
Introduction

Several facts generally indicate that seagrasses provide

to overall functioning of coastal zone systems (Hemminga

and Duarte 2000). They are commonly perceived as impor-

tant habitats because they act as a source of food and shelter

as well as nursery grounds for numerous ecologically and

commercially important species of fish and invertebrates

(den Hartog 1977, Kikuchi and Peres 1977).

Seagrasses grow in sheltered coastal areas, which makes

them especially vulnerable to human disturbance (Walker et

al. 2001). In New South Wales of Australia, seagrasses occur

primarily in the protected waters of estuaries and semi-en-

closed embayments (West et al. 1989). The evidence that

more than 80% of NSW population live near the coast and a

high proportion of the State’s commercial activity also occurs

near estuaries means that estuaries including the seagrasses

are subject to a range of direct and indirect impacts due to

land use in the catchments and the direct use of estuarine wa-

terways (Department of Land and Water Conservation 2000).

Lake Macquarie of New South Wales is one of the

largest estuarine lagoons in Australia. This lake extends ap-

proximately 22 km in a north-south direction. It has a maxi-

mum width of 10 km and a maximum depth of 11 m, with an

average depth of 8 m (Batley 1987, Peters et al. 1999). The

total waterway area of Lake Macquarie is 120 km2 and the

catchment area is 700 km2 (Manly Hydraulics Laboratory

2002). The lake is separated from the ocean by a narrow en-

trance channel resulting in poor tidal flushing. Despite this

poor tidal exchange, the lake has a marine character because

of minimal freshwater dilution input (Roy and Crawford

1984). Shallow in the middle part of the lake effectively pre-

vents deepwater movement from the northern to southern

part of the lake resulting in a division of the lake into north-

ern and southern components. As such, water circulation 

in the two portions of the lake is essentially independent

(Spencer 1959).

The sediments of Lake Macquarie are contaminated

with trace metals such as cadmium, lead and zinc (Roy and

Crawford 1984). Toxic heavy metals have been accumulated

in Lake Macquarie since 1897 with the start of the operation

of Pasminco Metals-Sulphide Smelter. This lead-zinc smelter

(1.5 km north east of the lake) discharged heavy metals re-

sulting in the contamination of Cockle Creek and the north-

ern reaches of Lake Macquarie with copper, lead, zinc and

cadmium (Environmental Resource Management 2000). The

heavy metal concentrations reduce southward through the

lake indicating that the lead-zinc smelter was in the past a

major source of contaminants (Roy and Crawford 1984).

Population and community level indicator
in assessment of heavy metal
contamination in seagrass ecosystem

Rohani Ambo RAPPE

Marine Science Department, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar 90245, Indonesia.
* E-mail: rohani_amborappe@yahoo.com

Received 30 June 2009; Accepted 6 October 2009

Abstract — Seagrasses reflect the concentration of heavy metals present in the environment and are considered good biomonitors
of contaminants. The aim of our study was to determine whether the level of pollution in seagrass areas influences seagrass
morphology and abundances of associated epifauna. The following hypotheses were tested: 1, the concentration of heavy metals
would be significantly higher in seagrass from the polluted location than in seagrass from relatively clean locations; 2, seagrass
morphology (shoot density, leaf density, leaf length, and biomass) would be different between polluted and control locations; 3,
abundance and diversity of epifauna associated with seagrass would be different between polluted and non-polluted locations.
We measured shoot density, leaf density, leaf length and biomass of seagrass, Zostera capricorni, as well as abundance and diver-
sity of associated epifauna. Concentrations of metals (Cd, Cu, Pb, Se, and Zn) in roots and leaves of Z. capricorni were signifi-
cantly higher in samples from polluted compared to control locations. There were no significant difference in shoot and leaf
density, leaf length, and biomass of the seagrass between polluted and control locations. Abundance of gastropods was signifi-
cantly lower in polluted location than in controls, whereas other epifaunal groups displayed no difference. The results are dis-
cussed in view of selecting non-costly bioindicators of heavy metal contamination.

Key words: seagrass, Zostera capricorni, epifauna, heavy metal, bioindicator

Coastal Marine Science 34(1): 198–204, 2010

Special Section “Ocean Pollution”

198



Zostera capricorni, the most widespread seagrass in this lake

had notably declined with around 700 ha of beds disappear-

ing over the past 20–25 years (King and Hodgson 1986). The

toxic chemical pollution, primarily heavy metals, are signifi-

cant environmental contaminants of seagrass systems (Ward

1987, Ward 1989). It is, however, unclear if the heavy metal

pollution within the lake had a contribution to the loss of the

seagrass.

Concentrations of cadmium, copper, lead, zinc, and sele-

nium are much higher in sediments of Cockle Bay which is

closest to the smelter and the metal concentrations tend to

decrease to the southern end of the lake (Batley 1987, Peters

et al. 1999). In addition, there was a significant accumulation

of heavy metals in the tissues of seagrass, Z. capricorni in

Cockle Bay (polluted location) (Ambo Rappe et al. 2007).

Heavy metals can be incorporated into seagrass leaves

and vascular tissue from either water column or sediment.

The presence of the heavy metals has been demonstrated to

inhibit the growth of seagrass (Ward 1989) and to affect the

structural characteristics of leaves and shoots (Conroy et al.

1991). Toxic concentrations of metals specifically inhibit

metabolic activity and interfere with vital biochemical path-

way, for example photosynthesis (Ralph and Burchett 1998,

Macinnis-Ng and Ralph 2002).

Study of epibenthic seagrass fauna showed that species

richness of seagrass fauna was decreased in the highly con-

taminated site (Ward and Young 1982). Moreover, field acute

toxicity experiments indicated that an amphipod crustacean

commonly found in seagrasses, Cymodocea longicaudata

was strongly affected by the metals. This species displayed

an extreme sensitivity to the effluent from a smelter with

more than 80% dying within the first 7 days of the experi-

ment (Ward 1984).

The main aim of this study was to determine whether

there was any detectable effect of pollution on general mor-

phology (shoot density, leaf density, leaf length, and bio-

mass) of Z. capricorni in Lake Macquarie and on associated

epifaunal assemblages.

The following hypotheses were tested:

1. Shoot density, leaf density, leaf length, and biomass of Z.

capricorni will be different between polluted and control

locations.

2. Diversity and abundance of epifauna associated with the

Z. capricorni will be different between polluted and con-

trol locations.

Materials and Methods

Study Sites
Seven locations were selected along the western side of

the lake from north to the south, namely Cockle Bay, Fennel

Bay, Killaben Bay, Wangi-Eraring Bay, Myuna Bay, Bonnels

Bay, and Wyee Bay (Fig. 1). The sampling locations have

been chosen based on the available information on heavy

metal pollution within the lake. Cockle Bay, which had the

highest concentration of metals both in sediment and sea-

grass, was treated as a polluted location, whereas the other

six locations were treated as controls. Three sites at each lo-

cation (approximately 200 metres apart) were selected. The

sampling was done two times: winter (August) and spring

(October).

Collection of Z. capricorni For Measurement of
Morphological Characteristics

Four replicate samples of Z. capricorni were collected

from each site using a 25�25 cm quadrate (0.0625 m2). The

quadrate was pressed into the sediment and all seagrass

plants with roots and rhizomes were lifted with the sediment,

rinsed and placed in a labelled plastic bag with lake water.

In the laboratory, each sample was washed to remove

excess sediment and debris, and then placed in a tray. Total

number of shoots and leaves per quadrate were counted. The

length of Z. capricorni leaf in each quadrate was estimated

by measuring the length of 20 leaves to the nearest millime-

tre. After the measurement, all plant material including root

structures was put in the aluminium foil container and dried

at 60°C for 48 hr. The weight was recorded to the nearest

gram for total biomass estimation (Zieman and Wetzel 1980).

Collection of Epifaunal Organisms Associated with Z.
capricorni

Collection of epifauna associated with seagrass was
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done simultaneously with the seagrass collection. Three

replicate samples were collected at each site. Epifauna with

seagrass were sampled by covering a plant with an epifaunal

sampler and cutting the plant at about 1–2 cm above the sedi-

ment using a cutting blade, which was inserted into a slit at

the bottom of the sampler. The sampler was then turned up-

side down to wash the contents through the detachable upper

part which had 500-micron mesh attached and the samples

were collected into a plastic bag.

In the laboratory, samples were sieved through a 500-

micron screen to separate the epifauna from seagrass mate-

rial. The epifauna were preserved in 5% formaldehyde solu-

tion for further identification and enumeration. Seagrass was

dried at 60°C for 48 hr. The weight was recorded to the near-

est gram. Epifaunal abundance was expressed as a number of

animals per gram dry-weight of seagrass.

Data Analyses
Asymmetrical ANOVA was used to compare all vari-

ables measured between polluted and control locations as we

had only one polluted location with 6 controls (Underwood

1994).

Results

Shoot Density, Leaf Density, Leaf Length, and Biomass
of Z. capricorni

Density of shoots and leaves varied among the sites

within locations, and there were no further differences in

those variables between polluted (Cockle Bay) and control

locations both in winter and spring, even though shoots and

leaves were denser in October than in August sampling.

Moreover, there was no significant difference in leaf-length

and total biomass of seagrass between polluted and control

locations at both times. There was more variation in the

length of seagrass leaves among the sites within locations in

October, but biomass varied more within the sites in August

(Fig. 2).

Epifaunal Abundance and Diversity
Analyses were done on the four most abundant epifau-

nal groups: amphipods, tanaids, gastropods, and polychaetes.

The numbers in other groups (e.g. bivalves and cumaceans)

were too low to be used in analyses. Abundances of am-

phipods were higher in October than in August. Other epi-

faunal groups did not show any clear pattern in abundance

between the times (Fig. 3).

Abundances of amphipods, tanaids, and polychaetes did

not differ consistently between polluted and control locations

at both sampling times. However, the number of gastropods

was significantly lower in polluted location (Cockle Bay)

than in controls during the second sampling time (October).

The difference was not significant during the first sampling

time (August), because numbers of gastropods were also low

at several control locations (such as at Fennel Bay, Wangi

Bay, and Wyee Bay). Number of epifaunal species was

higher in spring than in winter. Moreover, there was no sig-

nificant difference in species diversity (number of species)

between polluted and control locations; the number of

species varied significantly among all locations in both sam-

pling times (Fig. 3).

Discussion

Shoots and leaves of Z. capricorni in Lake Macquarie

were denser in spring than in winter. Several studies have

shown that seagrasses in estuaries of New South Wales un-

dergo a growth cycle in which the shoot/leaf densities vary

depending on the time of a year. In Lake Macquarie, shoots

of Z. capricorni have a minimum density in autumn and win-

ter. The growth rate is shown to be at a minimum during this

time (specifically in March to April) when many leaves of Z.

capricorni brake off and drift ashore, whereas the growth

rate is at a maximum between November and January (Wood

1959). However, there was no detectable difference in leaf-

length and total biomass of seagrass between the two sam-

pling times in our study. Although shoots and leaves were

denser in spring, their contribution to the total biomass was

minimal. Below ground parts (roots and rhizomes) of sea-

grass seem to contribute more to the total biomass estimation

in this study rather than the above ground parts (leaves and

shoots).

There was no detectable difference in seagrass morphol-

ogy between polluted (Cockle Bay) and control locations.

The increased concentration of metals, which was reported in

seagrass tissue in polluted area (Ambo Rappe et al. 2007) did

not cause the seagrass morphology to change in the predicted

way. Contamination did not cause a decrease in density of

shoots and leaves or a decrease in leaf-length of the seagrass.

There was also no apparent effect on total biomass. Similar

result was observed in the seagrasses near the Port Pirie lead

smelter, South Australia where seagrass leaves were highly

contaminated, but the seagrass were growing at their usual

depth (Ward 1984, 1987).

Seagrasses seem to be able to accumulate high concen-

trations of metals, store them in special tissues without af-

fecting their growth rate (Ward 1989). Based on common cri-

teria for choosing bioindicator of heavy metal contamination,

namely the ability to exhibit a correlation between metal con-

tents in their tissues and concentrations in the surrounding

environment, the ability to accumulate the pollutant without

being killed, sedentary life form and abundance in the study

region (Phillips 1977), seagrasses may be considered good

bioindicators.
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However, the lack of easily measured effects on mor-

phological characteristics or biomass means that relatively

expensive analyses of seagrass tissues are required in order

to detect metals. The alternative way would be to find a

species (or group of species), which may change in numbers

in response to unfavorable physical or chemical characteris-

tics of their habitat (Simon et al. 2003).

Evidence of impacts of heavy metals on benthic organ-

isms from the field has come mainly from observations of the

correlative patterns (Ward 1984, Rygg 1985, Somerfield et

al. 1994, Stark 1998, Burton et al. 2001, Campanella et al.

2001, Edwards et al. 2001, Filho et al. 2004). These studies

have generally revealed that increasing contamination by

heavy metals in sediments is correlated with decreasing num-

bers of species and changes in abundance of benthic fauna.

The establishment of correlative relationships between dis-

turbances and benthic assemblages in the field have been

considered as a first and necessary step towards understand-

ing environmental impacts (Underwood and Peterson 1998).

In this study, abundances of gastropods were signifi-

cantly lower in polluted location. Most gastropods in sea-

grass beds feed on epiphytic microalgae growing on the leaf

surfaces and on detritus particles present on the sediment

(Hemminga and Duarte 2000). Since the epiphytic algae can
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contain high concentrations of metals (Ward 1984) and the

detritus in seagrass bed (which is primarily derived from

breakdown of seagrass leaves) can also contain high concen-

trations of metals, the consumption of contaminated food is

likely to be the main cause of the decreased abundance of

this group in the polluted location.

There was no significant difference in abundances of

other epifaunal organisms (amphipods, tanaids, and poly-

chaetes) between polluted and control locations. This may be

due to the higher mobility of small crustaceans, particularly

amphipods (Costello and Myers 1996), and particularly

patchy nature of their distributions. Epibenthic seagrass

fauna (the isopod Cymodoce longicaudata) has been found in

its normal abundance in the highly contaminated area, even

though the acute toxicity tests showed that it was acutely af-

fected by the effluent from a lead smelter (Ward 1984). An

experiment on the effects of heavy metal effects on assem-

blages in soft sediment also found that the mean number of

individuals and number of taxa did not decrease more in

units contaminated with metals than in the control units 

(Lindegarth and Underwood 2002).

In summary, the present study discusses the possibility

to use biological indicator organisms to define areas of heavy

metal pollution. This method is proposed to eliminate analy-
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ses of metals from water or sediment which are expensive

and laborious. The measurement of metal content in biota

(we used seagrass, Z. capricorni; Ambo Rappe et al. 2007)

demonstrated that the concentrations of metals in seagrass

tissues were correlated with the levels in the sediments, but

seagrass morphology was not affected. Epifaunal abundance

may be a more cost-effective bioindicator of heavy metal pol-

lution. The abundance of gastropods, however, was the only

group that could potentially be used as an indicator of metal

pollution in this study. Abundances of other groups varied

significantly at small spatial scales and displayed no consis-

tent differences in abundance related to the metal pollution.
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