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Abstract

Using the geometry of based loop group QG and some results on harmonic
maps, we shall show that when #>3 there exist harmonic but not+holomorphic
maps from CP! to QSU(n) for each degree. Further we shall discuss what our
result suggests from the point of view of the difference between Yang-Mills
connections and instantons on S* in particular Atiyah-Jones conjecture.

§1. Introduction and statement of result

Let G be a connected compact Lie group and g be its Lie algebra. Suppose
that G is a simply-connected and simple Lie group. We define free loop group
LG of G by the space of all maps a: S'—>G which are in the Sobolev class L?
and based loop group QG of G by the subspace of LG in which element preserves
a base point. Then LG and QG are infinite dimensional Hilbert Lie groups by
(- P @) =a(f)-p®) for any a, fe LG and e S*. The Lie algebra Lie(LG) is given
by Lg which are maps from S! to g and Lie(QG) is by Qg={ae Lg: a(0)=0¢cg}.

The geometry of LG and QG is studied by many people, for example
Atiyay, Pressley and Segal ([A-P] [P] [P-8]), and we know that they are equipped
with fruitful nice geometric structures. - In particular QG has a natural complex
structure and a K&hler metric (see § 2). Furthermore St acts on QG as rotation
preserving the Kdhler structure. . (This is holomorphic action.) Then we have
a moment map with respect to this S!' action and Kahlar structure and its
critical manifold is Hom(S!, G).

Now in this paper we consider the adjoint action of G on QG and its
adjoint decomposition, which also gives decomposition into connected com-
ponents of Hom(St, G). We describe the adjoint orbits and show that they lie
in QG holomorphically and totally geodesic. Using this observation and some
results on harmonic maps, we get the following theorem.

THEOREM. Let CP* be a projective line with Fubini study metric and QSU(#n)
be with a natural Kihlar metric (§ 2).

(1) If n=>3, there exist harmonic but non+holomorphic maps from CP* to
QSU(n) for each degree.
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(2 If n=2, there exist holomorphic and totally geodesic maps from CP*
to QSU(2) for each degree.

REMARK. (1) For each map ¢: CP'—QG we define the degree of ¢ by the
following. Since G is a simply connected and simple compact Lie group, we
have =,(G)=rm(G)=1 and #n,(G=Z. So ,(QG)=zr,(G)=1. Hurewitz theorem
implies that H,(QG; Z)=x,(QG)=n,(G)=Z. We denote the generator of
H,(QG; Z) (resp. H(CP'; Z)=2) by [QG] (resp. [CP]). Then the degree of ¢
is defined as an integer by ¢x[CP'1=deg ¢[QG].

(2) When #=2, Theorem dose not imply that all harmonic maps from
CP! to QSU(2) are holomorphic, but just that the harmonic maps which we
construct are automatically holomorphic.

Harmonic or holomorphic maps from CP* to QG are deeply related to the
moduli spaces of Yang-Mills connections or instantons over S* From this
point of view, we shall discuss above Theorem and our motivation in the last
section.

The author wishes to thank Professor A. Hattori for warm encouragement
and helpful advice.

§2. Kihler structure and moment map

In this section we recall the geometric structures on QG, in particular
complex Kihler structure and the existence of moment map of S* rotating
action ([A-P], [P-S]).

Let < , >=¢ , > be a G-invariant metric on g and we fix this metric.
We put for £, 7€ Qg and fe S,

ot M= || <0, 7O>ed0

Here &(6) means the first derivation by 4 of £&: S'—g. Then direct calcula-
tion shows that « becomes a left invariant closed 2-form and non-degenerate
on OG. So this defines a symplectic structure on QG. Note that o is also
defined on LG and left invariant closed 2-form. However « degenerates on
constant loops.

Next we introduce almost complex structure J on QG. We have the
following Fourier expansion of ée€ Lg

&)= 2“(0" cos nd-+b, sin nf) , Ay Dn€Q .«

Now we see Lg as Lg=0aPg and this g-component corresponds to constant
terms in the Fourier expansion. So for £€ Qg we have

&(0)= ZZ;I (a, cos n0-+b, sin nd) .
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Then we define J: Qg—Qg by
J: Z:l (@, cos n6-+b, sin n6)— i}l (—b, cos nf-+a, sin nf) .

and this gives almost complex structure (after moving by left transformations).
Further it is easy to check that this is integrable. With this J, QG is a
complex manifold. But we note that (QG, J) is not a complex Lie group.

Now let g be the Riemannian metric compatible with (o, /) such that the
followings hold

w(J&, In=w, ), 9 N=w, Jy) is positive definite.

Then (QG, g, w, J) is a Kiahler manifold. Here we point out a remark on the
topology of QG. The topology by this Kihler metric g is different from a
priori one by Li-Sobolev loops. In fact (QG, ¢) is not complete. But we deal
with (QG, g) because it fits well with Morse theory on QG as below.

We define the energy functional & on LG by

B0)= |, SO0, 1O O d0 for reLG.

where for y: S'—G we consider /(f) as an element of T34 G and pulling it
back to the identity by r(@)~! we consider 7(8)~y/(#) € T;,G=g. Since it is easy
to see that &: LG—R is invariant under the multiplication by constant loops,
# induces the functional on QG, say also &: QG—R.

On the other hand S' acts on QG by (#:7)(0)=r(t-+8)y"1(¢) for ¢,0eS* and
r€ Q6. This St action preserves that Kahler structure w. Then we find out
that & is the moment map with respect to above S* action. Namely & is St
invariant and d ¥=i(X,)w, where we denote by X. the vector field along the
St action and (%) means the interior product by the vector field X.. In
particular since the critical manifold of a moment map is the fixed point set,
we have (¢-7)(@)=r(0) for any t, 6€ S, that is r(f-+8)=y#)yr(0). Therefore the
critical manifold of & is just the set of all group homomorphisms from S* to
G, Hom(S', G). Further Hom(S!, G) is a complex submanifold of QG and in
particular a compact complex Kiahler manifold.

§3. Adjoint orbit decomposition

In this section we consider the adjoint action of G on QG and its adjoint
orbit decomposition. In particular we describe the orbits in the critical mani-
fold Hom(St, G).

‘We have naturally the adjoint action of G on QG by

3.1) (9n@)=g-r0)-9g7*, bG8

for ge G and ye QG.
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Lemma 3.1. The wmoment map in the previous section &: QG-R is G-
invariant under the adjoint action (3.1).

Proof. For g€ G and ye QG we have

Here we have

(gr)~O)grY @) =(gr6)g=") " gr@) 9+
=9r(0) g9y (9)9*
=g (O r'(@)g* .

Therefore since { , >, is G-invariant, we have &(g7)=(yr). B

This lemma enables us to decompose the critical manifold of & into the
adjoint orbits. That is we have

(3.2 Crit( &)= Hom(S*, G):I}I Cy

where C, means the conjugacy class of y e Hom(S', G).

Now we use the terminology of Lie algebra in order to describe the
topology of the conjugacy class. Since for any y € Hom(S!, G) and 0 S' 7(0)
is contained in a torus of G, we can write as 7(@)=exp X for some Xeg.
Further since 7 preserves a base point, we have exp X=r(1)=7(0)=ids;. Con-
versely for any Xeg with exp X=id, we get an element ye€ Hom(S', G) by
r{@)=exp X, 0<6<1. So we have

(3.3) h:={Xeg|exp X=idg}~Hom(S, G) .

Then the adjoint action (3.1) of G induces the action on %, which is described
by the following. Let X be an element of § corresponding to y, that is y(f)=
exp 0X Then we have

(3.4) exp 0(g- X)=(g-7)(@)=g7(0)g*
=g(exp 0.X)g~*
=exp H(Ad,X) .
Therefore we obtain that (g-X)=Ad,(X) for g€ G and Xel, which means

the action (3.1) induces adjoint representation on §. Corresponding to the
decomposition (3.2), we have

(3.5) y=II Cx

where C; means the adjoint orbit associated to the adjoint representation of
Xeny.
Next we describe the orbit C;. Let Gy={ge G| Ad(X)=X}CG be the
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isotoropy subgroup of Xej. Then we obtain the following‘ lemma.
LemMMA 3.2. As homogeneous spaces we have the following isomorphisms

Cx=G/Gx=GIZT) .

Here Gy=exp gx when we denote by gy the set of the elements of g which commute
X, [Y, X]=0. We denote by T a torus of the closure of the one parameter
subgroup generated by {exp tX}, and Z(T) means the centralizer of T in G.

Proof. It is enough to show that Gy=exp g,=2Z(T).

First we shall show that (Gi),(=the identity component of Gy)=exp gx.
Take any y€(Gy);. Then we have y=—=exp Y for some YeLie(Gy). Since
exptY e (Gy)yC Gy, we have (Ad(exptY))(X)=X. Differentiating the both
hand sides by # and evaluating #=0, we get

d da
O:%lec»:EE(Ad(eXp EY)UX) | 1mo=ad Y(X)=(Y, X].

So Yeagy. It follows that (Gy)yCexp gx.
Conversely take any Ye€g;. Then since

(exp tY)(exp X)(exp—tY)=exp X,

we have (Ad(exptY))(X)=exp X. That is exptY€(Gy),. Thus we obtain
(Gx)y=exp 8x.

Secondly we shall show that G,=Z(T). Takeany g€ Gy. Then (Ad)(X)=X
and this implies that (Ad,)(tX)=¢X for all € R. Namely g-exp tX-g '=exp X
for all teR. So we have ge Z(exp tX)=2Z(T). Converse is easily obtained by
returning back above argument.

Finally since the centralizer of a torus is connected, Z(7),=2Z(T). There-
fore we obtain Gy=(Gy),=exp gy. M

Thus we have
(3.6) Crit( &)= Hom(S?, G)zIT_f[ C,;t)z]:i’[ CXzIJ G/GX:I_\I GIZ(T) .

REMARK. We have a remark on the set of the index. An element re
Hom(S*, G) moves in the set of conjugacy classes of homomorphisms from St
to G. This set is identified with an integer lattice in 5 modulo the action of
Weyl group. For example when G is SU(2), it is a non negative integers
(see [A]).

The decomposition (3.6) gives also the decomposition of connected com-
ponents of the critical manifold. In fact according to [A] we put C'=
{fe QG| r@ @)@ =r0+2) 1), for all 9,teSY for ye Hom(S', G). We put
r(@)=70)f(0). Since y is a homomorphism, feC’ implies A@)AE)=h(0+1).
Thus we have he Hom(S', G) and C"=y"*Hom(S', G). In particular when we
denote by (C7), the component of C” containing the base point 1€ QG, we have
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(C"),=7"'Cy. Therefore C; is a connected component.
Now we consider a natural inclusion of a connected component C,=C,
into QG. Then we have the following

LemMa 3.3, The natural inclusion i: Cr=+>QG is holomorphic and totally
geodesic.

Proof. Holomorphicity is directly followed by that C; is a connected com-
ponent of the critical manifold and the critical manifold is a complex sub-
manifold of QG.

We shall show that it is totally geodesic. By Proposition 8.8 in [K-N] it
is enough to show that the inclusion ¢ is auto-parallel. Namely take any point
a€Cr=C; and let v=r, be any curve in C, starting from « (z,=a, 0<EL1).
Then it suffices to show that when any tangent vector X¢& T,(C,) transforms
parallel along the curve r, then it is also tangent to C.

Since the action of S' to QG preserves the Riemannian metric g (see § 2)
and C; is a fixed point set, T,(C,) is identified with the subspace of T,.(QG)
on which the induced action on 7,QG) is identity. That is for any € S* we
have #-(¥)=¥. Furthermore by that the action of S*' to QG preserves the
Riemannian metric g the action also preserves the Riemannian connection
associated to the Riemannian metric g. So the S! action and the parallel
transformation along - commute. That is when we denote by z(¥) the parallel
transformation of the tangent vector X along 7, we have §-¢(X)=1(f- (X)) =2(%).
Therefore the vector =(¥) is invariant under the S* action. Thus we obtain
(%) € T,,(C;) which implies z(¥) is tangent to Cr, too. It completes the proof. B

In the rest of this section we shall deal with when G=SU(n), (2>2). In
that case we can describe explicitly some connected components C, of the
critical manifold.

We define tori T, (k=1,2, -+, n—1) in SU(n) by the following

I3 n—=k
————n e — e, « e t—
ei('n—-k)ﬁ‘

0

Tt = L gt

e-—ikl)

’ e~'l?k0
Then direct calculation shows that the centralizer Z(7,,,) of T,.; in SU(#)
is given by

Z(T,,,k)z{(g g) e SUm) | Ae Uk), Be Un—F) det A det B=1} .
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From this we obtain the isomorphisms as homogeneous spaces
3.7 GIZ(T,, ) =SUmn)| Z(T,,1) = G7,(C)

where G7,,.(C) means a complex Grassmann manifold which is formed by %
dimensional complex subspaces of C».
Therefore by Lemma 3.2, Lemma 3.3 and (3.7) we obtain

LEMMA 3.4. When G=SU), m=>2), there appear complex Grassmann
manifolds Gr, (C) (k=1,2,--,n-1) in connected components of the critical
manifold of %.

In particular a natural inclusion i: Gr,,,(C)—>QSUn) is holomorphic and
totally geodesic.

§4. Proof of Theorem

In this section we shall prove Theorem by using the observations in
above sections and some results on harmonic maps. First of all we refer to
the following Eells-Wood’s theorem [E-W 2].

THEOREM 4.1 ([E-W 2]). Let CP" be a complex projective space with Fubini-
study metric. Suppose n>2. Then there exist harmonic and non-+holomorphic
maps from CP' {o CP" for each degree.

We denote the map in above Theorem by ¢r: CPL—CP* (deg ¢p=I). Now
we apply Lemma 3.4 in the previous section when 2=1. Since G7,,,(C)=CP""?,
we have holomorphic and totally geodesic map ‘

7. CP» - QSU(n) .

Then we consider the composition map 7 e ¢p~t: CPt-CP*1—QSU(n), which is
denoted by ®p.

LeMmMa 4.2. If n>3, the map ®p: CP—->QSU#) is harmonic and non-+
holomorphic.

Proof. Harmonicity of ®p: We recall the composition property of harmonic
maps. (See [E-L]). That is, when f,: (M, 9)—(N, B and f,: (N, B)—>(L, k) are
two C*-maps between Riemannian manifolds (g, #, 2 are Riemannian metrics),
the trace of the second fundamental form of the composition map f.of, is
given by

=(fe o fi) =trace, (Vd(f; < f1)) )
=df, o o(f1)-+trace Vdf,(df,, df) € C*((f, s FO*TL) .
Now if f, is a totally geodesic map, then Vdf,=0. Moreover if f, is a

harmonic map, we have z(f;)=0. So in that case it implies 7(f, o f)=0 that
is harmonic. In our case when #>3, ¢! is harmonic by Eells-Wood’s The-
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orem 4.1 and ¢ is totally geodesic by Lemma 3.4. Therefore the map ®f=
i0 @p~! is harmonic.

Non=+holomorphicity of ®y: It suffices to show that the induced complex
structure on the submanifold C;=CP*! (y€ Hom(S!, SU(n))) of QSUx) is the
standard one. If so, the claim holds immediately because ¢;p~!: CP*—CP"* is
non+holomorphic but i: C;=CP"'—QSU(n) is holomorphic, Now the former
CPr is equipped with Fubini-study metric which is Kihler. On the other
hand the latter CP* ' is equipped with the K#hler structure induced by that
on QSU(n) (§2). According to the results of Kodaira-Hirzebruch-Yau [Y] the
complex structure on CP" which is Kdhler is unique (standard one). Therefore
two complex structures on CP*! we consider now is the same. It completes
the proof. M

ReEMARK. It seems to be able to prove the second assertion directly, not
by using the result of Kodaira-Hirzebruch-Yau.

Thus Lemma 4.2 implies the part (1) of Theorem.

Next we consider the case when n=2. We have a holomorphic and totally
geodesic map i: CP—QSU(2) by Lemma 3.4. However in contrast to Theorem
4.1 we know by Eells-Wood [E-W 1] the following.

THROREM 4.3 ([E-W 1]). Let 3, be a closed Riemann surface with genus g.
Then every harmonic map from 3., to CP* is holomoyphic, if the degree of the
map is greater than or equal to genus g.

Now we apply this theorem to the case g=0. Then all harmonic maps
from CP' to CP! with degree>0 are holomorphic. (When the degree<0, it is
anti-holomorphic.) Thus we can not construct harmonic but non:holomorphic
CP to QSU(2) by this method, but only holomorphic and totally geodesic
maps.

REMARK. In §3 we find that not only CP*! but also Gr,,,(C) appear as
connected components of the critical manifold. Now we may replace CP*!
to Gr.i(C) above argument. At this time corresponding to Eells-Wood’s
Theorem 4.1 and 4.3, we have some results on the holomorphicity of harmonic
map from CP! to Gr,,.(C) by Erden-Wood [Er-W] and Wood [W]. Using these
results might give us much more harmonic and non:holomorphic maps from
CP to QSU(n) when n>3. But when #=2, we do not get more or sharp
results because G7,,,(C)=CP'.

By the way above argument when we showed the maps are nonzholo-
morphic, we argued whether two projective spaces with Kahler structures are
holomorphically isomorphic or not. In this context the following problem
appears naturally.

ProORLEM. Let M be a compact complex manifold with a Kihler metric.
If M is homeomorphic to Gr, (C), then is it holomorphically isomorphic?
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This is a holomorphic characterization problem of Grassmann manifold,
which is a Grassmann version of Kodaira-Hirzebruch-Yau’s theorem.

§5. Instantons and Yang-Mills connections on S*

In this section we shall discuss some relations between instantons or Yang-
Mills connections on S* and holomorphic or harmonic maps from CP' to QG.
First of all we start with the following ohservation by Atiyah and

Donaldson ([A], [D]).

THEOREM 5.1 (ATIYAH AND DONALDSON). Let G be any classical compact
Lie group and k be any positive integer. Then the following two spaces (1) and
(2) are diffeomordhic. » :

(1) The moduli space . #(G)x of instantons on a principal G-bundle over
S* with c,=k modulo based gauge group.

(2) The space #bl,(CP', QG)y of based holomorphic maps from CP* to QG
with degree k.

Here the based gauge group means the group of automorphisms of the
G-bundle which fix the fibre over a base point, and in (2) the holomorphic
structure on QG is that introduced in §2.

On the other hand we have (one of) Atiyah-Jones conjectures [A-}] con-
cerning Yang-Mills connections and instantons on S*, that states.

ArrvAH-JoNES CONJECTURE. All irreducible Yang-Mills connections on a
principal G-bundle over St are instantons.

By Bianchi identity, instantons are Yang-Mills connections. Atiyah-Jones
conjecture claims that the converse is true.

Now since CF* and QG are Kédhler manifolds (§2), any holomorphic map
from CP' to QG is harmonic with respect to the Kihler metrics, Thus we
have

HOL(CP', QGG #ar (CP', QG)y

where by the right hand side we denote the space of based harmonic maps
from CP' to QG with degree k. In this context our main result implies that
when G=SU(n) and n>3, #0l(CP', QOG)4S. #ar,(CP', QG)y. Therefore when
we denote by #..#,(G)x the quotient space of irreducible Yang-Mills connec-
tions on a principal G-bundle over S* with ¢,=% modulo based gauge group,
we have the following diagram.

F0L(CP', QSU(n)x% 2€ar(CP, QSU(n))«
! =

(5.1) : ASUM) G 2(SUn) ) -

Although harmonic maps and Yang-Mills connections are both the critical
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points of certain functionals and conformal invariant, the relation is not so
clear. But our result seems to suggest that Atiyah-Jones conjecture is nega-
tively supported when G=SU(n) and »>3. Strictly speaking, even if it is
proved that S#ar(CP*, QSU(n))x is diffeomorphic to #. 7, (SU(n))x corresponding
to Atiyah-Donaldson Theorem 5.1, we can not claim only by our result that
ST EZ - 2(SUn))x, namely Atiyah-Jones conjecture is false. We
should describe an explicit correspondence between SZar,(CP', QSU#))x and
Y #(SU(n))x. It means that the diagram (5.1) should be commutative.

Recently Sibner-Sibner-Uhlenbeck in [8-S-U] show that there are Yang-
Mills connections which are not instantons on trivial SU(2)-bundle (instanton
number ,=0) over S$'. Their method is purely analytic and using Taubes’
machine {T]. However we do not know at all how the ‘moduli’ of non anti-
self-dual but Yang-Mills connections on S$* is.

ADDITIONAL COMMENT. While writing this note, the author heard that
Sadun proved that there are Yang-Mills connections which are not instantons
on a principal SU(2)-bundle over S* with ¢,#1.
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