derivative filter outputs of input images, the reflectance
image can be estimated. Matsushita et al. extended the idea so that it can handle non-
Lambertian surfaces, and proposed an illumination normalization scheme utilizing the
illumination eigen space and a shadow interpolation method based on shadow hulls
(Matsushita et al, 2004).

For directly calculating surface reflectance properties, one would need (1) the shape
of a target object, (2) the actual appearance of the object, and (3) illumination environ-
ment. Shape information and actual appearance can be obtained by range and image
sensors, respectively.

The illumination environment can be acquired in several ways. Yu et al. took
photographs of the sun and sky to measure their radiance distribution (Yu and Malik,
1998). As they used a normal camera, they included landmarks in each photograph so
that they could use them to recover the camera pose later. The position of the sun was
calculated by the time and date, and the sky radiance was fitted to the CIE (International
Commission on Illumination) standard model to extrapolate the missing portion of the
sky. They first recovered diffuse reflectance from measured sky irradiance and from
appearance, and then they acquired specular properties by fitting multiple photographs
to the Lafortune model. Debevec et al. used a specific apparatus to measure the outside
illumination (Debevec et al, 2004). They used a mirrored sphere to image the sky and
clouds, a shiny black sphere to indicate the position of the sun, and a diffuse gray sphere
to indirectly measure the intensity of the sun. They decided the reflectance parameters
of the previously obtained BRDF (Bidirectional Reflectance Distribution Function) by
an iterative calculation using the object’s photographs from multiple views. Both of
these two methods recovered the reflectance parameters of outdoor objects, however,
they required multiple measurements and optical calibration.

Methods to acquire a near light source environment have also been proposed.
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Sato et al (1999a) used omni-directional stereo to recover illumination with geometric
information. Takai et al (2004) took an image of a pair of diffuse spheres, and used the
difference between them to first estimate point light sources and then the remaining
lighting environment. The two methods successfully superimposed virtual objects into
room scenes as well as exterior scenes by recovering illumination of the scenes.
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Figure 5.1: Spectral radiance of the out of atmosphere sunlight and attenuation func-
tions for ozone, water vapor and gas absorption.

5.2 Outdoor Illumination Estimation
The illumination condition is necessary to estimate the surface reflectance of out-

door object. One possible way of acquiring the outdoor illumination is to directly
measure it. However, the measurement needs expensive equipments or complicated
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calibrations. This makes the direct measurement of outdoor illumination inapplicable
for our case, because we only have single perspective image as the input.

To solve this problem, we propose to estimate the outdoor illumination from the
atmospheric turbidity. Specifically, supposing a portion of the sky is captured in the
image, we first estimate the turbidity by matching the brightness distribution, then the
spectral radiance of the sun and the sky is recovered by using the sky model (Preetham
et al, 1999).

The outdoor illumination contains two parts: the sun and the sky. The spectral
radiance of the sunlight and the sky is calculated from the turbidity and extracted
sun direction. The atmospheric turbidity is estimated by matching the brightness
distribution of input image to a sky model. The sun direction is calculated from the site
geo-location(longitude and latitude) and the time stamp, see more details in Appendix
A.

The sunlight attenuates before reaching the horizon according to various atmo-
spheric constituents: Rayleigh scattering, aerosol, ozone absorption, gas absorption
and water vapor absorption. With known spectral radiance of the out of atmosphere
sunlight, the spectral radiance of the sunlight at horizon is calculated as the multipli-
cation of the out of atmosphere radiance and the attenuations (Iqbal, 1983):

L(λ, θs, ϕs) = Lout−o f−atmosphere · Ar,λ(θs) · Aa,λ(T, θs) · Ao,λ(θs, ko) · Ag,λ(θs, kg) · Awa,λ(θs, kwa),
(5.1)

where the coefficient A is the attenuation of different constituents, θs is the elevation
angle of the sun, T is the turbidity value, ko, kg and kwa are the absorption coefficients
for the ozone, gas and water vapor, respectively. The attenuation coefficients are given
by:

Ar,λ = e−0.008735λ−4.08m
,

Aa,λ = e−βλ
−αm
,

Ao,λ = e−ko,λlm,

Ag,λ = e−1.41kg,λm/(1+118.93kg,λm)0.45
,

Awa,λ = e−0.2385kwa,λωm/(1+20.07kwa,λωm)0.45
, (5.2)

and the relative optical mass m is given by the following approximation:

m =
1

cosθs + 0.15 · (93.885 − θs)−1.253 , (5.3)

where β is the turbidity coefficient, α is the wavelength exponent, ko,λ, Kg,λ and kwa,λ

stand for the attenuation coefficients of the ozone absorption, the mixed gas absorption
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and the water vapor absorption, l is the amount of ozone in cm at NTP, ω is the
precipitable water vapor in cm and λ is the wavelength in µm. The coefficient β varies
with the turbidity value T and is approximately given by 0.04608T−0.04586. The value
of 1.3 for α, 0.35 for l and 2 for ω is used in the paper.

We have plotted the spectral radiance of out of atmosphere sunlight and the atten-
uation coefficients ko,λ, Kg,λ and kwa,λ, the results are shown in Fig. 5.1.

The spectral radiance is also calculated from the atmospheric turbidity. Specifi-
cally, we first calculate the xy chromaticity from the estimated turbidity, then calculate
the spectral radiance using known basis functions of daylights. See more details for
calculating the spectral radiance of sky in Section 3.2.

5.3 Radiance and Irradiance Value of Object Surface

Figure 5.2: Calculation of radiance and irradiance value

In general, when assuming the object surface is Lambertian and there is no inter-
reflection, the reflectance of an object can be derived from the bidirectional reflectance
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distribution function f = L
E , where L and E are the radiance and irradiance values of

object surface, respectively.
Consider a facet located at the center of the sphere (as shown in Fig. 5.2), then the

solid angle dω can be derived from the elevation θ and azimuth ϕ:

dω = sinθdθdϕ (5.4)

The energy received by the facet A from a particular direction, surrounded by an
infinitesimal solid angle dω, is described as:

L(λ, θ, ϕ) cosθ sinθdθdϕ (5.5)

where L(λ, θ, ϕ) is the incident radiance distribution of illumination.
The irradiance value of the facet A can be expressed as the integral of incident

energy over the hemisphere whose north pole is at the surface normal direction:

EA =

∫ π

−π

∫ π
2

0
L(λ, θ, ϕ) cosθ sinθdθdϕ (5.6)

In this chapter, we assume that the object surface is Lambertian surface, and there-
fore the reflected light is isotropic. Then, the radiance value of the facet A is expressed
as the multiplication of irradiance value E and reflectance SA:

IA =

∫ π

−π

∫ π
2

0
SAL(λ, θ, ϕ) cosθ sinθdθdϕ (5.7)

5.4 Reflectance Estimation with the Presence of Inter-

reflection
The inter-reflection effect especially for the concave object is not negligible. In

order to acquire the accurate reflectance properties for 3D object, we addressed an
inter-reflection model to calculate the inter-reflection effect. An assumption is made
that the object surface consists of hundreds of small facets as shown in Fig. 5.3. The
inter-reflection effect on each facet is calculated as the sum of incoming light energy
from all the other facets.

When the surface of a concave object is illuminated, its facets receive light from both
light source and other facets, as shown in Fig. 5.4. In Fig. 5.4, the small facet x receives
light from both light source and another facet x′ on the surface. Therefore, the radiance
value at each surface facet has two components, one directly resulting from the light
source and the second due to illumination by other facets. The latter component is also
called as inter-reflection effect.
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Figure 5.3: Modeling the surface as a collection of facets, each with its own radiance
and reflectance values (Nayar et al, 1991).

Figure 5.4: A concave surface in three-dimensional space (Nayar et al, 1991).
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Radiance due to other facets The inter-reflection effect between two facets i and j is
strongly affected by whether these two facets can see each other or not. Two facets i
and j which are visible to each other is shown in Fig. 5.5. The visibility V between two
facets i and j is determined by the following function:

Vi j =
n · (−r) + |n · (−r)|

2|n · (−r)| · n′ · r + |n′ · r|
2|n′ · r| ·Occ (5.8)

where n and n′ are unit surface normals of the ith and jth facets, r is the vector from jth
to ith facet, and Occ is the coefficient for occlusion between these two facets. If the ith
and jth facets are occluded by another facet, these two facets can not see each other.

di

dj

di

dj

Figure 5.5: Two surface elements that are visible to one another.

The occlusion coefficient is important to calculate the visibility function. A typical
situation when occlusion happens is shown in Fig. 5.6. In Fig. 5.6, the ith facet lies
on the horizontal top plane, while the jth facet lies on the vertical plane. Since there
is another horizontal plane between them, they cannot see each other and there is no
inter-reflection effect between ith and jth facets. The occlusion coefficient is calculated
as follows: for the vector between the ith and jth facets, we detect whether this vector
intersects with another facet or not. If the vector intersects with at least one of the other
facets, the occlusion coefficient is equal to zero. If not, there is no occlusion between
the ith and jth facets and the occlusion coefficient is set to one.

The visibility function Vi j in Eq. (5.8) can only have two values, 1 or 0. If it is equal
to 1, the ith and jth facets see each other and the inter-reflection between these two
facets will be calculated. If not, no inter-reflection exists between the facets.
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Let Ei j be the irradiance value of ith facet due to the radiance value of the jth facet
L j. Ei j can be derived from the definitions of radiance and irradiance and geometry
shown in Fig. 5.5:

Ei j = [
[n · (−r)][n′ · r]Vi j

[r · r]2 ]L jSi (5.9)

where Si is the area of the ith facet, Vi j is the visibility function between the ith and jth
facets, and L j is the radiance value of the jth facet.

The radiance value Li j of the ith facet can be determined from its irradiance value
Ei j as:

Li j =
ρi

π
Ei j (5.10)

where ρi is the reflectance of the ith facet. The reflectance is assumed to be invariable
among a facet, since a facet size is sufficiently small. The factor ρi

π is the bi-directional
reflectance distribution function for a Lambertian surface. From Eq. (5.9) and (5.10),
we obtain

Li j =
ρi

π
Ki jL j (5.11)

where

Ki j = [
[n · (−r)][n′ · r]Vi j

[r · r]2 ]Si (5.12)

Ki j is a coefficient determined by the positions and orientations of the ith and jth facet.
From Eq. (5.11), we obtain the radiance value Li j of ith facet due to the radiance

value of jth facet, and as described before, this radiance value is the second component
of the total radiance value for a small facet lies on the surface of a concave object.

Radiance due to a light source The radiance value of the ith facet directly due to a
single point light source (excluding inter-reflection effect) can be expressed by using
the irradiance value:

Lsi =
ρi

π
Esi (5.13)

where Esi is the irradiance value of the ith facet directly due to a light source. The
irradiance value can be calculated from Eq. (5.6).

Total radiance The total radiance value of the ith facet Li can be expressed as a sum
of the radiance due to a light source Lsi and all the other facets on the surface:

Li = Lsi +
ρi

π

m∑
j=1

L jKi j (5.14)
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Figure 5.6: Occlusion between two facets: the ith and jth facets are occluded by the
middle horizontal plane

where m is the number of facets on the object surface. When j equals to i, the Ki j

coefficient between the ith and jth facets becomes zero, according to Eq. (5.12).
The inter-reflection equation for a concave surface can be written as follows using a

vector notation. Let us define the facet radiance vector as L = [L1,L2, ..., Lm]T, the source
contribution vector as Ls = [Ls1,Ls2, ..., Lsm]T, and the reflectance matrix P and the Ki j

coefficient matrix K as:

P =
1
π



ρ1 0 · · · 0
0 ρ2 · · · 0
· · · · · · · · · · · ·
· · · · · · · · · · · ·
0 0 · · · ρm


(5.15)
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K =



0 k12 · · · · · · · · ·
k21 0 · · · · · · · · ·
· · · · · · 0 · · · · · ·
· · · · · · · · · 0 · · ·
· · · · · · · · · · · · 0


(5.16)

Now, the Eq. (5.14) can be written as:

L = Ls + PKL (5.17)

The reflectance matrix P can be derived from Eq. (5.17) as:

P = (L − Ls)L−1K−1 (5.18)

The parameters of matrix P are the reflectance of each facet, and can be obtained as:

ρi = πLi(Esi + L1Ki1 + L2Ki2 + ... + LmKim)−1 (5.19)

where ρi is the reflectance of the ith facet, Li is the radiance value of the ith facet, Esi is
the irradiance value due to the light source, and Ki j is a coefficient between the ith and
jth facets.

The irradiance value is calculated from Eq. (5.6) with known spectral radiance of
the sun and sky. The radiance value is obtained from the input image. The K coefficient
is determined only by the geometry of two facets on the object surface, and can be
derived from the object shape. From Eq. (5.19), we acquire the reflectance of each facet
on the object surface with the presence of inter-reflection.

5.5 Experiment
In this section, we first evaluate the outdoor illumination estimated from single

perspective image. The simulated sky appearance is compared with the captured
image for the accuracy verification. Then we show the estimated surface reflectance
with the presence of inter-reflection based on the recovered illumination from estimated
turbidity value. The experimental results show the accuracy achieved by the proposed
method.
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5.5.1 Evaluation of Outdoor Illumination Estimation

Since we use single perspective image for reflectance estimation,only partial sky is
available, we first evaluated whether the partial sky could provide enough information
for the outdoor illumination estimation. Specifically, we first estimate the turbidity
from part of the input image and extract the sun direction, then the spectral radiance
of the sun and the sky is calculated, after acquiring the spectral radiance we simulate
the sky appearance by using the following equation:

Ic =

∫
Ω

L(λ)Qc(λ)dλ, (5.20)

where Ic is the image intensity for RGB color channels, L is the spectral radiance and Qc

is the spectral sensitivity.
The result is shown in Fig. 5.7. Fig. 5.7 (a) is the captured image by Ladybug2,

the red rectangle of (b) shows the partial sky used for turbidity estimation, (c) is the
simulated sky appearance. The simulated result is very similar to the input image. The
circumsolar region in Fig. 5.7 is saturated and useless. However, the sunlight plays an
important role for estimating the surface reflectance. In order to solve this problem, we
use the high dynamic range(HDR) image.

The captured and simulated HDR images are shown in Fig. 5.8. In order to make
comparison, we captured the HDR image by using Ladybug2 camera. Multiple omni-
directional images are captured with different exposures to make the HDR image. The
simulated HDR image is also acquired by using Eq. (5.20). We evaluated the accuracy
of estimated outdoor illumination: the intensity distribution of circumsolar region,
the intensity and chromaticity distribution of sky portion. The sample points for the
intensity evaluation of circumsolar region lie in the red line which goes through the
sun position, as shown in Fig. 5.9. There are about 500 sample points. The numerical
evaluation is shown in Fig. 5.11, only the intensity distribution of red channel is shown
here. The intensity distributions of green and blue channels are the same, because the
circumsolar region is white and the white color has same RGB values. For the intensity
and chromaticity evaluations of sky portion, we sample 19 points which uniformly
distributed on the sky, as shown in Fig. 5.10. The result is shown in Fig. 5.12. The
evaluation results prove that the proposed method achieve high accuracy.
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(a) Input image.

(b) The partial sky used for outdoor illumination estimation.

(c) Simulated sky appearance.

Figure 5.7: Input image and simulated sky appearance.
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(a) Captured HDR image by Ladybug2.

(b) Simulate HDR image of Ladybug2.

Figure 5.8: Captured and simulated HDR image of Ladybug2 camera. The simulated
image is calculated from the turbidity. Specifically, we first estimate the turbidity from
captured image then calculate the spectral radiance of the sun and sky from estimated
turbidity value. The image RGB values are calculated from Eq. (5.20).
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(a) Sample points around the sun area of captured image.

(b) Sample points around the sun area of simulated image.

Figure 5.9: Sample points around the sun area of captured and simulated HDR image.
We sampled about 500 points and they lie in the red line. The red line goes through
the extracted sun position.The sample points are used for the intensity distribution
evaluation of circumsolar region.
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(a) Sample points in the sky area of captured image.

(b) Sample points in the sky area of simulated image.

Figure 5.10: Sample points in the sky area of captured and simulated HDR image. We
sample 19 points, the sampled points are uniformly distribution on the upper hemi-
sphere. These sample points are used for the intensity and chromaticity distribution
evaluation of the sky portion.
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(a) Captured image. (b) Simulated image.

Figure 5.11: Intensity of circumsolar region of captured and simulated HDR image(red
channel).
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(a) Sky intensity of red channel. (b) Sky intensity of green channel.
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(c) Sky intensity of blue channel. (d) Sky chromaticity of red channel.
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(e) Sky chromaticity of green channel. (f) Sky chromaticity of blue channel.

Figure 5.12: Sky intensity and chromaticity of RGB color channels from captured and
simulated HDR image.
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(a) Captured image 1. (b) Captured image 2.

(c) Captured image 3. (d) Captured image 4.

(e) Captured image 5. (f) Captured image 6.

Figure 5.13: Captured perspective images from different view directions by Canon 5D
Mark II: (a), (b), (c), (d) and (e) are captured with clear skies, (f) is captured with cloudy
sky. These captured images are used for recovering the camera parameters, we only
need single one of these images to estimate the surface reflectance. In order to make the
limitation of the proposed method clear, we also captured images with cloudy skies.
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Figure 5.14: The range sensor Cyrax 2500 used to acquire the shape information.

Figure 5.15: Acquired shape information of clock tower by Cyrax 2500.
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5.5.2 Measurement of the Scene Radiance

We used the Canon 5D Mark II camera to capture the scene radiance. Multiple
images are captured as shown in Fig. 5.13, although we only need one single image
to estimate the surface reflectance. This is because we need to estimate the camera
parameters, and the camera parameters are recovered from these images by using
structure from motion(SfM). We captured about 80 images in total, Fig. 5.13 shows
partial of the captured images. The images with clear skies and cloudy skies are
captured. We use the cloudy sky image to show the limitation of the proposed method.

5.5.3 Measurement of the Object’s Shape

The object shape information is acquired by the range sensor Cyrax 2500. This range
sensor has a maximum 40◦ × 40◦ field-of-view. With a single-point range accuracy of
+/- 4mm, angular accuracies of +/- 60 micro-raians, and a beam spot size of only 6mm
from 0-50m range, the Cyrax sensor delivers survey-grade accuracy while providing a
versatile platform for data capture. Fig. 5.14 shows the range sensor Cyrax 2500. The
acquired shape of clock tower is shown in Fig. 5.15. From the shape, we can get the
surface normal and 3D coordinates of each facet on the object surface to calculate the
inter-reflection effect.

5.5.4 Surface Reflectance Estimation

The surface radiance value, the surface irradiance value and object shape are re-
quired to estimate the surface reflectance. The surface radiance is acquired from the
input perspective image. The surface irradiance value directly due to the light source
can be calculated from Eq. (5.6). In this experiment, we used Radiance software to do
the irradiance calculation. Specifically, first we set the reflectance of each facet to be 1.0
for all the RGB channels, then render the object by image based lighting method. The
object shape is measured by the range sensor Cyrax 2500. After acquiring these three
parameters, the surface reflectance is calculated from Eq. (5.19).

In the experiment, we first show how well the occlusion problem is solved and
then estimate the surface reflectance from input perspective images. We also show the
limitation of the proposed method by using the image with cloudy sky.
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(a) K coefficient. (b) K coefficient.

Figure 5.16: (a) shows the K coefficient calculation with occlusion and (b) shows the K
coefficient calculation without occlusion. For a point lies in the blue circle, the inter-
reflection effect is calculated from all the red points. In Fig (a), some occluded points
are included in the calculation because of the wrong K coefficient. Fig(b) proves we
solve this problem.
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As shown in Fig. 5.6, even though the visibility function without occlusion coeffi-
cient between these two facets is equal to 1, these two facets actually can not see each
other because of the occlusion. Fig. 5.16 shows this kind of situation.

(a) From Ladybug2 camera. (b) From Canon 5D Mark II camera.

Figure 5.17: Estimated surface reflectance from the input perspective image and cap-
tured Ladybug2 image. The clock tower in these two images are different because of
different camera view directions.

When estimating the reflectance of the small facet lies in the blue circle, the Ki j

coefficient is calculated between this facet and all the other red facets shown in Fig.5.16
(a). Apparently, there are too many red facets that this facet actually can not see. But
the Ki j coefficient was included in the sum as inter-reflection effect because of the occlu-
sion between them. Without occlusion coefficient, the calculated inter-reflection effect
would be too large, the estimated reflectance would be too small. We solve this oc-
clusion problem by applying the occlusion coefficient to visibility function calculation.
Specifically, we detect whether the vector between the ith and jth facets intersects with
all the other facets or not. If the vector intersects with at least one of the other facets,
then the occlusion coefficient is equal to 0, so is the Ki j coefficient. If not, the visibility
function is equal to 1, and the Ki j coefficient can be calculated from Eq. (5.12).

Fig.5.16 (b) shows the situation when dealing with the occlusion problem by the
method described before. The red facets have the same meaning as Fig.5.16 (a). For the
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same facet, the number of red facets in Fig.5.16 (b) is only around one third of Fig.5.16
(a). Two thirds of red facets in Fig.5.16 (a) are occluded, and should not be seen by
the facet lies in the blue circle. With the occlusion coefficient, the estimated reflectance
becomes much more accurate.

(a) Captured image. (b) Without inter-reflection. (c) With inter-reflection.

Figure 5.18: Simulated object appearance by estimated surface reflectance: (a) is the
captured image, (b) shows the result without inter-reflection and (c) shows the result
with inter-reflection.

We then evaluated the proposed method with perspective images with clear skies.
The input image is shown in Fig. 5.13 (a). In order to verify the accuracy, we also
captured the whole illumination condition by Ladybug2 camera. The captured image
is shown in Fig. 5.8 (a). The result is shown in Fig. 5.17. The clock tower captured
in Fig. 5.17 (a) and (b) are different, because the camera view directions are different.
However, the estimated reflectance is similar to each other.

Another experiment result is shown in Fig. 5.18. Fig. 5.18 (a) is the captured image of
clock tower, (b) is the result simulated by the previous method which does not take the
inter-reflection effect into account, (c) is the result simulated by our proposed method.
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(a) Without inter-reflection. (b) With inter-reflection.

Figure 5.19: The difference between the captured image and simulated result. (a) shows
the difference between the captured image and simulated appearance without inter-
reflection while (b) shows the difference between the captured image and simulated
appearance with inter-reflection. We use a red rectangle to highlight the part with
strong inter-reflection.
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From Eq. (5.6) and (5.7), if we divide the radiance value by the irradiance value of each
facet, we can estimate the reflectance, however this does not handle the inter-reflection
effect. Okura et al (2008) used this method to estimate the reflectance of an outdoor
diffuse object. Fig. 5.18 (b) was rendered by this way, there is no inter-reflection effect
calculated for each facet on the object surface. Fig. 5.18 (c) shows the synthesized image
simulated with estimated reflectance, which are obtained by the proposed method.

Fig. 5.19 (a) and (b) show the difference between the captured image of clock tower
(Fig. 5.18 (a)) and simulated result without inter-reflection effect (Fig. 5.18 (b)) and with
inter-reflection effect (Fig. 5.18 (c)), respectively. From the comparison between Fig. 5.19
(a) and (b), for most concave parts of clock tower, if handling the inter-reflection effect,
the re-rendered image looks much more realistic. The difference between the simulated
result with inter-reflection effect and captured image of clock tower, especially for the
concave parts, is less than three percent. But for simulated result without inter-reflection
effect, the difference is bigger than sixty percent.

(a) Zoom in of the result without inter-reflection.

(b) Zoom in of the result with inter-reflection.

Figure 5.20: (a) shows the difference of zoomed in part between the captured image
and simulated appearance without inter-reflection, (b) shows the difference of zoomed
in part between the captured image and simulated appearance with inter-reflection.

In order to make it clear, we zoom in the red rectangle part in Fig. 5.19 (a) and
(b). The amplified result is shown in Fig. 5.20 (a) and (b). In these Figures, the RGB
values of the pixel (brightness) represents the error. If the error is larger, the pixel
will be brighter. Obviously, the result estimated by the proposed method (as shown
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(a) Cloudy image. (b) Simulated image.

Figure 5.21: Simulated object appearance from image with cloudy sky.

in Fig. 5.20 (b)) has much smaller errors. We took four pixels (the red, green, blue and
yellow pixel as shown in Fig. 5.20 (a) and (b)) as examples, the difference for these four
pixels between the captured image and simulated result without inter-reflection effect
and with inter-reflection effect are shown in Table 5.1. Except the yellow pixel, the other
three pixels of our proposed method have much smaller errors. The error for yellow
pixel is larger compared to error of other pixels, because actually it is occluded by the
tree which lies in front of the clock tower. The geometrical and optical information of
this yellow pixel does not match. For the blue pixel which has strong inter-reflection
effect, the error of Okura et al.’s method which does not take the inter-reflection into
account is almost 10 times bigger than the error of the proposed method. This proves
the efficiency of proposed method.

We applied the proposed method to captured image with cloudy sky to show the
limitation. The result is shown in Fig. 5.21. Fig. 5.21 (a) shows the captured image
and (b) shows the simulated object appearance. As shown in Fig. 5.13 (f), the input
image is captured under cloudy sky. The color of simulated appearance from estimated
surface reflectance is different from the input image. When the sky is covered by thick
cloud, the estimated turbidity is deviated from the ground truth, because we use the
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sky model for turbidity estimation and the sky model can not handle the cloud. The
estimated outdoor illumination from turbidity is also deviated. The proposed method
fails when the sky is covered by cloud.

Table 5.1: Difference of zoomed-in part of the method of Okura et al (2008) which dose
not take the inter-reflection effect into account and the proposed method which takes
the inter-reflection effect into account.

Pixels Okura et al.’s method The proposed method

Red pixel 0.041 0.011
Green pixel 0.067 0.009
Blue pixel 0.105 0.010

Yellow pixel 0.048 0.021

5.6 Summary
This chapter explains the proposed method to estimate the surface reflectance prop-

erties of outdoor diffuse object from single perspective image. The perspective image
can not provide enough information, because only partial illumination environment is
captured. In order to solve this problem, we use the atmospheric turbidity. Specifically,
we first estimate the turbidity from the input perspective image, then recover the whole
outdoor illumination from the estimated turbidity value. After acquiring the illumi-
nation, the surface reflectance is calculated. In the experiment, we first evaluate the
accuracy of recovered outdoor illumination. The intensity distributions of circumsolar
region and the intensity and chromaticity distributions of sky region from the captured
and simulated HDR images are compared. The shape information is acquired by using
the range sensor Cyrax 2500, the surface radiance is obtained from the input image
and the surface irradiance values is calculated from the recovered illumination. The
experiment results show the accuracy of the proposed method.
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Chapter 6

Conclusions

6.1 Summary
This dissertation proposes a novel method for estimating the atmospheric turbidity

and provides three applications of the estimated turbidity. The atmospheric turbidity
is estimated by matching the brightness distribution of captured image to a sky model.
After acquiring the turbidity, we can estimate the spectral sensitivity and white-balance
parameters of digital cameras, we can calculate the aerial perspective effect for realisti-
cally rendering the virtual object and we can estimate the surface reflectance of outdoor
diffuse object from a single perspective image.

6.1.1 Atmospheric Turbidity Estimation

The atmospheric turbidity describes the optical thickness of the haze atmosphere as
opposed to the atmosphere of molecules alone. It is widely used in computer graphics
and vision community. A novel method for estimating the turbidity is proposed and
various evaluations on the turbidity are performed. The atmospheric turbidity is esti-
mated by matching the brightness distributions between the captured image and a sky
model. The proposed method for estimating the turbidity handles the situation of the
same scene captured by different cameras or with different white-balance settings. The
assumption (image intensity is proportional to the sky luminance) used for turbidity
estimation and the robustness to noises are evaluated. The evaluations of whether the
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captured images of the same scene by different cameras or with different white-balance
settings and the accuracy of the sky model are also provided.

6.1.2 Spectral Sensitivity and White Balance Estimation from Sky

Images

Spectral sensitivity is often required in physics-based computer vision. However,
less attention has been paid for estimating the spectral sensitivity. Motivated by this lack
of attention, we introduce a method for estimating the spectral sensitivity and white-
balance parameters jointly from images. The basic idea is to use the sky images which
infer the cues for sky spectral radiance. The sky chromaticity values are calculated
from the estimated turbidity, then the spectral radiance of the sky is calculated from
the chromaticity values by using the basis functions of the outdoor illumination. After
acquiring the pairs of image RGB values and corresponding spectral radiance, the
spectral sensitivity is calculated by using basis functions. The basis functions are
extracted from the database which consists of collected spectral sensitivities, it makes
the estimation accurate and robust.

6.1.3 Virtual Object Rendering With Aerial Perspective Effect

Virtual object rendering is widely used in many fields, such as the architecture, the
academy, the medical industry, the entertainment and the heritage preservation. The
aerial perspective plays an import role for making the rendered object appear realistic,
especially when the object is distant from the camera. The aerial perspective effect is
caused by the scattering of the particles suspended in the atmosphere. The spectral
radiance of the sun and the sky is calculated from the estimated turbidity, and the aerial
perspective is calculated as the summation of in-scattered and out-scattered spectral
radiance of the sun and the sky light along the view direction. Experiment results show
the accuracy achieved by the turbidity-based aerial perspective calculation.

6.1.4 Reflectance Estimation from a Single Perspective Image

The surface reflectance property is an essential factor for creating the realistic three-
dimensional models. A novel method for estimating the surface reflectance of outdoor
diffuse object from a single perspective image is proposed. The perspective image does
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not provide enough information of illumination because only partial sky is captured.
In order to solve this problem, we propose to recover the whole illumination condition
from the atmospheric turbidity. After acquiring the turbidity, the spectral radiance of
the sun and the sky is calculated. The inter-reflection and occlusion problems are also
solved. In the experiment, we evaluate the recovered illumination environment and
provide the estimated reflectance under various conditions.

6.2 Contribution
In this dissertation, we propose a novel method for estimating the atmospheric

turbidity by matching the brightness distribution between the captured image and a
sky model. We also provide three applications of estimated turbidity, the estimation of
spectral sensitivity and white-balance settings, the virtual object rendering technique
which takes the aerial perspective into account and the reflectance estimation of outdoor
diffuse object from a single perspective image. The main contributions are summarized
as follows:

Atmospheric turbidity estimation The main contribution of the turbidity estimation
is the proposed method estimates the correct turbidity value from captured images of
the same scene by different cameras or with different white-balance parameters. The
RGB values of captured images by different cameras or with different white-balance
settings are different according to different characteristics of spectral sensitivities, but
the intensity (summation of R, G and B color channels) remains the same. Assuming
the image intensity is proportional to the sky luminance, we acquire the correct value
for the turbidity under the above situations.

Spectral sensitivity estimation The main contribution of the spectral sensitivity es-
timation is the utilization of sky images. By using sky images, we do not need the
expensive equipment which measures the spectral radiance as the previous methods
do (Hubel et al, 1994; Sharma and Trussell, 1993; Finlayson et al, 1998; Barnard and
Funt, 2002; Ebner, 2007; Thomson and Westland, 2001), because the spectral radiance
is calculated from the atmospheric turbidity. Other contributions are: (1) the basis
functions which extracted from spectral sensitivity database, (2) a publicly available
spectral sensitivity database and (3) spectral sensitivity-based color correction between
different cameras.
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Virtual object rendering The main contribution of the virtual object rendering is the
turbidity-based aerial perspective calculation. The previous methods do not take the
atmospheric turbidity into account (Klassen, 1987; Kaneda et al, 1991; Ward, 1994; Ebert
et al, 1998). The aerial perspective is caused by the scattering of particles suspended
in the atmosphere. The scattering coefficients of particles are determined by the tur-
bidity. The atmospheric turbidity greatly improves the accuracy of calculated aerial
perspective effect.

Reflectance estimation The main contribution of the reflectance estimation of outdoor
diffuse object is we only need a single perspective image as input. The perspective
image does not provide enough information for reflectance estimation, because only
partial sky is captured. We propose to recover the whole illumination environment
from the estimated turbidity. The proposed method works well as long as partial clear
sky is captured. Compared to those methods which need expensive equipment or
massive calibrations, the proposed method is much more convenient.

6.3 Future Work
The proposed method for estimating the atmospheric turbidity and the three ap-

plications: the spectral sensitivity estimation, the virtual object rendering and the
reflectance estimation made significant progress. However, there are still some issues
remained.

Cloudy sky model The atmospheric turbidity is estimated by matching the brightness
distribution of captured sky image to a sky model (Preetham et al, 1999). Currently,
the sky model can not handle the clouds. This does not affect the turbidity estimation,
because we have proved only partial clear sky provide enough information. However,
this do affect the reflectance estimation, because the recovered illumination environ-
ment is inaccurate when clouds present in the sky. Therefore, the future work is to
introduce a sky model which can handle the clouds.

Efficient virtual object rendering The virtual object rendering technique which takes
the aerial perspective effect into account has achieved high accuracy. However, the
virtual object rendering is compute-intensive task and can not be applied for videos,
because for each pixel of the rendered image, the aerial perspective effect based on the
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light scattering (complicated integrals) is calculated. Therefore, the future work is to
make the virtual object rendering be applied at real-time.
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Appendix A

Sun Position from Perspective Image

For completeness, we include all the formulas derived in (Preetham et al, 1999).
The sun direction denoted by the zenith (θs) and azimuth angle (ϕs) can be computed
from the following equations:

θs =
π
2
− arcsin(sin l sin δ − cos l cos δ cos

πt
12

), (A.1)

ϕs = arctan(
− cos δ sin πt

12

cos l sin δ − sin l cos δ cos πt
12

), (A.2)

where l is the site latitude in radians, δ is the solar declination in radians, and t is the
solar time in decimal hours. δ and t are calculated as follows:

δ = 0.4093 sin(
2π(J − 81)

368
), (A.3)

t = ts + 0.170 sin(
4π(J − 80)

373
) − 0.129 sin(

2π(J − 8)
355

) +
12(SM − L)

π
, (A.4)

where J is Julian date, the day of the year as an integer in the range from 1 to 365. ts

is the standard time in decimal hours. J and ts are derived from the time stamp in
the image. SM is the standard meridian for the time zone in radians, and L is the site
longitude in radians. The longitude l, latitude L and the standard meridian SM can be
either given from the reference object’s location, or from the GPS information in the
image.
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Appendix B

Calculating the Sky Luminance from
Turbidity (Preetham et al, 1999)

The sky luminance is calculated by using Eq. (2.1), F (θ, γ) is Perez et al.’s sky
radiance distribution function (Perez et al, 1993), and it is described as:

F (θ, γ) = (1 + AeB/ cosθ)(1 + CeDγ + E cos2 γ), (B.1)

where A,B,C,D, and E are the five distribution coefficients, and θ and γ are shown in
Fig. 2.2. The coefficients are linearly related to turbidity T according to Preetham et al
(1999): 

AY

BY

CY

DY

EY


=



0.1787 −1.4630
−0.3554 0.4275
−0.0227 5.3251
0.1206 −2.5771
−0.0670 0.3703


 T

1

 .
The ratio of sky luminance between one view direction and the reference direction

in Eq. 2.2 is calculated as:

Y(T)
Yre f (T)

=
F (θ, γ)
F (θre f , γre f )

=
(1 + AeB/ cosθ)(1 + CeDγ + E cos2 γ)

(1 + AeB/ cosθre f )(1 + CeDγre f + E cos2 γre f )
. (B.2)
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Appendix C

Calculating the Sky Chromaticity from
Turbidity (Preetham et al, 1999)

The correlation between the five distribution coefficients for the sky chromaticity
values (x and y) and the turbidity T are as follows:

Ax

Bx

Cx

Dx

Ex


=



−0.0193 −0.2592
−0.0665 0.0008
−0.0004 0.2125
−0.0641 −0.8989
−0.0033 0.0452


 T

1

 ,


Ay

By

Cy

Dy

Ey


=



−0.0167 −0.2608
−0.095 0.0092
−0.0079 0.2102
−0.0441 −1.6537
−0.0109 0.0529


 T

1

 .
The zenith chromaticity xz and yz can also be determined by turbidity T as:

xz =
[

T2 T 1
] 

0.0017 −0.0037 0.0021 0.000
−0.0290 0.0638 −0.0320 0.0039
0.1169 −0.2120 0.0605 0.2589



θ3

s

θ2
s

θs

1


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yz =
[

T2 T 1
] 

0.0028 −0.0061 0.0032 0.000
−0.0421 0.0897 −0.0415 0.0052
0.1535 −0.2676 0.0667 0.2669



θ3

s

θ2
s

θs

1

 ,
where θs is the sun direction. Thus, sky chromaticity x and y can be calculated only
from the turbidity and the sun direction using Eq. (3.3). T usually ranges from 2.0 to
30.0.

The parameters M1 and M2 to determine spectra from the CIE chromaticity x and y
can be calculated as follows:

M1 =
−1.3515 − 1.7703x + 5.9114y
0.0241 + 0.2562x − 0.7341y

, (C.1)

M2 =
0.0300 − 31.4424x + 30.0717y

0.0241 + 0.2562x − 0.7341y
. (C.2)
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