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Abstract

This paper presents a finite element method for 3-D analysis of an electro-
magnetic eigenvalue problem for cavity resonators. First, we derive some
weak formulations for this problem, a typical one of which is a mixed for-
mulation that employs the Lagrange multiplier to deal with the divergence-free
condition. Then we give a mixed finite element method based on the mixed
formulation. We present concrete finite element models by the use of the
Nedelec type finite element spaces for electric or magnetic fields. This approach
is mathematically rigorous and is also convenient to deal with the electro-
magnetic. boundary conditions. We also present some finite element models
for the analysis of axisymmetric cavities. Finally, some elementary numerical
results are given to demonstrate the validity of our approach.

Key words: eigenvalue problem, electromagnetics, mixed FEM, Nedelec edge
elements
§1. Introduction

In 3-D (three-dimensional) analysis of cavity resonators, we have the
following eigenvalue problem for the electric field By

rotrot B=2F, div B=0 in Q; 7#xE=0 on 32, (1)

where 2 is the eigenvalue that is proportional to the square of frequency, 2
is a bounded 3-D domain occupied by the cavity, X denotes the outer product
operation, 32 is the boundary of 2, and 7 is the unit outward normal on 242.
Sometimes, a boundary condition div F=0 is supplemented on 22. If we use
the magnetic field H in place of E, the problem becomes

rot rot H=2H, div =0 in 2; #-H=0, #xrot H=0 on 92 , (2)

where - denotes the inner product operation. It has been very difficult to apply
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the finite element method to 3-D analysis of the above problem probably for
lack of appropriate weak (or variational) formulations and reliable finite element
models.

In this paper, we will present weak formulations for the above problem,
including a mixed formulation based on the Lagrange multiplier method. Some
comments are also given on artificial boundary conditions for problems with
geometric symmetry and/or antisymmetry. Then we will give a new family
of mixed finite element models by the use of the Nedelec finite element spaces
for E or H [17, 18]. In this approach, the nodes of elements are edges, and
the nodal unknowns (degrees of freedom) are the values of £ or H in the edge
directions. Hence, such elements are also called edge elements. The assumed
distributions of £ or H are queer-looking low order polynomials that are
discontinuous on interelement boundaries but whose tangential components are
continuous. These elements are also very easy to deal with the boundary
conditions appearing in (1} or (2). We will also give some comments on the
properties of the arising algebraic eigenvalue problems in the finite element
analysis. In particular, the Lagrange multiplier may be eliminated in numerical
computations at the expense of getting highly degenerated zero eigenvalue in
the approximate problem. Thus, when such elimination is made, we must be
very careful to separate physically meaningful (positive) eigenvalues from such
nonphysical (spurious) one. We have developed computer programs and obtain
some numerical results to demonstrate the feasibility of our approach.. We also
test performances of some existing supercomputers by our computer programs.
The results are generally reasonable, and the proposed approach appears to
be very promising. For theoretical analysis of the method, see Kikuchi [11,
12, 13]. In Appendix, we give_*explicit expressions- for several kinds of ap-
proximate functions for Eor H.

Before going into our main subjects, we list some important works related
to ours. Weiland [19] developed a finite difference scheme based on the control
volume method, which is similar to our finite element schemes. He also applied
the scheme to analysis of cavities of various shapes. As is already mentioned,
Nedelec [17, 18] proposed some finite elements for approximating vector fields
with their rotations. He also analyzed approximation properties of the proposed
elements. Hano [8] presented a rectangular finite element independently of
Nedelec, and applied it to two-dimensional cavity resonator problems (i.e., the
waveguide problems). Bossavit [3] also showed that the Nedelec elements can
be applied to numerical analysis of various electromagnetic problems. Fur-
thermore, he pointed out that such finite elements can be traced back to
Whitney [20], and named them the Whitney elements. Our work started
independently of these related ones, but has been much refined thanks to
them. It is also to be pointed out that Krizek and Neittaanmaki [15] made
clear that the classical vertex type finite elements may be used to the present
problem if 2 has sufficiently smooth boundary. However, such an approach
is inadequate, for example, when £ has a reentrant corner [12].
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§2. Basic formulations

Let 2 be a bounded domain in R® with Lipschitz continuous houndary
0. The explanations given below are valid for the two-dimensional (2-D)
problems corresponding to (1) and (2) after minor modifications.

Let L,(2), HYQ) and H,(2) be the usual (real) L,-type Hilbert spaces of
functions defined in 2, and let us denote the inner products of L,(2) and L.(2)*
by the common notation (-, -). We also use the following real Hilbert spaces
appearing in electromagnetics [5, 6].

Hirot, 9)={Ee L,(2)*: rot Be L)%, (3)
Hy(rot, 9)={E e H(rot, 2): #xE=0 on 99} . (4)

The second space above is used for electric fields since the tangential com-
ponents of functions in this space vanish on 92. Hereafter, we will summarize
some weak (or variational) formulations for (1) and (2) derived by one of the
present authors [11, 12]. There are some other related formulations which are
not presented below, since they are not explicitly used in this paper.

First, let us show some weak formulations in terms of electric field E.
A natural weak formulation for (1) is:

[B1]. Find {3, E}e R'X Hy(rot, @) such that E+0 and
(rot B, rot E*)=2(E, B%; VE*e H,(rot, ), (5-1)
(B, grad q)=0 VqeH}2) . (5-2)

Here, (5-2) simply means that div E=0 in the distributional sense. Note here
that if B satisfies (5-1) for 250, then it also satisfies (5-2) since we can sub-
stitute grad g as E* into (5-1). Thus, we can omit (5-2) in purely theoretical
considerations. However, such an approach is often accompanied with the
spectral pollution in practical numerical computations [7], since A==0 then be-
comes an infinitely degenerate eigenvalue.

To deal with (5-2) more rigorously, we consider the following mixed
formulation based on the Lagrange multiplier method.

(B2l. Find {3, B, pye R*x Hy(rot, Q) x H}(Q) such that B+0 and
(rot B, rot B*)+(grad p, E¥)=1(E, B%); VE*e Hyrot, 2), (6-1)
(E, grad g)=0; Vge H}(2). (6-2)

The Lagrange multiplier is p, which is shown to be zero by equating E* to
grad p e Hy(rot, 2) in (6-1). _

If we use the magnetic field H in place of the electric field, we have the
following weak formulations for (2).

[H1]. Find {2, H}e R*x H(rot, Q) such that H#0 and
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(rot H, rot H¥)=a(H, H%; VH*e Hrot, 2), (7-1)
(H, grad 9)=0; Vge HYQ) . (7-2)
[H2]. Find {4, H, p) e R*x (rot, 2) X H\Q) such that H+0 and
(rot H, rot H*)++(grad p, H*)=2(H, H*; VH*e H(rot, 2), 8-1)
(H, grad q)=0; Vge H'(®) . &-2)

Note the difference of the employed function spaces from those of [Ell and
[E2]. Again, the Lagrange multiplier becomes zero (more precisely, grad p==0).
The boundary conditions in (2) are now taken into account either as a natural
boundary condition or a constraint condition in the present two formulations,
and do not appear explicitly in the requirements for the employed function
spaces Hirot, 2) and HY{(2). Equivalence of [H2] to [E2] for 140 is fully dis-
cussed in [12] in the framework of L,-theory.

§3. Finite element models

We will consider a mixed finite element method based on [E2]. It is also
possible to construct a finite element method based on [H2] if we modify the
boundary conditions imposed on the approximate function spaces.

Hereafter, we assume 2 to to be a bounded polyhedral domain for sim-
plicity. We first consider a regular family of triangulations for @ by tetrahedra
and then construct an appropriate family of finite-dimensional subspaces of
H(rot, Q) x H} Q) associated with the triangul_'fxtions.

After Nedelec [17, 18], we approximate E={E,, E,, E,} in each tetrahedron
finite element (Fig. 1) as

E.=a,Fay+az, BEy=a,—aytasz, E~ai—a@—ay , (9)

where «, - --, ay are coefficients, and #, ¥ and z are the usual Cartesian co-
ordinate components. Furthermore, we impose that the tangential components
of the above % are continuous on the common face of any two tetrahedra in
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Fig. 1. 3-D edge elements with vertex numberings
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the triangulation. Then the totality of such fields is shown to be a finite-
dimensional_}subspace of H{rot, 2), which we will denote by X*. If we also
impose on E that its tangential components vanish on 992, then the totality of
such functions becomes a finite dimensional subspace of Hy(rot, 2). We will
denote it by Xy. In the present approximation, the “nodes” of finite elements
are _@dges, and the nodal parameters (degrees of freedom) are the components
o_'J;’ E in the edge dix;ections, which are shown to be constant. Moreover, such
E satisfies that rot E=const. and div £=0 in each tetrahedron.

On the other hand, the approximation of p is the usual piecewise linear
polynomial, that is,

p=p,+B.4+By-+Bz in each tetrahedron . (10)

Moreover, p is continuous on all interfaces between tetrahedra. Then the
totality of such p is a finite-dimensional subspace of H(£), which we will
denote by Y*. If p vanishes on 82 in addition, then the totality of such p is
a finite-dimensional subspace of H{(2), which we will denote by Y{. An
important relation to hold between X" and Y* (X} and Y7, resp.) is:

grad p, e X*; Vp,e Y* (gradp,e X}; Vp, e Yy, resp.) . (11)
The mixed finite element method based on [E2] is as follows.
[E2l,. Find {4, B, b} e R*X X3 X Y} such that E,+0 and
(ot B, rot B -+(grad p,, BN =1(F,, B¥); VEreXt, (12-1)
(E,, grad g)=0; Vg,e¥r. (12-2)

Thanks to (11), we find that ,=0 by equating Eﬁzgrad P, in (12). Moreover,
substituting p,=0 into (12), we have the following approximate problem cor-
responding to [E1].

[Ell.. Find {4, B} R*x X} such that E,#0 and
(rot B, rot B})=2,E,, E#); VEreX:, (13-1)
(E,, grad g,)=0; Vg, Y} . ‘ (13-2)

Again by (11), we find that E,eX{ satisfying the first relation of (13) for
A,+0 satisfies the second one as well. Thus, in the present finite element
scheme, it is sufficient to deal with the first relation of (13) only, so long as
we consider non-zero approximate eigenvalues only. This is practically re-
asonable since the zero eigenvalue is usually unnecessary to obtain.

From the observations above, we will solve_‘ numerically the following
approximate eigenvalue problem for the pair {i,, £} € R*xX X§:

(rot B,, rot E¥)=2,E,, B¥); VE*eX}. (14)

Based on (14), we can obtain the element matrices by the standard procedure
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of the finite element method [2]. In the present case, the integrations required
in this process can be done explicitly by using the expressions of shape
functions. The algebraic eigenvalue problem thus obtained is of course a
matrix eigenvalue problem, for which, for example, the inverse iteration method
and the subspace iteration method are available [2]. However, an important
fact to note is that the zero eigenvalue is usually highly degenerate, and we
must be very careful to separate the desired (i.e., non-zero) eigenvalues from
the zero eigenvalue. To this end, the shift techniques appear to be well suited
[2]. When 292 is connected as is usually the case with cavity resonators, the
eigenspace associated with the zero eigenvalue of (14) is explicitly given by

{E,eXy; rot E,=0}={grad g, for some ¢,€Y:}. (15)

Besides the tetrahedron element given here, we can also use a rectangular
parallelepiped element and a triangular prismatic one (Fig. 1). The explicit
expressions of approximate functions for such 3-D edge elements are given in
Appendix, together with those for some 2-D edge elements. The convergence
of the present approach is discussed in [11, 13] under some assumptions on £
and triangulations, but we omit the details here.

It is also possible to construct a mixed finite element scheme based on
[H2] by the use of subspaces X* and Y* in place of X; and Y}. In this case,
b, the approximation of p in [H2], can be eliminated as in [E2],, and we
again obtain an approximate problem similar to [El],, in which X* is used
instead of X!. Furthermore, we can finally reduce this problem to the follow-
ing one expressed by a single equation: Find a pair {i,, H,} € R*'X X" such
that

(rot H,, rot B =2,(H,, B¥; VHrex». (16)

When 2 is simply-connected, the eigenspace associated with the zero eigenvalue
of (16) is explicitly given by

{H,e X*; rot H,=0}={grad q, for some g,€¥"} . a7

Thus, we may solve the cavity resonator problem in terms of H by essentially
the same finite element procedure as that for the same problem expressed by
The difference is only the treatment of boundary conditions.

§4. Boundary conditions

The houndary condition to deal with in numerical computations based on
[E2], is: #xE=0 on 802. Thus the only thing required is specifying the edge
values of E as zero when the corresponding edges are on 82. Of course, it
is practically very combersome to manually prepare input data for boundary
edgds, and hence we should design computer programs so that they may
automatically identify the edges on 2. This may be easily done if we notice
the fact that any face of an tetrahedron is never shared by two tetrahedra
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provided that the face is on 38.

When we employ finite element schemes based on [H2],, we need not
consider any boundary conditions in numerical computations, since the imposed
boundary conditions are all dealt with as either a natural boundary condition
or a constraint condition relaxed by the Lagrange multiplier method.

Besides such physical boundary conditions, we should also consider artificial
ones such as arise when @ has symmetry with respect to a plane. Then the
eigenfunctions are expected to be either symmetric or antisymmetric with
respect to this plane, and hence we can halve the domain to be analyzed if
we can introduce appropriate boundary conditions on this plane.

Let the plane of symmetry be z=0 without loss of generality. Then the
symmetric and antisymmetric conditions are respectively given by:

(i) Symmetric condition: the z-component of a vector function is zero. Hence
this condition is the same as H-%#=0 in (2), and may be dealt with as a
constraint condition relaxed by the Lagrange multiplier method.

(i) Antisymmetric condition: x- and y-components of a vector function are
zero, and hence this condition is the same as Ex#=0 in (1). Such a con-
dition may be also built into the function space for the vector functions.
Finally, we should notice that the introduction of the ahove type artificial

boundary conditions is usually accompanied with the appearance of interfaces

on 32 where types of boundary conditions change. To express such mived
boundary conditions rigorously, we must prepare some special function spaces
other than those given in Section 2. The analysis of such function spaces is
probably complicated as rnay be seen from the analysis in [4] of the first-order

Soholev spaces.

§5. Problems on axisymmetric domains

It is of special practical interest to consider the case where £ is an axi-
symmetric domain. Then, by the Fourier expansion technique, we can analyze
the problem as a two-dimensional one, for which the use of the two-dimensional
Nedelec elements [17, 18] is effective.

When 2 is of axisymmetric shape, we first introduce the cylindrical co-
ordinates {r,#, z}, and consider p and the physical components {E,, E;, E,} of

Then, by the Fourier expansion in #-direction and taking advantage of
the orthogonality of trigonometric functions, we can consider the followmg
sets of functions independently for each #=0,1,2, -+«

E,.sinnf, Ejycosnf, E,sinnf, psinng, (18-1)
E,cosnd, E;sinnf, E,cosnf, pcosnd . (18-2)

Here we use the same notations E,, Ej, E, and p as before, but the present
ones are now functions of » and z only (i.e., independent of §). Thus our
problem becomes two-dimensional. It is also to be noted that the above two
sets are in a sense equivalent to each other for #>1, and it is sufficient to



118 Fumio KI1RUCHI, Masahiro HARA and Takeshi WaDA

0 X

Fig. 2. 2-D edge elements with vertex numberings

consider only one of them except for »=0. It is also possible to employ Has
the fundamental unknown function instead of E by essentially the same fashion
as will be explained below.

As finite elements for E, and E, above, we can use the triangular and
rectangular elements proposed by Nedelec [17, 18], see Fig. 2. That is, E,
and E, are approximated by incomplete linear polynomials in each element.
On the other hand, we use the covariant compoent ey=7E, mstead of the
physical component E, itself to approximate the 6-component of E except for
n=0. Then ¢, (or E, for #=0) as well as p are approximated by the piecewise
linear polynomial and the piecewise bilinear one respectively in the cases of
“the triangular and rectangular elements. This choice is effective to assure (11)
in the present axisymmetric cases, and hence we can again eliminate p in
actual computations. For general curvilinear (not mnecessarily orthogonal) co-
ordinate systems, the use of covariant components of vectors (or differential

1-form, equivalently) is effective to approximate vector functions in H(rot, 2).
The datails may be found in [14], but it is also to be emphasized here that
the expression of rot B becomes simpler than that in terms of the physical
components. For example, in the present cylindrical coordinate case, the
physical components of rot £ are given by [16]:

= (1 /3B, de\ 0E, 0E, 1 (de, OE, )}
rOtEm{r(aﬁ 5z )’ 9z or’ r(&r 90 (19)

The integration required to calculate the element matrices is, however,
slightly more complicated than in the purely 3-D cases. This is mainly due
to the 1/r factor appearing in the expression of rotZ in the axisymmetric
coordinates. Moreover, some terms in the integrals may diverge to infinity
when the considered element has a vertex on the axis of revolution »=0,
because log 7 terms appear in indefinite integrals for 1/ terms. We used the
formulas given in [21] to compute the integrals exactly expect for the above
divergent cases. Furthermore, the infinite terms are approximated by appro-
priate large numbers such as 10'%. That is, we employ a kind of penalty
approach to deal with the singularity at »=0. Along the axis of revolution,
we should impose some conditions on & and p, which are given by

E,=0 for n=0; e=E,=p=0 for n>1. (20)



A Mixed Finite Element Method for 3-D Analysis of Cavity Resonators 119

Notice here that these conditions differ with #. Furthermore, some additional
conditions are necessary to deal with the singularity at »=0: otherwise, the
approximation of E may not belong to H{rot, 2). Unfortunately, such con-
ditions are difficult to deal with strictly in numerical computations. This is
the main reason why we use the penalty approach explained above. At present,
the validity of such an approach is not shown theoretically, but we can still
check it by numerical tests to a certain extent.

§6. Computer programs

Since our problem is three-dimensional, it is absolutely necessary to prepare
mesh generator programs even for very simple problems. The essential dif-
ference of the Nedelec elements from the usual “vertex” elements is the use
of edges as nodes, and this fact must be taken into account in the design of
computer codes. In particular, the orientation of edges must be uniquely
specified before the assemblage process of element matrices.

We should choose appropriate methods for eigenvalue analysis of the arising
algebraic eigenvalue problems. Here we employ the standard subspace iteration
method with shift techniques [2]. As we have already mentioned, the use of
the shift techniques is essential in our problem since the zero-eigenvalue is
highly degenerate in general. As the solver for the linear simultaneous equa-
tions appearing in the subspace iteration process, we can use the skyline method
[2]. An alternative is proposed by Iwashita [10]: his approach is based on the
use of CG (conjugate gradient) method combined with the zero-filtering process,
which avoids the use of direct methods such as the skyline method. This
approach appears to be very promising especially for 3-D analysis. Moreover,
to solve small eigenvalue problems arising from the projection of the original
eigenequations to the subspaces, we can use, for example, the classical Jacobi
method after using the Cholesky decomposition to the projected mass matrices
[2]. Of course, the generalized Jacobi method is also available for the same
purposes [2].

In our developed programs, the rectangular parallelepiped element and the
triangular prism one are also available. It should be emphasized that our
programs can deal with both [E2], and [H2], just by changing input data for
boundary conditions. The deletion procedure for elements is also convenient
for 3-D analysis, and is available in our codes. Such utility is actually used
in an example given in Section 7. Moreover, the SCG (scaled CG) method is
employed as the linear equation solver for the subspace iteration process. This
is the simplest possible version of the preconditioned CG methods (PCCG), in
which only the diagonal elements of coefficient matrices are used for scaling as
a kind of preconditioning.

§7. Numerical results

We obtain a few numerical results by the developed computer programs
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based on the present theory. Some 2-D examples and more practical 3-D results
are respectively reported in [11] and [9].

7.1. Cubiec ecavity

First, we consider a cubic cavity with unit edge length. In this case, exact
eigenpairs are known [1], and we obtain numerically several eigenvalues to
see the accuracy of our method. Both E- and H-formulations are tested for
all the three types of elements. The domain is divided into NXNXN small
cubes, and the Friedrichs-Keller type uniform subdivisions are used for the
tetrahedron and triangular prism elements. The results for the first three
approximate eigenvalues are given in Table 1 for various values of N. Note
that the first exact eigenvalue is three-fold degenerate in the present case.
Thus the first three approximate eigenvalue denoted by 2, 2, and 2, in the
table must coincide with each other in the case of the exact solution. The

Table 1. First three approximate eigenvalues (cubic cavity)
Exact: A =2=2=2r2=19.739...
Element type: T=tetrahedron, TP=triangular prism
RP=rectangular parallelepiped

unknown E "
element T TP RP T TP RP
2 20.000 - — 23.912 24.000 24.000
N=1 As — — — 23.912 24,000 24.000
23 — — - 24.000 24,000 24.000
A 17.064 20.808 24.000 20,731 20.823 24.000
N= 2 As 19.643 21.600 24.000 20.731 23.715 24.000
25 19.643 32.000 24.000 20.819 23.715 24.000
A 18.431 20.161 21.600 20.227 20.281 21.600
N= 3 Aq 20.025 20.589 21.600 20.227 21.521 21.600
23 20.025 25.376 21.600 20.287 21.523 21.600
2 18.962 19.962 20.773 20.026 20.059 20.773
N= 4 Ay 19.944 20.217 20.773 20.026 20.744 20.773
e 19.944 22.866 20.773 20.060 20.745 20.773
2 19.226 19.877 20.397 19.926 19,948 20.397
N=5 Ag, 19.880 20.045 20.397 19.926 20.383 20.397
23 19.880 21.722 20.397 19.948 20.384 20.397
A 19.376 19.833 20.194 19.870 19.886 20.194
N= 6 g 19.840 19.951 20.194 19.870 20.187 20.194
2s 19.840 21.109 20.194 19.886 20.187 20.194
A4 19.530 19.791 19.994 19.814 19.823 19.994
N= 8 N 19.797 19.858 19,994 19.814 19.992 19.994
23 19.797 20.506 19,994 19.822 19.992 19.994
A 19.604 19.772 19.902 19.787 19.733 19.902
N=10 s 19.776 19.815 19.902 19.787 19.901 19.902
23 19.776 20.228 19.902 19.792 19.901 19.902
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accuracy of the numerical results is not fully satisfactory for coarse meshes,
but is improved as the mesh becomes finer. To see this more clearly, the
errors of the approximate eigenvalues are plotted versus N in 1/N*® scale in
Fig. 3 in the case of the rectangular parallelepiped element. We can see that
the errors are almost proportional to 1/N? for larger values of N, and this
phenomenon is fairly commonly observed in lower order elements like the
present one when the exact eigenfunctions are sufficiently smooth.

As a reference for evaluating computing time, Table 2 summarizes CPU

24 T
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Fig. 3. Convergence plot of the first approximate eigenvalues by the
rectangular parallelepiped element (cubic cavity)

Table 2. CPU times for some computers (cubic cavity)

Computer CPU time
A 460 min.
B 544 sec.
C 513 sec.
c’ 452 sec.
D 234 sec.
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times for several kinds of supercomputers as well as a personal computer. In
the table, {4, B, C, D} is a certain permutation of {NEC SX-2, FACOM VP-200,
CRAY X-MP/18, NEC PC-9801 RAS5}, and C’ is C with automatic vectorization.
In these personal and supercomputings, the rectangular parallelepiped element
is used with N=10 for approximating E (E-formulation), the dimension of the
subspace is 6, the number of obtained eigenpairs is 3, the shift value for
Iwasaki’s method is 10, the zero-filtering is performed each 2 steps of subspace
iteration, and the tolerance of iteration for relative differences of required
eigenvalues is chosen 1078 Moreover, the corresponding calculations with
N=20 can be performed in about 1 hr., provided that any one of the above
supercomputers is used. Thus, this type of 3-D computations are now feasible
for practical design purposes if appropriate engineering modeling is introduced.

7.2. Cubic bavity with a half-size cube deleted

Secondly, we consider a unit cubic cavity with a half-size cube deleted
as is shown in Fig. 4. We employ the same type of meshes as those in the
preceding example, and we utilize the deletion technique installed in the
developed code. In this case, no explicit expression is available for the exact
solutions. The results are summarized in Table 3 for the first three approximate
eigenvalues. The accuracy of the numerical solution is not satisfactory since
the present domain has a reentrant corner and the eigenfunctions may have
strong singularity there. Still, the results appears to be convergent, and we
may conjecture that the first eigenvalue is now simple (non-degenerate) and
the second one is two-fold degenerate. Figure 5 shows the mesh ((a): N=10)
and the vector plots for the surface distributions of the electric and magnetic
fields ((b) and (c)) corresponding to the first eigenvalue obtained by the use of
the rectangular parallelepiped element.

2x2x2

Fig. 4. Cubic cavity with a half-size cube deleted and
an example of mesh pattern (N=2)

7.8. Circular cylindrical cavity

Using the developed axisymmetric code, we analyze a circular cylindrical
cavity of unit radius with height=2. Due to the symmetry of the problem,
we analyze only the upper half of the domain, and we partition the cross-
section into uniform Friedrichs-Keller type meshes. Examples of meshes are
pictured in Fig. 6, where A and B denote two possible directions of diagonals
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Table 3. First three approximate eigenvalues (cubic cavity with a
half-size cube deleted)

Element type: T=tetrahedron, TP=triangular prism
RP=rectangular parallelepiped

123

unknown E H
element T TP RP T TP RP
Ay 8.0348 11.257 12.000 15.187 16.588 17.368
N= 2 As 23.561 27.215 30.000 22,990 25.543 28.207
A3 25.394 36.613 30.000 23.737 27.280 28.207
A 10.838 12.207 12.420 13.814 14.222 14.166
N= 4 A 23.514 24.295 25.020 23.507 24.106 24.786
23 23.920 26.577 25.020 23.658 24.850 24.786
A 11.676 12.449 12.567 13.425 13,648 13.549
N= 6 A 23.330 23.869 24.184 23.505 23.787 24.082
Az 23.698 24.863 24.184 23.575 24,140 24.082
A 12.055 12.566 12.646 13.253 13.401 13.310
N= 8 Ay 23.406 23.721 23.896 23.502 23.670 23.835
A3 23.619 24.278 23.896 23.543 23.875 23.835
A 12.266 12.635 12.696 13.158 13.266 13.188
N=10 As 23.444 23.652 23.763 23.502 23.615 23.720
As 23.583 24.009 23.763 23.529 23.750 23.720
A1 — — 12.797 —_ — 12.993
N =20 A — — 23.584 —_ —_ 23.569
A3 — — 23.584 — 23.569

Fig. 5(@).
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Vector plots of the approximate first eigenfunction (N=10) : mesh
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z

Fig. 5(b). Vector plots of the approximate first eigenfunction (N=10) : E
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Fig. 5(c). Vector plots of the approximate first eigenfunction (N=10) : H

of small rectangles in the meshes. Both triangular and rectangular elements
are tested. As is discussed in section 4, symmetric or antisymmetric conditions
must be taken into account on the plane of symmetry z=0. In this case, exact
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Fig. 6. Examples of mesh patterns for the axisymmetric
domain (upper half portion)

Table 4. First three approximate eigenvalues (circular cylindrical cavity)

mode & triangle rectangle )
~~~~~ exac
unknown 5X5A | 5x5B | 10104 | 10x10B | 5x5 | 10x10
TMoyo F | 5.6861 | 5.6861 | 5.7588 | 5.7588 | 5.8016 | 5.7882 | 5.7832
B | 5.8377 | 5.8377 | 5.7970 | 5.7970 | 5.8389 | 5.7970
TEy, F | 6.0560 | 6.1001 | 5.9101 | 5.9222 | 5.9501 | 5.8796 | 5.8574
& | 6.1705 | 6.2240 | 5.9441 | 5.9546 | 5.8978 | 5.8675
TMou F | 8.2442 | 8.2013 | 8.2480 | 8.2383 | 8.2804 | 8.2607 | 8.2506
H

8.3469 8.3720 8.2752 8.2810 8.3267 8.2695

solutions are obtainable by the use of the Bessel functions [1], and can be
effectively used for the comparison with approximate solutions.

Table 4 summarizes the first three approximate eigenvalues of the present
problem. The corresponding modes are called TM;,, TE,, and TM,,; [1]:
the first and the third modes are axisymmetric ones, while the second is not
axisymmetric and the associated » in (18) is unity.. The results are generally
reasonable for both E- and H-formulations, but those for TE,,, are slightly
poor in accuracy probably because of the insufficient approximation capability
of the present method near the axis of revolution r=0.

§8. Concluding remarks

We have proposed a mixed finite element method for 3-D analysis of cavity
resonators. We have also presented some axisymmetric finite element models,
where the distributions of fields can vary in #-direction. In both cases, the
use of the Nedelec elements for H(rot, £2) is essential. We also tested the
method numerically by very primitive examples. It is of course important to
apply the method to more practical problems as well as to develop efficient
computer programs by improving numerical techniques. Moreover, the use of
mixed finite element methods also appears to be promising for electrostatic and
magnetostatic problems. Finally, it is to be pointed out that there remain
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various unsolved theoretical problems related to the validity of our approach,
as may be seen from the descriptions of this paper.

The contents of this paper was partially presented as an invited talk of
IMACS/IFAC International Symposium on Modelling and Simulation of Dis-
tributed Parameter Systems held in Hiroshima on October 6-9 in 1987.
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Appendix. Interpolation functions for edge elements

In this Appendix, we give explicit expressions of approximate vector-valued
functions for several types of 2-D and 3-D Nedelec (edge) elements shown in
Figs. 1 and 2 with their vertex numberings. In what follows, 2. denotes a
finite element, integer z any one of the vertices of £, z; the vector representing
the edge from vertex 7 to j, /;; the length of i7, and Ey the projection of the
approximate vector-valued function an to the edge z] Moreover, {®;, ¥} (2-D
cases) or {@;, ¥:, 2z} (3-D cases) are cartesian coordinates of vertex .

Al. Triangular element

Let 2. be a triangle with vertices indicated in Fig. 2. We denote by
{Z, 7, B} any one _Pf the cyclic (even) permutations of {1, 2, 3}. Then the explicit
expression of K, in each £, is given by

—(Bs\_ 5o Eulu (yr—ﬁ/)
Ek“(E1;y>“{i§k} D \&—um,/"’ (AL)
where D is the determinant defined by
11 2 Yy
D=1 25 y,|. (A2)
1 X yk .

The value of D is actually independent of the choices of {7, j, k}. Another
explicit form of expression is given by Bossavit [3] in terms of barycentric
coordinates.

A2. Rectangular element

Let 2, be a rectangle with vertices indicated in Fig. 2. The edges of 2.
are assumed to be parallel to one of the coordinate axes. The components of
E,={E,., E,;} in 2, are given by

EM:‘:Em(]-— Y)+E43Y ’ Ehy=E11(1—X) 'i"E%X ) (A3)
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where
X= (B—2,)/(®y—2,) , Y=(y—y)/(y.—y) - (A4)
A3. Tetrahedron element

Let 2, be a tetrahedron with vertices indicated in Fig. 1. We denote by
{¢, j, B, m} any one of the permutations of {1, 2, 3, 4} defined in Table 5. Then
the explicit expression of &, in £, is given by

Table 5. Node numberings for the tetrahedron element

Case i j k 7

1 1 2 3 4

2 1 3 4 2

3 1 4 2 )

4 2 3 1 4

5 2 4 3 1

6 3 4 1 2
E,,
En—':<Em;
E,,

Bl (Ze—2p)Y + (Ym—YR)2+ Y1Zn—Yn2Zs
=, j’Zk’mr——D——‘((zmmzk)m—i»(m,,——xm)z—{—wmzkv-mkzm , (A5)

(YY) T+ (@B —B)Y + Tl — T
where D is the determinant defined by

'1 T Yi 2y

1 2 ¥y &

1 2 ¥ 2z
1 wm yﬂb zm

D= ‘ (A6)

Actually, the value of D is independent of the choices of {7, f, 2, m}. Another
explicit expression is given by Bossavit [3].

A4, Rectangular parallelepiped element

Let 9, be a rectangular parallelepiped with vertices indicated in Fig. 1.
The edges of 2, are assumed to be parallel to one of the coordinate axes.
The components of E,={E,,, E,,, Ei;} in 0, are given by

Enm=E1‘g(1"‘ Y)(I“Z)+E43 Y(l"‘Z)"f‘Eav YZ+EM(1— Yz,
En=E,(1-2Z)1—X)+EwZ(1—X)+E ZX+ E,y(1-2)X ,
E,,,=E15(1—~X)(1— Y) +E25X(1—' Y)+E37XY+E45(1"’X) Y, (A7)
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where
X=(@—~a) (@) , Y=(y—y)/y.—y) , Z=(@2—2)/(z5—z) . (A8)

A5, Triangular prism element

Let 2, be a triangular prism with vertices indicated in Fig. 1. Its top
and bottom surfaces are assumed to be parallel to x~—y plane, while its side
surfaces to be parallel to z-axis. We denote by {4, 7, 2} any one of the cyclic
permutations of {1, 2, 3}. The components of Eh:{Ehx, E,.,, E,.} in 2, are given
by

E,= (i;k)lu(yr—y){Eu(l——Z) +Eiis, 5402} D,
E= ”§k’lu(w ~BNEy(1—Z)+Ey1g,5452}/ D, (A9)

3
Ehx=i§ -Ei.'l+8L£ s
where

1 %

D=1 % y;|, Z=(z—2)/(z2,—z), (A10)
1 20 Y

Li=2—%Y 5+ YY) o+ (@ —2,)y .

Notice here that L;s for 1<:<3 are nothing but the area coordinates over the
triangle of the bottom surface {1, 2, 3} or the top surface {4, 5, 6}.
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