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Abstract

We assume that there is given a locally finite family of euclidean subspaces
in a euclidean space. In this paper we construct a locally finite regular cell
complex which is simple homotopy equivalent to the complement of the union
of the subspaces in question. The construction is done by generalizing the
one employed by Deligne in the case when every member of the family is a
real hyperplane in C»,

§1. Introduction

Let F be one of the following fields: R, C, H. Now F* is the right vector
space over F consisting of vectors with » components in F. Suppose given
two vectors x, ¥ in F» such as ‘x=(x, -+ %), ‘Y=, --+¥,). Then the inner
product (x,%)r is defined to be ‘%-y==%,-y;-F+-«+%,-y.. Now we have the
identity (xa, y0)r=a-(x,y)r-b for every a, b in F.

Let W be a euclidean subspace of F*. Then we denote by Wr the real
restriction of W. Now we write V for the standard vector space of W. Then
we denote by W* the orthogonal complement of V over F.

Let W be a euclidean subspace of F*. Then a reference point a of W is
a point fixed in W. And a system of normal vectors R of the real restriction
Whr is a sequence of vectors {r;|0=<1=</—1} spanning Wj.

Further throughout this paper, we promise to write Fy for {~1, 0, 1}.

Let #={W{()|icl} bea locally finite family of euclidean subspaces of F*,

Let ¢ be an index in I.

Then the member W(7) is assumed to be equipped with a reference point
a(f) and a system of normal vectors R(z) of the real restriction W{(i)r being a
sequence of vectors {7,(7) | 0=a=ZI(#)—1}.

For each 2 satisfying 0=1=!(;)—1 and for each ¢ in F,, we define

Li(5)={x ¢ F*|sign Re(r;(#), x—a(@))r=0} .

If =0, we write L,(i) for the hyperplane Li(:).
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Now we consider the family .#%,={L,(¢)|i€l} of hyperplanes of Fj.
Appropriate choice of R(:) for each 7 in I allows us to impose the next
hypothesis without loss of generality.

Hy) %% is locally finite.

Now .=, defines a cell decomposition of F* of which cell is not necessarily
closure compact. The resulting complex is denoted by KI[.%].

We denote by @ the set of functions §: [—F,.

For each ¢ in 6, we put

Li=n{LE@) |iel}.

The L§ is a cell of K[.%%] if and only if it is nonvacuous.
Now for each ¢ in @ we define I(#) to be the set §-*(0)c L.
If L% is nonvacuous, i€ I(#) is equivalent to say L{c Ly(3).
Here we assume the following.

H,) K[%,] is a closure finite cell complex.

Let 'K[.#7] denote the barycentric subdivision of K[.%7]: that is, ’Ig [] is
the simplicial complex whose set of vertices is the set of barycentres L{ taken
once for each cell L} of K[.#,]. For each sequence L{< ... <Lfs of cells of
K[.%#,] the sequence of the corresponding barycentres Lo, ..., [te is the set
of vertices of a simplex of 'K[.%,] and vice versa.

Let 9 be an element of © such that L§ is a cell of K[.4].

We define O(f) to be an open star of It in 'K[.57).

Let J be a subset of I. Then (4xE)|J denotes the set of functions
(1,8): J>NXFy such that for each 7 in J we have 1 < () = I(5)—1.

"For each (1, ¢ in (AX E)|], we define
Li= N{LgBGE) |ie]}.

Let # be an element of . We define (AxE)? to be the set of indices

(1, €)¢ taken once for each function (1, &) in (4x E)|I(§) satisfying the condition
INLi=: @.
For each index (&, &)? in (41X E), we define

NQ@, e =00@)NL;.

We define «#" to be an indexed family being a function which assigns to
each (1,¢)’ in (AX E)’ with ¢ in © an open set N(Z, &)’

We denote by Y(%") the union U{ W(@@)|iel}.

Now we have the following.

PROPOSITION 2.6. 47 is an open covering of FA\Y(%) whose each element
is collapsible.

We denote by K(.#") the complex of the nerves of .#" and by |K(-#7)|
the geometric realization of K(.#7).
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THEOREM 2.8. ' The canonical map induces a simple homotopy equivalence
P\Y(%7) ~ IK/I’)I

Now we consider the case, F=C and for each ¢ in I the member W() is
a hyperplane.

Let 4 be an element of 6 such that L! is a cell of K[.%,]. We define D(6)
to be the dual cell of L} in 'K[#,]. We denote by |D(#)| its geometric re-
alization.

If L{ is a face of L}, then D(#’) is a face of D(#). And the converse is
also true. Here ¢: D(¢')—D(6) denotes a natural injection.

Let ¢ be an element of ®. We define E’ to be the set of indices ¢/ taken
once for each e: [(6)—F§ satisfying the condition LINL:i= @. Here E? is
assumed to have discrete topology.

If L} is a face of L{, then I(¢) is a subset of I(f). We define =% : E/—E?,
to be the projection sending ¢ to (¢)?" with &'=¢|I(0'). ‘

Let 4 be an element of @ such that L? is'a cell of K[%,]. We consider
a topological space |D(9)|x E*.

If L§ is a face of LY, then we have a diagramme
D) x Er XL

Let xxé&?, 2’ X (/) be points of |D(9)|x E?, |D(6’)| < E? respectively. We
write x/ X (/) —»xxe? if Lf is a face of L§ and 4(x')=x, (/)" =nle.

We consider the disjoint union of topological spaces

I{|D®)x E?|9eB, Lie K[£,]} .

D) ><E‘7' ]D(ﬂ)]xE”

Let us now define an equivalence relation as the weakest reflexive, sym-
metric and transitive relation including the property that xxe’ and 2/ x(¢)®
are equivalent whenever xXxel — %' X (¢/)?'.

Let X be a topological space consisting of all equivalence classes. Clearly
the family of the sets |D(f)] X<’ defines the structure of a regular cell complex
on X. The resulting cell complex is called the Deligne complex associated with
%" and denoted by D[%#"]. Further we write as X=|D[ %#7]|.

Now we obtain the following.

THEOREM 6.3. We have a piecewise linear homeomorphism
|K(4)| = |D[#7]] .

In the special case, %  is a family of real hyperplanes, the circumstances
are rather simple.

In this case, above results were in essence obtained by Deligne [2] and
were verified by the author [4] and independently by Salvetti [8].

The contents of Part II of this series of papers are arranged as follows.

In §2, we describe the process to construct the open covering .#". In §3,
we form an another open covering ’.#"and in §4 we show that the complex
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of the nerves K(’#") of /.# has the structure of a fibration over the complex
K[.4] which can be regarded as an analogy to the Deligne complex in the
general case. In 5 we treat the case of configuration where its each member
is a hyperplane. In 6 we aim at the construction of the Deligne complex.

§2. Open covering 4~

Let W be a euclidean subspace of F~,

By definition, a reference point a of W is a point fixed in W and a system
of normal vectors R of Wr is a sequence of vectors {#,|0<1</—1} spanning
Wi.

ExampLE. We define a system of normal vectors F of W to be a sequence
of vectors {f,|0=p=<m—1} spanning W".

Let us denote by E the canonical basis of F over R, namely a sequence
{e,|0=svsd—1} with d=dimg F.

When once these are given, we can define a system of normal vectors R
of Wr to be the set {r;|0=2=<!—1} given by #u.=f.e with 0spus<m—1,
Osv=d-1.

Let #={W(@)|iel} be a locally finite family of euclidean subspaces of F=.

Let 7 be an index in 1.

Now the member W(i) has a reference point «(f) and a system of normal
vectors R(¢) of W(i)r being a sequence {r,;() | 0=2=I(@)—1}.

For each 2 satisfying 0<21</({)—1 and each ¢ in F,, we have

LiG)={xe F |sign Re(r,(3), x—a(@))r=0} .
We write L,(7)=L5(F), in other words
Ly))={xe F~|Re(r,(1), x—a(@))r=0}.
Further we define ‘
L.()=0{L;() | 1=2=1()—1} :
={xe F*|15Y1<i()—1 Re(r;(%), x—a(®)r=0} .
" Obviously we have W{(i)=L,() N L.().

Now we obtain a family -<,={Ly(:)|iel} of hyperplane of Fg.

Clearly for each £ in I, L.(i) has a reference point a(i) and a normal vector
7o(f).

Further we define a family .&.={L.(j)|ie]).

Again for each ¢ in I, L.({) has a reference point a() and a system of
normal vectors R.(Z} of L.(7) being the sequence {#,(4) | 1SA1=Z1()—1}.

Appropriate choice of R, we can assume the next hypothesis.

H,) L, is a locally finite family of hyperplanes of Fg.

Now L, defines a cell decomposition of F» of which cell is not necessarily
closure compact. The resulting complex is K[.57].

Let © be the set of all the functions §: I—F,.

- For each element ¢ of 8, we define
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Li=n{L{®G) |iel}
={xe F*|Vie I Re(r\@), x—a@@)r=00)} .

Clearly L§ is a cell of K[.%,] if and only if L2 @. Alternatively we have
K[#]={L}|6e0, Li%D}.

For each element 6 of ®, we write 1(8) for -%(0).
If L is nonvacuous, 7€ I() is equivalent to say L{ic L(7).
For each cell L in K[.%%], we define O(6) to be the open set

O6)={xe F=|PO(0) }

where PO(f) denotes the set of properties as follows:
i) For each pair of 7 in I(#) and j in I\I(§), we have

IRe(ro(@), x—a@)r| < |Re(r(7), x—alf))l .
ii) For each j in I\I(#), we have
sign Re(r,(4), x—a(7))r=00)) .
We remark here that O(@) is collapsible.

ExaAMPLE 1. We consider the case where W is a finite family such that
for each 7 in I the space W(;) passes through 0.

Let S denote the unit sphere of F™.

Then we can define the family S% to be { SW() | i€ I} with SW(i)=SnN W().

Analogously we define S, to be {SL,(z) |i€ I} with SLy(5)=SN L.

Now 5.7 defines a regular cell decomposition of S. The resulting complex
is denoted by K[S.Z)].

For each ¢ in @, we write SL{=SN L4,

Then we obtain K[S.%7]={SL{|0e®, SLix® ).

Further by taking the restriction on S, we get an isomorphism from
K[.#] to the join 0xK[S<7] where 0 denotes the origin L) of K[7].

Let L] be an nonvacuous cell in K[.%7] and let L= 0. Restricting on S,
O(f) corresponds to SO(@)=SNOW. From the /c\leﬁnition we see that SO(®6) is
nothing but an:open star of the barycentre SL{ of SL! in the barycentric
subdivision 'K[S.%7].

ExAMPLE 2. Next we consider the case when every cell L of K[.%7] is
closure compact.

Let L{ be nonvacuous cell in K[<,]. Now O(f) itself gives rise to an
open star of the barycentre L{ of Lj .in the barycentric subdivision K[,
of K[.&7].

Now we get back to the general case.
Here we assume another hypothesis.

H)) K[#]] is a closure finite, or equivalently locally finite cell complex.
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Let K[.%,] be the set of barycentres L% taken once for each cell L{ of
K[,

We define & to be the indexed family being a function which assigns to
each ! of K[.#,] an open set O(f).

The derived complex 'K[Z] of K[£7] is by definition the complex of the
nerves K(&) of Z.

We define an order on the set of vertices 'K[.%]° = K[.%,] by putting
Li< Ll if L4<LY.

With respect this order, 'K[.%%] becomes an ordered simplicial complex.

LemMA 2.1. A is a g-simplex of 'K[.7%] with the sef of vertices Ay< --» <A,
if and only if there exists a sequence of cells Lip< <Liv of K[.&] and
the corresponding sequence of barycentres Lo, -+, Ll is the sequence of vertices
Ay ooy A,

Proof. We shall prove that 0(00) N++-NOG,) =% @ if and only if there exists
a permutation o such that Liew< +.. <[Lfato,

First we prove the only if part.

We begin with showing that O@)NO¢’) 2 @ implies either I(B)SI1(0’) or
s Iy).

Suppose not, then there exist i in H{@)NUI\(®)) and ¢ in K&')N(I\(H).
We choose a point x in O(@)NO(#'). Now we can conclude both

[Re(r(2), x—a@@))r] < |Re(r,(i"), x—a(i’))r]|
and
IRe(r(&'), x—a(@))r] < |[Re(r@), x—a(@))s| .

This is contradiction.

Now we only need to verify that under the condition I(6)SI(9),
0O NOW) ~% @ assures Li<LY.

Suppose there exists 7 in I\I(#). Let x be a point in O@E)NO@). Since
N(p) < I\NI[(¢9'), we can assert both sign Re(,(7), x—a(@)r =03 and
sigh Re(r(7), x—a(i))r = 6'(i), and eventually 6(5)==0(3).

Next we turn to the proof of the if part.

We assume that L§ is a face of LY. Then we have [(6)=21(¢) and
OINI@)=0"|(1\](6)).

Let x, #/ be points belonging to L{, L§ respectively. Then there exists a
segment ¢: [0, 1] — LU LY such that c¢(0)=x, ¢(1)=x«'.

If ¢ is equal to 0, for each 7 in I(§) we have Re(r,(i), ¢(0)—a(z))r = 0.

If ¢t is in [0,1], for each j in I\I(§) we have sign Re(r,(7), c(t)—a(f))r
=06(j) = 0'(j)=#0.

Therefore we can find a number ¢ in (0, 1] such that the point ¢(¢) belongs
to O(F) whenever f is in [0, <].

On the other hand, L{ is trivially contained in O(§’). Hence the point
¢(t) always belongs to O(F') if ¢ is in (0, 1].

Consequently we have O(@)NO(#) =% @.
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Let J be a subset of I. We write %7|/, .%5|J and .,|] for the family
(W jelh {Ldi)je]} and {L.(j)]|je ]} respectively.

If Jis a subset of 7, we consider the union of the members of the
corresponding family Y(%7|])= u{W(j)|jeJ}, Y(£|])= U{L(j)|je]}
Yz | N=u{L:(G)je]}

First we note the following Lemma.

LemMMA 2.2. Let L§ be a cell of K[.%,]. Then we have

LINY(9%) = Lin V(L. 1)) .

Proof. From the definition follows

LINY(7) = LIN(U{ W) |iel))
= U{LNWGE) |iel}
= U{LNLGNL.G)|iel}.
Further the definition implies

LY ielly),

BOLG=1{5 ‘cnue.

Combining these results, we obtain
LiNY(9#) = U{LENL, () | ie 1(0) }
= L{N(U{L.(@) | ie I(0)]) .
Let J be a subset of I, Then we set
UXE)N]={(Q},¢): I-NXFy|vie] 1=i1(6)si()—1}.
For each (1, ¢)€(AX E)|/, we define
s=N{Li30@) [ie]}.
This set is convex and collapsible.

LeMma 2.3. Let J be a subset of 1. Then the family {L5| (2, e)€(AxE)|]}
Jorms an open covering of F\Y(Z|)).

Proof. The definition induces the following:

FA\Y(&,)]) = F\(U{L.(G) [ie ]
= F\(U{N{L;(5) | 1=a=1(@)—1}|ieT))
= N{U{FA\L,(3) | 1=2s1()~1}|ie J}
= {U{LFOUL'G) | 1=28l()—1}|ie ]}
= N{U{LEEG) |, e) e (AX E)|J}ie ]}
= U{N{L{BGE) |ieJ} R, e (AXE)NT}
= U{L{| A e) e UXE)|]}.
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COROLLARY 2.4. Let ] be a subset of I and let LY be a cell of K[<7%).
Then the family {L{NLi|(4, E€UXE)]} forms an open covering of
LNZIO Y4,

For each ¢ in @, we define
(AXEY ={(,8)! | (4, s € (AXEN)NIH), LENLi*D}.

COROLLARY 2.5. Let Li be a cell of K[#). Then the family
{LENLs | (2, e (AXE)'} forms an open covering of L{LINY(3#7).

Let 6 be an element of 8. For each index (2,¢) in (AX E)’ we define

N2, &) = O@)N L

which is collapsible too.

We define

(UxEY =T[{{(AxXE) |00, Lec K[} .

Finally we define .#" to be the indexed family being a function which
assigns to each (1, ¢)? in (KX E)* an open set N(1, ¢)’.

PROPOSITION 2.6. 4" is an open covering of F\Y(#") whose each member
is collapsible.

Let us denote by K(.#7) the complex of the nerves of %"
The following Lemma is trivial.

LeMMmA 2.7. C is a g-simplex of K(-9") with the set of vertices Cy, -+, C,
if and only if the following conditions are satisfied.

i) There exists a simplex A of 'K, with the sequence of vertices A, -+ A,:
that is, there exists a sequence of cells LPp=+.- <Ll and the corresponding
sequence of barycentres Lo, «vv, L4 is the sequence A, --- A,

i)  There exists a permutation w and a sequence of indices (A, )™, +--,
(2, 8)0e belonging to (AXE), «.., (AXE)' respectively such that the corre-
sponding intersection

N(Zg, )2 N+« - NNy, e)le = 0@) N -+ NOE@HN Lyn---NLy

is nonvacuous and the sequence of indices (ly, €)%, <+ +, (1, &) is the sequence
Of ‘Uertices cho), L Ca,(q).

Let |K(-#7)| denote the geometric realization of K(.9").
THEOREM 2.8. The canonical map defines a simple homotopy equivalence

\Y() ~ K] .

Proof. We may use the standard argument found in for instance Eilenberg-
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Steenrod [3] or Spanier [7], and apply the sum formula of the Whitehead
torsion treated in the papers such as Chapman [1].

§3. Open covering '/~
Let 6 be an element of ® with a cell L] of K[<7].
Then O(f) means an open set defined in §2.
Now we consider a simplex A of 'K[.#]] with vertices A,<--* <A, We

can assume that we have a sequence L=< ... <Lfs and LY, ---, Liois Aq, -+, A
Here we should remark that we have I(6,)>---D1(8,).

For A as above, we define
O(4) = N{0(0,) | 0=i=q} .

In particular, for a vertex A being ﬁg, O(A) is nothing but O(f). Hence
if A is a simplex with vertices 4,, -+, A,, we have

OA) = nN{0(A) |0=i=q}.
Let J be a subset of I. Then we have put
UXE)N]={(4¢): JoNXFy|vie] 1=a()=iG)—1}.
Further for each (4, ¢) in (AX E)|J we have defined
Li=n{LsB@) ie}.
Under these conventions we define
(AXE)*={(2, &)*| (4 ) € (AX E)|L(6,), P(60) }

where P(0,) is the set of properties as follows:
, 0) There isa chain (.4, &) € (1 X E)|1(8,) of functions with 0=p=<r satisfying
the conditions:

i) For each 0=p=r—1, we have LofNLtii% @.

ii) For p=0, we have (o1, o¢) = (4, &).

iii) For p=r, we have L{NLr % @.

Let A be a simplex of ‘K[%,]. For each index (1, &) in (AXE)4, we
define

N, e4=0(A)NL;

which is collapsible.

Let A be a simplex of 'K[.%3]. Then we define .4 to be the indexed
family being a function which assigns to each (i, ¢)4 of (X E)* an open set
NQ, €)4.

Let K(.#™1) denote the complex of the nerves of N4

Levma 3.1. Let A be a simplex of 'K[%). Then B is a q-simplex of
K(A74) with the set of vertices By, -+, B, if and only if there existis a sequence
of indices (A, o), v+, (A €)% Of (AXE)Y such that the corresponding intersection
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O(A)NLgN -+ N L3

is nonvacuwous and (A, )= (A, e)* if 0=i<j=<q, and the sequence of indices
Aoy €)%, =+ 5 (Agy €)™ is the sequence of wvertices By, -+, B,.

Let A, A’ be two simplices of 'K[.<7].

If A’ is a face of A, we can define a projection

x4 (AXEYA—— (AX E)*
as follows.

Let A be a g-simplex of "K[.%] with vertices Ay<---<A, Then we have
a sequence LO<...<Lfvand LY, -+, L{s is Ay, -+, A, Let A’ be a p-simplex
of 'K[%7] with the verticps Al - <Ay, As above we have a sequence
Lf<...<L% and L, ---,Lip is A}, -+, 4.

A’ is a face of A if and only if there is a monotone increasing sequence
of integers 0=i,<---<i,=¢ such that A,=Aj ---, A, =4, and hence
Oio=00y * =y 0:5,=0%.

Thus A’=A implies O(A)SO(A’) and I(0,)21(8,,)=16;) implies Lio=<Lit=
L.

Let (2, &)* be an element of (AxE)4 Then the image =42, e)*=(, ¢')* is
defined by the formula (X, ¢/) = (2, &)]1(6;).

If (1,¢) is an element of (AXE)|I(4,) satisfying P(0,), then (¥, ¢') gives rise
to an element of (AXE)|I(0)) satisfying P(6l).

Thus the projection =3 is well-defined.

Further this map induces a simplicial map

iy K( A4 —s K( A7),

For above remarks also imply that N(1, &S N(¥, ¢)*' whenever ni.(1, &)=
', "

We consider a function assigning to each injection ¢f.: A’—A the projection
741 K(A4)-K(A#*), Then we can easily show that the function defines a
contravariant functor.

For later purpose, we consider the special case when A is a vertex L.

“Then we have

(UAX E)* = {(2,e)* | (2, &) € (AX E)|1(6), P(6) } .

In this case, #™ is likewise defined.
Now we define
(AXEY®E =[{{(AXE) ]| Ae'K[L,°} .
‘We denote by /.# the indexed family being a function which assigns to

each (1, &)4 of (AxX EYX® an open set N(%, )4
Since ’#" is a subfamily of -#, we can easily deduce the following.

PROPOSITION 3.2. 4" is an open covering of FA\Y(%) whose each elemeni
is collapsible. ‘

Let K(.#") denote the complex of the nerves of ‘7"
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LemMMA 3.8. Let C be a g-simplex of K(A") with the set of wvertices
Co, + -+, Cy if and only if the following conditions are satisfied.

i) There exists a simplex A of 'K[#,] with the sequence of vertices
Ay<--- <A, that is, there exists a sequence L= --- =Ll and the correspond-
ing sequence of barycentres Lio, oo, Lt is the sequence of vertices Aq, -+ -, Ay

ii) Thereexistsa permutatzon o and a sequence of indices (Ag, )40, « ++, (A, &5)*
belonging to (AXE)*, - -+ (AX E)4s yespectively such that the corresponding in-
tersection

Ny, 600+ + - ANy, ey4=0(A) N L5gN -+~ N Lig

is nonvacuous and (A, e (A, e if 0=i<j=<q, and the sequence of indices
(Ao €0)40, <+, (A, 6y 15 the sequence of vertices Cowy, ) Cucp-

Proof. We only need to remark that O(A4,)N .- NO(A) = O(A4).

Each index of (4x E)'*" has the form (2, ¢)* with a vertex 4 of /K[+#,]. We
define the projection ‘z: (AXE)X"—/'K[,] by the formula ‘z(2, e/*=A.
Above arguments show that the map /z defines a simplicial map

'w: K('A)—'K[Z] .
Let us denote by |K{("#")] the geometric realization of K{’.#").
THEOREM 3.4.  The canonical map defines a simple homotopy equivaluence

FAR(%) = K.

§4, Structure of K('.¥")

The derived complex 'K[.%;] is an ordered simplicial complex, hence the
routine procedure provides us with the s.s. closure 'K, of 'K[.%,).

A g-simplex of 'K[%,] is a monotone nondecreasing sequence a=(aq, ** *, aq)
of vertices included among the vertices of some snnplex of 'K[4]: that is,
there exists a monotone Ilondecreasmg sequence L{<-..=<Lf¢ such that the
corresponding sequence Lo, - , Lo is the sequence aq, -+, a,. Let 'K [,
be the set of all the g¢- s1mp11ces Then ‘K[.47]=11'K[.%,], is an s.s. complex
under the face and degeneracy operators defined by

ai(am ""a’q)m(am "'y&i’ "'1“.1) s

Si(am "'7“(;)3(“0: ter Qg Qs “')aq) .

Let a=(ay, -+, a,) be a simplex of "K[.%,]. We define its carrier {a} to
be a simplex {w, * -+, of 'K[Z]. :

For each vertex A of 'K[%7], we have constructed a simplicial complex
K(#*). The s.s. closure K(-#*) of this complex is defined as follows.

A g-simplex of K(-#*)is a sequence S=(f,, + -+, B,) of vertices spanning some
simplex of K(-#™): that is, there is a sequence of indices (2o, £0)4, * -+, (25, £)* of
(AX E)* such that O(A)NLYN---NLj % @ and the sequence (4, o)*, * *+, (A, 8)*
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gives rise to the sequence f, - -+, .- The set of all the g-simplices K(#%), with
the formulae

ai(ﬁor ”.HBQ) =(/80’ "':éﬂ s ﬁq)
Si(ﬁm "':ﬁq) :(‘Bﬂr ""‘Biy ﬁi’ "’:/94)
defines K(-74),

Given B==(B,, --+, By, its carrier {8} is the simplex {B,, «-+, B}

Let A7, A be two simplices of 'K[.%5].

If A’ is a face of A, then we can define the projection

7 K(AH) e— K(A™)
after the manner in §3.

The above procedure works well when we take up the complex K('-#7).
The existence of a simplical map ’‘z: K('.#") — K[.%7] defined in §3 suggests
to us the following definition.

A g-simplex of K'(#") is a sequence y=(7,, * -+, 7,) Of vertices spanning some
simplex of K(’.#") satisfying the following conditions.

i) There exists a g-simplex of ‘K[ say a=(ay, *++,a,): that is, there
exists a monotone Anondecz;easing sequence Ljo=<...=L%s such that the corre-
sponding sequence L, - --,L§v is the sequence ay, * +*, a,. We write here {a}=A4,
ay=Aq, + 2, =A,.

ii) There exists a sequence (A, &), « -+, (1, &)*r of indices belonging to
(AX EY*, « -+, (AX E)*: respectively such that O(A)NLEN---NLi % @ and the
sequence (2, €)%, + + +, (2, &) is a sequence 7o, +« -, 7,. Again the set of ¢-simplices
K('.#"), with the formulae

81(701 ) Tq)::(TO: sy ?1:9 ttty rq)
si(TU’ ftty Tq)“'—:(rﬂy (AR PY ST FTRRAS Tq)
defines K(’.4").
For y=(ye *++,7,), its carrier {r} is as before.
Here we remark that we have a natural projection

"7 K(A)—'K[Z] .
Under these conventions, we define a fibre product
R='K[#] x IIK(A 4| Ae’K[Z])
rRL20]

over 'K[.#). B B

A g-simplex of K is a pair axXf with « being a ¢-simplex of K[#3] and
B being a g-simplex of K(-#™) where A={e}. Now the set of all the
g-simplices K, with the face and degeneracy operators

dlax p)=daX ”fé’;alatlg
siaxX f) = siaX s

forms an s.s. complex K.
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Next we set up a relation on K. Let axp and o/ X be two g-simplices
of K. Then axfr~a'xp if and only if a=a/, z{8pimBbi=nlh.n8; for each i
satisfying 0<i<gq. Clearly this relation is reflexive, symmetric and transitive.

Now the set of all equivalence classes is denoted by K[2#]. As easily
checked axf~ a’xp implies 9;(axB) ~ d:;(a’ X p’), si(axXpB) ~ sf{a’xp). Hence
on K[%] the face and degeneracy operators are defined and K[#] satisfies
the axiom of an s.s. complex.

Here we note that the natural projection =: K-—>K[%] transforming
aXp to its equivalence class is an s.s. map.

THEOREM 4.1. We have an s.s. isomorphism
K% =K/n).
Proof. First we construct an s.s. map
E: E—K(A) .

Let axp be a g-simplex of K. We remark first that a-—-(afu, cee, ) s
an element of ‘K[%,]: that is, we have L{o=<... <Ll and a,;-L for each ¢.
Here we put {a}=4, a,=A4..

Next we consider 8=(f, -+, 8,) in K(-#™). It is equivalent to say that
we have (&, &), -+, (A, 8)* of (41X E)* such that O(A)NLEN---NLg*x @ and
Bi=(4;, &;)* for each i. N

Above data allow us to define a g-simplex r=(ry, - - -,7,) 0of K('~#") as follows.

For each i satisfying 0=i=g, we define (1, &l)* in (4 X E)% to be n1,(4;, &)*=
7% (A, €)@, s0 we have (1, ))=(4, &)|1(6;). Above identities show O(A4,)20(A)
and that L{#2L§, hence we have O(A)NLYN---NLY =% &.

We put y,=(4, e))* for each .

We set E(axp)=7.

Since we have zl8=r#9" ) z[&] 1o, 7=n%'8; is shown to depend only on
2ltiaBi- Thus & induces a map & K[%7]— K(.9") satisfying gom=£.

Next we define an s.s. map

# KeA)— K .

Let y=(y¢y +++, 7o) be a g-simplex of K(.#7"). 7 is characterized by the
next two conditions. ;

i) We have a g¢-simplex a=(a,, +++,a,): that is, we have L{vx...<L{s
and a;=L% for each i. We put {a}=A, a;=4, for each i.

ii) We have (l, &), «++, (4, aq)*‘v belonging to (AXE)4, «.., (AX E)* re-
spectively such that O(4)NLyYN-- 0% @ and 7=(%, &) for each i.

Now we define a ¢-simplex f= ;80, vee,B,) of K(44) as follows.

For each i satisfying 0<i=<gq, we define an index (1,8)* of (AXE)* by
the formulae

fqu Ef)ll(0¢)=(2i, &),
1, e/ TOMNBs4) =y, el IO N G511) 0LFSi—1 .



72 Tokushi NAKAMURA

From the deﬁnition follows Lyg2L{i2Lgn---nLi, soif 0Sj<i
LxgﬂLJ;ELif nLMDL ‘NL§. Thus for each i satisfying 0=i=q we

11« ==
obtain Lnoﬂ ﬂLAi"L gﬁ - N L5
Smce (Aos ao)“ is an element of (Ax E)*, there is a chain of indices (o, p&0)

in (AxE)|I6,) with 0=p<r satisfying the coditions P(f,) as follows:
1) Lp ﬂL”iiio @ 0spsr—1.
if) (ozo; o€0)=(a, €o)-
iff) LeenLzigs @.
For each ¢ sat1sfy1ng 0=i=<q we define a chain of indices (ohsy o82) In (AX E)|1(6)
with 0=p<r-+1 by
(njm ogi)=(ji7 &)
(pzi} pg‘i):({’-lzm (l-law‘) 1§P§?'—1 .

Then ng ﬂLig 2 L;g N+ NL implies
i) L@ ;;HQ;# @ O=p=r,

11) (0 13 051> (21, 1,)7

ili) LéeNnLr *;lig % @.

Thus there is deﬁned a sequence of indices (4;,8)* in (AXE)* such that
0O(A) ﬂLaﬂ n- 'l * @.

Now we deﬁne 8 by putting B,=(,;, 8)* for each i.

Here we set #(7)=ax B, and define y=rxo7.

The composition 7o¢ is shown to be equal to the identity as follows.

Let axB be a g-simplex of K. We assume f;=:(1, ¢,)4. We define (2}, /)4
to be 4,4, e)4: that is, (2, &)=(, e)|1(0,). We put 7,==(af, ef)*.

Now we have &(aXf)=r

Here we define (1}, 8)* by

{z:,*mzwt) =(,¢l) ,
(R, D [IONG5-) =2, HITONGer))  0F=i~1 .

We put fi=(, e)* and p'=(8, -+, Bo)-

We have r(r)-*a:x B.

From the construction we have (2}, #)|1(0,)=(}, e))=(4;, €)|1(0,). Therefore
we obtain ﬂ((away(ll hl)[“""ﬂ'{(ao)tal(zu e,

This proves axf~ axf’ and FE(axp) ~ aXp.

In the same way we can also conclude that £ is the identity.

§ 5. Configuration of hyperplanes in C"

The family of complexified Weyl walls is the most important example of
configuration in C*. In this section we specialize down to the case, hyperplane
configuration.

Let %" ={ W(i)|ie I} denote the family of hyperplanes in C™.

We assume that each member W(;) has a reférence point a(z) and a normal
vector f(i). Now we define a system of normal vectors R(i) to be the sequence
{ro(i), 7.(3)} given by 7(6)=£(), r{(&)=rG)-v—1.

For each 6 in F,, we put
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Li(7) = {x e C" | sign Re(f(7), x—a(i))c=0}

Li(i) = {x e C | sign Re(f()v —1, x—ali))c=06}
= {xeC™|sign Im(f(Z), x—a(@))c=0} .

Further we abbreviate as L (2)=L§(z), L.E)=L,z)=Li().
We write ., = {L,(%) |iel}, & =2 ={LG)|iel}.
We assume the next hypothesis.

H, ., is locally finite.

., defines a cell decomposition of C* which is denoted by KI[.Z7%].
Let @ be the set of all the functions 6: I-F,.
For each element # of 6, we define

Li=n{Li"G)|ie I}
={xeC"|viel sign Re(f(i), x—al(s))c=0()} .

Trivially we have K[.&7] = {L]]|0€0,Li%@}.
As before we write I(8)=67*0).
For each element # of ©, we define

O0B) ={xeC"|PO®)}.

where PO(f) denotes the set of the properties as follows:
i) For each pair of 7 in I(#) and j in I\I(F), we have

IRe(f(3), x—a(i))c| < |Re(f(7), x—a(f))c| -
ii) For each j in I\I(#) we have
sign Re(f(7), x—a(7))c=0(j) .

Clearly O(9) is collapsible.
Now we assume the second hypothesis.

H,) K[%)] is closure finite.

Let K[.%,] be the set of barycentres L7 taken once for each cell L? of
K[ ‘ ;
@ is defined to be the indexed family which assigns to each ¢ of K []

an open set O(f).
The derived complex 'K[ %] of K[#7] is by definition the complex of

the neves K(&) of &.

LeMMA 5.1. A is a g-simplex of 'K[-2%)] with the set of vertices A,<-+- <A,
if and only if there exists a sequence of cells L”,f<-- -<L% of K[54 and the
corresponding sequence of barycemtres Lfo, ... L' is the sequence of vertices
Ay, oo, A,
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As before we write as Y(%) = U{W(@) |iel}.
Let J be a subset of I. In our case, the set
UAXE)T={(,&): J— NXFy|vie] 1=220)=1}
is bijective to the one
E|J={e: J— F;}.
For each ¢ in E|J, we define
Li= N{Li®@)|ie ]}
={xeC"|vie ] sign Im(f(5), x—a(@))c=e(G)} .

This set is convex and collapsible.
For each ¢ in ©, we define

El={e|cc E|I(6), LiNLi = @} .
For each index ¢ in E?, we define
N =0@)NL; .

The is convex and collapsible.
We define

Ex=1I{E’|6e€6, Lic K[Z]}.

We define 4" to be the indexed family which assigns to each ¢ of £E¥ an
open set N(¢9).

PROPOSITION 5.2. # is an open covering of C\Y( ") whose each member
is collapsible.

‘Let us denote by K(—#") the complex of the nerves #” and [K(.#7)| its
geometric realization.

THROREM 5.3. The canonical map induces a simple homotopy equivalence

CA\(7) = |K(A)| .

Let A be a g-simplex of 'K 7] with vertices Ay, ey A, We assume
that we have Lije<.--<Lf and Lfs,---,L8 is A, -+, A,. We remark here
that we have I{0;)D-- - 2I(4,).

Now we put
0(4) = nN{0B,) | 0=i=<q}.

Further we define
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E4 = {e*|c€ E|I(6,), P(0,)}

where P(0,) stands for the set of properties as follows:

0) There is a chain . in E|I(6,) of functions with 0<p=<7 satisfying the
conditions:

i) For each 0sp=7r—1, we have Le*N Lot @,

ii) For p=0, ,e=e.

ifi) For o=r, LiNL'x@.

In the case where we are now concerned about, we can restate these
properties in much simpler form. To interpret the circumstances, we need
to prove some lemmas.

LeMMA 5.4. Let J be a subset of I, ¢ an index in E|J. Further let ] be
a subset of J, ¢ an index in E|J’. Let Li=®. Then the following conditions
are equivalent:
i) LinLi = @;
i) e=elJ;
i) Lis L.

Proof. Let JSI and ¢c E|J. If J’<], we denote by ¢|/’ the restriction
of ¢ on J/. Since Li= N{Li®@G)|iej}, it is easily seen that L:!=
LM ST =1}

Let JSI,#%/=1and ¢, ¢ € E|J. Then the following conditions are equivalent:
) LiNLy == @, ii) ¢ =e; iii) Li=Lj.

Let /€I, ce E|J and let /'S ], ¢/ € E|J’. Then we have

LinLy = n{LEVIN LV | Jre ), ] =1}
ﬂ(ﬂ {ngw“) ! ]l/g]\]/, #]//:1} .

Let JSI, c€E|J and let J'S], € E|J). Then LiNL{ = @ implies
LEVDINLEV 3 @ for each J/SJ’ with #/7/=1 and hence ¢|/'’=¢’| ]/ for each
J/SJ’ with #]//=1, that is ¢|/’=¢. The last condition yields L:SL! and
therefore LiNL{ = L{. Here we assume L{=¢ @. Then L!% LY shows
LinLi % @.

COROLLARY 5.5. Let L§, LY be cells of K[5%,] such that Lf is a face of
LY, so I6) contains I(#'). Let ¢ be an index in E|I0), ¢ the one in E|L@’).
Let L% @. Then the following conditions ave equivalent: «

i) LinLi = d;

i) =ell(¢);

iii) L:iS LY.

COROLLARY 5.6. Let L§, LY be cells of K[.%,) such that LY is a face of
LY. Let ¢ be an index in E|I0), ¢ the ome in E|[0'). We assume that
LINLi% @ and LiNLY % @. Then we have LY NLY % @.

COROLLARY 5.7. P(0,) is equivalant to say that LiPNL:% &.
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Proof. We assume that P(f,) holds. Then we have LeoNLer*=2 @ if
0<p=<r—1. This implies ,e=,..c whenever 0=p=<r—1. On the other hand
we have g=¢, LItNL7" % @. Hence we can conclude LiPNL{ = @.

The converse is almost trivial, by putting r=0.

LEMMA 5.8. Let A be a simplex of 'K[.%,] as above. Then the natural
injection sending e’ to ¢ induces a bijection E® — E4

Let A be a simplex of 'K[.%7].
For each index &4 in E4, we define a collapsible open set

Nt =0A4)NL:.

For each simplex A of 'K[.£%], we define .#™ to be the indexed family
which assigns to each ¢* of E* an open set N(e4).

LEMMA 5.9. Let A be a simplex of 'K[Z). Then B is a gq-simplex of
K(A44) with the set of vertices By, +-, B, if and only if there exists a sequence
of indices (e, -+, ()% of E* such that the corresponding intersection
O(A)NLieN -+« N Liv £s nonvacuous and (e,)* = (e;)* if 0Li<j=q, and the sequence
of indices (go)*, ++-,(e,)* is the sequence of vertices By, «+-, B,.

Let A’, A be two simplices of 'K[.%].
If A’ is a face of A we can define a projection

4. BA— EY

is defined as in §3 to be the map obtained by restricting the domain of de-

finition.
Let A be a simplex of 'K[.%5,] with vertices 4,<---<A4,. We assume

that there exists Ljr<...<Li¢ and we have A,=L% for each i. Let A’ be a
simplex of 'K[.4,] with vertices A{<..-<Aj,. We assume that there exists
Liv<...<L8» and we have A}=L{i for each i.

If A’ is a face of A, there is a monotone increasing sequence of integers
0=iy< -+ <ip=q such that A, =4} so §,,=0) for each #.
Let ¢4 be an element of E4. Then the image z%.(e)=¢l; ‘is defined by the

formula & =¢|l(d;).
This map induces a simplicial map

nh K( A4 — K( A4,
Here we treat the case, A is a vertex.

COROLLARY 5.10. Let A be avertex Li. Then the natural injection sending
&? t0 e* induces a bijection E'—E4, Moreover we can identify N(') with N(e*).

We define
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Ex=T1[{E4|Ac’'K[7]"}.

We define ’-#" to be the indexed family which assigns to each ¢ of E4

an open set N(e4).
We denote by K{('-#") the complex of the nerves of /.4

PROPOSITION 5.11. The natural injection sending & to ¢t induces a bijection
E? > E4,  Moreover we can identity A with ' A4 via this map and hence we have
an isomorphism K(A")— K('.97).

LeMMA 5.12. C is a g-simplex of K(4") with the set of vertices Cy, -++,C,
if and only if the following conditions are satisfied.

1) There exists a simplex A’ of 'K[57)] with vertices Al .-+ A} such that
there exists a §equence of cells Liv=..-<Ll'v and the corresponding sequence
of barycentres L{'®, «~+, L8'v is the sequence of vertices Af, .-, Aj.

ii) There exists a permutation o and a sequence of mdzces (h)4'0, o=+, (e)*'e
belonging to E*o, ..., E*1 yespectively such that &i=&j|I(0]) if 0=i=q and
(e izp () of O£z<]Sq, and the sequence of indices (e))*'0, -, (¥ is the
sequence of vertices Cupy, ) Coucpre

Proof. Let o be a fixed permutation of the set [q] ={ie Z|0=i=q}.
Then we put. A,y =A4%, cuuy=¢l-
First we note that the definition induces

NEY¥on -« NNeD)¥e=0AHN - NOANN L N+« N L{'e.

We only need to prove that this set is nonvacuous if and only if &=
&,|1(6}) for each i.
We assume that

O(A)N ---NO4]

is nonvacuous. Without loss of generality, this assumption can be restated
in the form: there exists a monotone nondecreasing sequence Ll e 200
such that A} = L§¢ for every 7.

We remark here that this assumption implies the followmg two assertions.

The first is [(8)) 2 +++ 2 1@}).

Secondly L' is shown to be contained in the closure of O(A“)ﬂ “NOAY
in 'K[#]|.

Since & belongs to E4:S E|I(#)) for each i and [(#))=2---21(4;), Corollary
5.5 shows that the set

Lo N L.

is nonvacuous if and only if & =¢&§|I(8}) for each I, or equivalently L{2& L
for every 4, and then L{en--.NL¥e=L5"o,

On the other hand, ()4 belongs to E?t=FE40, so we have L{oNL{° is
nonvacuous. Since L}’ is open in |['K[=7]| and L{'¢ is contained in the closure
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of O(AN)N---NOAYD, O(A)N---NO(AL) N LY is nonvacuous.

Thus the assumption mentioned in the beginning induces that
OAHNN - NOAYNLY N ---NL is nonvacuous if and only if ¢ = &|1(#}) for
each ¢ or equivalently L{°SL{? for each i.

a=(ay, -+, a,) is a g-simplex of K[%,] if and only if there exists a sequence
of cells Lyr=---<L{ and we have a,=Li for each i. 3 B

Let 'K [#1], denote the set of all g-simplices. Then ’'K[<3)=I1'K[%),
denotes an s.s. complex with obvious definitions of the face and degeneracy
operators.

B8=(Bo, -+, B,) is a g-simplex of K(.#™) if and only if there exists a sequence
of indices (e)4, ---,(s)* such that O(A)NLiN---NLi=% @ and we have
a;=(e)* for each 7. ~

Let K(.#4), denote the set of all g-simplices. Then K(A44)=][ K(4™),
denotes an s.s. complex with obvious definitions of the face and degeneracy
operators.

LEMMA 5.13. Let A be a simplex of 'K[<). Then B=(Bs, -+, B8,) is a
g-simplex of K(A"4) if and only if there exists one index (s0)* say B, in E4
such that B=/(s,)8,.

Proof. As observed above, the set LioN.--NLi is nonvacuous if and
only if &,=e, for every i, and hence 8;=8, for every i.

7=(re, **+,7,) is a g-simplex of K(’~#") if and only if the following conditions
are satisfied.

i) There exists a g-simplex a=(ay, -+, a,) of 'K[.55]: that is, there exists
a sequence of cells L{=<..-=<L{ and we have a,;=L% for each i. We write
as {a}=A4, a,=L% for each i.

ii) There exists a sequence of indices ()4, -+, (g)*7 belonging to E4,
-+, B4 respectively such that O(4A)NLieN---NLiv% @ and we have y,;=(e,)4
for each i. ‘

LEMMA 5.14. r=(ro, -+, 7,) is @ g-simplex of K(-A") if and only if the
Jollowing conditions are satisfied.

i) There exists a g-simplex of 'K[.%%)] say a=(ay, +++,a): that is, there
exists a sequence of cells Lp=<...<L% and we have a=Li for each i. We
write as {a}=A, a;=A, for each 1.

i)  There exists an index (s)0 of E* and we have y,=(e;)* with e;=g,|1(0;)
for each 1.

Proof. The proof is done in the same way as in the preceding Lemma.
A fibre product
K= 'f?[v-g’”o],m%, 1H{ K4 | Ae’K[=]}
[ o]

is defined as-follows:
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A gsimplex of K is a pair axp with a being a gsimplex of 'K[#]
and 8 being a g-simplox of K(-#™) where A={a}.
Now the face and degeneracy operators are defined by

0@ X ) = 0 X (3] 010:f
s,;(a'X,B) = Sia’xsiﬁ .

Let axB, a’xp’ be two g-simplices of K. Then axf~ a’xp’ if and only
if a=a’, ©ipimbi=mnlthyianbl

LEMMA 5.15. axf is a g-simplex of K if and only if theve exists an index
(e)* say By in E* such that B=(s,)!B, where A={a}. ~

Let ax(s)Uea)*, o’ X (s0)U(e)4 be two g-simplices of K. Then ax{sy)i(s) ~
o X(s0)%el)* if and only if a=a', ey=¢}.

Now we obtain the following.
PROPOSITION 5.16, We have an s.s. isomorphism
K=K(A).

This result suggests us the existence of the complex as shown in the
next section.

§6. The Deligne complex

As in the previous section we are only concerned with the family %=
{ W) |iel} of which each member W{(i) is a hyperplane in C=».

Already we know the existence of a collapsible open covering of C*\ Y7
which enables us to obtain a simple homotopy equivalence €™\ ¥{ ‘W’):s [K('A7)].
The aim of this section is to construct a regular cell complex D[%] called
the Deligne complex associated with % whose derived complex ‘D[%7] is
isomorphic to K(-#").

Let ¢ be an element of ® with a nonvacuous cell Lt of K[.r4]. Then
the dual cell D{9) of Lf{ to be the subcomplex ClStL{ of ‘K[:#], in other
words

D) = U{{Lts, -+, Lty e "K[#7] | LySLio<---<Lir} .

If L§is a face of L%, then D(6’) becomes a subcomplex of D(6). This
being the case, D(¢’) is called a face of D(f) and is denoted by D(6')<D(§). We
use the notation ¢.: D(¢/)—D(6) to denote the natural inclusion.

For ¢ in ® with a cell L{ of K[.%3], we define E? to be the set of indices
¢? taken once for each function e: [(9)—Fy satisfying the condition ZIN Li=@.

If L§ is a face of L{, then I(#) contains I(§’). Hence we can define a
projection zf: E’—E? which sends ¢’ to (¢/)f, with &/ =¢|[(§").

For each 6 with a cell L§ in K[.%4], we consider the cartesian produdt
D(@)x E°. :

If LS is a face of L{, then we have a diagramme
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Il, 1 1 0,
D) E" 2255 Doy x E? &2 Do) E° .
Let Axel, A’x(¢)Y be simplices of D)X E?, D(@)xXE! respectively.
We write A’x (/)" —>Axe? if L] is a face of LY and (4A'=A, ()" =nl.e’.
We consider the disjoint union of simplicial complexes

D=T1I{D®)xE’|0eb, Lc K[Z]} .

Let us now define an equivalence relation as the weakest reflexive, that
symmetric and transitive relation including the property that AXe’ and
A’x () are equivalent whenever Axe? — AX (/).

We denote by D'[ %] the simplicial complex consisting of all equivalence
classes.

Let us denote by %: D—D/[%] the natural projection.

Now we can verify that x(D(@)x()?) is a subcomplex of %(D(9)xe?) if
and only if the following conditions are satisfied:

i) D(@’) is a face of D(f), or equivalently, L} is a face of L.

i) ('=azf & e, & = L(@).

When these conditions are satisfied X(D(6) % (¢)') is called a face of 1(D(0) x¢?)
and is denoted by X(D(¢) % (/)")<2(D(8) X ).

Given a simplicial complex K, we employ the notation |K| to denote the
geometric realization of K. _

Under this convention X: |D|—|D/[%7]| stands for the corresponding
natural projection. ’

From the definition, we can easily verify that the space |D/[2#7]| has the
structure of CW complex admitting x(|D(8)| Xe?) as a regular cell given for
each ¢ in EY and ¢ in @ with cell L} in K[.%].

The CW complex thus obtained is called the Deligne complex associated
with % and denoted by D[ #7].

Let /D[%”"] denote the barycentric subdivision of D[#"],

PROPOSITION 6.1. We have a simplicial iéo_morphz’s»i
KAy ='D[%#7].

Proof. From Lemma 5.12, C is a g¢-simplex of K(.#") with vertices
Cy,y +++, C, if and only if the following conditions are satisfied:

i) There exists a simplex A of ‘K[%] with the sequence of vertices
Ays---=£A, such that there exists a sequence pf cells Livx... <Ll and the
corresponding sequence of barycentres Lf¢, «-+, Liz is the sequence 4,, -+, 4,.

ii) There exists a permutation » and a sequence of indices (g,)4, - - +, (e,)42
belonging to E4o, ..., E4s respectively such that e;=¢|1(8,) if 0=<i=<q, (e;)4=¢(e))4i
if 0=4<j=q and the sequence of integers is the sequence C,q, ***, Cuce)-

On the other hand, C’ is a g-simplex of 'D[%7] with the sequence of
vertices C, -+-, C; if and only if there exists a permutation » and a sequence
of cells Z(D(6,) X (gg)?) <« » - <X(D(,) X (¢,)?) and the corresponding sequence of
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barycentres (| D(#o)] X (6)%0)", -+ + ,X(| D(8,)| X (e,)?1)" is the sequence Cly,**+,Clco-
We now have an jsomorphism transforming a vertex s* into a vertex
1) % %) with A = Li.

COROLLARY 6.2, We have a simplicial isomorphism
KAy = D'[.#].

Proof. We only need to prove. ’D[%|=D’[#"]. This follows from the
definition.

THEOREM 6.3. We have a piecewise linear homeomorphism

|K(#7)| = [DIZ7]] .
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