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Abstract

During the centuries that followed the Age of Discovery, when Europeans,

notably Portugal and Spain, started to cruise the Seven Seas, the first naviga-

tors faced a dilemma that threatened their well being and the success of their

enterprise: how to transport goods safely and efficiently across the oceans?

Moreover, how to do it avoiding deterioration and consequent losses? The

final answer for these questions was the creation of containers: a geometri-

cally simple structure that facilitated maritime transportation. Nowadays,

sea surface transportation accounts for 99% of all international transporta-

tion. Of this amount, the biggest part of the fleet corresponds to container

ships. The use of containers to transport numerous manufactured goods is rel-

atively new. Since this piece of equipment was invented in 1937 by Malcolm

MacLean, a revolution was seen in maritime transportation, with consequent

improvements in efficacy and reliability.

Despite its young age, containers became broadly popular and their use quickly

spread around the globe. Nowadays, about 90 % of all non-bulk cargo mar-

itime transportation worldwide is performed employing containers stacked in

container ships. However, such popularization brought some concerns: tight

schedules allied a recent increase in the height of stacks carried on deck and

the growing size of container, coinciding with a substantial increase in the

number of containers lost at sea. This number is estimated to be around ten

thousand each year, and although the total number involved is a matter of

controversy among experts, this still represents a significant economical loss to

the liner industry. Often, extreme sea conditions that eventually induce para-

metric rolling in the vessel are considered the most probable culprit behind

those losses. However, present regulation and norms for securing equipment

are calculated based on static loads, an unrealistic approach considering the

dynamic nature of the conditions faced by containers during maritime trans-

portation. Thus, questions have been raised about the safety of prolonged use

of these standards, which might underestimate real values of forces acting on

container stacks and their securing elements.



In this panorama, the problem of container stack dynamics must be addressed

properly to understand the mechanisms behind container losses, in an effort

to set new standards and promoting valuable advice to the liner industry. To

achieve this goal, the authors propose the study of the container loss problem

in the light of science using a strong methodology. The study was divided in

four main stages: scaling of a 20 ft ISO freight container, pilot study using

scaled model in a two-tiers single stack arrangement (2x1), container stack

dynamics study using scaled model in a seven-tiers single stack arrangement

(7x1) and the same study of a seven-tiers three stack arrangement (7x3). These

stages were segregated in two sub-stages: experimentation using shaking table

testing, and numerical simulation employing finite element method. For both

sub-stages a set of control variables were idealized: amplitude and frequency of

the driving excitation, payload added to the scaled models, horizontal rotation

of the stack base, and twist lock’s gap size. Additionally, 2x1, 7x1, and 7x3

systems’ linking connectors, denominated twist locks were modeled for both

cases (experimental and numerical).

The first part of the research presents a method to scale down 20 ft containers

using dimensional analysis, similarity theory and finite element analysis. The

scaling study was separated into four sub-stages: determination of similitude

parameters using Froude scaling laws, design testing (Finite Element Method

- F.E.M.), scaled model manufacture and experimental validation (static and

dynamical). The physical (dimensions, mass, and moments of inertia) and

structural (longitudinal, transversal and torsional stiffness) characteristics of

the scaled models were decided based on two dimensionless numbers: ratios

between gravity force and inertia force, and elastic force divided by inertia

force, through experimental and numerical analysis. Furthermore, the choice

of each similitude parameter and its determination using dimensional analy-

sis are presented in detail. Additionally, model geometrical design based on

finite element analysis, posterior static and dynamic validation are explained

thoroughly. In conclusion, study qualifications and limitations are logically

presented with further prospect.

The second part of the research presents a pilot study used to identify some

important points before the last two stages of the study. Among these points

the following issues are emphasized: adequacy of the instruments and their

operations, checking the design of the research protocol, assessing whether

the research protocol is realistic and workable, establishing whether the sam-

pling frame and technique are effective, identifying logistical problems which



might occur using proposed methods, estimating variability in outcomes to

help determining sample size, collecting preliminary data, assessing the pro-

posed data analysis techniques to uncover potential problems, and the assess

the adequacy of the control variables.

The third part of the research describes an approach to simulate the 7x1

system, subjected to dynamical load induced by its base. Series of experiments

with controlled parameters (amplitude and frequency of driving excitation,

payload, shaking table base rotation and gap size) were performed using a

shaking table test to understand the effects of each variable in the container

stack dynamics and present enough data to validate the numerical model.

Finally, the last stage describes an approach to simulate the 7x3 system using

shaking table test in three cases only. The main goal of this stage is to identify

and quantify the contact among stacks in order to calibrate the numerical

model.

The study helped to elucidate some points regarding the system’s fundamental

mechanical behavior, where correlation of dynamic properties depending on

amplitude and frequency of the input vibration, base rotation, container load

and twist lock gap size, were obtained and used to calibrate and validate a

numerical model. After this strenuous validation, the scaled numerical model

was used as a valid tool to simulate the behavior of multi-stack configuration

in some simple situations faced by containers during maritime transportation.

Among these situations some common ship’s motion were studied in detail:

heaving, pitching and rolling, employing cases reported in the literature. Ad-

ditionally, the problem of how simple changes in basic variables affect force in

the bottom twist lock was addressed, the result of which provides useful ad-

vice for the industry, for maintaining the problem complexity to a minimum.

Undoubtedly, this is one of the most significant findings to emerge from this

study. In this panorama, it may contribute significantly to the understanding

of container stack dynamics, an area where intuition and old standards are

still preferred over more solid scientific principles.
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Chapter 1

Introduction

1.1 Background and Historical Highlights

Nowadays, the most significant part of goods transportation around the globe is done

through maritime routes, elevating maritime industry to a prominent role in the world

economy. Its efficiency is crucial to keep the flow of, not only, manufactured goods but

raw materials necessary to perform such manufacturing. Consequently, transportation of

such items in an appropriate way is essential, in a first moment, to keep the production

flow bursting world economy.

In addition to that, it is important to mention that improving the means of storage

and transportation increases ship and crew safety, decreases losses and increases industry

reliability. However, the merchant marine industry waited too many years before finding

an initial answer to the simple question: how to transport a wide range of products and

materials in an efficient way across sea, avoiding deterioration and losses? Such a question

permeated the mind of Naval Engineers for centuries, and although much effort was made

toward a solution, little progress was observed.

Since the first explorers, notably Portugal and Spain, started the Age of Discovery,

they faced this significant problem that could put in check the very success of their

enterprise. At that time, inappropriate storage of goods and raw materials had in most

cases deadly consequences, causing ships to sink or subjecting the crew to starvation and

consequent death. Sailing the Seven Seas was not an easy task and even though, in the

mainstream of this problem, early naval engineers and related researchers tried to find a

solution for it, not until the 20th century was a proper and original idea introduced to

address the problem.

The 20th century was spectacular for the development of the merchant marine: steel

hull, internal combustion engines and propellers catapulted the industry to a superior

level. The total amount of goods that could be transported increased drastically, whilst
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time required moving it across sea decreased wondrously. However it was not these in-

ventions that solved the problem regarding the transportation, storage and preservation

of goods and raw materials. The problem persisted.

Until half of the 20th century, break bulk was the most common method to transfer

cargo from, or to, the ship and to other means of transportation, e.g., trucks or trains.

This process was slow, because the cargo was loaded or unloaded individually, usually

using barrels, boxes, crates, drums and bags, mainly by humans sometimes using very

rudimentary tools (Figure 1.1). The personnel contingent, known as stevedores or dockers,

involved in such activity was enormous and time consuming, sometimes as much time as

it did sailing. Not to mention theft and cargo damage. A certain progress was made by

the introduction of pallets and skids but, again, the problem persisted.

Thus, we cannot stop asking ourselves: what was the original idea that revolutionized

the industry? Well, let’s look at an overview the history about it. Everything started

in 1937 in the United States when a young man named Malcolm MacLean, (Figure 1.2)

a truck company owner, had an idea to make more agile and efficient the slow process

of stowing cotton bundles in New York port: store it beforehand in big metal boxes,

the early containers, and then stowed them in the ship. In his own words:“There has to

be a better way than loading cargo aboard ship piece by piece. Why couldn’t an entire

truck be hoisted aboard ship, for instance, and then used for delivery purposes at the

other end of the line?” The man was a visionary, foreseeing something that was to come:

intermodalism. As mention by Cudahy [25], in 1937 the word itself has not even been

created. Nowadays, intermodalism refers to the efficient interlinked system of ships, trucks

and trains that transport containers around the globe. No further words are necessary

about MacLean’s idea.
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Figure 1.1: Example of old break bulk method: stevedores on a New York dock loading

barrels of corn syrup onto a barge on the Hudson River. Photograph by Lewis Hine, 1912.

Figure 1.2: Malcom MacLean: consider “father” of container. Photo: Maersk Line, Ltd.
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The idea that started being shaped in 1937 finally received some body in April of

1956. The idea was delayed for that long because of the Second World War and some

experimentation. However, without further ado, MacLean created the first containership

to sail: Ideal X. Originally this vessel was a common T-2 tanker that was adapted to receive

the bodies of 58 trailer trucks, detached from their running gear, becoming containers.

The ship cast off from Port Newark, New Jersey, and six days later docked in Houston,

Texas. When the 58 trailers were hoisted off Ideal X, no stevedores were employed in the

process: they were directly attached to running gear and headed to their destination. The

local impact was tremendous. However, something even bigger was to come: MacLean’s

company sent a ship with containers to Europe.

The year was 1966, and the ship was called SS Fairland. The industry would never be

the same. The impact of such an invention could be observed soon after. As mentioned

before, until that time the number of stevedores necessary to move the cargo on and

off ship was tremendous. The SS Fairland docked in Amsterdam, the biggest port on

the planet, in the same year carrying fifty containers. At that time, Amsterdam port

had twenty five companies using nine thousand employees. One year later, MacLean’s

invention reduced that number to five companies with an astoundingly small number of

208 employees managing the new system.

In a really short period of time the impact of the container use for marine transporta-

tion could be seen: improvement in port handling, lowering costs, decreasing losses and

increasing profits. The advantages of MacLean’s idea made containers popular and they

quickly spread around the planet. Overseas trade was never the same, assuming extraor-

dinary proportions. Nowadays, this process of changing from the old break bulk method

to MacLean’s invention was baptized Containerization. Hitherto, with exception of some

goods that are transported by specialized ships like petroleum products, cement, chemi-

cals, coal, dry edibles, grain, minerals – these categories being denominated bulk cargo –

cars, and some high valued commodities, just about everything else is transported by the

so called container ships. According to specialists, like Levinson [47], approximately 90%

of non-bulk cargo worldwide moves by containers stacked on transport ships. That is an

impressive number.

In the main stream of this process, containerization changed logistics modus operandi

worldwide, increasing efficiency and companies profits. To have an idea about the size

of the business, the Marine Conservation Society estimated that more than 100 million

containers are transported worldwide in a year. It is not an exaggeration to claim that

containerization has played a crucial role in the trade globalization. Economical impact

of containerization will be debated in section 1.3. For those who still are unbelievers,

they cannot deny this process as one of the most flourishing developments in the freight
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Figure 1.3: A picture taken from the deckhouse in the stern direction (NYK, THEMIS)

during container loading procedure in Tokyo, Japan. The hatch and lashing bars can be

clearly seen in the spots where additional containers still can be placed.

transport sector ever. According to Levinson [47] all these factors summed, are enough

to catapult the containerization to one of the most important innovations of 20th century

logistics. To finish this section, let’s summarize the benefits of the containerization:

• Facilitates transportation of goods in lots which are too small for traditional bulk

transport,

• At the same time, it avoids poor handling that results from bulk transport system,

• As consequence of the previous two advantages, container transportation is the best

option for high-value and delicate commodities,

• Almost abolish human and natural factors, e.g., theft and deterioration, increasing

safety and reliability,

• Substantial amount of time, including waiting and transit time, and labor cost is

saved during the load and unload process, increasing companies profits,

• Perishable goods have a proper mode of storage and can be transported everywhere

not depending on the transport route,

5



1.2 Objects of Study

• Reduced inventory costs benefiting companies.

1.2 Objects of Study

1.2.1 Container

Container geometric features are quite simple. However in its simplicity lies its robustness.

If one has to explain it to a infant a very simple and elegant way would be: just a big

metal box with a side door. The Merriam-Webster dictionary defines as follows:

” A portable compartment in which freight is placed (as on a train or ship) for conve-

nience of movement.”

Obviously, containers have to pass through a standardization process like almost ev-

erything in modern industry, obeying guidelines from International Standards and Or-

ganization (ISO). Kirkayak (2009) [44] provides the information that among all types of

containers, the highest incidence of use lies on 20 and 40 foot length ones. Resuming from

the previous information, containers must satisfy some basic specifications, e.g., structural

stiffness. More details about container stiffness will be presented in the next section of

this work.

However is interesting to present some basic information about the most common

containers, 20 and 40 foot (these categories of containers can be seen in the Figure 1.4) as

mentioned before, to increase the understanding about one of the links in our study. The

following table 1.1 shows the weights and dimensions of these two types of containers.

Extra information about container construction is depicted in Figure 1.5. Moreover is

important to present the nomenclature related to containers.This terminology is depicted

in Figures 1.6 and 1.7.

1.2.2 Twist lock

Twist locks are mechanical devices designed to connect container to ship’s deck and suc-

cessive containers stacked on it, becoming a primordial component in the marine cargo

transportation securing system. Moreover, this component is widely employed to fix con-

tainers during terrestrial transportation, e.g., semi-trailer truck and railway container

trains, as well as for lifting using gantry cranes. It is connected to a container through

a particular element in its structure, named corner casting, which contrarily to the twist

locks have no moving parts. The linking process is quite simple and similar to the mech-

anism behind a Kensington lock: twist lock is inserted through a hole in the base of

the corner casting, and then its top portion is rotated 90o , which it will avoid removal.

Nowadays, both parts follow guidelines provided by the International Organization for
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Figure 1.4: Picture of 20 and 40 foot containers.

Figure 1.5: General information about container construction [53].
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Figure 1.6: Container nomenclature for the back and side portions (Source: Container

Handbook, GDV).

Figure 1.7: Container nomenclature for the bottom portion (Source: Container Handbook,

GDV).
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Table 1.1: General properties of 20 foot and 40 foot containers based on information by

[36]. Weights and dimensions quoted below are averages. It may slightly vary in actual

size and weight according to the manufacturer of container [44].

Container Size

20 foot 40 foot

length[m] 6.198 12.192

External dimensions width[m] 2.438 2.438

heigth[m] 2.591 2.591

length[m] 5.898 12.032

Internal dimensions width[m] 2.352 2.352

heigth[m] 2.385 2.385

Door aperture
width[m] 2.343 2.343

heigth[m] 2.28 2.28

Volume[m3] 33.1 67.5

Maximum gross mass[kg] 24000 30480

Empty weight[kg] 2330 4000

Net load[kg] 21770 26480

Standardization: ISO 1161 (1984) and ISO 3874 (1997), for corner castings and twist

locks, respectively. Female and male components of container securing system analyzed

in this study are depicted in Figures 1.8a and 1.8b. Moreover, relevant technical informa-

tion about twistlock is presented in Figure 1.9.
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89

101.5 178

162

118

(a) Corner casting. (b) Semi automatic twist lock.

Figure 1.8: Two important components of the securing system.
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Figure 1.9: Example of semi-automatic twist lock (Source: Container Technics N.V.).
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1.3 Posing the Problem: Container Loss

According to various sources, e.g., Marin Conservation Society report, a number between

two thousand five hundred and ten thousand containers are lost at sea each year (Figure

1.10 and Figure 1.11)[58]. France [27] reported the loss of about four hundred containers

aboard of MV1 APL China in 1998, which is credited as the biggest cargo loss since the

dawn of containerization. More recently, container ships: MV OOCL America (2000),

MV Sea-Land Hawaii (2000), MV Sea-Land Pacific(2000), MV Xin Qing Dao (2004), MV

Saga Spray (2006) MV Jeppesen Maersk (2006), MV Ital Florida (2007), and MV CMA

CGM Dahlia (2008) just to mention a few, also lost containers at sea. Considering that

those containers may carry goods as such as electronic equipment, the total loss of a single

container can easily reach an amount around a million dollars. This amount can increase

significantly if the cargo is a customized good or precision equipment. Multiply this value

to the number of losses in a year and one can have an idea about the size of this problem.

Another point to be added is that the container ship sector is growing steadily each year,

which increases the possibility of material and economical losses. See section 1.4, Figures

1.16 for more details. In an obvious manner, this problem did not pass unnoticed to the

competent authorities that started to research the factors behind it.

The first container ships were designed with their deck-house at the forward end

of the ship, where stacks two or three high were stored. This design concept had the

main goals of protecting the containers from boarding seas and to assist navigational

control. Engineers responsible for designing modern container ships kept the same goals

from an early age, however some factors out of the design table started to impact Naval

engineering: increase in competition, ship’s cost, size and velocity. With increase in the

container ships size elastic behavior of the hull started to became significant for the cargo

stowed on the deck-house, but surprisingly this behavior is not taken into account when

calculating lashing systems. And still, when containers are lost aboard, it is believed that

critical sea conditions, like abnormal swell, typhoons and storms, are the main factors

inducing container losses during transportation (Figure 1.12).

Furthermore, some extra factors may play a significant role in these losses. The first

one is the constant increase of containers stacked on the deck in recent years. At the

beginning of container transportation era, most of the containers were stowed below deck,

and the containers above it were rarely stacked over four tiers. Nowadays, an inversion

occurred: up to 60% of the containers are transported on deck, and it is not uncommon

observing stacks up to ten tiers. Albeit, they are considerably lighter than the ones stowed

below deck, the total number of containers exposed to the intemperate weather without

1MV or M/V is a common nomenclature meaning merchant vessel or motor vessel
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additional protection is alarming. Furthermore, bridge visibility is lessened, increasing

the likelihood of collisions.

Additionally, high deck loadings may have other serious consequences: compromising

of ship’s stability, caused by the excessive number of containers stowed, plus the uncer-

tainty regarding their real weight. Add to the equation that such big number of containers

create a massive wall comprising a vast surface that is exposed to wind, so here we iden-

tify the second factor. The third factor comes indirectly from the sea state: ship motion,

e.g. parametric rolling, whipping, pitching, etc. Such motions are culprits in the events

that lead to damage and container losses, being pointed out as the main factors causing

elevated values of radial force in the containers in the upper tiers on deck. The last factor

in our equation is the sea water that sometimes collides against the ship and its cargo

exerting non negligible loads on it.

The last point to be analyzed is the securing system of the containers: lashings equip-

ment, and twist locks. These equipments will be presented in details in the next section.

Although container structure and geometry is basically the same since its creation in the

middle of the 20th century, there still a lot room for some improvements in the securing

systems that fix container stacks to deck. In fact such equipment is out of date, i.e., their

design is unchanged for the last 35 years, and despite the efforts of competent author-

ities, new international standards will have to wait few years until its implementation.

To complicate the situation even more, there is a handful of research regarding container

dynamics and lashing equipment. Actually, most of the studies and standards used by

the industry correspond to static situation, which is distant from the real situation, as

can be seen in the previous paragraphs.

In this panorama, a more realistic approach should be addressed, accounting for dy-

namical effects. Such approach is a bold step towards a more rational method to deal

with such problem, and is one of the goals in this study. Our purposes will be presented

in a logical way in the next section. Before that, it is interesting to present some of the

consequences of containers losses at sea.

Although economical losses are the immediate consequences of such accidents, there is

another vicissitude involved: containers lost at sea may not sink, becoming a hazard for

navigation, especially small boats. This can be clearly seen in the Figure 1.13. Moreover,

locating and rescuing such containers is not an option because of the elevate costs involved

in such operation. Add the fact that containers are lifted by specially designed gantry

cranes located at ports. For example, it cost several hundred thousand euros, to perform

such rescue operation in three containers containing drums of wood preservative that fell

overboard off the Dutch coast in December 2003.
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1.3 Posing the Problem: Container Loss

What brings another aspect of container losses: environmental impact. This problem

cannot be neglect because often containers are loaded with chemicals and hazardous

materials. As we can infer from the information provided, preventing container losses is a

monumental task that will bring benefits not only to Maritime industry but just everyone

else.

Figure 1.10: Total collapse of containers stacks with subsequent loss of top tiers.
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Figure 1.11: Another example of container stack collapse.

Figure 1.12: An example of adverse sea conditions. Picture of MSC Napoli.
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1.3 Posing the Problem: Container Loss

Figure 1.13: Example of containers that were lost due to extreme sea conditions but were

drifted ashore.
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1.4 Relevance: Economical Importance of Container

ships

According to a report entitled ”Valuation of the Liner Shipping Industry: Economic

Contribution and Liner Industry Operations” publish by the Global Insight, Inc. in

December of 2009, until July of 2009, the global fleet showed the following distribution:

Table 1.2: Global fleet information (Source: Lloyd’s Register – Fairplay Research)

Vessel Type Number of Vessels Dead-Weight Tons

Container 4684 165774103

Vehicle 443 11375691

Ro-Ro 1753 7423240

Total 7210 184573034

Analyzing this data one can infer that container ships represent the biggest slice in

the liner industry with about 65% of the world fleet. Hitherto, container ships represent

highest growth rate in the maritime industry (See Figure 1.14 for reference). Just to

have an idea about the size of the business, the liner industry transported about 60%

of the total value of global seaborne trade of US$7.7 trillion in 2007. Considering that

65% of this industry consists of container ships is easy to recognize containers economical

importance: the total number is around US$4.3 trillion, placing container ships as the

largest sector of Maritime industry when measuring the value of world trade transported.

Apart from that, liner industry global operations and ship building in 2007 is estimated

to be 436.3 billion, and generated 13.5 million direct and related jobs.

And the business is still growing: global containerized trade has grown at an annual

rate of 12 percent from 2001 to 2005. The predictions for the period 2005 to 2011 still

positive: 6.5 growth rate per year. According to their data, in 2011, global containerized

trade is expected to reach 134 million TEU 2, 2.3 times bigger than the one recorded in

2001. See Figure 1.15 for more details. According to specialist this is just the beginning:

new standards and ships will place the industry at a level never thought before (Figure

1.16). The measure in this Figure is DWT3 in thousands.

2Is an inexact unit of cargo capacity often used to describe the capacity of container ships and

container terminals. This unit is based on the volume of a 20-foot-long (6.1 m) intermodal container [65].
3Dead weight ton (DWT) is a measure of how much weight a ship is carrying or can safely carry

including cargo, fuel and stores [80]
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Figure 1.14: Percentage of total fleet. Containerships is the only sector of the maritime

transportation industry that presents a significant annual growth. Source: United Nations

Conference on Trade and Development–UNCTAD–Handbook of Statistics 2009.

Figure 1.15: Global Containerized Trade, 2001 to 2011 (Forecast), in Million TEU (Source:

Global Insight, Inc. World Trade Service). Data representing maritime trade in fully

loaded containers.
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Figure 1.16: Annual growth of the total capacity of container ships. Source: United

Nations Conference on Trade and Development–UNCTAD–Handbook of Statistics 2009.

UNITS:DWT.
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1.5 Container Lashing Components

We do not want to discuss the merits and demerits of the lashing components that have

been used for the past years. The goal of this section is just to describe and present

them without any assertion,i.e., this section is strictly descriptive. Obviously, there are

an enormous variety of components in the market, however the figures below represent

the majority of them [53].

Figure 1.17: Fixed fittings (components of the lashing system that are attached to ship–

[53]).
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Figure 1.18: Loose fittings in common use [53].
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Figure 1.19: Loose fittings in less common use [53].
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Figure 1.20: Lashing components being placed on a container ship [53].
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1.6 Defining Goals

There are many unanswered but fundamental questions regarding the mechanical behavior

of container stacks. Answering all of them, or finding an alternative approach to such

problems would involve a colossal work that would require a great deal of logistics, human

effort, time, and consequently money. This work has the ambition of helping answering a

more modest set of questions regarding this dynamical event, contributing positively to

existing regulations. Our research questions can be formulated as follows:

1. Is dynamic effect an important phenomena in container stack dynamics, or it is

negligible?

2. Does impact between adjacent stacks have importance in container stack dynamics,

or it is negligible?

These goals were formulated based on reports of specialists like Murdoch (2006) [53]

who highlights the fact that neither the dynamic response of the separate tower stacks

nor the effects of the interaction between adjacent stacks is well considered in the design

of the cargo securing system, and as mentioned before, most standards used by the mar-

itime transportation industry correspond to static conditions. In order to find meaningful

insight into these questions we proposed a systematic study of the effect of some parame-

ters involved in container stack dynamics, in a variety of situations, initial and boundary

conditions, that emulate as realistically as possible those encountered by containers in

maritime transportation. Our questions will be answered through a numerical model that

was validated by a series of experiments that will be explained in the next sections.
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1.7 Literature Review

To the extent of our knowledge, scientific studies regarding containers as structures are

quite rare. Most of the works published, like [78], [87], and [54] are decision-making

rules to optimize container terminal operations, e.g., space, transfer and stowage. Addi-

tionally, an overview of the literature regarding these kind of operations was published by

Stahlbock [75] in 2008. So far as the literature review goes, the first study about container

stack dynamics, considering container elastic deformation, was publish in 2009 by Suzuki

and colleagues [77]. In his work a complete description of an one-fourth scaled model con-

struction and validation is thoroughly presented. Moreover, the model constructed was

used to determine experimentally the mechanical behavior of a two tiers stack, through

a shaking table test. The next study, published by Kirkayak [45] in the same year, is a

natural continuation of the work performed by Suzuki and colleagues. This study consists

of the construction of a valid numerical model validated against the acquired experimental

data. This paper provides in-depth numerical analysis of the problem presenting some

predictions and advice.

In the same year, Kirkayak [44] wrote the most complete synthesis to date of funda-

mental behavior of container stack dynamics. In this work, which includes experimental

and numerical analysis based on a scaled model, effects of vibrational and physical vari-

ables on a single stack are completely understood for a high stack of seven containers.

However, the main weakness of the study is the failure to address how friction and con-

tact affect structural response. Moreover, regarding the numerical model, damping was

included in the system as discrete elements, i.e., dashpots connecting corner castings.

This discrete approach induced beating phenomenon in some of the numerical cases and

is strongly dependent on frequency. Additionally, in the numerical model the four nodes

corresponding to the bottom-corner castings are kinematically coupled to a node in the

geometrical center. This node has the function of matching the mass and moments of

inertia of the real model, through simple addition. However, although it is not the study

case, this rigid body modeling would underestimate elastic deformation leading to wrong

predictions in buckling analysis.

The works of Aguiar et al. [3, 4], are the first to approach the problems faced by

Kirkayak and colleagues, expanding their work to a more complex model. Based on exper-

imental data, a numerical model of a seven-tier scaled container was built and validated.

The study presented some new approaches: the use of Rayleigh damping and the removal

of the over-constraints. The Rayleigh damping approach avoided the beating problem

faced by Kirkayak and colleagues. On the other hand, the removal of the bottom-corner

casting coupling constraints allowed each individual container to deform more naturally.
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However, the model excluded friction and contact, two physical phenomena of crucial

importance when the container stack is inclined.

The next work published by Aguiar [5] presented an extension of the previous study: a

numerical model of three stacks of seven tiers calibrated against experimental data. In this

work one important physical phenomenon was included in the numerical model: contact

between adjacent containers. However, as in previous works of the authors, the model

failed to include contact and friction among corner castings of the same stack. Despite

these limitations, the model presented a high level of agreement with numerical data,

which allowed some numerical predictions in situations faced in maritime transportation,

e.g., rolling.
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1.8 Outline of Structure

To close the introduction we would like to present a summary about our study aiming

simplicity and clearness.

Chapter 1: Defines the main question of the study with its goals, significance and

review of previous studies.

Chapter 2: Describes research methodology, i.e., a research design, synthesis, char-

acterization and evaluation of the problem in order to answer the main question and its

nuances. Presents our approach divided in its main stages: experimental and numerical

for full containers and scale model. Additionally, present information about the experi-

mental variables, apparatus, data filtering and data analysis.

Chapter 3: Begins by laying out the theoretical dimensions of the scale model used

for experiments, after a short overview and literature review about scaling. Additionally

presents details about the scaled model design, construction and validation.

Chapter 4: Describes the main experiments (7x1 and 7x3) with details of the experi-

mental facility, apparatus and experimental conditions for each trial. Furthermore depicts

labeling of areas of interest and positioning of the sensors.

Chapter 5: Presents an extended overview about the numerical model used for simu-

lation and how each relevant parameter was modeled. Among these parameters one can

find structural stiffness, twist lock’s stiffness and damping.

Chapter 6: Presents a pilot study involving a two-tier single stack of container models.

The study itself was performed to assess the adequacy of the research design employed

in the 7x1 and 7x3 cases. Additionally, presents some interesting trends and limitations

that were used to identify potential problem for the main experimental stage (7x1 and

7x3).

Chapter 7: Debates about results and its interpretation for the 7x1 and 7x3 cases and

consequent validation of the numerical model. Additionally, present a rationale about

discrepancies observed in the experiments, helping to qualify the numerical model.

Chapter 8: This section presents only numerical simulation that was employed to

identify important points in the container stack dynamics. Here, force on the bottom twist

locks (nonlinear springs) was used to provide a means of comparison. Furthermore, this

section presents some advice for the maritime industry based on the numerical predictions.

Chapter 9: Presents a summary of the findings, suggestions and limitations of the

study with further prospect for a future studies.
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Chapter 2

Methodology

2.1 Research Design Overview

Our specific plan for studying the research problem, providing the glue that holds the

major parts of the research project together was divided roughly in many stages that in-

cluded: container scaling, data acquisition for full scale and scaled container, and numer-

ical simulation constructed and validated based on the experimental data. Our strategy

of attack on the central research problem is facilitated by this division, that is a com-

mon modus operandi in many fields. All stages were divided into sub-stages that will be

explained thoroughly in the next chapters. The objects of this study are a 20 foot dry

freight container and twist locks, both in full and small scale in a variety of dispositions:

single, two, and seven tiers (one and three stacks). Moreover, container size was chosen

based on its incidence in the industry as explained in section 1.2.1. Twist lock size is

invariant regarding container size, however the mechanism has two versions: semi and full

automatic. The study focused in semi-automatic version of this mechanism. Please refer

to Figure 2.2for understanding how the experiments, and posterior numerical simulation,

were conducted and segregated.

Regarding the numerical analysis, it is necessary to emphasize that the model built

had two ways to be validated: conceptual and result validation. Conceptual validation

was performed through intense theoretical discussion about the various methods used to

model the physical phenomena included in our model. Thus, as will be seen in the results

section of this work, the phenomenon modeled were sufficient to emulate container stack

dynamics within a reasonable margin of error. On the other hand, data acquired during

experiments are the reference used to calibrate the numerical model, and consequent

numerical model validation. The overall approach can be seen in Figure 2.1.

The research itself, with rare exceptions, was focused in the study of a scaled model

based on a 20 ft dry freight container. The reasons behind this choice were presented
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2.1 Research Design Overview

Figure 2.1: Schematic representation of the approach used for this study. The conceptual

diagram was based on a diagram created by Dr. R. G. Sargent apud [57].

and discussed in section 1.4. In the exception cases are included two studies: slamming

of a single container, and random noise of a two tiers stack. Regarding the study for a

scaled model, some constraints influenced the choice of this approach. Firstly, the non-

existence of any experimental facility able to perform experiments in dispositions of two

tiers for full scale containers, which would defeat the final goal of studying high stacks.

Secondly, testing scaled models is significantly cheaper than testing real containers, which

requires specialized transportation and lifting. In 1999, Vassalos estimated the total cost

of a testing model as a small fraction (around 1%) of the overall capital involved in full

scale testing. Thirdly, the process of testing such a big and heavy structure in various

driving excitations can be risky and accident-prone, which could pose an unnecessary

risk to researchers involved. Moreover, in extreme cases, e.g., fall or structural damage,

small scale models can be easily replaced and repositioned. Fourthly, scaled models are

prominent tools to calibrate numerical models, offering a better option to control study

variables, and the possibility of isolating the ones of particular interest. And last, but

not least, the development of a valid scaled model opens the possibility of simulating

container stacks in a wide variety of situations faced during maritime transportation,

which can provide a realistic approach for the problem of container loss.
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Study cases

Scaled

Dynamic Static

Full scale

Single container
(dynamic)

Two containers
(dynamic)

Single container Two containers 7x1 containers 7x3 containers

Figure 2.2: Schematic representation of the divisions of the experimental stage of this

study, and posterior numerical simulation.

30



2.2 Experimental Facility and Apparatus

2.2 Experimental Facility and Apparatus

2.2.1 Shaking Table Testing

All vibrational experiments performed during this study, with the exception of hammering

test, employed a shaking table. The use of a shaking table to study the dynamic response

of structures to given driving excitation is not new: the technique has been employed

successfully since the 80’s [96], becoming one of the most respectable procedures to study

structures subject to vibration. Although most studies using this technique are oriented

to civil engineering applications [34] with emphasis in seismology [17, 20, 28, 46, 48, 50, 51,

55, 67, 76, 86, 95], our choice is based on its advantage of allowing a great deal of control

over vibrational variables like amplitude and frequency, as well possibility of vibration

input following special functions, e.g., transient, non-transient, random, recorded, etc.

Furthermore, shaking tables allow driving excitation in six degrees of freedom (multi-

axis), and easier experimental measurements [59].

All vibrational tests mentioned in this dissertation were performed using a shaking

table located in the experimental facility of Monohakobi Technology Institute (MTI) in

Yokohama, Japan. The main dimensions of the shaking table are 2.6 x 6.2 m, with a

maximum loading weight of 20 tons and maximum rotation angle of ± 20 degrees. The

device can vibrate with maximum acceleration of 2 and 3 g in the horizontal and vertical

directions, respectively. Additionally, it presents a maximum velocity of 0.6 meter per

second for both directions and a maximum displacement of 0.2 and ± 0.25 m for horizontal

and vertical directions, respectively. The frequency of the input waveform can range from

0.1 to 80 Hz. This shaking table is denominated multi cargo simulator (MCS). A graphic

representation of the experimental facility is shown in Figure 2.3. A summary of the

technical specifications for the shaking table are described in table 2.1.

2.2.2 Transducers

This section will describe the technical information about the instrumentation used for

the experiments. Their disposition and placement during data acquisition for the dif-

ferent stages of this study will be presented in each pertinent section. Three types of

transducers were employed for the experiments: uni-axial accelerometers, laser distance

meter and high-speed cameras. Laser distance meters were employed in only one of the

experiments involving full scale container (see section 5.2). Whereas accelerometers were

used in all experiments, high-speed camera were the main transducers used to acquire

the dynamical response of the structure. Accelerometers were used to double check the

dynamical response obtained from image analysis and the results will be presented when
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1 Physical axial system

2 Atmospheric environment room

3 Crane (25 tons)

4 Floting foundation

5 Pneumatic spring

6 Control room

7 Machinery room

Figure 2.3: Schematic representation of the experimental facility (NYK-MTI, Yokohama,

Japan).

Table 2.1: Technical specification of shaking table

Specification 6 DOF

Dimensions [m] 2.6 x 6.2

Maximum loading weight [ton] 20

Maximum rotation angle [degrees] ± 20

Frequency range [Hz] 80

Maximum acceleration [g]
horizontal: 2

vertical: 3

Maximum velocity [m/s]
horizontal: 0.6

vertical: 0.6

Maximum displacement [m]
horizontal: ± 0.2

vertical: ± 0.25

relevant. The choice of one sensor over the other as the major transducer was based on

two reasons. Firstly, despite their popularity, the accelerometer signal may be prone to

present high levels of noise, mostly caused by collisions between the two scaled models

and non-linearity induced by the twist locks gaps. Moreover, such technique would re-

quire a careful and lengthy analysis of frequency domain to identify the relevant part of

the spectrum. Secondly, accelerometer data needs to be integrated twice to be converted

to displacement which can introduce round-off errors in the estimate. Relevant technical

specifications for the accelerometers, laser distance meters and high-speed cameras are
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presented in tables 2.2, 2.3 and 2.4 respectively.

Table 2.2: Technical specification of the accelerometers (model ARF-200A, Tokyo Sokki

Kenkyujo Co. Ltd.)

Mass [kg] 0.013

Capacity [m/s2] 200

Amplitude limit [g] 20.40

Frequency response [Hz] 310

Natural frequency [Hz] 520

Non-linearity [%] 1

Table 2.3: Technical specification of laser distance meters (model LK-500, Keyence Cor-

poration)

Pulse duration [µs] 3 to 994

Reference distance [mm] 350

Measuring distance [mm] ± 100

Minimum spot diameter [mm] 0.7

Linearity [%] ± 0.1

Sampling frequency [µs] 1024

Table 2.4: Technical specification of the high-speed cameras (model NVC–SL,

PHOTRON, USA, Inc.) .)

Sensor [pixels] 512x512

Shutter [s] 16.7 ms to 3.7 µs

Shock [g] 100 any axis

Dimensions [mm] 109.2(H), 90(W), 235(D)

Mass [kg] 1.76
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(a) Horizontal direction.

(b) Vertical direction.

Figure 2.4: Technical specifications for the shaking table (Courtesy of Monohakobi Insti-

tute of Technology).
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(a) Accelerometer. (b) Distance meter. (c) High-speed camera.

Figure 2.5: Transducers used for the experiments.

Fixing screw
2-M2 DP2.5

5

8.5

9

Input/Output cable18

2514

14

9

8.5

517.4

Fixing screw
2-M2 DP2.5

Figure 2.6: Dimensions of the accelerometer.
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2.3 Physical Parameters Modeled

To model and understand all the variables involved in container stack dynamics is a

herculean task require such a considerable amount of time, that it may be outside the

scope of a Ph.D. dissertation. Therefore it is important to selectively identify the main

physical phenomena that are responsible for dictating structural behavior. In this study,

these crucial phenomena are:

• Driving excitation

Obviously, the first parameter in question here is the cause of container dynamical

behavior. Thus, a complete study of how ship’s motion like whipping, rolling and

pitching affect it is a key point in this study.

• Elastic deformation of containers

Rigid body models are easy to implement, and its computational cost is low. How-

ever, in such big structure, keeping in mind that a container stack height can reach

up to 20 meters, elastic deformation is an important physical phenomena and must

be accounted for. Moreover, non-linearities that have origins in large displacement

must be included in the study.

• Container weight

Although, container load is a simple variable its effects are not fully understood.

Moreover, it is a common belief in the industry that this parameter is crucial during

securing of containers.

• Twist lock non-linear behavior

In our understanding, twist lock behavior is one of the main sources of non-linearity

observed in a container stack. Thus an appropriate treatment and modeling of its

mechanical properties is essential to accurately emulate this system. During the

course of this dissertation this phenomena will be also referred to as backlash or gap

effect.

• Collision between stacks

The other clear source of non-linearity in our study is contact between adjacent

stacks. Like twist lock behavior, a careful approach for such physical phenomena

must be addressed.
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• Buckling

This non-linear phenomenon is important to understand the collapse of the stack

under extreme conditions.

• Twist lock failure

To completely model the collapse of the container stack, twist lock failure must be

taken into account.

To visualize the physical phenomena modeled in this study a schematic representation

of the most complex case in our study is depicted in Figure 2.7.

Figure 2.7: Summary of physical phenomena that are included in the numerical model.

2.4 Defining Input and Output Variables

For all dynamical cases, with exception to hammering test, the input variable was dis-

placement, through a sinusoidal driving excitation applied to the system by the shaking

37



2.4 Defining Input and Output Variables

table. For all cases a series of physical variables were idealized to serve as parameters to

understand their effects on container stack dynamics. Two of them belong to the driving

excitation and three others have physical characteristics. Namely:

• Amplitude of driving excitation,

• Frequency of driving excitation,

• Additional payload added to some tiers in multi-tier arrangement,

• Rotation of the shaking table in the horizontal plane,

• Increase in the gap size existing between corner casting and twist locks.

Following the example of the input variable, displacement was elected as an output

variable. The study limited the analysis of displacement of the top corner of each individ-

ual container using high-speed camera technique. Moreover, in multi-stack disposition,

the highest container was used for evaluation purposes. The points in question will be

presented with details and illustrations in the pertinent section of this dissertation. It is

important to emphasize that displacement will be analyzed in time, i.e., displacement-time

response.
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2.5 Data Analysis

The data will be analyzed using two techniques: time history and coefficients of Fourier

expansion comparison, and when convenient, RMS4 value comparison. For time history

comparison a simple comparison between signals of interest is enough to ascertain the

effect of the input variables on the displacement-time response. RMS value for a discrete

distribution was calculated based on the expression [88]

RMS (x) =

√∑N
i=1 x

2
i

n
(2.1)

On the other hand, the maximum value of Fourier expansion coefficients and RMS

value comparison are quite useful to identify how the structure responds to changes in

the control parameters. A brief theoretical approach for Fourier expansion is presented

below. Fourier Analysis assumes that any stationary sample record f (t) with a period

of Tp, and consequently, fundamental frequency f1 = 1
Tp

, can be expanded using Fourier

series as follows

f (t) =
a0
2

+
∞∑
q=1

aq cos qπf1t+ bq sin qπf1t (2.2)

Where the angular frequency is given by

ωp = 2πf1 =
2π

Tp
(2.3)

Remembering that f (t) must satisfy Dirichlet conditions, named after Johann Peter

Gustav Lejeune Dirichlet (1805-1859):

• f (t) it must have a finite number of extrema in any given interval,

• f (t) it must have a finite number of finite discontinuities in any given interval,

• f (t) it must be absolutely integrable over a period, and

• f (t) it must be bounded.

It persists the need of calculating the coefficients aq and bq in the expansion. They can

be calculated using the orthogonality of the trigonometric basis. Analytically, orthogonal-

ity for a given set {φi, i = 1, 2, ...,∞} over the interval [a, b], with weight ρ (t) is given by

the condition
∫ b
a
φi (t)φj (t) ρ (t) dt = 0 for i 6= j. Considering that the basis for Fourier

4The root-mean-square of a variate X, sometimes called the quadratic mean, is the square root of the

mean squared value of x [88]
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series expansion is trigonometric functions, sine and cosine, it is important to emphasize

their orthogonal relations ∫ b

a

cos(ωit) cos(ωjt)dt =
T

2
δij∫ b

a

sin(ωit) sin(ωjt)dt =
T

2
δij∫ b

a

sin(ωit) cos(ωjt)dt = 0

(2.4)

Where δij is the Kronecker delta. Thus, multiplying the equation 2.2 for the trigono-

metric basis yields both coefficients

aq =
2

T

∫ T

0

f (t) cos(2πqf1t), q = 0, 1, 2, ...

bq =
2

T

∫ T

0

f (t) sin(2πqf1t), q = 0, 1, 2, ...
(2.5)

As can be seen, equations 2.2 and 2.5 above consider a continuous interval. Moreover

the function f (t) is assumed to be periodic in an infinite range. However, during an

experiment a discrete number of samples is acquired, so the previous equations are not

directly suitable for the Fourier expansion. A good formal approach about the Fourier

series procedure for discrete data was done by Bendat [10]. The procedure consists of

three assumptions that enable the use of previous theory for discrete data.

Firstly, one must assume that a sample record f (t) is of finite length Tr = Tp, the

fundamental period of the data. Secondly, one must assume that the record is sampled

at an even number of N equally spaced points a distance h apart. This assumption is

redundant because sampling rate during our experiment was fixed for every case. The

important point in the second assumption that must be addressed carefully is the choice

of h. This value must be selected to produce a sufficiently high cutoff frequency defined

analytically by fc = 1
2h

. In our case h=0.02 and 0.04 s, corresponding to cutoff frequencies

of 250 and 125 Hz, respectively. Remembering that the analysis is restricted to a finite

time interval [0, T ], which leads to a Fourier series with discrete frequencies and a periodic

function of time. Therein lies the importance of an appropriate choice of h. The last

assumption considers the initial point of the record to be zero and denotes the transformed

data values, as before, by

xn = (nh) (2.6)
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In possession of the three assumptions one must proceed now to calculate the finite

version of a Fourier series which will pass through these N data values. Based on the

equation 2.2, for any point t in the interval (0, Tp), the result is

f (t) = A0 +

N
2∑

q=1

cos

(
2πqt

Tp

)
+

N
2
−1∑

q=1

sin

(
2πqt

Tp

)
(2.7)

At the particular points t = nh , n = 1, 2, c, N , where Tp = Nh,

f (t) = A0 +

N
2∑

q=1

cos

(
2πqn

N

)
+

N
2
−1∑

q=1

sin

(
2πqn

N

)
(2.8)

Thus using orthogonality of the basis the coefficients Aq and Bqs are given by

A0 =
1

N

N∑
n=1

fn = f̄ = 0

Aq =
2

N

N∑
n=1

fn cos

(
2πqn

N

)
, q = 0, 1, 2, ...,

N

2
− 1

AN
2

=
1

N

N∑
n=1

fn cos qπ

B0 = 0

Bq =
2

N

N∑
n=1

fn sin

(
2πqn

N

)
, q = 0, 1, 2, ...,

N

2
− 1

BN
2

= 0

(2.9)

Often the coefficients B0 and BN
2

are included for symmetry. Note that the corre-

sponding sine function factors evaluate to zero, leaving these two coefficients arbitrary.

Thus, aiming at simplicity one can assume them to be zero. A simple routine in MAT-

LAB was written to calculate the coefficients. Fourier expansion presents itself as good

approximation in our case, because the driving displacement imposed on the system is a

sinusoidal function with a fixed angular frequency for each case. The effect of this method

can be seen in the Figure 2.8.

Another technique used during this study is the subtraction of the displacement-

time response and driving excitation. In this dissertation the result of this operation

is denominated relative motion and will be employed in most cases. Additionally, the

nomenclature local motion is employed denoting displacement-time history without any

algebraic operation. This information is summarized in table 2.5.
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2.6 Experimental Data Filtering

Figure 2.8: Fourier expansion.

Table 2.5: Terminology used to refer to the displacement-time response data

Description Nomenclature

Displacement with relation to a fixed reference (ground) Local motion

Subtraction of displacement-time driving excitation and

displacement-time response
Relative motion

2.6 Experimental Data Filtering

Digital signal processing, attended by the acronym DSP, is an important step towards

understanding and interpreting information contained in a digital signal through various

mathematical techniques. A well known method to perform such an action is called, by

its short name, filtering, or more commonly digital signal filtering. Digital signal filtering

is useful for denoising, i.e., removing noise from data preserving only the pertinent part

of the spectrum. In other words one is interested in removing noise as much as possible

without distorting the original data.

There are many techniques in filtering, each one with its own peculiarities, e.g. noise-

spike, high-pass, low-pass, and band-pass to mention but a few. Roughly, filters can

be classified in three categories: time domain, used for smoothing and DC removing;
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2.6 Experimental Data Filtering

frequency domain, applicable for separating frequencies, and custom, used for decon-

volution. The appropriate choice depends strongly on a previous understanding of the

physical phenomenon recorded. In our case, a driving frequency set in advance facilitates

this process. During the experiment the whole system was excited with a defined and

constant frequency. Thus filtering in frequency domain is perfectly suitable in this case,

e.g., band-pass, band-reject, high-pass and low-pass. As mentioned previously, excitation

frequency for the experiment was constant for every trial, thus low-pass filter is the best

option to denoise the signals. Moreover, Hamming window was employed as a base line

for the low-pass filter. However, after deciding the method it is necessary to go a step

further and calculate the cut-off frequency to be used for filtering. There are specific

methods to calculate an appropriate cut-off frequency. The next paragraphs will discuss

this choice on a mathematical basis.

For this study two methods were employed: harmonic analysis and residual analysis.

The reasons behind the choice of these methods will be explained in the next paragraphs.

Physically the noise observed during experiment was expected to have equal levels in both

directions: horizontal and vertical, both originated from camera sensibility. However in

the vertical direction signal is clearly smoother then it is in the horizontal direction. The

probable reason behind this observation is the shaking table excitation, strictly vertical

following a well behaved sinusoidal function. Moreover, amplitude in vertical direction is

considerably higher than horizontal direction, helping to identify what is noise and what

it is not. This can be easily observed in Figure 2.9a and Figure 2.9b. Vertical direction

motion is clearly governed by a sinusoidal function with frequency of 2 Hz, making it easy

to identify the noise component.

For the vertical direction raw data, harmonic analysis was chosen because of its sim-

plicity and quickness. As mentioned above data in this direction is smoother and as

consequence a simple inspection of harmonics is enough to decide the cut-off frequency.

Thus, just by analyzing the power in each component, it is easy to decide based on sim-

ple inspection, how much power to accept and how much to reject [89]. The drawback in

such an approximation is the assumption that the filter is ideal and has an infinitely sharp

cut-off. In our case harmonic analysis is depicted in Figure 2.10. Based on the harmonic

analysis, vertical direction motion data cut-off frequency was chosen in 5.5 Hz.

For the horizontal motion data residual analysis presents itself as a better method to

decide the cut-off frequency. Residual analysis consists of a difference between filtered

and unfiltered signals over a wide range of cut-off frequencies and can be calculated using
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(b) Vertical direction.

Figure 2.9: Effect of filtering for horizontal and vertical directions.
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the expression presented by Winter

R(fc) =

√√√√ 1

N

N∑
i=1

(
Xi − X̂i

)2
(2.10)

Where

Xi: is the raw data ith sample

X̂i: is the filtered data at the ith sample

The important point in this method regards where the cut-off frequency (fc), should

be chosen. Winter concludes: ”To preserve the meaningful information contained in the

original signal one must find a balance between the amount of signal distortion versus the

amount of noise allowed through”. A best option might be equal weights for both, then a

simply projection of a vertical line from the intersection of the horizontal line created from

the linear coefficient obtained from the best fit linear regression of the residual curve. An

example of residual analysis for one study case (7x3–0 degree–2 Hz–6 mm) is illustrated

in Figure 2.11.

2.7 Terminology

There are some specific terms that must be explained for better understanding during

the reading of this dissertation. The first part regards the jargon of ship motion. Like

any other object in space, ship movement is divided into translational and rotational

motion, defining the six degrees of freedom that it can experience. The main difference

in Naval engineering is the existence of a special terminology to denominate each motion,

depending on the type of movement (translation and rotation) and the ship’s main axis

(longitudinal, transverse and vertical). Table 2.6 presents a summary of the ship’s motion.

Furthermore Figure 2.12 represents this terminology graphically.

Table 2.6: Terminology of the ship motions

Axis Translational (linear) Rotational (rotation)

Longitudinal Surge Roll

Transverse or Lateral Sway Pitch

Vertical Heave Yaw

Moreover, some terms will be used in this dissertation that may not be familiar. To

facilitate understanding, the terms regarding the disposition of the structure are summa-

rized in table 2.7.
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2.7 Terminology

Table 2.7: Terminology used to refer to study cases regarding the structure

Study case description Acronym

Two tiers 2x1

Seven tiers, one stack 7x1

Seven tiers, three stacks 7x3
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Figure 2.10: Harmonic content of the horizontal and vertical displacements of point 1

in a 7x3 experimental configuration. The first harmonic (driving frequency of 2 Hz) is

normalized at 1.00. For the vertical direction over 99 % of power is contained below the

2th harmonic.
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Figure 2.11: Residual analysis to decide the value of the cut-off frequency.
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Figure 2.12: Graphic representation of terminology regarding ship motion.
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Chapter 3

Scaled Model

3.1 Brief Overview

The use of scaled models by scientists as a tool to experiment, evaluate and analyze

complex physical behavior was firstly recorded in human history by Leonardo da Vinci

(1425-1519)[85]. However, despite his fertile and genial intellect, most of Leonardo’s

models were impractical, and were never built in full-scale. The next researcher related to

scaling was Galileo Galilei (1564-1642) who is often credited, amidst many more in various

fields, as the first scientist to successfully apply scaling for practical situations. Amidst

that period, most model building have only geometric resemblance to the real world

structures they were mimicking. It is what we refer nowadays as geometric scaling, an

approach where proportions (lengths) between prototypes and models are kept constant.

Although geometric scaling provided a reasonable insight in some situations, there was

a need for a wider theory. Around that time Euclidean theory of similar figures and solids

contained in Book VI of the Elements was the pillar of geometrical scaling. However,

Euclidean geometry was insufficient when it came to reliably scaling artifacts because ne-

glects the forces acting on these objects. To illustrate the limitation of geometrical scaling

it is enough to say that if a boat is scaled up ten times in the three Euclidean dimensions,

then the resulting artifact will be much too weak for practical purposes [30]. Even though

Galileo had developed a theory about scaling forces, not until the 19th century this lacuna

was filled, and not until then such approach received the approval from the scientific com-

munity, and then became accepted as a justifiable methodology. This happened because

of the efforts of a Victorian civil engineer called William Froude (1810-1879) who, in 1871,

successfully used an accurate scaled model of the vessel HMS Greyhound for experimenta-

tion in a tank. Officially this was the world’s first scaled model experiment, inaugurating

a new era in Naval Engineering. Concretely, he introduced a non-dimensional parameter

that served as the criterion for dynamic similarity when comparing boats of different hull
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3.2 Similarity Theory

lengths [29], which is nowadays referred as Froude number. Scaled model analysis would

get another significant contribution soon after: Edgar Buckingham (1867-1940) developed

the mathematical background necessary to give a theoretical basis to scaling. His papers,

dating to 1914 and 1915, opened a new gamma of applications, catapulting the field to

an unprecedented level.

A new field with countless applications was born: Dimensional Analysis, also known

as Buckingham’s π theory. The main application of the new theory was promptly dis-

covered: to establish the conditions necessary and sufficient to guarantee that prototypes

and models, used for experimentation, are physically similar, including not only geometric

similarity,i.e., a formal method to obtain the relevant parameters necessary to guarantee

physical similarity. These parameters are denominated similitude or similarity parame-

ters. Such parameters have an unique characteristic: are equal for the model and the

prototype (real world).

They realized that if the ratios between physical parameters that govern a system are

assumed to be constant, i.e., the ratios do not vary, like in the geometric similarity, there

is a unique set of numbers that independently satisfy that criterion and are valid for both

systems. By construction, they are dimensionless, which can prove a valuable feature be-

cause its independence on the sizes of the fundamental units [12]. A formal mathematical

treatment of this theory is lengthy and outside the scope of this dissertation, which used it

as a tool to obtain the similitude parameters necessary for scaling coherently the model.

If the reader has interest in knowing it thoroughly please refer to the papers entitled

On Physically Similar Systems; Illustrations of the use of Dimensional Analysis [12] and

Model experiments and the forms of empirical equations [13]. Additionally, to understand

how dimensional analysis is applied in a variety of fields,e.g., structural dynamics, naval

engineering, biology, fluid dynamics, etc., refer to the pioneer book Dimensional analysis

by Bridgman [11] with first edition in 1922.

In this dissertation we will just present and explain choice and meaning of the di-

mensionless numbers (π) used for model construction, what is described in section 3.3,

without over-stressing the mathematical basis behind dimensional analysis theory. Please

refer to Table 3.1 for an extended list of works involving similarity theory allied with

dimensional analysis in a variety of applications.

3.2 Similarity Theory

The use of similarity theory and dimensional analysis theory to find solution for structural

problems is relatively seldom documented in the literature. Although an enormous quan-

tity of books about dimensional analysis and similarity, including applications, have being
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3.2 Similarity Theory

published since 1922, a very limited number of scholastic papers were published reporting

study cases using this technique. Moreover, technical reports about use of models and

scaling in simulation are extremely restrict, mostly because many applications regarding

it have strategic importance for the industry. However, some researchers present valuable

studies about the theme. During the course of this brief literature review, the literature

review will focus solely in studies that employed similar research design. Moreover, we

will avoid, as much as possible, to refer to studies that are not fully available, e.g., tech-

nical reports from famous agencies, proceedings papers, etc. The most prolific researcher

regarding the use of these theories in structural dynamics is Wu. He has publish precious

papers about a variety of scaled models with no economy in details.

3.2.1 Geometric Similarity

Geometric similarity or similarity of shape is used to refer to systems that the specified

physical quantities relating them are lengths, i.e., the ratio of any length of one system

to the correspondent length in the other system is a constant [85]. This concept can be

extended as a corollary to area, volume, mass, moment of inertia, and stiffness. During

this dissertation, the constant, habitually denominated scale factor, used to represent the

geometric similarity ratio will be denoted as the Greek letter lambda(λ).

The basic geometric features of our model: length, width and height follow a strict

numerical relation with a full scale 20 ft container, i.e., its shape is a scaled version of

it. Moreover, area, volume, mass, moment of inertia and stiffness also preserve a similar

relationship as mentioned before during our inference about geometric similarity. As a

matter of convenience, we will denote all physical variables regarding full-scale container

with a subscript f. On the other hand, all variables regarding the model will be identified

by a subscript m, as used previously by Vassalos [85]. Analytically,

λ =
Lf
Lm

(3.1)

Areaf = λ2Aream (3.2)

V olumef = λ3V olumem (3.3)

Massf = λ3Massm (3.4)

If (mk)2 = λ5Im (3.5)
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3.2 Similarity Theory

Table 3.1: Summary of studies involving similarity theory and dimensional analysis theory

Author Year Problem approached

Soedel 1971 Vibration in thin shells

Qian et al. 1990 Impact damage in fiber composites

Simitses & Rezaeepazhand 1993 Structural similitude for laminated

structures

Rezaeepazhand et al. 1995 Laminated cylindrical shells sub-

jected to axial compression

Rezaeephazhand et al. 1996 Vibration response in laminated shells

Vassalos 1999 Similitude for marine structures

Wu et al. 2002 Vibration in a crane structure

Ungbhakorn & Singhatanadgid 2003 Buckling loads of laminated plates

subjected to biaxial loads

Ungbhakorn & Singhatanadgid 2003 Buckling and free vibration in sym-

metric cross-ply laminated circular

cylindrical shells

Wu 2003 Vibration characteristics of elastically

restrained flat plates subjected to dy-

namic loads

Wu 2005 Dynamic analysis of rectangular

plates under a moving load line

Wu 2006 results comparison of full-size and

scaled model of flat plates subject to

vibration

Wu 2007 Vibration characteristics of a rotor

bearing system

Oshiro & Alves 2007 Cylindrical shells under axial impact

Singhatanadgid & Songkhla 2008 Vibration response of rectangular thin

plates

Torkamani et al. 2009 Free vibrations of orthogonally stiff-

ened cylindrical shells

Important to mention that equations 3.3 and 3.4 have this form because of the assumption

that both systems have equal values of densities (analytically ρf = ρm). In addition to

what has been said, we have to emphasize that geometric similarity itself is not sufficient
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3.2 Similarity Theory

to guarantee that the two systems: full-scale and scaled, will present similar behavior.

For complete similitude some other requirement are necessary. Such requirements will be

presented in sections 3.2.2 and 3.2.3.

3.2.2 Kinematic Similarity

Besides geometric similarity, another feature that similar system must posses is called

kinematic similarity. The etymology of the word kinematic is derived from the Greek

word kinema that means to move. Thus this kind of similarity regards the motion of

the two objects of interest: full-scale and model container. Kinematic similarity guar-

antees that, besides geometry similarity, the two systems have similarity of time, i.e.,

corresponding time intervals present a fixed ratio. Consequently similarity of velocity and

acceleration will be achieved. This kind of similarity will be achieved if geometric and

dynamic similarity are present, and normally, there are no separate requirements marking

the occurrence of this similarity. Thus, kinematic similarity is achieved in our study as a

consequence of Froude scaling (please refer to table 3.3 and section 3.2.3).

3.2.3 Dynamic Similarity

Other than geometric and kinematic similarity, both systems can posses a third one: dy-

namic similarity. Such similarity is presented when the ratio between forces acting on

the system is a fixed ratio. Some of those ratios are notorious dimensionless numbers

named after famous scientists that discovered them, e.g., Froude number, Reynolds num-

ber, etc. In our case some forces are considered to play a fundamental role in container

stack dynamics. Videlicet:

• Inertia Force

Fi =
mL

t2
(3.6)

• Gravity Force

Fg = mg (3.7)

• Elasticity Force

Felastic = EεL2 (3.8)

Where L is length,m is mass, t is time, g is gravity acceleration, E is Young’s modulus,

and ε is strain.
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3.3 Buckingham π’s Numbers Used for Scaling

Table 3.2: Dimensionless numbers used for scaling the model

Delineation Analytical expression Nomenclature
Inertiaforce
Gravityforce

L
gt2

Froude

Gravityforce
Twistlockelasticityforce

mg
Eεl2

nameless

Constainerelasticityforce
Twistlockelasticityforce

E′

E
nameless

3.3 Buckingham π’s Numbers Used for Scaling

In this section, the dimensionless number, most commonly called Buckingham’s π num-

bers, used for scaling will be presented. Such numbers, expressions and nomenclature,

when existing, are delineated in table 3.2 below. The expressions for these numbers were

found manipulating equations 3.6, 3.7, and 3.8 according to the ratios stipulated in table

3.2.

To close this section we will present a table summarizing our scaling laws for the

model. Refer to table 3.3 for details. We would like to emphasize that this set of scaling

laws is commonly referred as Froude scaling [15, 85].

Using the expressions in the right column in the table 3.3 and geometric information

contained in table 1.1, one can easily calculate the physical parameters necessary to

construct the model.

3.4 Design and Testing Parameters

Is practically impossible to match all similitude parameters, characterizing complete simil-

itude, during the construction of a real model. The relaxation of one or more similitude

parameters, also known as partial similarity, may induce error between both systems:

full-scale and scaled model [64]. The magnitude of this error is strongly dependent on

the influence that each similitude parameter has on the overall system behavior. Thus,

neglecting parameters representing minor phenomena would not have a major impact in

the way the scaled model behaves. Our choice of parameters were based on dominant

effects for container stacks, i.e., parameters that would have great influence in the struc-

tural dynamics of containers. It is important to mention that these parameters will be

used to validate the designed scaled model experimentally and numerically. Namely:

• Mass

• Moments of inertia
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Table 3.3: Scaling laws for the model (Froude scaling)

Physical parameter Full scale Scaled model

Mass [kg] mf
mf

λ3

Length [m] Lf
Lf

λ

Time [s] tf
tf√
λ

Frequency [Hz] ff
√
λ ff

Velocity [m/s] vf
vf√
λ

Acceleration [m/s2] af af

Angle [rad] θf θf

Angular Velocity[rad/s] θ̇f
√
λ θ̇f

Angular Acceleration[rad/s2] θ̈f λ θ̈f

Pressure/Stress [Pa] Pf
Pf

λ

Force [N] Ff
Ff

λ3

Moment [N m] Mf
Mf

λ4

Moment of Inertia [kg m2] If
If
λ5

Translational Stiffness [N/m] kf
kf
λ2

Rotational Stiffness [Nm/rad] kf
kf
λ4

• Transversal racking stiffness of front (open) end frames

• Transversal racking stiffness of rear (closed) end frames

• Longitudinal racking stiffness

• Torsional stiffness

Based on these physical parameters, design of scaled models and constructed models

were tested according to testing standards approved by ISO [35]. For better understanding

of the terminology adopted for testing freight containers, refer to Figure 3.1. Additionally,

these standards are depicted in section 3.7.
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Racking (longitudinal) stiffness side

Racking (transverse) stiffness side

Open (door) side

Closed (back) side

Figure 3.1: Terminology for container testing (ISO).

3.5 Similitude Parameters Used for Model Construc-

tion

Values regarding geometry and structural stiffness are presented in table 3.4 and 3.5.

Both tables are obtained from scaling laws presented in table 3.3. Using the information

provided in the tables 3.4 and 3.5, a scaled model was designed. The proposed model

design is depicted in Figure 3.2. To verify the model’s design compliance to the ISO

standards, the proposed design was tested using finite element analysis.

3.6 Design Evaluation Using Finite Element Analysis

Before the construction of the scaled model, some physical parameters of the proposed de-

sign (Figure 3.2) were evaluated through finite element analysis. The proposed geometry

was drawn using a CAD capability of a preprocessing commercial program (Hypermesh

8.0, Altair Engineering Inc., 1995-2006). The same software was used to mesh the geom-

etry, and check mesh quality. Scaled model material was assumed to be structural steel

(isotropic, linear elastic material: Young’s modulus E=210 GPa and Poison ratio ν=0.3).

Two types of analysis were performed: static and frequency extraction, accounting for ge-

56



3.6 Design Evaluation Using Finite Element Analysis

Table 3.4: Geometric scaling of the similitude parameters for the models considering a 20

ft container based on ISO [36]

Full-scale(20 ft) Scaled model

length[m] 6.058 1.5140

External dimensions width[m] 2.438 0.6095

heigth[m] 2.591 0.6478

Mass [kg] 2330 36.41

Ixx[kg/m2] 3765 3.68

Moment of Inertia Iyy[kg/m2] 11830 11.55

Izz[kg/m2] 11486 11.22

Table 3.5: Stiffness scaling calculated using relation supplied in table 3.3

Structure Stiffness
Stiffness value

Full-scale (20 ft) Scaled model

Racking [MN/m]
closed 58 3.61

open 3.41 0.21

Longitudinal [MN/m] 58 3.61

Torsional [kNm/rad] 3200 12.5

Figure 3.2: Scaled model design for a 20 ft container.

ometric non-linearity. Both analysis were implemented numerically in a commercial finite
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3.6 Design Evaluation Using Finite Element Analysis

element analysis package (ABAQUS, Simulia, version 6.7). Details about constraints and

boundary condition for each case is presented in each pertinent section: 3.6.1 and 3.6.2,

respectively.

3.6.1 Static Analysis

The first numerical evaluation of the proposed model was performed through a finite ele-

ment static analysis. Boundary conditions emulate the same ISO specifications described

in section 3.4, with constraints specified in Figure 3.3. Convergence analysis was based

on mesh density with target results (refer to table 3.5 for details) as parameter. However,

due to its simple geometric features, meshing was not overstressed, i.e., the model was

meshed using a relatively coarse mesh. Result differences between target and numerical

value corroborate with our idea that the meshing process was appropriate for this case

(refer to table 3.6). Figure 3.4 shows results for the four cases simulated.

Table 3.6: Numerical values obtained from finite element analysis

Stiffness Side Displacement[mm] Force[kN] Stiffness

Racking [MN/m]
closed 0.63 2.34 3.72

open 11.72 2.34 0.20

Longitudinal

[MN/m]
0.325 1.17 3.84

Torsional

[kNm/rad]
15.8

The design proposed shows good level of agreement (see table 3.9) with the target val-

ues stipulated from Froude scaling, leading to a construction of the scaled model depicted

in Figure 3.5.

3.6.2 Frequency Extraction

To find another mean to validate the proposed design, frequency extraction by an eigen-

value problem of numerical model was performed. Frequency results for the first five

modes are presented in table 3.7.

Table 3.7: Eigenfrequencies obtained from finite element analysis

Mode 1 2 3 4 5

Frequency [Hz]–Numerical 39.24 66.37 72.54 74.17 82.76
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X
Y

Z

C

B

A

A

B

C Longitudinal force Fy=1172 N

Lateral force Fx=2344 N

Lateral force Fx=2344 N

Constraints (encastre)

(a) Boundary conditions for the translatory cases.

X
Y

Z

D

D

Constraints (encastre)
D Torsional force 45 degrees

(b) and for the rotational cases.

Figure 3.3: Boundary conditions.
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(a) Lateral stiffness simulation.
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(b) Torsional stiffness simulation.

Figure 3.4: Finite element results.

Figure 3.5: Constructed scaled model of a 20 ft container based on Froude scaling.

3.7 Experiments for Design Evaluation

After the construction of the scaled model (Figure 3.5) a succession of experiments were

performed to inspect its conformity to the target stiffness presented in table 3.5. Two

types of tests were performed: static and dynamic. Static tests were implemented in the

scaled model following the same ISO specifications described in section 3.4, and simulated

through finite element analysis delineated in section 3.6. Static validation is explained

thoroughly in section 3.7.1. On the other hand dynamic test was implemented through a

standard measuring technique denominated impact hammer test. Details of this technique

are presented in section 3.7.2.

3.7.1 Static Validation

The scaled container was fixated at the bottom cross members to a rigid wall, while a cor-

ner casting on the top was gradually loaded up to forty (40) kilograms and then unloaded,

with increments of ten (10) kilograms. Please refer to Figure 3.2 for a nomenclature of
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3.7 Experiments for Design Evaluation

scaled model components. Displacement of two corners in the same line of the applied

load were recorded using a displacement sensor (micrometer). Load was applied in one

end (closed side) and then another (open side). Experiments concentrated in racking be-

cause it is a dominant effect during container transportation. For a better understanding

about static experiments a schematic representation of each test is depicted in Figure 3.6.

Results, and consequent curve fitting, for the two cases performed are presented in Figures

3.7a and 3.7b. The stiffness values for each case were obtained from simple inspection of

the angular coefficient of the linear fitting presented in each graphic.

Open side

Closed side

Weight

y
z

x

Constraints

RIGID WALLOpen side

Closed side

Weight

y
z

x

Constraints

RIGID WALL

Figure 3.6: Schematic representation of static experiments: racking open side (left) and

racking closed side (right).

3.7.2 Dynamic Validation

A pseudo-impulsive force, nomenclature used by Ege et al., was applied on the scaled

model with an impact hammer in two distinct points of it (points A and B–please refer to

Figure 3.8 for details) to estimate the system vibrations. The system structural response
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(a) Results and best fit: y = 0.23x,R2 = 0.97.
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Figure 3.7: Static experiment results.
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3.8 Considerations about the Scaled Model

was acquired using ten (10) uni-axial accelerometers (see table 2.2 and Figure 2.6 for tech-

nical information and dimensions, respectively), with sampling rate of 1000 Hz, placed on

the corner fittings of the scaled model (as depicted in Figure2.5a). The pseudo-impulsive

force was applied in direction x and y, alternately. An impact hammer test characteristic

signal is depicted in Figure 3.9. Figure 3.9a is a graphic representation of the experiment

time domain, where the transient nature of the signal is evident. Moreover, the magnified

version of the same signal (Figure 3.9b) presents a clear inference about the system damp-

ing. The frequency components of the acceleration signal was analysed through power

spectrum function. Results of power spectrum analysis of accelerometers in x and y di-

rection, are depicted in Figures 3.10a and 3.10b, respectively. Results are summarized in

table 3.10. Before continuing to the next section, we would like to clarify another point.

Because the most important phenomenon regarding container is racking, acceleration for

z direction, recorded with four (4) accelerometers, is omitted (another important point

about vertical direction is presented in section 3.8).

3.8 Considerations about the Scaled Model

It is interesting to note that in all eight cases of this study the differences, when existing,

were within the range expected considering limitations imposed by the study itself. How-

ever, is important to properly address every case separately. Following our expectations,

this study did not find a significant difference between target and numerical values for

length, width and height parameters. These are, without any doubt, the easiest parame-

ters to match. Consequently, discussion about dimensions will not be considered during

this section. Following, the next geometric similitude parameter used: mass, the observed

difference in between target and numerical model mass was not significant either: about

1.1%. But again, following the example of the first parameter, adjusting it is relatively

simple task. The next geometric parameter used for comparison was moment of inertia

with respect of the three main axis of the scaled model. Differences regarding moment of

inertia about container’s longitudinal, transverse and vertical axis are 3.35%, 9.93% and

11.44%, respectively. For an overview about the values refer to table 3.8.

For the remainder parameters tested, Figures 3.11 and 3.12 display the data obtained

for the scaled model, in two situations: experimental and numerical. The objective of these

figures is to graphically represent a comparison between the target values and the values

obtained from simulation (F.E.A.) and experimentation (please refer to tables 3.8,3.9,

3.10 for an overview of values). As a general trend, there was close data agreement in all

procedures, for the range of cases performed during our study. Such agreement, present

in all parameters up to now, evidences a consistency in our research design. Important
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3.8 Considerations about the Scaled Model
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Figure 3.8: Placement of the accelerometers on the scaled model.

Table 3.8: Comparison of the geometric similitude parameters

Target values Numerical model

Mass [kg] 36.41 36.82

Ixx[kg/m2] 3.68 3.80

Moment of Inertia Iyy[kg/m2] 11.55 12.70

Izz[kg/m2] 11.22 12.50

to emphasize that the parameters chosen for the range of this study, represent what,

we believe, are the dominant physical effects regarding a container structure. Although

we are completely aware of the fact that real containers during marine transportation

are under the influences of many other physical parameters, their selective choice can

be excessively lengthy and overwhelming, involving a lot of theoretical and conceptual

discussion. Thus, dominant effects were prioritized.
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3.8 Considerations about the Scaled Model

(a) Time domain.

(b) Magnified time domain.

Figure 3.9: Characteristic signal obtained in the impact hammer test.

The stiffness graphs in Figure 3.11 further illustrate that differences are non-significant.

Difference regarding stiffness of racking of open side between target and numerical values

is 3.05 %. On the other hand, difference for the same condition between target and exper-

imental value is even smaller 0.83 %. The following condition, i.e., stiffness of racking of

closed side, showed difference between target and numerical values in the order of 4.76 %,

whereas difference for the same condition between target and experimental value is 9.52

%. Longitudinal stiffness difference between target and numerical value is 6.37%, lead-
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3.8 Considerations about the Scaled Model

Mode 1
40.87 Hz

Electrical grid
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65.09 Hz
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(a) Power spectrum for X direction.

Mode 1
40.85 Hz
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65.12 Hz

Mode 3
68.75 Hz
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74.40 Hz

Mode 5
81.72 Hz

Electrical grid
frequency

(b) Power spectrum for Y direction.

Figure 3.10: Eigenfrequencies obtained from the impact hammer test.

ing to the same inference as the two previous cases: non significant. For the remainder

case: torsional stiffness, difference between target and numerical value is 26.40%. This

difference is significantly higher. However, based on the fact that racking related values

presented good concordance, and represent dominant effect, such value was considered

appropriate. Moreover, that difference is acceptable in the presence of the various uncer-

tainties regarding container’s full scale parameters, like different manufacturers standards,

processes, welding, etc.
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3.8 Considerations about the Scaled Model

Table 3.9: Comparison between target, numerical, and experimental data of scaled model

Stiffness Side Target Numerical Experimental

Racking [MN/m]
closed 3.61 3.72 3.58

open 0.21 0.20 0.23

Longitudinal

[MN/m]
3.61 3.84 np

Torsional

[kNm/rad]
12.50 15.80 np

The last part of the study analyzed the frequency components of the structure. Fol-

lowing the example of the first part of the study, frequency related results presented

concordance even better than the static cases (please refer to table 3.10). Among the

five modes considered for our validation process, differences range from 0.3% to 4.94 %.

First, second, third, fourth and fifth modes showed differences of 4.12%, 1.89%, 4.94%,

0.32%, and 1.12%, respectively. Figure 3.12 illustrates frequency comparison for the five

first modes between numerical and experimental values.

Table 3.10: Eigenfrequencies obtained from the impact hammer test and frequency ex-

traction numerical analysis

Mode 1 2 3 4 5

Frequency [Hz]–Experimental 40.86 65.11 68.95 74.41 81.83

Frequency [Hz]–Numerical 39.24 66.37 72.54 74.17 82.76

This part of the project was undertaken to design and evaluate a scaled model of a

20 ft container. The study has shown that our approach to validate the proposed design

showed good agreement for static and frequency evaluation considering numerical and

experimental data. This finding has important implications for development of more

complex studies based on the methodology employed in the current study. Moreover,

the scaled model developed presents itself as a valid tool to simulate the behavior of

full-scale containers in a wide gamma of situations. In this panorama, it may contribute

significantly to the understanding about container stack dynamics, an area where intuition

and old standards are still preferred over more solid scientific principles.

Finally, some important limitations must be considered. The most important limita-

tion regards the minimum value for vertical stiffness according to ISO standards: 188.44

MN/m. According to Froude scaling, the minimum value for the scaled model must be
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3.8 Considerations about the Scaled Model
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(b) Comparison for racking stiffness of open side.

Figure 3.11: Summary of results for static cases studied.

10.6 MN/m. However, the vertical stiffness of the proposed geometry exceeds the full-

scale value by a factor up to three (3). This limitation can affect greatly the output of a

buckling analysis, inducing to wrong predictions for such case. However, this difference

has to be accepted in favor of the structural integrity of the rear end frame. The other

disparity observed in our proposed design, about the torsional stiffness, was discussed

early in this section.
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Chapter 4

Experimental Investigation for the

7x1 and 7x3 Cases

Calibration of the numerical model was performed through a series of experiments that will

be explained shortly in sections 4.1 and 4.2. Single stack experiments aimed understanding

the effect of some basic variables, described in each pertinent section, whilst three stacks

configuration has the main goal of identifying contact.

4.1 Seven-tiers Single Stack (7x1)

The study limited the analysis of displacement of top corner of some individual contain-

ers. Furthermore, for means of comparison the highest container was used for evaluation

purposes. As mentioned in section 2.5, displacement-time response data was analyzed

using three techniques: time history, coefficients of Fourier expansion and RMS value

comparison.

All vibrational tests described here were performed using a shaking table (Figure 2.3)

with technical specifications summarized in table 2.1. The shaking table test employed

seven scaled models of a 20 ft ISO freight container arranged in a single stack (Figure

4.2). The structural and geometrical details of the model were exhaustively discussed

in section 3. This arrangement was used to perform dynamical tests with controlled

driving excitation employing a sinusoidal function where frequency and amplitude were

fixed for every trial. Furthermore, three physical variables were idealized to provide

extra information about the system’s behavior: dead weight added to the system (Figure

4.1b), shaking table horizontal rotation (Figure 4.1c) and twist lock gap size (Figure

6.3). A quantitative list of the experimental control variables is presented in table 4.1.

Additionally a brief explanation and a summary of these variables is presented in section

2.4.

69



4.1 Seven-tiers Single Stack (7x1)

(a) Non loaded case. (b) Loaded case. (c) Rotated case.

1

2

3

4

(d) Points numbering.

Figure 4.1: Physical parameters and labeling.

Regarding experimentation, each scaled container was linked to its adjacent, upper

and lower, counterpart through a bolt placed in the corner castings as can be seen in

Figure 6.4a. The stack was fixed to a socket welded to the shaking table in the same

fashion depicted in Figure 6.4b. Regardless of lashing system, this arrangement emulates

the same conditions faced in a regular securing process administrated before container

transportation. Three reflexive markers positioned on the right top corner casting of the

scaled models in the first, fourth and seventh tiers, corresponding to their open sides,

were used to record displacement using a high-speed camera (section 2.2.2). Moreover,

and an extra marker was placed in the shaking table to acquire the driving excitation

signal. The sampling rate of the high-speed camera was set to 500 Hz. The numbering of

the reflexive markers follows the schematics showed in Figure 4.1d. Finally, the recorded

data was filtered using a low-pass technique described in section 2.6.

Table 4.1: Experimental parameters (7x1)

Amplitude [mm] 2 4 6

Frequency [Hz] 0.5 1 2 5

Gap [mm] 1 2

Payload [kg] 0 45

Rotation [degree] 0 2 5 10
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4.2 Seven-tiers Three Stacks (7x3)

Table 4.2: Terminology used to refer to the displacement-time response data (7x1)

Description Nomenclature

Displacement with relation to a fixed reference (ground) Local motion

Subtraction of displacement-time driving excitation (point 4)

and displacement-time response (point 1, 2 and 3)

Relative motion

4.2 Seven-tiers Three Stacks (7x3)

The study limited the analysis of displacement of top corner of some individual contain-

ers. Furthermore, for means of comparison the highest container was used for evaluation

purposes. In other words, points 1, 4, 5, 10 and 11 were used to analyze the mechanical

behavior of the system. As mentioned in section 2.5, displacement-time response data

was analyzed using three techniques: time history, coefficients of Fourier expansion and

RMS value comparison.

All vibrational tests described here were performed using a shaking table (Figure 2.3)

with technical specifications summarized in table 2.1. The shaking table test employed

seven scaled models of a 20 ft ISO freight container arranged in three stacks (Figure

4.2). The structural and geometrical details of the model were exhaustively discussed in

section 3. This arrangement was used to perform dynamical tests with controlled driving

excitation employing a sinusoidal function where frequency was used as variable. Because

of the knowhow acquired during the 7x1 study, amplitude was fixed for every trial using

the highest proposed value. Furthermore, one extra physical variable was idealized to

provide extra information about the system’s behavior: shaking table horizontal rotation

(Figure 4.1c). A quantitative list of the experimental control variables is presented in

table 4.3. Additionally a brief explanation and a summary of these variables is presented

in section 2.4.

Regarding experimentation, each scaled container was linked to its adjacent, upper

and lower, counterpart through a bolt placed in the corner castings as can be seen in

Figure 6.4a. The stack was fixed to a socket welded to the shaking table in the same

fashion depicted in Figure 6.4b. Regardless of lashing system, this arrangement emulates

the same conditions faced in a regular securing process administrated before container

transportation. Three reflexive markers positioned on the right top corner casting of the

scaled models in the first, fourth and seventh tiers, corresponding to their open sides,

were used to record displacement using a high-speed camera (section 2.2.2). Moreover,

and an extra marker was placed in the shaking table to acquire the driving excitation

signal. The sampling rate of the high-speed camera was set to 250 Hz. The numbering of
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4.2 Seven-tiers Three Stacks (7x3)

(a) Non-rotated case. (b) Rotated case.

11 5 4 1

267

398

12

10

(c) Points numbering.

Figure 4.2: Physical parameters, labelling and details of the linking components.

the reflexive markers follows the schematics showed in Figure 4.2c. Finally, the recorded

data was filtered using a low-pass technique described in section 2.6.

Table 4.3: Experimental parameters (7x3)

Amplitude [mm] 6

Frequency [Hz] 2

Gap [mm] 1

Payload [kg] 0

Rotation [degree] 0 2 10

Table 4.4: Terminology used to refer to the displacement-time response data (7x3)

Description Nomenclature

Displacement with relation to a fixed reference (ground) Local motion

Subtraction of displacement-time driving excitation (point 12)

and displacement-time response (points 1 to 11)

Relative motion
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Chapter 5

Numerical Model

5.1 Container Model Structure

Each numerical model (scaled) was considered as steel frames sections compounded of

circular and pipe beams. Details of every section are described in table 5.1. Nine nodes

define each scaled container: four on the corners and one in the geometric center. This

node is employed to adjust moments of inertia and mass for each container using the

experimental model values as target. Additionally, this node is connected to the bottom

nodes through springs. Additionally, numerical model was calibrated statically and dy-

namically to comply to structural stiffness and eigenvalue range of the design used for

experimentation and described in section 3. The material was assumed an isotropic, lin-

ear elastic material with the following properties: Young’s modulus E=210 GPa, Poisson

ratio ν=0.3 and density ρ=7850 kg/m3, characterizing steel as mentioned earlier in this

section. Furthermore Figure 5.2 depicts the basic geometry of each individual container

that compound the numerical model for the seven-tier single stack (7x1) and seven-tier

three stack (7x3) cases.

5.2 Twist Lock Non-Linear Behavior

As mentioned in section 1.2.2, in spite of its importance and broad usage, twist lock’s tech-

nical requirements only account for basic features like dimensions and minimum structural

stiffness, neglecting more complex dynamics responses like effect of transient forces on it.

Moreover, standards only account for the component itself and do not infer about its

role as a link in the container securing system. In addition, recent increases in container

losses have heightened the need for a better comprehension of its dynamical behavior and

the main factors behind its mechanisms,which it would lead to prevention rather than

economical minimization. In this panorama, studies regarding twist lock dynamics is an
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5.2 Twist Lock Non-Linear Behavior
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5.2 Twist Lock Non-Linear Behavior

X

Y

Z

Figure 5.1: Profile of the beams used for the numerical model.

Figure 5.2: Details of the nodes, non-linear springs connecting individual containers and

springs (red) used to connect the geometric center.

important step to understand and simulate properly container stack dynamics. Thus,

this section will describe an attempt to clarify its nuances and mechanisms using a well

established numerical method: finite element analysis, and an well known experimental

technique: shaking table testing. This experimental approach has the advantage of al-

lowing a great deal of control over vibrational variables like amplitude and frequency,

as well possibility of vibration input following special functions (transient, non-transient,

random, recorded, etc.). Although the primary goal of this section is to model the twist

lock mechanical behavior, its secondary purpose is to provide a auxiliary mathematical

tool to model container stack dynamics. The protocol adopted to find an approach to

simulate twist lock’s mechanical behavior is explained in the next sections.
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5.2 Twist Lock Non-Linear Behavior

5.2.1 Experimental Investigation

5.2.1.1 Slamming Test

The experiment was performed using an empty 20 ft ISO dry freight container (NYK-

MTI, Japan) fixed to the shaking table through its corner castings using semi-automatic

twist locks (KOEI Kinzoku Industrial) emulating the same conditions faced in regular fix-

ing process before container transportation. Three types of instruments were used during

the experimental investigation: shaking table, accelerometers and laser displacement me-

ters. Please refer to Figure 5.3 for positioning of the transducers and other experimental

settings. Experimental apparatus is described in sections 2.2.1 and 2.2.2. The system

was excited using controlled displacement with a transient characteristic (step function).

These displacements were applied on the container in the vertical direction inducing three

different velocities characterizing each trial: 0.6 m/s, 0.7 m/s and 0.8 m/s. This kind of

transient excitation was chosen because is close to slamming impact, caused by pitching

in adverse sea condition, observed during marine transportation. The excitation history

is shown in Figure 5.4.

A Accelerometer

B Upper corner casting

C Semi-automatic twist lock

D Lower corner casting

E Laser displacement sensor

A

E

D

C

B

Displacement
measured

F Shaking table

G Driving excitation

F

G

z

y

Figure 5.3: Figure at left side is a schematic representation of the experimental settings

(door view). The one at right side is a magnified view of the region of interest in this

study (corner 1).
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5.2 Twist Lock Non-Linear Behavior

Figure 5.4: Step function used as driving excitation (vertical direction).

5.2.1.2 Tensile Test

Acquire the longitudinal stiffness of the twist lock used for our experiment is an essential

step to provide an accurate value to be used in the numerical model. In order estimate this

value, an uni-axial tensile test was performed with the same model of twist lock used in

the experiment. Result of the uni-axial test performed is depicted in Figure 5.5. Stiffness

used for the linear region of the curve depicted in Figure 5.7 was calculated based on

the proportional linear region of the experimental data, corresponding to the blue line in

Figure 5.5.

5.2.2 Numerical Analysis

A simplified 3-D finite element model of the system: a 20 ft ISO standard size container,

twist locks and shaking table was developed using a commercial software (ABAQUS

version 6.7, Dassault Systems). Further details of the model are depicted in Figure 5.8.

Container was considered an isotropic solid section, consisting of a linear elastic material

with the following properties: Young’s modulus E=210 GPa, Poison ratio ν=0.3 and

density ρ=7850 kg/m3. The main object of our study, twist locks were modeled as non-

linear springs. Furthermore, horizontal and vertical gaps between twist lock and corner

castings (see Figure 5.6 for details) were incorporated into the model by describing the

backlash phenomenon, i.e., region where twist locks exhibit no stiffness. The mechanical

property of the non-linear spring is shown Figure 5.7, where the stiffness of the twist

locks were estimated through a uni-axial tensile test described in section 5.2.1.2. At

last, shaking table was considered a rigid body where the driving excitation, following
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5.2 Twist Lock Non-Linear Behavior
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Figure 5.5: Result of the tensile test of the twist lock used for experimentation. Line in

blue represents the linear limit where the stiffness value was calculated.

same conditions imposed in experiments (see Figure 5.4), was applied to it. To provide

damping, discrete damping elements, denominated dashpots, were included in the 3-

D model following the same line of action of the non-linear springs. Finally, dynamic

numerical analysis accounted for geometric non-linearity in a implicit integration scheme.

Twistlock shaft

Shaking table

Gap

Figure 5.6: Cut view of corner casting-twist lock system (corner fittings or corner castings

are depicted in green).
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Figure 5.7: Non-linear spring relation used to represent twist lock mechanical behavior.

Figure 5.8: Finite element model (20 ft container in red and shaking table in blue).

Connecting elements are non-linear spring and dashpots.

5.2.3 Data Analysis

Elongation history of twist lock was calculated using the finite element model and com-

pared to experimental data to validate the numerical approach for the twist lock. As

can be observed from the Figure 5.10 simulation and experimental results have similar

patterns. However, there some small differences between experimental and numerical re-

sults. Differences observed in Figure 5.10 are caused by the way model and real object
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5.2 Twist Lock Non-Linear Behavior

experienced the transient displacement applied to the system. Shaking table is activated

through a series of hydraulic pistons, which naturally will present a response delay caused

by mechanical friction. In the other hand, numerical model does not include this physical

phenomenon. Thus, the response curve is prone to present a higher slope angle inclined

for the duration of the excitation. In other words, numerical velocity and acceleration

present higher curve slope when compared to experimental data. Moreover, numerical

model considers twist locks as non-linear springs with zero stiffness for the gap size con-

sidering tension region of the curve. For compression, this component behaves linearly so

there is the appearance of the successive peaks after the main event until the damping

included in the model finally forces the system to rest. Some discrepancies were observed

for the elongation measure in every corner. Such differences are attributed to a non-

symmetrical distribution of the weight in the real container according to the geometric

center of it. Thus, every twist lock experiences slightly different elongations for every

corner (please refer to Figure 5.9).

Figure 5.9: Discrepancies observed for experimental data.

There is a proportional relationship between the speed of excitation and the elongation

measured in the twist locks, i.e., increase in velocity induces increase in the elongation.

Since the excitation was given only in the vertical direction, the gaps existing in the

remaining directions, between twist locks and corner castings, do not affect the stack

behavior in these directions. It is obvious that these gaps will be active and effective

for the other loading conditions such as racking. Because of gaps, force flows pass over

from lower corner casting to upper corner casting through the shaft of twist lock directly

without delay at compression and move together as one body. However during tension,

first gaps are closed and later force transmission starts. The detail of the twist lock-corner
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5.2 Twist Lock Non-Linear Behavior

casting connection is shown Figure 5.6. Acceleration data was used to double check the

expected mechanical behavior measured through displacement-time response analysis.

The present part of this study was designed to determine the mechanical behavior

of the twist lock in a really usual situation faced during maritime transportation. The

comparison between numerical and experimental data presents enough body of evidence

to ensure that twist lock fundamentals were completely understood. Moreover, such

behavior may be described by a mathematical relationship. Undoubtedly, this is one of

the most significant findings to emerge from this study. An implication of this is the

possibility of simulation of a more complex situation involving the system here described.

For instance, this approach can be used to investigate behavior of a container stack

considering dynamical loads. Although, analysis considering the system described in

this paper are still in its infancy, mainly because of omission of other securing system

components, the importance of this step cannot be neglected: twist lock behavior summed

to the impact between adjacent stacks are the main responsible for non-linearities observed

in the system. Thus, numerical models must include both phenomena in order to present

a realistic estimation of container stack dynamics, which would be a major step to identify

the causes of some problem faced by the marine transportation industry, e.g., container

losses, that have never been approached before.
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5.2 Twist Lock Non-Linear Behavior

(a) 0.6 m/s case.

(b) 0.7 m/s case.

(c) 0.8 m/s case.

Figure 5.10: Comparison between experimental and numerical data.
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5.3 Damping

5.3 Damping

Hitherto, our knowledge regarding damping is fairly limited, especially when compared

to our comprehension about mass and stiffness systems. As a result, predicting vibration

parameters regarding damping is actually a difficult task in real situations [49]. However,

neglect damping when modeling or experimenting is an unrealistic assumption, because it

is responsible for controlling the dynamic response and attenuation in structures subjected

to dynamical regimes. Additionally, conventional engineering materials like steel and high

strength aluminum alloys provide small amounts of internal material damping, not enough

to prevent large amplification at or near resonant frequencies. Thus, include damping in

the analysis is a crucial step to properly model a real structure, and even for experimental

purposes, damping assumption is important.

There are different methods to define damping in order to be used in practical sit-

uations like experiments, e.g., logarithmic decrement commonly used in vibration tests,

or energy loss per cycle for cyclic tests. Moreover, there are some others approaches for

damping as complex modulus, rise-time or spectrum ratio for wave propagation analy-

sis, only to mention [68]. Theoretically, damping assumptions used for single degree of

freedom systems can be extended to multi degree of freedom systems. Among these the-

oretical approaches, three are notably in use: viscous damping, Coulomb damping and

structural damping. Viscous damping is introduced in the structures through a viscous

damping element called dashpot, in which the force is assumed to be proportional to the

relative velocity between the two ends of it. In case of complex structures, like the one

modeled in this study, dashpots did not present a good option. The inclusion of damping

through dashpots had as consequence the appearance of beat phenomenon and excessive

attenuation of the response, which is completely unrealistic. These two effects are shown

in Figure 5.11 below.

To better understanding and illustrate the advantage of using Rayleigh damping in-

stead of discrete damping elements, it is better to plot displacement curves for the same

model built considering damping in two types, mentioned a priori. The curve in blue

represents our model considering discrete damping. In the other hand, the curve in red

represents damping using a proportional form, in this case Rayleigh damping, which is

characterized by two parameters: alpha (α) and beta (β). Both curves are depicted in

Figure 5.11. A formal treatment for this kind of damping will be explained in the next

paragraphs. As can be seen in the Figure 5.11 inclusion of Rayleigh damping avoids both

phenomena observed in the discrete approach (Figure 5.11). Notice that the signals have

a phase difference. Nevertheless, in this section, rather than emphasizing this problem

domain, we would like to present the advantage of one approach in detriment of the other.
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5.3 Damping

Resuming damping assumptions, Coulomb damping, is caused by the relative motion

of surfaces sliding against each other, i.e., bodies sliding in dry surfaces (Meirovitch,

1986), whilst structural damping is introduced to model energy dissipation of continuous

elements. For means of numerical analysis of dynamical problems a theoretical approach is

often used: Rayleigh damping also referred as proportional damping. Rayleigh damping is

a mathematical tool frequently used to approximate continuous systems that are modeled

by finite element method. The next section will present a mathematical treatment of this

technique.

5.3.1 Rayleigh Damping

The differential equations of motion of a multi degree of freedom system can be derived

from the equilibrium of forces associated to each degree of freedom, i.e., the differential

equation of motion for the system is derived by Newton’s second law. The system of second

order differential equations obtained, and that governs the movement of structures subject

to dynamic load, has the following form:

[M ]q̈(t) + [C]q̇(t) + [K]q(t) = F (t) (5.1)

Where [M], [C] and [K] are the mass, damping and stiffness matrices of the system,

q̈(t), q̇(t) and q(t) are the acceleration, velocity and displacement vectors and F(t) is the

driving or excitation force. To assemble mass and stiffness matrices is a relatively easy

task. However defining the damping matrix of the system can prove to be very difficult.

Additionally, solving the system represented above, which has n size, is time consuming

since they are coupled and the bandwidth is large [52]. Remembering that the system is

solved for every time step which increases the overall time.

Researchers like Bathe & Wilson made some attempts to rewrite these equations in a

way that they become decoupled. The main advantage of this process is that the total

number of equations necessary to solve the system decreases drastically. Returning to the

main topic: damping approximation. Caughey & OKelly proposed a damping with the

following general form

[C] = M

p−1∑
k=0

σk
(
[M ]−1[K]

)k
(5.2)

Which seems a reasonable approximation for small levels of damping. Nevertheless, the

main outcome of this assumption is the decoupling of the system’s equations guaranteed
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5.3 Damping

(a) Horizontal direction case.

(b) Vertical direction case.

Figure 5.11: Comparison between dashpot and Rayleigh coefficients approach.

85



5.3 Damping

by the existence of real modes. If only two terms are considered in the above expression,

i.e., in the special case where p=2, we obtain the classical Rayleigh damping form [62]

[C] = α[M ] + β[K] (5.3)

Where α and β are constant coefficients. The main advantage of this approach is that

it preserves the simplicity of the real normal modes as in the undamped case [2]. Con-

sequently, the calculated response is greatly simplified because of the system’s equation

decoupling. The equivalent decoupled form of equation 5.2 is

2ζ =

p−1∑
k=0

αkω
2k−1
i (5.4)

It is easy to identify that the damping ratios depend on the natural frequencies to an

odd power. Considering the two parameter equation 5.3, equation 5.4 yields:

ζ =
α

2ωi
+
βωi
2

(5.5)
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Figure 5.12: Relation of damping ratio (ζi) and natural frequency (α = β = 1).

From the Figure 5.12 is easy to notice that for small frequencies the first term in equa-

tion 5.5 governs the overall behavior of the curve (hyperbole). In the other hand, when

frequency range is increasing, the second term in equation 5.5 is responsible for dictating

curve behavior (linear). The main concern here is for systems with very low fundamental
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5.3 Damping

frequency where the curve in non-linear. Outside this region the curve converges quickly

to a linear proportionality with frequency. Thus considering that the non-linear range is

very small, non-linear effects from damping may be neglected. Consequently, damping ra-

tio for every mode, from now on, will be considered linearly proportional to the frequency

of the system. Considering a discrete set of frequencies ω1, ω2,...,ωm, and damping ratios

ζ1, ζ2,..., ζm they have the following expression

ζi =
ζm − ζ1
ωm − ω1

(ωi − ω1) + ζ1 (5.6)

Where ζ1 and ω1 are the damping ratio and natural frequency for the first mode,

respectively. ζi and ωi are the damping ratio and natural frequency for the i–th mode

(for all i ≤ m) and ζm and ωm are the damping ratio and natural frequency for the last

significant mode used in analysis.

The next step is to perform an eigenvalue analysis. For a system with n degrees of

freedom there are n eigenfrequencies. However, many of this eigenfrequencies have only

theoretical value; in other words, a real structure will never present most of the values in

the eigenfrequencies spectrum and subsequent eigenmodes. Some researchers claim that

for most structures the number of significant modes, mass participation majority (about

95%), is usually 3 at minimum and 25 at maximum [19].

Thus based on the eigenvalue solution and modal mass participation one can identify

the number of relevant modes, in our notation m. After that, proceed to a frequency

extraction (eigenfrequencies) for 2.5 m. After that, one just has to assume the damping

ratio range for the problem, i.e., choose ζ1 and ζm. Using these values, interpolate other

values of damping ratio for intermediate modes i (1 ≤ i ≤ m), using equation 5.6. The

remainder damping ratios for modes greater than m (m ≤ i ≤ 2.5 m), can be extrapolated

using

ζi =
ζm − ζ1
ωm − ω1

(ωi − ωm) + ζm (5.7)

One obtains a first set of data consisting of ζ1, ζm, ω1, and ωm. This set will be

denominated half range damping ratio because α and β are calculated based only on the

first m modes. Based on the above set of data obtain β from the equation

β =
2ζ1ω1 − 2ζmωm

ω2
1 − ω2

m

(5.8)

Back-substituting the value of β in the expression

2ζiωi = α + βω2
i (5.9)
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5.3 Damping

Table 5.2: Eigenvalue analysis results

Mode Frequency[Hz] Angular Frequency[rad/s]

1 1.62 10.15

2 4.86 30.54

3 5.91 37.12

4 11.36 71.40

5 11.79 74.10

6 14.65 92.02

7 20.74 130.34

8 22.70 142.60

9 24.50 153.93

10 29.28 183.99

Obtain the value of α. The second set of data consists of ζ1, ζ2.5m, ω1, and ω2.5m. This

set will be denominated full range damping ratio because α and β are calculated based

on all modes. Similarly the first set, one has to calculate the values of α and β using

equations 5.8 and 5.9. A natural way to obtain a third is through the average between

the two previous sets. To find the best values of α and β , one must plot the four sets

based on equation 5.5 and check which data fits the best with the linear interpolation

curve for the first m significant modes. The flowchart for this calculation is depicted in

Figure 5.13.

The numerical values obtained from frequency analysis using ABAQUS can be seen in

the Table 5.2. Physically, is possible to state that only the first three modes are relevant.

Nevertheless, to use this approach more modes are needed.

Based on these values of frequency, one can calculate the damping ratio range based

on a linear interpolation described in the previous paragraphs.

Using these values three kind of calculations were performed: half range, full range

and average. Values for each approximation are presented in table

Next step is to plot these four curves and choose the best values for α and β. The

four curves are depicted in the Figure 5.14. As mentioned before, the first modes are the

most important ones, from a physical point of view. In this panorama, one has to choose

the values of α and β that best fit these modes. From simple inspection the values in

question are

[!] α = 0.1198[s−1], and β = 0.0028[s] (5.10)
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5.3 Damping

Eigenvalue Analysis

Assume damping 
ratio range

Interpolate/extrapolate
values that were 

not assumed

Obtain three sets 
of data

Calculate alpha and beta

Obtain damping ratio 
curve and plot them

Choose the best fit
Use alpha and beta 

obtained

Using equation
5.5 

Average

Full range approximation

Half range approximation

Frequency extraction 
up to 2.5 m

Identify relevant modes

Figure 5.13: Algorithm used to calculate the coefficients in the Rayleigh damping approx-

imation.
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5.3 Damping

Table 5.3: Linear damping ratio interpolated/extrapolated from equations 5.8 and 5.9.

Values for the first and the fourth modes were assumed for the problem

Mode Frequency[Hz] Linear damping ratio ζi

1 10.15 0.02

2 30.54 0.047

3 37.12 0.055

4 71.40 0.1

5 74.10 0.104

6 92.02 0.127

7 130.34 0.177

8 142.60 0.192

9 153.93 0.208

10 183.99 0.247

Figure 5.14: Plot of the four approximations.
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5.4 Contact

5.4 Contact

Contact is a physical phenomenon that is difficult to be emulated numerically. There are

three methods to model contact. Important information about each is presented in table

5.5. Among these three methods we opt for method II, i.e., contact among stacks was

modeled through the inclusion of a non-linear spring-damper between adjacent nodes.

Merits and demerits are explained in table 5.5. This approach was chosen for its sim-

plicity, however some other points must be emphasized. First, contact in the container

stack is strictly restrict to the corner castings, macroscopically speaking, which avoids the

necessity of defining surface to surface interaction, e.g. friction. Second, this approach is

time saving compared to any contact approach provide in the commercial package. How-

ever, the disadvantage of the non-linear spring-damper element is that uniform dissipation

of energy during the approach and restitution periods is not realistically due to the fact

that its viscous component is constant (same damping coefficient) during the whole time

of collision [32, 83]. Furthermore, it is the most frequently used type of an impact element

and is also referred as Kelvin-Voigt model [6, 8, 37, 38, 83]. The non-linear spring follows

the mathematical relation depicted in Figure 5.15b. For a complete state-of-the-art review

about this kind of approach please refer to the paper written by Cole et al. in 2010.

The value of the stiffness was set as 10 times the stiffness of the racking stiffness of the

container’s closed end. Although this value is largely arbitrary, as long the value itself is

not too small or too big, it has non-significant effect in the impact force observed among

stacks. The damping coefficient was calculated based in the following formulas presented

by Anagnostopoulos

c = 2ζ

√
k
m1m2

m1 +m2

(5.11)

ζ = − ln e√
π2 + (ln e)2

(5.12)

Where k is the stiffness of the linear part of the curve 5.15b, c is the damping constant,

ζ is the damping ratio for the collision element and e is the coefficient of restitution.

Theoretically, a value of e = 1 deals with the case of a fully elastic collision, and a value of

e = 0 with a fully plastic one. Regardless the fact that there are few experimental evidence

about the estimation of this value, researchers like Jankowski and Anagnostopoulos &

Spiliopoulos recommended values ranging from 0.5 to 0.75. More recently Cole et al.

stated that this range is wider than it was believed before: 0.4 to 1.0. The value used

for this study was e = 0.65 based on experimental evidence presented by Goland et al.,
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5.5 Failure

Conoscente et al., Zhu et al. Chau et al. and Shakya et al.. Additionally, the coefficient

of restitution is obtained from the equation

e =
v

′
2 − v

′
1

v1 − v2
(5.13)

The expression is derived from the theory of impact among colliding bodies where v1

and v2 are the velocities before impact and v
′
2 and v

′
1 are the post impact velocities. The

coefficient itself is an accounting of how much energy was dissipated during impact and

incorporates response non-linearities [37]. The value of this coefficient can be determined

experimentally by dropping a sphere on a massive plane plate of the same material from

a height h and observing the rebound height h∗. Then, the following formula is used [32]:

e2 =
h∗

h
(5.14)

5.5 Failure

Failure was included in the numerical model by defining zero stiffness after a certain

displacement value. This value was decided based on the tensile test described in section

5.2.1.2.

5.6 Euler Buckling

A classical and elegant way to define buckling for structures consisting of slender beams

is the Euler buckling theory.

[h]Pcritical =
π2EI

L2
effective

(5.15)

[h]I =
π2 (R4 − r4)

64
(5.16)

5.7 Time Increment

Time increment was calculated according to the stability condition presented by Courant

et al.. Analytically:

∆tcritical = L

√
ρ

(λ+ 2µ)
(5.17)
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Separation

Non-linear spring (contact)
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(a) Schematic representation of the model (front view).
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(b) Contact relationship.

Figure 5.15: Details of the contact element used for the numerical simulation.
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Figure 5.16: Zero stiffness included in the twist lock non-linear relationship to simulate

failure.

Where L is the maximum element length, ρ is the material density and λ, µ are the

Lamé constants. Where the Lamé constants can be calculated using

λ =
νE

(1 + ν) (1− 2ν)
(5.18)

ν =
E

2 (1 + ν)
(5.19)

For the case of the structure used in this dissertation the characteristic values are: L

= 1647.11 [mm], E = 210x103 [N/mm2] and ρ = 7.85x10−6 [kg/mm3]. Using equations

5.18 and 5.19 yields λ = 9.695x104 [N/mm2] and ν = 7.617x104 [N/mm2]. Finally placing

these two values and ρ in equation 5.17 gives ∆ = 9.24x10−3 [s].
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