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Abstract

A solution #(t, z)eC(R}, L*(RY)) to a time dependent Schridinger equation
i(0un]ot) = — du+ V(t, x)u with time periodic potential V(¢+2x, z)=V({, x) is called
quasi-stationary state with quasi-level 1 if it satisfies w(t+ 2z, z) =exp (—2rid)u(t, x).
We show, under the condition (1+[z|)**V{Z, z)eCY(R:, L=(RY)), that every non-
threshold quasi-stationary state decays exponentially at infinity in the sense
that exp (a|z)u(t, z)eC(R}, LY RY)) for a®*<1~(A—[1]), if A is its quasilevel, where
[4] is the integral part of 2.

1. Introduction

We consider time dependent Schrodinger equations

.1 i%=~du+ Vit, o, —oco<i<oo, zeRY

with real-valued potential V(#, x) which is periodic in time:

1.2) V@, z)=V{t+2r, 2), —oco<Lt<oo, xeRY,
We assume
1.3) ; V(Z, -)eC (R, LY(RY)),  p>1,

where LP(RY) is the Banach space of weighted L?-functions:
LR ={f e Lu(R): [Kay'fllo<oo},  Cad=(L+ad)e.

It is well-known ([9]), under the condition (1.3), that (1.1) generates a unique
propagator, a family of strongly continuous unitary operators {U(f, s): —oco<i<
s<oo} on LA(R¥) such that for every wu,e H*(RY),
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u(t)=U(t, S)u,eC (R, LXRY) N C(R, H*RY))

is a solution of (1.1) with the initial condition u(s)=wu, Here H(RY) is the
standard Sobolev space of order s.

As in the Floquet theory for ordinary differential equations with periodic
coefficients, the one period propagator U=U(2r,0) plays important role for an-
alyzing the solutions of (1.1). We know that

(a) the Hibert space L*R?Y) splits into the absolutely continuous subspace
L4 (U) and the point spectral subspace Ly(U) of U;

(b) Li.(U) consists of scattering states ([4],[7]): For every u,eLi(U) there
exists #.eL*(R¥) such that

U, O)uo—exp (@Dus|| —> 0 (#— £o0);
() if ¢ is an eigenfunction of U,
(1.4) Up=e"%g peL*(RY), 1eR

then for the solution #()=U(z, 0)¢, (¢, x) is periodic in ¢ with period 2z.
For this last reason, ¢ or u(z) is called quasi-stationary state for (1.1) and 2
the quasi-level of @, which is determined modulo integers only.
~In this note, we shall show that all quasi-stationary states with the quasi-
level 1¢ Z decay exponentially as |x| — oo, as do eigenfunctions of time inde-
pendent Schridinger operators. More precisely, we shall prove the following

TreoREM. Let a real valued function V(t, x) satisfy asssumptions (1.2) and
(1.3) and let ¢eL*(R¥) satisfy the equation (1.4) with 1¢Z. Then for all 0<a?
<1—-@-[2],

exp (a{z)p(x) e L (RY)

where [1] is the greatest integer not layger than A.

The asymptotic behavior at infinity of eigenfunctions of (time independent)
Schridinger operators has been long studied, including general N-particle systems,
and it has a large body of literature; Among others we mention only Agmon’s
lecture note [1] where the decay of eigenfunctions is studied in detail by PDE
technique using the Agmon metric, and the work by Froese-Herbst [3] which
applied Mourré’s commutator estimate for finding the exponential decay rate of
eigenfunctions. Technically we shall show in this paper that the commutator
method employed by [3] is likewise effective for studying the exponential decay
of quasi-stationary states of time periodic Schridinger equations. We should re-
mark here that the algebraic decay of ¢ has been known for a long time and
(zD'pe LA RY) for all />0 (Nakamura [6], Kuwabara-Yajima [5)).
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2. Preliminaries

Following {7] and [8], we introduce the extended phase space (or the grand
Hilbert space)

K=L¥T, L{RY)), T=R|2z7Z
and define a strongly continuous unitary group {U(s): —co<e<oo} on K by
CU(O-)Q(Z’L) = U(ty 1— 0>(1,(t_ 0’) y ge c]{ .

A simple computation shows the following

Levma 2.1, Let ¢pel*(RY) satisfy (1.4) and set

2.1) S@)=e*U(t, 0)¢, —co<L <o,
Then feX and
2.2) Ul)f=e*f, —oo<a<co,

Let K be the generator of {J(o)}:U(o)=exp (—isK), ~oco<o<oo. Then
(2.2) implies’

2.3) Kf=1f.

For the generator K, we have the following

LemMA 2.2. The genevator K is the maximal operator of —io|dt— 4+ V(¢ x),
that is,

DEK)Y={ue X : —oulot—du+V(t, D)ue K},

2.4 .
Ku=—idulot— du+V{t, x)u, uePK),

where in the RHS of (2.4), the devivatives are taken in the sense of distributions.
In what follows || || and (,) will stand for the norm and the inner product
of L*RY) and those of X will be distinguished by putting subscript x. We

shall denote the partial Fourier transform of ueS/(TXRY) with respect to #
(resp. (¢, z) as @(n, x) (resp. #(n,£)). Formally -

ar
i(n, x)=(2n‘)"”28 e~"™y(t, x)dt, #n=0, £1, +2, ...
0
and

ar
i, = (@ay- ol at|  dwem-cutt ).
[ RY
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Proof of Lemma 2.2. We let Hy=—4 with @(H,)=H*(R") and set Uy(®)=
exp (—itH,), —co<¢t<oco. Define a unitary group {€J,(c), —co<o<oco} by

@.5) Uolo)g(t)=exp (—iocHo)g(t—0),  geX

Taking the Fourier transform of (2.5) yields

(2.6) (Uo@)g)(n, &) =€~ ™G(n, &)

and the RHS is differentiable in X w.r.t. o if and only if Ty _./|(6*+1)§(#, &)1
<oco. Thus the generator K, of Uo(s), Uslo)=exp (—ioKy), is given as

©@.7) l DK =lue X, —idulot—Jue X},

Kou=—ioulot—Ju .

Since V(t, x) satisfies (1.2), we have by Duhamel’s formula
L
U(t, s)teo=Uy(t— 8)t6o— zS Uyt—r)V(H) U7, S)ueds ,
) 8

where V() is the multiplication by V{r,z). It follows that
2.8) (UEwWO)=U(, t—a)ut—a)
=Uo(a)u(z‘—o)—iSuU.J(a—r)V(t+7'——a)U(t+r-——a, t— oYt —a)dr
0

= (Ua(oe)(B)—i S Wolo~7) VU@YR)dr,

V' being the multiplication by V(4 x) in X. Taking the Laplace transform of
(2.8), we obtain

2.9 (K=2)'=(Ky—2)"'— (K, —2)"*V(K—2)"1, Im z5:0.
which implies
(2.10) DE)=DKy), K=K+V.

The statement of the lemma follows from (2.7) and (2.10). B

3. Proof of Theorem
We first show

(8'1) sup {0(2+2: 0[20, e"<m)fejf}zfez

by the method of reduction ad absurdum. We suppose r=ai+1¢ Z. Following
Froese-Herbst [2,3), we choose 0<a;, 0<y and a function Fi(z), 0<s<1 as
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follows and consider the function

3.2) f5(t, x)=exp (F(x))f (¢, )

where f({t, ») is defined by (2.1):
If @,>0, then 0<ay<ao<as+7r and if a;=0, then ;=0 and y>0.

(3.3 Fyx)=o0:{x) +70:({x)) ,
(3.4) o) = S: (sed-dr .

We write VoFu(z)=x-gs(x). A simple estimation shows the following

LemMma 3.1 (20). F, and gx) satisfy the following statements.
(1) For every s>0,

0<L Fi(zw) San{z)+Cs
with a constant Cs. As s—0, Fy(x) is increasing for every fixed xeR™ and

1}5%1 Fi(m)y=(ar+7)ap -

(2) There exists a constant C>0 independent of s and y>0 such that

(3.4) [PFy()| + (@ gs(2)| +<2>* | Pae(w) | <C .

(3.5) o+ PPF())*| Cly(as+7)+ (e +7)<z>=%

(3.6) (- 7)*gs(a)l < Clas +7) x>

3.7 [(PFy(@))* —ad| <2r(ar+ 1)+ (@ + 1)+ (e +7)2>~2 .

LeMmmMA. 3.2, Let f5(t, z) be defined by (3.2). Then for s>0 fie X and
(3'8) J?(n; J}'), f&(ni x)EHi(RN) ) ?’L:O, il: izy e

Proof: Since Fy(z) is C* with bounded derivatives, we have in S'(R¥*"),
(3 . 9) —1af;/at_ﬁ;pf,+ V(t: w)f&“' (Vst)zfs+ Vx(Vxe(x>fx)+ V.-,F;(x) . wa3= lf,q .
Taking the partial Fourier transform with respect to #, we find

(3.10) nfs(n, 2)— dafos(n, 2)+ (V) @1, 2)—(PuF o) (@) Fo(m, )
+ Vo PuF () F o1, )+ VoFi(@)- Va f s, 0)=2F o, ) o

n=0, =1, ---. Since fin, z)eL*(RY), (3.10) and a simple elliptic estimate yield
Fo(n, z)e HYRY). The proof for f(¢, z) is similar. Bl

We now use the following key identity ([3)): If A=1/2(z-F+7 -2) and & and
G, are multiplication .operators by &(z)=exp Fs(z) and Gyz)=(z-V)*¢s(z)—z-
P(PF(x))?), respectively, then for ¢eCP(RY)
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@.1D 2Re(6: AL, AP)=(Esh, LA, — 41s¢)) —4]|g*Abs P+ (Es¢h, Gfisth) -

The identity (3.11) is a result of simple manipulations.

LEMMA 3.8, Fof: and Vg Afie X and -

(3.12) I afult, DI+ 11V gs ASslt, 2

<HGs(@)f oty 2 | £l @) e+ K> VIl (KD VIl Lo+ N> Fall o) -

Proof: Since &Ag&, —4 and [A, —4]=24 are differential operators of order

<2 with smooth coefficients, we easily see that (3.11) remains valid for ¢eH*(RY)
with compact support. Take XeCy(RY) such that X(z)=1 for |z| <1 and X(x)=0 for
|| =2 and let Xu(x)=X(z/m), m=1,2, ---. Set &(z)=Ln(z)f(n, z) in (3.11) and add
—2Re(§: ALy Fn, z), (VAnf) (n, z)) to both sides of the resulting equation. Since
f(n, x)e H*RY), we have in the LHS,
(3.13) —2Re(&,ALinf (1, 2), (=D f (1, 2)+(Vinf) (1, 2)

= —2Re(&:Aéim f (1, ), Xn( K )1, )= (42m) (7, )= 2P hm) - VF (1, 2))

= —2Re(&AEdnf (1, z), —(Dn)@) f (1, ) = 2Fhu))- P/ (1, 2)) .
Here we used the characterization (2.4) of K in the first step, and in the second
(2.3) and the skew-symmetry of £,4%. Note that the multiplications by <{z)FXn(x)
and {z)*(d%,)(z) are vanishing as m-— co in the strong topology of bounded
operators in L(RY). Hence v :

lim (64 A& nS (1, 2), —(n)@)f (1, 5) = 2Pln) ) 7 (1, 2))

= }3_{“ K>~ Al f i, ), — (U (A ) () ~ 2P () - P2} s, @)
~ 2K () () Vfs(n, 2))=0.

On the other hand, we have in the RHS -

2(tm o, @), dalm o, 2) = 4|V gaAlm Fi(m, D)||* -
+(Unf o1, 2), Gl f o, 2)) —2Re(Akm f (1, 1), (VAm Fo) (3, 2))
< —2|tnl Folm, )| =20tV AT, D+ Go) ol I f o, 2]
+ @It s, @)+ N> Folt, D)DKV f3) (2, 2]
+4I[(Pm) fo, D PF s, 2|+ 4|V LA, X F o, 22— 20| m) F oy )] [*
+2/[[A, Xl F s, DN (Vilw £) (0, 2],
where we used the obvious estimate |[Xw(zd~'Af\%, 2)|| < |AnFFs(n, 2| +

(N2>~ Fon, z))l. Using the fact that the multiplications by Fxm, Vg4, Zn]
and [A, %»] are vanishing strongly in L*(R¥) as m— co, we see, therefore,
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2 (P 74, B[+ AT o, )
<NIGo(@) Fs(n, 2)|] | F s, )]
+@II7F s(n, 2)||+N|Kad=2F o, 2)DI<ad(VF)N, )] -

Thus the monotone convergence theorem implies Vg, A7s(n, x)e L} RY) and
NEFs(m, )24 21|V 0.AT s, 2)|?
<NIGs(@)Fo(m, z)|[|| Foln, )|
+H<x>(st)A(% $)H(ll<x>(st)’\(% @)|| +N|[<a>~ ‘fx(n, E)DR

Summing up both sides for neZ and using Plancherel identity, we obtain

(3.12). B

Note that the statement and proof of Lemma 3.2 and 3.3 remains valid for
any F in place of F, as long as F(z) is rotationary symmetric, ||F*F(z)||<
Cilap*™®, k=1,2, and exp(F(»)f({¢ x)eX. A similar and simpler proof yields.
the following

CoroLLARY 3.4. F; f(t, z)eX and

(3.14) 1P f1F, <2N+|IKad VI )Hflu '
We set
(3.15) - hs(t, m) =1ty )| fol]7

LemMma 3.5. If peL""(R”) and plx)—0 as |z| —co, then,

(3.16) lim [Iph,ll . =1im P .;=1im |6V gsAR| =0 '

Proof: Ass—0, Fy(x)—> (a;+y)x» increasingly and I’x Fy(x)— (a1+r)x (!
boundedly. It follows by the assumptlon ay+7>aq that

@. 17) Ifst @)l e—>o0  (s—>00)
and by (3. 14) and (3 17) that for compact QcTXR¥

(3.18) lim S \ha(t, )P dtdzn=Tim g \Phalt, @)|dtda=0
-0 Jo s20 Jo

Since p(a)—0 as |z| — oo, (3.16) follows from (3.12) and (3.18). M
CoRrROLLARY 3.6, As s—0

(3.19) ]]Vx(?sz(:c) Rty 2)F Vo o) - Puhs(t, 2)]) i 0 ,
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(3.20) WV, 2)hs(E, )|+ KD VIE, 2)hs(t, )|« — 0.

Proof: Since FFyx)=x-g(x), we have
(3 . 21) Vz(Vsz . /lx) -+ V.z:Fs . Vzhs =ng . Ahs + (-Z' N Vmgx(x))h? .
Lemma 3.5, (3.4) and (3.21) imply (3.19). (3.20) directly follows from (3.16).

Lemma 3.7. Let h(t, x) be defined by (3.15), then
3.22) 15551- (| —i0hs[ot— Ahs— (o + sl % <207 +7° .

Proof: Since FPE(z)=(a;+ypl({z)))z/{z), we have
|(PF)(z) — o] <adlad~2+2aur+7° .
Hence by (3.16),
En? [((PF)(@)® — adhs(t, z)l|x <2007 +7°.
Now we divide both sides of (3.9) by ||/« and let s—0. Applying (3.19) and
(3.20), we obtain (3.22).
LemMA 3.8. It follows that
3.23) lim: [1Pahs(t, )5 <Crlas+r) -

Proof: We devide both sides of (3.12) by || fi(Z, x)||% and take the limit
s—0. Then by (3.20)

(3.24) B [|Pats(t, )l <Tm [|Gy(z)u(E, @)l -

Remembering G(z)=(z-Fo)?g:(z)—z Vo(PFy(x))%, we apply estimates (3.5) and
(3.6) and Lemma 3.5 to the RHS of (3.24) to obtain (3.23). B

Completion of the proof of (3.1): We have (3.22) and (3.23) with the con-
stant C independent of 7 and «, which satisfy the condition below (3.2). We
shall show, however, that (3.22) and (3.23) contradict each other for small y>0,
if a2+2¢Z. Let 6>0. Then (3.23) implies

CrlatnzTm £ lelrhn, oz,

1€1

hence

(3.25) lim 5 S

g0 —™

|, &) 21— Crlas +1)57% .

fe12<a
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Now take a, ap<ay, $0 close to a, that
dist (a?+2, Z)=8,>0
and choose and fix §<8,/2. (If =0, take a;=ay.) Then by (3.25)

Vi || ~ 0/, 0t — Ahts— (a + A)as|

50

=lim 3 [I(€2— (c -+ A—n))s(r, £

80 T

>lim & SW et 2=, )

§-0 T®

2 (/4L —Crlas+7)o™) .
This clearly contradicts with (3.22) for small y and this proves (3.1).

Completion of the proof of the theorem: By (8.1), we have e*®f({,x)e X
for all a>0 such that a®<[1+1]—i. We need show that e*®f(¢, z)e LA RY) for
every teT. We write Flz)=alz) and f.(¢, z)=e**f(t,x). We first remark, as
was noted below the proof of Lemma 3.3, that Lemma 3.2, 3.3 and estimates
in their proof remain valid with Fx), g(@)=alz)d™* and f.({, z) replacing Fy(z),
gs(x) and fi(¢, ), respectively. In particular,

(3.26) Pfee X, VGAfeH,  Foln, z)e HYRY),

(3.27) —10f o/t —Aa fourt Ve (VF ) fut Vo(PaF (@) f)+ VF Vo fo=2f o .

We take o()eC(R") and n(z)eC(RY) such that o(f)=0, 5(z)=0 and
(3.28) Sa(t)dt= Sﬂ(x)dx -1,

and set, for ¢>0

(3.29) L(t, )= Sa(s}v;(y)l(t——ss, w—ey)dsdy

for leS/(TX RY). Multiplying Xn(z)=X(z/m) to bdth sides of (3.27) and applying
the operation (3.29) to the resulting equation, we have

(3.30) —0(m S 2)e0t— A Fo)e+ (L4, X fu)e+ (A Vi a)e ;
"(Zm(VF>2fa)s+(mem(VzFfu)):‘l'(meF V.zf«)x“"z(xmfa)e:o .
We note all terms in (3.30) belong' to C(TXRY). Take inner product in L*(R¥)

of (3.30) and (Xmf.). and then take the imaginary parts in the resulting equa-
tion. We obtain
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(3.3 ~ 1128/ (Xm F )OI 02

=Im {(— {4, Znlfo)e= U VIa)et On(PF )21 ).
‘_(mew(VFfa))e" (XmVF foa)sy (sza)e)} .

Integrating (3.31) by #, we see

1o ) LE? — |l S o)e(EI 2
=2TIm Stl (=20 Vfa— Mo fa— X VA L PF V21
"zxmgAfa"‘xm(x' Vg)fa)e; (xmf«)z)dt .

Choose now #, so that f.(f, z)eL*(R¥) and let e—0 and m —co. Using (3.26),
we see

tim tim a0 =1 £t 4 T S (G ASw f)AL<00 .

Thus f(t, z)e L{RY) for every ¢, and

L Futl =] Faltll2+4 Im g (AS.., f.)dt.

This concludes the proof’of the theorem,

(Ll
(2]

£3]
[43
L5]

£6]
£7]
L8]
[9]
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