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Abstract
The main goal of this research is to improve automatic pronunciation 

evaluation of reading-aloud and shadowing based on speech technology for 
Computer-Assisted Language Learning (CALL) systems. One of the biggest 
challenges in CALL development based on speech processing is the mismatches 
between learners’ speech and the native speech data that is used to train acoustic 
model. In Automatic Speech Recognition (ASR), speech adaptation techniques 
such as Maximum Likelihood Linear Regression (MLLR) have been used to 
reduce these mismatches by using small amount of the target speaker’s speech as 
adaptation data. However, in the case of CALL, learners’ pronunciations often 
contain errors. Conventional speaker adaptation techniques that use learners’ 
imperfect pronunciations as adaptation data can cause the over-adaptation 
problem, in which case errors can be transformed into good pronunciations after 
adaptation. Although some studies use MLLR adaptation (with only one 
transformation for all pronunciations) to keep the main characteristic of speaker 
while ignoring the pronunciation details, to the best of the authors' knowledge, 
no quantitative analysis has been reported to investigate the adverse effects of 
conventional speaker adaptation techniques. 

To address the over-adaptation problems, we first analyze the effects and side 
effects of conventional MLLR adaptation for pronunciation evaluation in terms 
of automatic scoring and error detection. Evaluation experiments show that: a) 
although global adaption with only one transformation for all pronunciations 
indeed improves performances, when more transformations are used for different 
pronunciations, over-adaption occurs. b) In automatic scoring, when the number 
of regression tree is larger than 4, the correlation between automatic scores and 
manual scores is worse than the original models. c) In error detection, the 
performance of recall rate decreases due to over-adaptation but the performance 
of precision rate increases even with over-adaptation. 

In order to better benefit from speaker adaption and prevent over-adaption at 
the same time, this thesis presents a novel idea that uses a group of teachers’ 
perfect pronunciations to regularize learners’ transformation so that 
over-adaptation problems can be prevented. We name this method Regularized 
Maximum Likelihood Linear Regression (Regularized-MLLR) and implement it 
in two ways: one is using the average of the teachers’ transformations as 
constraints adding to conventional MLLR to prevent radical pronunciation 
transformation, and the other is using linear combinations of teachers’ 
transformation matrices to represent learners’ transformations. We refer to the 
formal implementation as R-MLLR1 and the latter as R-MLLR2. We compare 
R-MLLR1 and R-MLLR2 with conventional MLLR by conducting experiments 
on the same conditions as we investigate the adverse effects of MLLR. 
Automatic scoring and error detection experiments show that the proposed 
methods outperform conventional MLLR. By adding constraints to MLLR, 
R-MLLR1 indeed reduces the adverse effects of MLLR, yet performances still 
drop due to over-adaptation. R-MLLR2 not only out-performs MLLR global 
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adaption, which is widely use for CALL, but also prevents over-adaptation by 
using linear combinations of teachers' matrices instead of using learners' directly. 
The proposed methods can better utilize speaker adaptation and prevent adverse 
effects, and thus more suitable for CALL systems. 

Automatic evaluation methods for shadowing are also proposed. Shadowing is 
a kind of “repeat-after-me” type exercise, but rather than waiting until the end of 
the phrase heard, learners are required to reproduce nearly at the same time. 
Recently, shadowing has attracted much attention in the field of teaching and 
learning foreign languages for its effects of improving both listening and 
speaking skills. Since learners have to follow the speaking rate of the presented 
utterance, their pronunciation often becomes very inarticulate and unintelligible. 
These features of shadowing make it very difficult to build a reliable scoring 
system for shadowing speech. 

Three techniques are proposed for evaluating shadowing speech. One is using 
Goodness of Pronunciation (GOP) scores calculated through HMM-based forced 
alignment. In this method, for automatic scoring, the transcription of the 
presented utterance and the acoustic models of the target language are required. 
Another is based on continuous phoneme recognition, in which the acoustic 
models are also needed, but no transcription is required. The third method is 
using a time-constrained bottom-up clustering technique. Here, only the 
presented utterance and the shadowed response are required. The transcription 
and the acoustic models are not needed. Correlations between automatic scores 
and manual scores, and correlations between automatic scores and learners' 
TOEIC scores have been investigated and very good results have been obtained. 

 We also compare the evaluation performances of shadowing and 
reading-aloud with different cognitive loads posed on learners. Experimental 
results prove that shadowing can better reflect learners’ true proficiency than 
reading-aloud by posing an adequate level of cognitive load on learners. 
Therefore, our proposed shadowing evaluation methods can be used to predict 
learners’ over-all language proficiency. A shadowing scoring system has been 
developed based on these methods. The system is being used for English classes 
in several universities in Japan and has received very positive feedbacks from 
teachers and students. 

Finally, automatic prosodic evaluation has also been proposed for learners’ 
personal-best shadowing. Experimental results show that rather high correlation 
with manual prosodic scores has been found. Automatic prosodic scores and 
segmental ineligibility scores are combined together by using a multiple 
regression model and the combined scores further improve the performance of 
automatic scoring that predicts learners’ over-all language proficiency. 

 

 

 

 



 

－ i － 

Contents 
 
Chapter 1 Introduction...............................................................................................1 

1.1 Current conditions of English education in Japan  and the technologies that 
support it................................................................................................................................... 2 
1.2 Research Objectives ........................................................................................................ 3 
1.3 Outline of This Thesis ..................................................................................................... 3 

Chapter 2 Research Background ...............................................................................5 
2.1 Introduction ..................................................................................................................... 6 
2.2 Phonetic differences between Japanese and English ....................................................... 6 

2.2.1 Vowels .............................................................................................................. 6 
2.2.2 Consonants ....................................................................................................... 6 
2.2.3 Syllables ........................................................................................................... 9 
2.2.4 Accent............................................................................................................... 9 
2.2.5 Rhythm ............................................................................................................. 9 

2.3 Typical errors of Japanese learners of English ...............................................................11 
2.3.1 Segmental errors ..............................................................................................11 
2.3.2 Intonation and stress related errors ..................................................................11 

2.4 Position of pronunciation education in English Learning ..............................................11 
2.5 Position of this study in pronunciation education ......................................................... 13 

Chapter 3 Overview of CALL systems ...................................................................15 
3.1 Introduction ................................................................................................................... 16 
3.2 CALL systems based on multimedia............................................................................. 16 
3.3 CALL systems based on Automatic Speech Recognition (ASR) .................................. 18 

3.3.1 Basics of Automatic Speech Recognition (ASR) ........................................... 18 
3.3.2 Acoustic model ............................................................................................... 20 
3.3.3 Viterbi algorithm............................................................................................. 20 
3.3.4 Examples of CALL based on ASR ................................................................. 22 

3.4 Prosody evaluation ........................................................................................................ 24 
3.5 Conclusions ................................................................................................................... 24 

Chapter 4 Analysis of MLLR Adaptation for CALL ..............................................26 
4.1 Introduction ................................................................................................................... 27 
4.2 Maximum Likelihood Linear Regression (MLLR) Adaptation..................................... 27 

4.2.1 Basic procedure of MLLR adaptation ............................................................ 27 
4.2.2 Regression Classes ......................................................................................... 28 
4.2.3 Definition of MLLR ....................................................................................... 30 

4.3 Pronunciation evaluation experiments with MLLR ...................................................... 31 
4.3.1 Acoustic models ............................................................................................. 31 
4.3.2 Databases........................................................................................................ 32 



Contents 

－ ii － 

4.3.3 Automatic scoring with GOP scores............................................................... 34 
4.3.4 Automatic scoring with forced-aligned GOP ................................................. 36 
4.3.5 Error detection based on network grammar.................................................... 38 
4.3.6 Error detection based on GOP scores ............................................................. 40 

4.4 Conclusions ................................................................................................................... 42 
Chapter 5   Regularized-MLLR Adaptation for CALL .........................................43 

5.1 Introduction ................................................................................................................... 44 
5.2 The first implementation of Regularized-MLLR adaption............................................ 44 
5.3 The second implementation of Regularized-MLLR...................................................... 46 
5.4 Evaluation experiments ................................................................................................. 47 

5.4.1 Automatic scoring results ............................................................................... 47 
5.4.2 Results of Error detection based on network grammar................................... 49 
5.4.3 Results of Error detection based on GOP scores ............................................ 49 

5.5 Conclusions ................................................................................................................... 49 
Chapter 6 Automatic Assessment of Shadowing.....................................................53 

6.1 Introduction ................................................................................................................... 54 
6.2 Shadowing as a method for language training............................................................... 54 
6.3 Unsupervised scoring techniques .................................................................................. 55 

6.3.1 Unsupervised phoneme segmentation based on time-constrained 
bottom-up clustering algorithm ...................................................................................... 55 
6.3.2 Stopping condition of clustering..................................................................... 56 
6.3.3 Distances between speech evens and articulatory efforts ............................... 56 

6.4 Supervised scoring techniques ...................................................................................... 57 
6.4.1 GOP measurement .......................................................................................... 57 
6.4.2 Continuous Phoneme Recognition Scores...................................................... 57 

6.5 Experiments................................................................................................................... 59 
6.5.1 Shadowing database and manual assessment ................................................. 59 
6.5.2 Acoustic conditions for analysis ..................................................................... 59 
6.5.3 Comparison of automatic assessments ........................................................... 61 
6.5.4 Correlations between automatic scores and manually-rated scores................ 61 
6.5.5 Correlations between automatic scores and TOEIC scores ............................ 61 

6.6 Discussion ..................................................................................................................... 64 
6.7 Conclusions ................................................................................................................... 64 

Chapter 7 Comparison of Shadowing and Reading-aloud ......................................65 
7.1 Introduction ................................................................................................................... 66 
7.2 Automatic Scores .......................................................................................................... 66 
7.3 Data collection............................................................................................................... 66 
7.4 Evaluation Experiments ................................................................................................ 67 

7.4.1 Comparison of shadowing, shadowing with text and reading aloud by 
using GOP scores............................................................................................................ 67 
7.4.1 Comparison of shadowing, shadowing with text and reading aloud by 

using F-GOP scores ........................................................................................................ 69 
7.5 Discussion ..................................................................................................................... 69 



Contents 

－ iii － 

7.6 Conclusions ................................................................................................................... 71 
Chapter 8 Prosodic Evaluation of Shadowing.........................................................72 

8.1 Introduction ................................................................................................................... 73 
8.2 Data collection............................................................................................................... 73 
8.3 Reference scores............................................................................................................ 75 
8.4 Scores based on prosodic measures............................................................................... 76 

8.4.1 Fundamental frequency (F0)........................................................................... 76 
8.4.2 Power.............................................................................................................. 77 
8.4.3 Length of pauses............................................................................................. 79 
8.4.4 Rate of speech................................................................................................. 79 

8.5 Evaluation Experiments ................................................................................................ 79 
8.5.1 Correlations between automatic scores and reference scores ......................... 79 
8.5.2 Multiple regression models............................................................................. 81 
8.5.3 Comparison of personal-best shadowing and final shadowing....................... 81 

8.6 Conclusions ................................................................................................................... 83 
Chapter 9 Conclusions.............................................................................................84 

9.1 Summary ....................................................................................................................... 85 
9.2 Future work ................................................................................................................... 86 

Appendix A .................................................................................................................88 
Appendix B .................................................................................................................89 
Appendix C .................................................................................................................90 
Appndix D...................................................................................................................92 
Acknowledgement ......................................................................................................93 
Bibliography ...............................................................................................................94 
Publication ..................................................................................................................98 
Media Coverage .......................................................................................................101 
 
 

 
 



 

－ iv － 

List of Figures
Figure 2.1: Japanese vowels....................................................................................... 7 
Figure 2.2: English vowels......................................................................................... 7 
Figure 2.3: Bachman’s model .................................................................................. 12 
Figure 3.1: CALL based on multimedia: Microsoft ENCARTA.............................. 17 
Figure 3.2: CALL based on speech processing: AmiVoice ...................................... 18 
Figure 3.3: Automatic speech recognition mechanism ............................................ 19 
Figure 3.4: Acoustic analysis of speech ................................................................... 19 
Figure 3.5: Hidden Markov Model (HMM)............................................................. 21 
Figure 3.6: The Viterbi algorithm ............................................................................ 21 
Figure 3.7: CALL based on ASR: automatic scoring............................................... 22 
Figure 3.8: GOP scoring system .............................................................................. 23 
Figure 3.9: CALL based on ASR: error detection.................................................... 23 
Figure 3.10: Prosody evaluation system .................................................................... 25 
Figure 4.1: A binary regression tree implemented with HTK.................................. 29 
Figure 4.2: Transformation for base-class clusters................................................... 29 
Figure 4.3: Correlations between GOP scores and manual scores as the number of 

classes in MLLR increases .................................................................................... 35 
Figure 4.4: Forced-aligned GOP method ................................................................. 35 
Figure 4.5: Correlations between human scores and Forced-aligned GOP, comparing 

with conventional GOP ......................................................................................... 37 
Figure 4.6: Phoneme segmentation results, A) forced alignment, B) unsupervised 

bottom-up clustering, C) continuous phoneme recognition................................... 37 
Figure 4.7: An example of network grammar .......................................................... 39 
Figure 4.8: The performances of error detection based on pronunciation networks 41 
Figure 4.9: Recall at the precision level of 70% (based on GOP)............................ 41 
Figure 5.1: Correlations between GOP scores and manual scores as the number of 

classes increases .................................................................................................... 48 
Figure 5.2: Correlations between GOP scores and manual scores as the number of 

classes increases .................................................................................................... 50 
Figure 5.3: Correlations between GOP scores and manual scores as the number of 

classes increases .................................................................................................... 50 
Figure 5.4: Correlations between GOP scores and manual scores as the number of 

classes increases .................................................................................................... 51 
Figure 5.5: Correlations between GOP scores and manual scores as the number of 

classes increases .................................................................................................... 51 
Figure 6.1: An example of unsupervised phoneme segmentation............................ 58 
Figure 6.2: Unsupervised phoneme segmentation on shadowed utterances and 

presented read speech. ........................................................................................... 58 
Figure 6.3: Comparison of every two of the three automatic scores at utterance level 



List of Figures 

－ v － 

............................................................................................................... 62 
Figure 6.4: Comparison of every three automatic scores at speaker level ............... 62 
Figure 6.5: Correlation between automatic scores and manual scores at utterance 

level 63 
Figure 6.6: Correlation between automatic scores and manual scores at speaker level

 63 
Figure 6.7: Correlation between automatic scores and TOEIC................................ 63 
Figure 7.1: Comparison of F-GOP and GOP ........................................................... 70 
Figure 7.2: Performance of F-GOP with adaptation ................................................ 70 
Figure 8.1: Recording procedure of shadowing. ...................................................... 74 
Figure 8.2: Pitch contour of presented native speech............................................... 78 
Figure 8.3: Pitch contour of an advanced learner’s shadowing speech.................... 78 
Figure 8.4: Pitch contour of a intermediate learner’s shadowing speech................. 78 

 

 
 



 

－ vi － 

List of Tables 
Table 1: Japanese and English consonants #1 ....................................................... 8 
Table 2: Japanese and English consonants #2 ....................................................... 8 
Table 3: The difference between mora and syllable ............................................ 10 
Table 4: The difference of English stress and Japanese accent............................ 10 
Table 5: Examples of vowel insertion errors ....................................................... 12 
Table 6: Sentence sets in ERJ in terms of segmental aspect of English 

Pronunciation......................................................................................................... 33 
Table 7: Inter-ratter correlation of manual scores................................................ 33 
Table 8: 12 basic error patterns for constructing network grammars. ................. 39 
Table 9: Subjects’ TOEIC scores ......................................................................... 59 
Table 10: Acoustic conditions in HMM-based method ......................................... 60 
Table 11: Acoustic conditions in clustering-based method ................................... 60 
Table 12: Subjects’ TOEIC scores ......................................................................... 67 
Table 13:Correlations between GOP scores and TOEIC scores without adaptation

...........................................................................................................................  68 
Table 14: Correlations between GOP scores and TOEIC scores with MLLR 

adaptation .............................................................................................................. 68 
Table 15: Subjects’ TOEIC scores ......................................................................... 74 
Table 16: Correlations between any two of the referenced scores......................... 76 
Table 17: Correlations between automatic scores and RWS (Recognized word 

scores) 80 
Table 18: Correlation between automatic prosodic scores and MPS (manual 

prosodic scores). .................................................................................................... 80 
Table 19: Correlations between automatic scores and RWS, comparing 

personal-best shadowing with final shadowing. .................................................... 82 
Table 20: Correlations between automatic scores and MPS, comparing 

personal-best shadowing with final shadowing. .................................................... 82 
 



 

－ 1 － 

Chapter 1               
              Introduction 



Chapter 1 Introduction  

－ 2 － 

1.1 Current conditions of English education in Japan  

and the technologies that support it 

Amid the advance in the internationalization of Japan’s society, 
English-speaking Japanese are in greater demand than ever.  However, it is well 
known that English is very different from Japanese phonetically (including 
rhythm and intonation), and logistically [1, 2, 3]. On top of that, the differences 
of perception process of speech [4,5] and the cultural differences make it very 
difficult for Japanese to master English [6-9], especially in terms of oral 
competence. 

In order to improve the current situation of English education in Japan, 
Ministry of Education, Culture, Sports, Science and Technology (MEXT) set up 
a strategic plan in 2002 [10], which is titled “Developing A Strategic Plan to 
cultivate ‘Japanese with English Abilities’ – a Plan to Improve English and 
Japanese Abilities”. It also set up an action plan, titled “Regarding the 
Establishment of an Action Plan to Cultivate Japanese with English Abilities” in 
2003 [11]. Robert Hughes points out that the most important aspect of the MEXT 
plans is the upper echelon recognition of a serious educational problem in Japan 
[12]. This problem is that throughout junior and senior high school, students 
battle with English grammar and vocabulary to succeed at entrance examinations, 
and yet with successful entry into a university, for most students, the reason for 
studying English is gone. As a result, most high school graduates enter university 
with minimal communicative competency in English and with low level of 
motivation, additional English classes may not improve student oral 
communicative competency. Although MEXT has also decided that from 2011, 
English education will be compulsory at elementary schools, a severe shortage of 
English teachers is deeply concerned for Japan’s English education. With the 
limitations of large classes and few hours of instruction, it is very difficult to 
optimize learner motivation and to improve their oral communicative 
competency [12]. 

One possible solution to the problems mentioned above is using technology to 
supporting language learning and teaching. By utilizing the power of computers 
and the internet, language teachers can collaborate with engineers to develop 
systems that enable students to learn even without the present of a language 
teacher. With rich multimedia contents and communication with teachers or other 
leaner’s through the internet, these systems can be more appealing and boost 
learner motivation than conventional teaching methods.  

Recent advance in spoken language processing has made it possible for 
computer to evaluate learners’ pronunciation automatically and thus assist 
teaching and learning a foreign language, especially spoken language. Systems 
based on these technologies are often referred to as Computer Assisted Language 
Learning (CALL) systems [13]. These systems usually compare learners’ 
pronunciations with speaker-independent acoustic models train on native speech 
of target language. Base on the comparison results, CALL systems can detect 
errors in learners’ pronunciations or give scores for learners’ pronunciations to 
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indicate how good they are pronounced. To improve learners’ listening, reading, 
speaking and writing skills, many CALL systems incorporate multimedia (video, 
audio and text) with speech and natural language processing technologies.  

CALL has many advantages over traditional language education in many ways 
such as enabling self-evaluation for students, reducing time and costs that are 
required in human-to-human education, efficiency of computer and internet, etc. 
However, the pronunciation techniques of most of the CALL systems are based 
on automatic speech recognition (ASR) that performance much better with 
native speech than foreign-accented speech. Low performance of ASR on 
learners’ speech results with many false alarms of pronunciation error detection 
or proficiency prediction, which would frustrate and even misguide students in 
their pronunciation acquisition. For this reason, some experts are skeptical about 
the usefulness of CALL. 

1.2 Research Objectives 

This study addresses the problems of conventional ASR technique for CALL 
and aims at proposing methods for developing reliable CALL systems that can 
help with pronunciation education. A detailed analysis of conventional speaker 
adaptation, which is often used in ASR to improve recognition performances, 
will be conducted and their effects and limitation will be closely examined. 
Based on the analysis, novel methods will be proposed to improve performance 
of pronunciation evaluation. 

We also collaborate with language teachers to provide technology that are 
suitable for the needs of pronunciation education. In this research, we focus on 
automatic evaluation of a popular pronunciation practice, shadowing. We 
propose several methods for automatic scoring of shadowing and develop a 
shadowing evaluation system for pronunciation education classes. We also 
compare shadowing with convention pronunciation practice and provide proof of 
the volatility of the advantage of shadowing over conventional practices from 
speech engineering point of views. 

 

1.3 Outline of This Thesis 

In the following chapters, first, the background knowledge will be introduced 
in Chapter 2 and a detailed overview of various kinds of CALL systems and the 
technologies behind them will be explained in Chapter 3. In Chapter 4, a 
quantitative analysis of Maximum Likelihood Linear Regression (MLLR) 
adaption, which is often used in Automatic Speech Recognition (ASR) to 
improve recognition performance, is conducted on CALL with publicly available 
databases and over-adaption problem is closely examined. Based on the 
investigation results in Chapter 4, Chapter 5 presents a novel idea, 
Regularized-MLLR, which uses a group of teachers’ speech data to regularize 
learners’ transformations so that erroneous pronunciations will not be 
transformed into good pronunciations.  We implements this idea in two ways: 
one is using the average of the teachers’ transformation added to learners’ 
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transform and the other is representing each learner’s transform as linear 
combination of the teachers’. Evaluation experiment is conducted to prove 
validity of the proposed method over conventional MLLR adaptation. In Chapter 
6, automatic scoring methods for shadowing is proposed and compared with 
manual scores and TOEIC over-all proficiency scores. Comparison of shadowing 
and reading-aloud is described in Chapter 7 and in Chapter 8, we propose 
prosodic evaluation for shadowing. Finally, conclusions and future works will be 
presented in Chapter 9. 
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Chapter 2                
Research Background 
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2.1 Introduction 

As explained in the previous chapter, pronunciation education is very 
important to achieve MEXT’s goals. This chapter presents background 
knowledge of Japanese and English in the context of pronunciation acquisition 
and the position of the research in improving students’ oral communicative 
competency. 

 

2.2 Phonetic differences between Japanese and English 

2.2.1  Vowels 

In phonetics, a vowel is a sound in spoken language pronounced with an open 
vocal tract so that there is no build-up of air pressure at any point above the 
glottis. Japanese vowels are shown in Figure 2.1 [14]. This figure shows the 
position of tongue, where vertical scale means the height of tongue and 
horizontal scale means the part of tongue (front or back). As shown in Figure 2.1, 
in Japanese language, there are only 5 vowels, /a, i, u, e, o/.  

Figure 2.2 shows the English vowels (monophthongs only) [15]. Although 
diffinition of English vowels differs from dialect to dialect, here, we only 
consider the most common dialect spoken in the United States, i.e. General 
American English. In General American, there are 5 short vowels (/ɪ, ʊ, ɛ, ʌ, æ/), 
4 long vowels (/i, u, ɔ,ɑ/), 5 diphthongs (/eɪ,ɔɪ,aɪ,aʊ,oʊ/), schwa (/ə/) and /ɚ/, 
a central vowel before /r/. All together, there are 22 vowels in General American 
English. Therefore, for Japanese learners of English, due to the lack of vowels in 
their mother tongue, replacement errors of English vowels by the 5 vowels of 
Japanese are very common. 

2.2.2  Consonants 

English and Japanese consonants are shown in Table 1 and 2 as pairs of 
voiced / unvoiced phones with IPA (International Phonetic Alphabet) 
pronunciation symbols. In articulatory phonetics, a consonant is a speech sound 
that is articulated with complete or partial closure of the vocal tract. Table 1 and 
2 shows the features of consonants in English and Japanese. 

/l/ and /r/ are particularly difficult for Japanese learners to pronounce correctly 
and are often replaced by a Japanese corresponding consonant /ɸ/. Since in 
Japanese pronunciations there are no such phones as /f , v/ and /θ, ð/, 
substitution errors (substitution between /v/ and /b/, /f/ and /h/, /θ/ and /s/, /ð/ 
and /d/) are among most common errors of Japanese learners of English. 
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Figure 2.1: Japanese vowels 

 

 

 

Figure 2.2: English vowels 
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Table 1: Japanese and English consonants #1 
  Bilabial Labiodental Interdental Alveolar Postalveolar 

J p/b   t/d  Stops 
E p/b   t/d  
J ɸ   s/z  Fricatives 
E  f/v θ/ð s/z ʃ/ʒ 

J    ʦ/ʣ ʧ/ʤ Affricates 
E     ʧ/ʤ 

J m   n  Nasals 
E m   n  
J    ɾ  Liquids 
E    l/ɹ  
J w     Glides 
E w     

 

 

Table 2: Japanese and English consonants #2 
  Retroflex Palatal Velar Uvular Glottal 

J   k/g  ʔ Stops 

E   k/g  ʔ 

J  ʢ   h Fricatives 

E     h 

J    N  Nasals 

E      

J ɻ     Liquids 

E      

J  j w   Glides 

E  j w   
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2.2.3  Syllables 

In English, the pronunciation unit is syllable. However, the Japanese 
pronunciation unit is mora. Table 3 shows the differences between syllable and 
mora. As mention in the previous section, there are only 5 vowels in Japanese 
and yet there are 20 in English. Due to the difference of Mora and syllable, 
altogether, there are proximally 100 kinds of mora in Japanese and there are 
more than 10,000 kinds of syllable in English. 

2.2.4  Accent 

In Japanese, accent is defined by a higher of lower pitch and is often called 
pitch accent and in terms of speech processing, a type of accent can be decided 
by using pitch pattern (F0) lonely. However, English is stress-accent, which 
varies with the change of pitch, power, duration, etc. Stress is the relative 
emphasis that may be given to certain syllables in a word, or to certain words in 
a phrase or sentence. 

2.2.5  Rhythm 

The rhythm of English and Japanese is different in terms of isochrony. 
Isochrony is the idea that a language rhythmically divides time into equal 
portions. Three types of divisions are postulated: 

 

   1. The temporal duration between two stressed syllables is equal 
(stress-timed); 

   2.  The duration of every syllable is equal (syllable-timed); 

   3.  The duration of every mora is equal (mora-timed). 

 

Japanese is mora-timed and English is stress-timed rhythm. In Japanese 
mora-timed rhythm, a V or CV syllable takes up one timing unit. Japanese does 
not have long vowels or diphthongs but double vowels, so that CVV takes twice 
the time as CV. A final /N/ also takes as much time as a CV syllable. In a 
stress-timed language such as English, syllables may last different amounts of 
time, but there is perceived to be a fairly constant amount of time (on average) 
between consecutive stressed syllables. Stress-timing is sometimes called 
Morse-code rhythm. Stress-timing is strongly related to vowel reduction 
processes. The summary of differences of Japanese and English in rhythm is 
shown in Table 4. 
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Table 3: The difference between mora and syllable 

 
 

 

 

 

 

 

Table 4: The difference of English stress and Japanese accent 

 



Chapter 2 Research Background 

－ 11 － 

2.3 Typical errors of Japanese learners of English 

2.3.1  Segmental errors 

Influenced by Japanese mora-structure, vowel insertion changes the structure 
and amount of syllables are one of the most common error patterns among 
Japanese learners of English. For example, one syllable word “strike” is often 
pronounced by Japanese learners as [su/to/ra/i/ku], which has 5 moras or 
syllables. Such pronunciations totally destroy the original syllable structure of 
the words and thus cause misunderstanding when communicating with people 
who are not familiar with Japanese-style pronunciations of English. Table 5 
shows some typical errors of vowel insertion. 

2.3.2  Intonation and stress related errors 

Intonation and stress are key prosodic factors in spoken language in terms of 
effective communication. Stress in the wrong positions and with wrong patterns 
can cause confusion or misunderstanding. Since Japanese accent are pitch accent, 
Japanese learners tend to emphasize important words by changing the pitch 
instead of the whole set of acoustic features that characterize stress in English. 
This often causes perceived errors. Incorrect phrasing can also cause stressing at 
wrong positions, which also results in misunderstanding. 

 

2.4 Position of pronunciation education in English 

Learning 

The goals of learning a foreign language are usually to acquire skills in 
reading, writing, listening and speaking. Recently, on top of acquisition of basic 
language skills, more and more efforts have been focused on improving learners’ 
communication skills in real world. This approach requires especially higher 
abilities in listening and speaking. CALL systems based on speech processing 
mainly support improving these two skills. 

To evaluate learners’ communication abilities, there can be many factors used 
as measures. For example, Bachman has proposed a model of language 
competence to categorize different measures, which is shown in Figure 2.3 [16]. 
In Bachman’s model, pronunciation is one of the key factors of language 
competence 

According to [17], a learner’s communication ability score can be defined as 
the following equation. 
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Table 5: Examples of vowel insertion errors 

 
 

 

Figure 2.3: Bachman’s model 
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.)...1(... socillocrhetsynlexproncomm ++++••≈  

               
                                       (2.1) 

While indicates that pronunciation (pron.) and vocabulary (lex.) are the most 
important parts of communication. In terms of communication skill acquisition, 
pronunciation education and the technology that assist it is very importance in 
language learning. 

2.5 Position of this study in pronunciation education 

As mentioned in the previous section, new trends in language education focus 
more on communication and more and more language teachers and learners are 
beginning to use CALL for teaching and learning. However, most of the  

conventional CALL systems are based on speaker-independent automatic 
speech recognition (ASR) which is much more reliable in recognizing native 
speech than foreign accented speech. On top of speaker characteristics, the 
diverseness of pronunciations causes mismatches between acoustic models and 
evaluation speech data and thus makes conventional pronunciation evaluation 
system unstable. In automatic speech recognition, speaker adaptation is widely 
used to reduce such mismatches by using a small amount of the target user’s 
speech data. This study aims at finding a way to deal with these problems and 
propose methods for developing reliable CALL systems that can help with 
pronunciation education. 

Since the purpose of CALL system development is to improve learners’ 
communication abilities with target foreign language, we collaborate closely 
with language teachers to keep abreast with latest trend of language education 
and provide technological supports. Recently, shadowing has attracted much 
attention in the field of teaching and learning foreign languages. Shadowing is a 
kind of “repeat-after-me” type exercise, but rather than waiting until the end of 
the phrase heard, learners are required to reproduce nearly at the same time. 
Although shadowing was originally designed to train simultaneous interpreters, 
its effects on foreign language learning have been widely recognized and being 
used in classrooms [18, 19, 20]. Studies show that in shadowing, speakers can 
hardly imitate the presented speech only, but use their own speech habits and 
language knowledge of their mother tongue unconsciously as well [21]. The 
adequate measurement of shadowed utterances can be a good indicator of the 
speaker’s overall language proficiency. 

Most existing works on automatic pronunciation scoring have been built on 
HMM-based speech recognition technologies. The HMMs were trained with 
native and/or non-native “read” speech samples. However, in shadowing, since 
learners have to follow the speaking rate of the input native utterance, the 
speaking style of the learners is very different from “read” speech. Especially in 
the case of beginners, the text content of the utterances generated through 
shadowing can be completely different from that of the presented ones. To the 
authors’ knowledge, no automatic pronunciation scoring method has been 
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proposed or investigated for shadowing. 

This study proposes several methods for automatic scoring of shadowing and 
develops a shadowing evaluation system for pronunciation education classes. We 
compare shadowing with convention pronunciation practice and provide proof of 
the volatility of the advantage of shadowing over conventional practices from 
speech engineering point of views. 
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The previous chapter introduces phonetic knowledge of Japanese and English 
and the importance of pronunciation education and Computer-Assisted Language 
Learning (CALL) systems. This chapter reviews the existing CALL systems and 
the technologies that support them. 

 

3.1 Introduction 

Improvements in information technology make it possible to turn computers 
into virtual tutors that allow learners to be able to receive training virtually 
anytime anywhere without a teacher at present. It can also saves teachers a lot of 
time and efforts in teaching a foreign language. Therefore, Computer-Assisted 
Language Learning (CALL) systems are becoming more and more popular in 
language teaching and learning. As a result, many research works have been 
done to improve these technologies for CALL. 

Basically, there are two kinds of CALL systems in the current market: one is 
purely utilizes multimedia as learning materials and provides courseware 
designed by human teachers for learners to access via computer; the other is 
utilizing automatic speech processing to assess learners’ pronunciations, detect 
errors and provide diagnosis feedbacks. The formal one is straightforward and its 
implementation does not require advance techniques in speech processing. The 
performance and reliability of latter one highly depend on automatic speech 
processing techniques.  

In order to provide technologies to build a reliable CALL system that can 
improve learners’ communication abilities, we will examine more technical 
details of CALL systems that are based on speech processing, typically on 
automatic speech recognition (ASR). 

 

3.2 CALL systems based on multimedia 

Many of CALL software programs on the market utilize multimedia (text, 
audio, video) to provide predesigned exercises for students to learn a foreign 
language on computers. One example is Microsoft ENCARTA [22]. As shown in 
Figure 3.1, this software shows learners a short video clip of English conversion 
and then presents questions for learners to answer. Although it has some useful 
functions such as turning on or off the transcriptions while watching videos, 
playing audios of the questions, learners’ pronunciations are not evaluated and 
thus no feedback of pronunciations are given. 

As mentioned the Chapter 2, pronunciation skill is one of the key part of 
communication ability, so it is desirable for a CALL system to be able to 
diagnose learners’ pronunciations and give proper feedbacks. In the following 
sections, such CALL systems will be reviewed and the technologies behind them 
will be closely examined. 
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Figure 3.1: CALL based on multimedia: Microsoft ENCARTA 
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Figure 3.2: CALL based on speech processing: AmiVoice 

 

3.3 CALL systems based on Automatic Speech 

Recognition (ASR) 

Speaker-independent automatic speech recognition (ASR) was emerging in the 
early 1980s and improved significantly during the following decade. By the end 
of 1990s, ASR became the main language technology used for language learning 
systems. Here, after introducing the basics of ASR, I will explain how to apply 
techniques in ASR to computer-assisted language learning (CALL). 

3.3.1  Basics of Automatic Speech Recognition (ASR) 

Figure 3.3 shows mechanism of automatic speech recognition (ASR). From 
speech S, speech vector X of acoustic features that are extracted through acoustic 
analysis. In the statistical framework, the process of automatic speech 
recognition can be considered as a probability distribution function as )|( xwp . 
This probability function defined the probability distribution of the word 
sequence w ginve the input speech x. According the Bayes rule, the goal of ASR 
can be defined as, 

)()|(
)(

)()|()|( argargarg wpwxp
xp

wpwxpxwp mxmxmx
www

==  (3.1) 

where )|( wxp  is called the acoustic model and )(wp is called language model. 
In the case of CALL, acoustic models are used to judge how close acoustically a 
learner’s pronunciations are to native speakers’, and language models are used to 
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Figure 3.3: Automatic speech recognition mechanism 

 

 

Figure 3.4: Acoustic analysis of speech 
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predict the possibility of error patterns that might occur with that learner. 

3.3.2  Acoustic model 

As mentioned in the previous section, acoustic model, is represented by 
)|( WXP , i.e, the probability of speech observance being X when the word W is 

spoken. Hidden Markov Model (HMM) as shown in Figure 3.5 is de facto 
standard for speech recognition. Here iS  represents the i-th state, ia  is the 
transition profanity from iS  to 1+iS , and )(xbi  is the probability that output 
speech is generated from iS . Probability density of )(xbi is often represented by 
Gaussian Mixture densities.  

For CALL systems, speaker independent acoustic models of the target 
language are often used. These models are trained on vast amount of speech data 
from a large number of speakers for every phoneme of the target language. 
However the mismatches between native speakers and the learners often cause 
low speech recognition rate by using models trained in this way. Speaker 
adaptation that uses a relative small amount of data from a learner to reduce 
mismatches is often adopted. 

3.3.3  Viterbi algorithm 

The algorithm that calculates )|( WXp  with HMM is called Viterbi 
algorithm. Here, considering each word correspond to each set of HMM (word 
HMM), Figure 3.6 depicts the possible state transition paths of outputting speech 
vector )}7(,...),2(),1({ xxx=X . The possibility of each path is calculated by the 
multiplication of ia  and every )(xbi  in the path. Adding up all these 
probabilities yields the probability of output speech X coming from the HMM 
that represents the word W, i.e. )|( WXP . However, in practice, instead of 
summing up all the probabilities, the probability of the path with maximum 
likelihood is calculated, which is called Viterbi algorithm. 

In the case of continues speech recognition, each phone instead of word is 
corresponding to one set of HMM and be realized by connecting all the 
phone-HMM models together to represents )|( WXP . The isolated phone-hmm 
is called monophone and the phone-hmm that takes into account of the effects of 
adjacent phones in the context of phonemes sequence is called triphone. 

In CALL system implementation, Viterbi algorithm is often used to perform 
forced-alignment that identifies the location of each phoneme given the transcript 
and pronunciation dictionary of a given utterance. Therefore, a segmental local 
errors can detected at phoneme-level or a proficiency score can be given for each 
phoneme. 
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Figure 3.5: Hidden Markov Model (HMM) 

 

 

 

 

 

Figure 3.6: The Viterbi algorithm 
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3.3.4  Examples of CALL based on ASR 

ASR is usually used to calculate phone-based likelihood as intelligibility 
measures. An automatic scoring system proposed by [23] is depicted in Figure 
3.7. Likelihoods calculated with HMM acoustic models of native speech 
according to Vitabi algorithm and other speech features are combined by using a 
regression models to provide evaluation score for each learners. Although the 
combined scores show higher correlation with manual scores, the correlation by 
using the likelihood alone is only 0.36. 

Silke Witt and Steve Young proposed a posterior probability score based 
scheme to detect phone-level mispronunciation [24]. The posterior probability 
score, or so-called Goodness of Pronunciation (GOP) score, is calculated by 
conducting forced-alignment and continuous phoneme recognition with 
unconstraint phone loop grammar as shown in Figure 3.8. Figure 3.9 shows that 
by presetting a threshold for phoneme-level GOP score, any phoneme that has a 
GOP score lower than the threshold will be judge as mispronunciation. 

 

 

 

 

Figure 3.7: CALL based on ASR: automatic scoring  
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Figure 3.8: GOP scoring system 

 

 

 

 

 

 

 

Figure 3.9: CALL based on ASR: error detection 

 



Chapter 3 Overview of CALL systems 

－ 24 － 

3.4 Prosody evaluation 

[30] proposed an automatic evaluation system of English prosody for Japanese 
learners. As shown in Figure 3.10, the system extracts rhythm and intonation 
features, then calculate prosodic scores by comparing with teachers’ speech. In 
this case, forced-alignment based on ASR is conducted to detect word 
boundaries. 

3.5 Conclusions 

This chapter reviews various CALL systems the technologies that support it. 
Most of the CALL related researches utilize automatic speech recognition (ASR) 
for pronunciation evaluation. Although some prosodic features that are not 
directly used by HMM-based ASR are intergraded with scores derived from 
ASR to yield better results, ASR is still the core techniques for CALL system. 
Even for prosody evaluation, Viterbi algorithm in ASR is still used to locate the 
position of phonemes. Therefore, in order to improve reliability of CALL 
systems, improving the pronunciation evaluation techniques based on ASR is 
very important.  

From the following chapters, I will focus on how to improve the ASR-based 
pronunciation evaluation techniques for the purpose of CALL. 
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Figure 3.10: Prosody evaluation system 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

－ 26 － 

Chapter 4               
                              
    Analysis of MLLR Adaptation

 for CALL 

 
 



Chapter 4 Analysis of MLLR adaptation for CALL 

－ 27 － 

4.1 Introduction  

As mentioned in the previous chapter, CALL systems usually use 
speaker-independent HMM acoustic models of target language to evaluate 
learners’ pronunciations. However, each learner has his or her own speaker and 
linguistic characteristics in their speech. The differences of these characteristics 
between a specific learner and the native speakers whose speech data is used for 
training acoustic models cause mismatches that reduce the performance of 
phoneme recognition. In Automatic Speech Recognition (ASR), speaker 
adaptation is widely used to reduce such mismatches. These adaptation 
techniques often use a relatively small amount of a speaker’s speech data to 
calculate transformation by yielding maximum effect of reducing the mismatches 
between the original acoustic models and adaptation data.  

Although speaker adaptation has been proved very effective for ASR, 
problems occur when speaker adaption is directly applied to CALL for 
pronunciation evaluation. Instead of recognizing intended contents of the speech, 
the purposes of CALL are to evaluate goodness of pronunciations and detect 
errors. Since learners’ pronunciations are not necessarily correct, there can be 
many errors in their speech. If a specific learner’s adaptation data contains many 
errors, it can cause the over adaptation problem, in which case, erroneous 
pronunciations are adapted as correct. Although there are some studies use global 
Maximum Likelihood Linear Regression (MLLR) instead of local adaptation to 
avoid looking into too many details of pronunciation, to the author’s best 
knowledge, no quantitative analysis has been reported to investigate the adverse 
effects of speaker adaptation. 

 In the following sections, I will first introduce a widely used adaptation 
technique, MLLR adaptation, and investigate how over-adaptation problem 
occurs by conducting two kinds of experiments: one is automatic scoring and the 
other is error detection. For automatic scoring, conventional Goodness of 
Pronunciation (GOP) scores and proposed forced-aligned GOP scores are used. 
The correlations between automatic scores and human scores are used to 
measure the performance of automatic scoring. For error detection, 
networkgramma-based and GOP-based schemes are adopted.  

4.2 Maximum Likelihood Linear Regression (MLLR) 

Adaptation 

4.2.1  Basic procedure of MLLR adaptation 

Maximum Likelihood Linear Maximum (MLLR) estimates a set of 
transformations that reduce the mismatches between speaker-independent 
models and learners’ data [31]. Usually, MLLR computes a set of 
transformations for the mean or variance parameters of a Gausssian mixture 
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HMM models. By shifting the component means or changing the variances in 
original models with these transformations, the adapted models are closer to 
speaker-dependent models. The transformation matrix that are applied to mean is 
given by 

Wξμ =ˆ  ,                            (4.1) 

where W is the )1( +× nn  transformation matrix, n is the dimensionality of the 
data, and ξ  is the extended mean vector given by, 

T
nw ]...[ 2 μμμξ 1=   ,            (4.2) 

where w represents a bias offset whose value is fixed at 1 with speech 
recognition tool kit HTK we used for evaluation. 

Hence, transformation matrix W can be decomposed into 

][ AbW =   ,                         (4.3) 

where A represent an nn×  matrix and b represents a bias vector. 

4.2.2  Regression Classes 

Since comparing with the model parameters, the amount of adaptation data is 
relatively little, these parameters are often clustered into regression classes. 
MLLR makes use of a regression class tree to group the Gaussian parameters so 
that the set of transformations to be estimated can be chosen according to the 
amount and type of adaptation data is available. The tying of the each 
transformation across a number of mixture components makes it possible to 
adapt distributions for which there were no observations at all. 

 Regression class tree construction that we used for evaluation experiment is 
implemented in the HTK tool kit [32]. This implementation is to cluster together 
components that are close in acoustic space, so that similar components can be 
transformed in a similar way. The tree is built with a centroid splitting algorithm, 
which uses a Euclidean distance measure.  

Figure 4.2 shows a simple of a binary regression tree with four base classes 
},,,{ 7654 CCCC as implemented with HRest tool in HTK [32]. The diagram 

shows a solid arrow and circle (or node), indicating that there is sufficient data 
for a transformation matrix to be generated using the data associated with that 
class. A dotted line and circle indicates that there is insufficient data. HTK uses a 
top-down approach to traverse the regression class tree. Here the search starts at 
the root node and progresses down the tree generating transforms only for those 
nodes which 

1. have sufficient data and 

2. are either terminal nodes (i.e. base classes) or have any children without 
sufficient data. 
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Figure 4.1: A binary regression tree implemented with HTK 

 

 

 

 

 

 

 

Figure 4.2: Transformation for base-class clusters 
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In the example shown in Figure 4.1, transforms are constructed only for 
regression nodes 2, 3 and 4, which can be denoted as W2, W3 and W4. Hence 
when the transformed model set is required, the transformation matrices (mean 
and variance) are applied in the fashion shown in Figure 4.2 to the Gaussian 
components in each base class. 

4.2.3  Definition of MLLR 

Consider rM  Gaussian components },...,,{ 21 rMmmm  that are tied 
together as decided by the regression class tree. The standard auxiliary function 
used to estimate the transforms is given by, 
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where M is the HMM model set, M̂   is the adapted model set,  R is the 
number of the nodes of regression class tree, rM  is the number of Gaussian 
components that is to be tied together, )(mK  subsumes all constants, 

rmμ̂ and 

rmΣ̂ are the adapted mean vector and covariance matrix for the mixture 
component rm  respectively, and )(tL

rm  is the occupation likelihood defined as 

 

),|)(()( Tmm OMtqptL
rr

=  ,               (4.5) 

 

where )(tq
rm  is the Gaussian component at time t, and TO is the adaption 

data. 

Here, we assume diagonal covariance matrices and the adaptation is only 
applied to the mean vector for each Gaussian component, 
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,
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diag σσσ=Σ          (4.6) 

rr mrm W ξμ =ˆ                              (4.7) 

rr mm Σ=Σ̂                                        (4.8) 
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Substituting them into auxiliary function yields 
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where rjw  is the j-th row of rW ,  
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Differentiating )M̂Q(M,  with respect to the transform rW , optimal 
transformation can be obtained by 

 

1)()( −= i
r

i
rri GKw                               (4.12) 

 

4.3 Pronunciation evaluation experiments with MLLR 

To investigate the effects and side effects of conventional MLLR adaptation 
technique, automatic scoring and error detection were conducted on two public 
available databases. We examine the changes of performance while increasing 
the number of regression classes. 

4.3.1  Acoustic models 

The acoustic models we use for evaluation experiment are triphone HMM 
models train on TIMIT [33] and WSJ databases [34] with CMU pronunciation 
dictionary that includes a phoneme set of 39 phonemes. As acoustic features, 
39-dimensional feature vectors, consisting of 12-dimensional MFCC, log-energy, 
and their first and second derivatives, were extracted from utterances using a 25 
ms-length window shifted every 10 ms. The CMS (cepstral mean subtraction) 
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was applied to each utterance unit. Each HMM has three output states with a 
left-to-right topology with self-loops and no transitions which skip over states. 

For MLLR adaption, we use regression class trees described in Section 4.2.2 
to cluster Gaussian components. The number of the nodes of regression tree 
increases from 1 to a certain number according to the amount of the adaptation 
data that are available. 

4.3.2  Databases 

For automatic scoring, we use English Read by Japanese (ERJ) database [35]. 
This database is constructed under the guidelines below: 

 

1) The target language is General American 

2) Speakers are Japanese students of universities or colleges. 

3) Students read given words or sentences with phonemic/prosodic symbols. 
In addition to orthographical information, phonemic/prosodic information is give 
to subjects as text. 

 

The text contents of the database are shown in Table 6. These sentences were 
divided into 8 groups and each subject read approximately 120 sentences.  

This database contains proficiency scores manually rated by 4 experts who are 
native speakers of General American English and are familiar with Japanese 
pronunciation. 10 sentences of each subject were randomly chosen and each 
sentence was given a score by each expert and the average of the scores for the 
10 sentences uttered by each subject is used as his or her score of indelibility 
score. We will use ERJ database for our automatic scoring evaluation 
Experiment. The inter-rater correlation of manual scores for 42 chosen learners 
are shown in Table 7. 

Because the ERJ database does not contain phoneme labels with erroneous 
pronunciations, we use another corpus of English words spoken by Japanese 
students for our evaluation experiments of error detection. The database [36] 
consists of 5950 utterances of 850 basic English words read by seven Japanese 
speakers.  

This database contains manually annotated phonemic labels that were 
faithfully transcribed and include erroneous phonemes. This database has been 
used to evaluate the performances of acoustic models for CALL [37]. 

We used the utterances of 4 speakers (2 males and 2 females) with many 
typical errors of Japanese learners. For each learner, 450 word utterances are 
used as adaptation data, and the remaining 400 utterances are used as test data. 
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Table 6: Sentence sets in ERJ in terms of segmental aspect of English 
Pronunciation 

Set Number of sentences 

TIMIT-based phonemically-balanced sentences 460 

Sentences including phoneme sequences that are 
difficult for Japanese to pronounce correctly 32 

Sentences designed for test set 100 

 

 

 

 

 

 

 

Table 7: Inter-ratter correlation of manual scores 

 A B C D 

A 1 0.90 0.87 0.79 

B  1 0.77 0.80 

C   1 0.84 

D    1 
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4.3.3  Automatic scoring with GOP scores 

The confidence-based pronunciation assessment, which is defined as the 
Goodness of Pronunciation (GOP), is often used for assessing speakers’ 
articulation and shows good results. In this study, we use HMM acoustic models 
trained on WSJ and TIMIT corpus to calculate GOP scores defined as follows. 
For each acoustic segment )( pO of phoneme p, GOP( )( pO ) is defined as posterior 
probability by the following log-likelihood ratio. 
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where )|( )( pOpP is the posterior probability that the speaker uttered phoneme p 
given )( pO , Q is the full set of phonemes, and pD  is the duration of segment )( pO . 
The numerator of equation (4.15) can be calculated by scores generated during 
the forced Viterbi alignment, and the denominator can be approximately attained 
by continuous phoneme recognition with an unconstrained phone loop grammar. 

Since the boundaries of phoneme p yielded from forced alignment do not 
necessarily coincide with the boundaries of phoneme q resulted from continuous 
phoneme recognition, the frame average log likelihoods of the same speech 
segment are often used in traditional GOP calculation. 

42 learners (21 males and 21 females) with higher agreement among raters and 
a variety of proficiency were selected. Average phoneme GOP score over 30 
sentences read by each learner are calculated as automatic score for the learner. 
60 sentence utterances of each leaner were used as adaptation data. 

We investigate the correlations between GOP scores and human scores while 
increasing the number of the nodes of regression tree. Here the number 0 means 
without adaption, and 1 represents global adaption. As shown in Figure 1, global 
adaptation yielded the best correction of 0.65, yet while the number of nodes of 
regression class tree increases from 2, the performance drops. When the number 
is larger than 4, the correlation is even worse than the original models. 
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Figure 4.3: Correlations between GOP scores and manual scores as the number 
of classes in MLLR increases 

 

 

 

 

 

 

Figure 4.4: Forced-aligned GOP method 
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4.3.4  Automatic scoring with forced-aligned GOP 

Conventional GOP calculation refers to the results of both forced alignment 
and continuous phoneme recognition. This causes a problem as depicted in (a) of 
Figure 4.2, that there might be 3 phonemes resulting from continuous phoneme 
recognition, which correspond to one forced aligned phoneme p. In this case, 
GOP score for p is calculated using the log likelihood of p and average log 
likelihood of q1, q2 and q3 within the segment of p. 

As an alternative way of calculating GOP score, we can first obtain the 
phoneme boundaries for phoneme p based on the result of forced alignment, and 
then calculate the posterior probability of that segment using equation (3) 
directly. We call this method Forced-aligned GOP (F-GOP). This method always 
refers to the boundaries of forced alignment and actually separates the 
calculation of GOP score into two processes, one is detecting the phoneme 
boundaries and the other is calculating the posterior probability for that segment. 
We can use different models for the two processes. We used the same data set as 
mentioned in Section 4.2.2 to evaluate the performance of F-GOP. We tested two 
different combinations of acoustic models for detecting phoneme boundaries and 
calculating posterior probabilities. Figure 4.5 shows the results of three 
conditions: F-GOP1, which used the same set of models for both phoneme 
boundary detection and posterior probability calculation, F-GOP2, which used 
the adapted models (the number of classes ≥  1) to detect phoneme forced 
alignment boundaries, and the original models to calculate posterior probabilities, 
and the conventional GOP scores. 

As shown in Figure 4.5, two kinds of F-GOP outperformed the conventional 
GOP. We consider this is because F-GOP did not refer to the results of 
continuous phoneme recognition that is often unreliable. Figure 4.6 shows an 
example of phoneme segmentation results of A) forced alignment, B) 
unsupervised bottom-up clustering and C) continuous phoneme recognition. In 
this example, the result of continuous phoneme recognition is even worse than 
segmentation based on unsupervised clustering, which uses no prior knowledge 
at all. 

F-GOP2 shows better performance than F-GOP1, especially when the number 
of the nodes of regression trees is larger than 2. The only difference between 
F-GOP1 and F-GOP2 is that while F-GOP1 used the adapted acoustic models to 
calculate posterior probabilities, F-GOP2 used the original models to evaluate 
the same phoneme segment. This indicates that with more transforms used for 
adaption, the “judgment” of the acoustic model becomes worse. By utilizing the 
better phoneme alignment results, F-GOP can better benefit from speaker 
adaptation. 
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Figure 4.5: Correlations between human scores and Forced-aligned GOP, 
comparing with conventional GOP 

 
 
 
 

 

Figure 4.6: Phoneme segmentation results, A) forced alignment, B) 
unsupervised bottom-up clustering, C) continuous phoneme recognition 
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4.3.5 Error detection based on network grammar 

The first method we use to detect pronunciation errors is using pronunciation 
networks that include correct pronunciations and various error patterns to predict 
learners' possible mispronunciations. These pronunciation networks are often 
called network grammars. An Example of network grammar is shown in Figure 
5.4.  The network grammar predicts 4 possible errors that might occur when a 
Japanese learner utter English word "grid": inserting /uh/ after /g/, substituting /r/ 
with /l/, substituting /ih/ with /iy/, and inserting /uh/ after /d/. Any combination 
of these 4 possible errors can be detected according to the acoustic scores 
calculated with HMM models. By referring to [38] and [39], 12 major error 
patterns shown in Table 7 were defined and any irregular errors in the labels 
were added to the prediction networks. Although the error detection performance 
highly depends on pronunciation networks and a larger network often results in 
lower detection precision, when the same network is used, the relative increase 
or decrease of detection accuracy can be used to measure the performances of the 
acoustic models with MLLR adaptation. In actually implementation, 
pronunciation network can be fine-tuned according to the proficiency levels of 
the learners and their error tendencies so that an optimal network can be 
constructed to yield best error detection results. 

We used precision and recall rates defined as below to measure the 
performance of acoustic models with MLLR. 

 

FRhit
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where hitN represents the number of the errors that were correctly detected , 

totalN  is  the total number of detected errors, FRN  is the number of false 
rejections (i.e. correct pronunciation falsely recognized as errors) and labeledN  is 
the number of all the errors that were detected by phoneticians, and F-measure 
defined as below is also calculated to combine the two measures. 
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Figure 4.7: An example of network grammar 

 

 

 

Table 8: 12 basic error patterns for constructing network grammars. 
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Figure 4.6 shows the performances of error detection with MLLR adaption. 
Although the precision rates keep increasing when more transforms were used 
for adaptation, the recall rates drop when the number of nodes is larger than 2. 
This indicates that with adaptation to reduce model mismatches, the number of 
false rejections FRN drops significantly, therefore the precision rates increase. 
However, since the number of labeledN  is only decided by the label, the decrease 
of recall means the decrease of the number of correctly detected errors. This 
result shows that over adaption can cause more errors to be recognized as correct 
pronunciation (i.e. hitN  decreases), yet at the same time, even with 
over-adaptation, more false rejections can be reduced. How to benefit from 
reducing FRN  and preventing decreasing hitN  is goal of our research and we 
will provide a novel solution to achieve such goal in the next chapter. 

4.3.6  Error detection based on GOP scores 

Two most popular methods of error detection are employed for our phoneme 
error detection experiments: one is based on pronunciation networks or so-called 
network grammar and the other is based on GOP scores. The former method 
predicts possible error patterns and thus is able to detect specified types of errors 
such as phoneme-level substitution, deletion or insertion. However, the detection 
performance is largely depending on the size of the pronunciation networks. The 
latter method often uses a pre-set threshold to determine whether a phoneme is 
correctly pronounced or not. Although this method cannot specify the type of an 
error that occurs, by choosing the optimal threshold for each phoneme, much 
better detection performance can be obtained. 

For the error detection method based on GOP scores, the recall and precision 
can be adjusted by changing the values of the thresholds. According to [40], 
erroneously rejecting correct pronunciations would be more detrimental for 
learners than erroneously accepting mispronunciations. Therefore, we need to 
keep the false rejection rate at relatively low level, which means to keep the 
precision relatively high, and find the optimal thresholds that maximize the recall. 
Here, we investigate the change of recalls at precision level of 70% while 
increasing the number of regression classes for MLLR and Regularized-MLLR. 
Here, the number 0 means no adaptation, i.e. using the original acoustic models. 

As shown in Figure 4.9, in the case of MLLR adaptation, only global adaption 
shows slight improvement over original models and when the number of 
regression classes is larger than 2, the performance drops significantly. This 
clearly indicates that over-adaptation occurs with MLLR. 
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Figure 4.8: The performances of error detection based on pronunciation 
networks 

 

 

Figure 4.9: Recall at the precision level of 70% (based on GOP) 
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4.4 Conclusions 

In this chapter, we investigated the effects and side effects of conventional 
MLLR speaker adaptation technique on pronunciation evaluation for CALL 
systems. Automatic scoring and error detection experiments were conducted 
while increasing the number of regression classes of MLLR. For automatic 
scoring, GOP scores and Forced-aligned GOP scores were used as automatic 
scores, and correlations between automatic scores and manually rated scores 
were investigated. For error detection, network grammar and GOP-base schemes 
were adopted for evaluation experiments. 

We first introduced the basic concept of speaker adaptation and the definition 
of conventional Maximum Likelihood Linear Regression (MLLR) adaptation. 
We then conducted pronunciation evaluation experiments on publicly available 
databases in two ways: one is automatic scoring and the other is error detection. 
We investigated the performances of automatic scoring and error detection with 
MLLR adaption by increasing the number of regression classes. 

 Experimental results shows that global MLLR adaption (the number of 
regression classes is one) slightly improves performances comparing with the 
original models. However, when the number of regression classes is larger than 2, 
over-adaption occurs. These results indicate that when too many details of the 
pronunciations are being looking into during adaptation, learners’ erroneous 
pronunciations can be adapted as good ones. In order to fully utilized the benefits 
of speaker adaptation and solve the over-adaption problem, some kind of 
constraint needs to be added to the conventional adaption, so that only 
mismatches that are caused by speaker characteristics are adapted while at the 
same time, the transformation of wrongly pronounced pronunciations into good 
ones will be prevented. In other words, the transformation of adaption needs to 
be regularized to yield best performances for the purposes of CALL. In the 
following chapter, we will introduce such regularization of MLLR adaption as 
solution to over-adaption problem. 
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5.1 Introduction  

In the previous chapter, we have analyzed the effects and side effects of 
conventional MLLR adaptation when applied to pronunciation evaluation. It is 
very clear that over-adaption can cause erroneous pronunciations being adapted 
as good ones.  

Based on the analysis results, we provide solutions to the over-adaption 
problem. Since the reason that causes the over-adaptation problem is that 
conventional MLLR adaptation using learners’ imperfect pronunciation as 
adaptation data and if there are too many errors in the adaptation data, those 
errors would be transformed as good pronunciations. Therefore, if we can 
prevent such transformations that erroneous pronunciation being transforming 
into good ones, we can prevent over-adaption.  

To regularized pronunciation transformation during speaker adaptation, we use 
a group of teachers' data to calculate each teacher's transformation matrix with 
MLLR, and then use the teachers' matrices to regularized learners' transformation. 
We refer to this method as Regularized-MLLR and implement it in two ways: 
one is use the average of the teachers' matrices as a constraint to the conventional 
MLLR objective function, and the other is using a linear combination of the 
teachers' matrices to represent each target learners' matrices. Experimental 
results show the high validity of the proposed methods. 

5.2 The first implementation of Regularized-MLLR 

adaption 

In order to regularize MLLR transformation so that the erroneous 
pronunciation will not be “transformed” to good pronunciation, we add 
constraints to conventional MLLR. 

  The standard auxiliary function for MLLR is defined as below to estimate 
the transform rW for each regression class r. 
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where M is the HMM model set, M̂   is the adapted model set, and R is the 

number of the nodes of regression class tree, rM  is the number of Gaussian 
components that is to be tied together, )(mK  subsumes all constants, and )(tL

rm  
is the occupation likelihood defined as 
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where )(tq
rm  is the Gaussian component at time t, and TO is the adaption 

data. 

Here we obtained a set of transforms estimated from a group of teachers who 
are native speakers of General English. Teachers’ transforms are used to 
constrain the transforms for the learners to avoid bad pronunciation being 
transformed into good pronunciation. 

Let },...,{ 1 kC
r

C
r WW denote a set of transformation matrices estimated from a 

group of K teachers, and ∑=
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W 1 represents the mean of these matrices. 

The objective function for Regularized-MLLR is defined as 
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where λ  is a parameter depending on the acoustic characteristics of the speaker. 

We assume diagonal covariance matrices and the adaptation is only applied to 
the mean vector for each Gaussian component, 
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where 
rmξ is the extended mean vector for the Gaussian component rm . 

Considering the row decomposition ];...;;[ ,2,1, drrrr wwwW = , the cost function 
for each row vector becomes, 
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The optimal 1,rw is given by solving 
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which yields, 
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We will refer to this method as R-MLLR1 here after.  

5.3 The second implementation of Regularized-MLLR 

R-MLLR1 uses the average of a group of teachers' transformations as a 
constraint adding to convention MLLR. The scale of that constraint which is 
decided by the parameter λ, needs to be manually adjusted for each learner 
according to his or her acoustic characteristics. When the number of learners is 
very large, it can be very time-consuming to find an optimal parameter for each 
learner. Therefore, we try another approach that can automatically estimate 
optimal parameters for different learners. 

In the second regularization, we assume a learner's transformation matrix rW  

can be represented as the linear combination of a group of N teachers’ 
transformation matrices },...,{ 1 NC

r
C

r WW , 
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and changing ,,...,2,1 Nk =  we have N linear equations on }{ nα . For 
simplicity, if we set  
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then the linear equations become, 
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By solving these linear equations, we obtain the optimal }{ nα . Then we can 
use equation (5.10) to calculate the target learner’s transformation matrix. 

We will refer to this implementation of Regularized-MLLR as R-MLLR2 
hereafter. 

5.4 Evaluation experiments 

In order to prove the validity of our proposed methods, we directly compare 
the effects of R-MLLR1, R-MLLR2 and MLLR on automatic scoring and error 
detection. The databases and experiment conditions are the same as investigation 
of adverse effects of MLLR mentioned in the previous chapter. To regularize 
MLLR transformation, we use 20 teachers' utterances from ERJ database. 

These teachers are native speakers of General American English. 60 sentence 
utterances of each teacher are used to calculate his or her transformation 
matrices. 

5.4.1  Automatic scoring results 

We apply transformations estimated with R-MLLR1 and R-MLL2 to original 
HMM models by increasing the nodes of regression trees from 1 to 64. Then we 
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use the adapted models to calculate average phoneme GOP score for each learner. 
The correlations between GOP scores and manual scores with adapted models 
are shown in Figure 5.1. The learners and the amount of evaluation data and 
adaptation data are the same as the previous chapter. 

As shown in Figure 5.1, R-MLLR1 and R-MLLR2 show better performance 
than conventional MLLR. When the number of regression classes increases after 
1 (global adaptation), the effect of regularization becomes rather obvious. 
Although by adding some amount of constraints, R-MLLR1 reduces the adverse 
effects of over-adaptation, the performance still drops when the number of 
classes is larger than 1. In the case of R-MLLR2, it not only always shows the 
best results, the performance never drops. This can be explained that in the case 
of R-MLLR2, the direct use of learners' transformations estimated by their 
imperfect pronunciations with MLLR is avoided. However, in the case of 
R-MLLR1, these transformations are still used and since there is not sufficient 
labeled data for each learner, the constraint scale parameter λ  manually chosen 
for each of the 42 learners might not be optimal to yield best results. 

 

 

Figure 5.1: Correlations between GOP scores and manual scores as the number 
of classes increases 
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5.4.2  Results of Error detection based on network grammar 

We apply transformations estimated with R-MLLR1 and R-MLLR2 to original 
HMM models by increasing the nodes of regression trees from 1 to 16. Then we 
use the adapted models to perform error detection experiments with network 
grammar and also with GOP scores. Experimental setups are the same as error 
detection experiments with MLLR adaptation mention in the previous chapter. 
For regularization, the same 20 teachers' utterances from the ERJ database are 
used to estimate their transformation in the same way as automatic scoring 
experiments with R-MLLR1 and R-MLLR2. 

The results of error detection based on network grammar with comparison of 
any two of the three adaptation methods are shown in Figure 5.2, Figure 5.3, and 
Figure 5.4, respectively. 

As shown in Figure 5.2 and Figure 5.3, R-MLLR1 and R-MLLR2 improve 
recall significantly and also keep very high precision rates. Especially in the case 
of R-MLLR2, recall keeps high level when the number of classes increases. This 
indicates the proposed method not only benefits from reduction of mismatches 
(increase of precision) but also prevents over-adaptation.  

The comparison of R-MLLR1 and R-MLL2 is shown in Figure 5.4. When the 
number of regression classes is larger than 4, in the case of R-MLLR1, the 
performance of recall drops, which indicates the over-adaptation problem still 
occurs. This problem is solved by R-MLL2, and the performances of precision of 
R-MLLR1 and R-MLLR2 are almost the same. 

5.4.3  Results of Error detection based on GOP scores 

Figure 5.5 shows the performances of recall at the precision level of 70%. 
R-MLLR1 improves the performances comparing with conventional MLLR, 
however, the performance drops when the number of regession classes is larger 
than 2, i.e. over-adaptation problem remains. R-MLLR2 outperforms MLLR 
global adaptation or R-MLLR1, especially when the number of regression 
classes becomes larger. In the case of R-MLLR2, recall rate never drops, which 
again shows that this method can avoid the over-adaption problems by using 
linear combination of teachers' MLLR transformations instead of their own 
transformation matrices. 

5.5 Conclusions 

In this chapter, we implement two forms of Regularized-MLLR, R-MLLR1 
and R-MLLR2, by using teachers' perfect pronunciations to regularize learners' 
transformations. R-MLLR1 uses the average of a group of teachers' 
transformation matrices as a constraint adding to the conventional MLLR 
transformations. This constraint prevents radical transformations when there are 
too many errors in the adaptation data. R-MLL2 uses linear combination of the  
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Figure 5.2: Correlations between GOP scores and manual scores as the number 
of classes increases 

 

 

Figure 5.3: Correlations between GOP scores and manual scores as the number 
of classes increases 
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Figure 5.4: Correlations between GOP scores and manual scores as the number 
of classes increases 

 

Figure 5.5: Correlations between GOP scores and manual scores as the number 
of classes increases 
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teachers' MLLR transformation matrices to represent each learner's 
transformation. This approach does not directly use learners' MLLR 
transformations that are estimated from their imperfect pronunciations, therefore 
prevents over-adaption. We compare R-MLLR1 and R-MLLR2 with 
conventional MLLR by conducting experiments on the same conditions as we 
investigate the adverse effects of MLLR on pronunciation evaluation of 
automatic scoring and error detection. Experimental results show that the 
proposed methods outperform conventional MLLR.  

By adding constraints to MLLR, R-MLLR1 indeed reduces the adverse effects 
of MLLR, yet performances still drop due to over-adaptation. R-MLLR2 not 
only out-performs MLLR global adaption, which is widely use for CALL, but 
also prevents over-adaptation by using linear combinations of teachers' matrices 
instead of using learners' directly. The proposed methods can better utilize 
speaker adaptation and prevent adverse effects, thus more suitable for CALL 
systems. 
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Chapter 6        

      Automatic Assessment
 of Shadowing 
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6.1 Introduction  

Recently, shadowing has attracted much attention in the field of teaching and 
learning foreign languages. Shadowing is a kind of “repeat-after-me” type 
exercise but rather than waiting until the end of the sentence heard, learners are 
required to repeat nearly at the same time. Although shadowing was originally 
designed to train simultaneous interpreters, its effects on foreign language 
learning have been widely recognized and being used in classrooms. Studies 
show that in shadowing, speakers do not just imitate the presented speech, but 
use their own speech habits and language knowledge as well. The measurement 
of shadowed utterances can be an indicator of the speaker’s overall language 
proficiency. 

Existing works on automatic pronunciation scoring have mainly been focused 
on “read” speech, mostly using Hidden Markov Models (HMM) which have 
been trained with native “read speech”. However, in shadowing, since learners 
have to follow the speaking rate of the input native utterance, the speaking style 
of the learners is very different from “read” speech. Especially in the case of 
beginners, the text content of the utterances generated through shadowing can be 
completely different from the presented ones. To the authors’ knowledge, no 
automatic pronunciation scoring method has been proposed or investigated for 
shadowing.  

In this study, we propose a supervised technique by using HMM 
likelihood-based Goodness of Pronunciation, and an unsupervised technique 
based on time-strained bottom-up clustering to measure shadowed utterances by 
Japanese learners of English and language teachers. Correlations between 
automatic scores and manual-rated scores or speakers’ TOEIC overall 
proficiency scores have been investigated and the results are promising. 

 

6.2 Shadowing as a method for language training 

Shadowing is originally introduced for training simultaneous interpreters. It 
requires subjects to repeat a presented native speech as quickly and closely as 
possible. Recently, shadowing has been widely used in langue training for its 
effects on improving students’ speaking and listening abilities. Many language 
teachers have reported that students’ learning is greatly enhanced by shadowing 
[41,42]. 

According to Brian McMillan [43], in shadowing, students should think about 
what they are repeating and can be encouraged to focus on meaning, grammar, 
pronunciation, or a combination of these as they shadow. Therefore, shadowing 
poses a cognitive load on students and can help them to improve their overall 
language proficiency. 
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6.3 Unsupervised scoring techniques 

Since the learners need to immediately repeat whatever they hear, the speaking 
style in shadowing is very different from that of “read” speech. Especially in the 
case of beginners, their pronunciation often becomes corrupt and inarticulate. 
Considering two facts:  

1) the supervised scoring technique based on HMMs, which are trained on 
“read” speech, can inevitably cause segmentation errors in evaluating utterances 
generated through shadowing,  

2) it is desirable to build a scoring system that requires only an utterance pair: 
a native utterances presented to learners and a learner’s utterance generated in 
response to the native utterance 

 A new unsupervised method is proposed here for automatic scoring of 
utterances in shadowing. The new method does not use any acoustic models such 
as HMMs at all, and just compares the two utterances based on time-constrained 
bottom-up clustering. Details of the time-constrained bottom-up clustering will 
be explained in the next section. 

6.3.1  Unsupervised phoneme segmentation based on 

time-constrained bottom-up clustering algorithm 

Most of the previous approaches to unsupervised phoneme segmentation have 
been focused on detecting the change points of speech signals and considering 
them as the boundaries of phonemes. Different from these approaches, we have 
proposed a bottom-up segmentation algorithm that starts with each frame as 
segments and merge acoustically similar adjacent segments into lager segments 
in a greedy way until the optimal segmentation is found. A class of statistical 
measures has been used to decide the 2 segments (clusters) to be merged and 
shows better results than other published methods. In this study, we used a fast 
implementation of the proposed algorithm by using Ward’s method. 

Ward’s method is hierarchical agglomerative clustering method, which 
searches the similarity matrix for the similar pair of clusters and reduces the 
number of clusters by one through merging the most similar pair of clusters until 
all clusters are merged. The Word objective is to find at each stage those two 
clusters whose merger gives the minimum increase in the total within group error 
sum of squares (or distances between the centroids of the merge clusters). 
Suppose that adjacent speech segments p and p+1 are to be merged into new 
cluster r (=p∪q). If the segments are m-dimensional vectors ),...,,( 21 mxxx , 
within group error sum of square E(p) is defined as 
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where pn  is the number of samples, and p
jx  is the j-element of the centroid of 

p. The increase of within group error sum of square when merging segments p 
and p+1 into r thus can be calculated as 

)}1()({)()1,( ++−=+Δ pEpErEppE        

By merging adjacent segments p and p+1 with minimum )1,( +Δ ppE , the 
number of cluster would be reduced by one. We can realize bottom-up clustering 
of speech segments with iteration of the process. 

6.3.2  Stopping condition of clustering 

Considering the stage at which each segment approximately corresponds to 
each phoneme, the next step to merge two segments would be merging 2 clusters 
that belong to different phonemes. In this case, we assume that the minimum 
distances between the centroids of each two phonemes are approximately 
speakers-invariant. Therefore, regardless of speakers, when the proposed 
segmentation is conducted on an utterance, the merging step after the optimal 
stage should yield larger EΔ , i.e. )1()()1( ++>>+∪ pEpEppE . Then we 
can set a predetermined threshold K for ΔE(p,p+1), which can be used as 
stopping condition of clustering.  

Figure 6.1 shows an example of the proposed phoneme segmentation based on 
time-constrained bottom-up clustering, comparing with manual label. Although 
some phoneme segment boundaries are not correctly detected, the results are 
rather good.  

Figure 6.2 shows the segmentation results on presented read speech and the 
showed utterances of two learners with TOEIC scores of 421 and 202 in response 
to the presented utterance. Vertical axis is the increase of within group error sum 
of square )1,( +Δ ppE , and horizontal axis is the number of clusters. The 
threshold K was set to be 0.23, which has been tested on various databases and 
proved optimal for English and Japanese. 

By examining the results of segmentation on these utterances, it is clear that 
even with the same linguistic content, the more distinctly the utterance is spoken, 
the more segments can be found when clustering stops. Therefore, the number of 
the clusters or the segments in shadowing speech can be considered as an 
indicator of the learner’s proficiency. 

6.3.3  Distances between speech evens and articulatory 

efforts 

If a sound (pronunciation) is not acoustically intelligible or distinct, we can 
say it is not articulatory distinct. Recently, a structural representation of speech, 
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which consists of every even-to-even distance to form a geometrical structure 
(distance metric), has been proposed. Previous work has showed that the size of 
this structure of speech can be interpreted as magnitude of articulatory efforts 
made in speech production. For example, schwa is located in the center of the 
structure of vowels, which indicates that schwa is produced with the least 
articulatory effort and other vowels need more articulatory efforts to control the 
shapes of vocal tract to generate a distinct sound. 

Considering these facts, we can use the distances between speech evens as an 
indicator of articulatory efforts. In our proposed automatic segmentation, when 
the clustering stops, by calculating the number of segments, we can estimate the 
articulatory efforts to generate the utterance. In other words, we can evaluate 
how intelligible a given utterance is with this method. In the case of shadowing, 
we can say the higher proficiency the learners have, the more intelligible their 
shadowed utterances would be, vice versa. Therefore, our proposed unsupervised 
technique is suitable for evaluating utterances in shadowing. 

6.4 Supervised scoring techniques 

6.4.1  GOP measurement 

Various supervised techniques using HMM have been tried in many works to 
evaluate pronunciation. As mentioned in the previous chapters, confidence-based 
pronunciation assessment, which is defined as the Goodness of Pronunciation 
(GOP), is often used for accessing speakers’ articulation and shows good results 
on read speech. In this study, we used HMM acoustic models trained on TIMIT 
[33] and WSJ [34] corpus to calculate GOP scores defined in Chapter 5. We 
calculate average phoneme GOP score for each learner as his or her proficiency 
scores. 

6.4.2  Continuous Phoneme Recognition Scores 

In case of transcription not being available, we can use HMM acoustic models 
to conduct continuous phoneme recognition. We consider for each utterance, the 
less intelligible the pronunciation is, the less distinct the individual segments are 
in the utterance. The number of recognized phonemes per utterance can be used 
as an index to measure the intelligibility. Here the number of phonemes 
normalized by the number in the presented utterance thus can be defined as 
continuous phoneme recognition (CPR) score. CPR score is very similar with the 
scores based on unsupervised clustering and do not require transcription of the 
utterances. The only different between the two scores is that, CPR scores are 
calculated by using acoustic models and clustering based scores calculation does 
not need any acoustic models. 



Chapter 6 Automatic Assessment of Shadowing 

－ 58 － 

 

 

Figure 6.1: An example of unsupervised phoneme segmentation 
 
 
 
 
 

 

Figure 6.2: Unsupervised phoneme segmentation on shadowed utterances and 
presented read speech. 
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Table 9: Subjects’ TOEIC scores 
Proficiency TOEIC scores Average  

Advanced 990, 990, 968, 955, 940, 895, 825 938 

Intermediate 625, 601, 592, 581, 512, 436, 432, 
427,  421 

514 

Beginners 395, 367, 308, 301, 289, 278, 275, 
252,  202,  197,  158 

275 

 

6.5 Experiments 

6.5.1  Shadowing database and manual assessment 

In order to evaluate the proposed techniques, we collected a database of 
shadowing productions from 27 speakers, in which there are 7 advanced learners, 
9 intermediate learners and 11 beginners. The subjects’ overall proficiency scores 
measured by TOEIC (Test of English as International Communication) are 
shown in Table 9.  

The presented utterances recorded by a native speaker of English contain 21 
sentences and its topic was carefully chosen to be familiar to Japanese learners. 
However, the utterances themselves had never been presented to any of the 
subjects before. All the sentences were presented to the subjects sequentially at 
the rate of 140 wpm (words per minute), and the subjects were instructed to 
repeat as closely and as quickly as possible. The subjects’ shadowing productions 
in response to the presented utterances were recorded in the environment of 
classroom. 

Manual assessment was conducted by an expert in language education. 
Utterances of 10 sentences shadowed by 11 learners were chosen. The rater 
examined each utterance word by word. For each correctly pronounced word, the 
score would be 1. For any inserted word, the score of the word would be -1. For 
each partially correct word, the score would be 0.5. Thus by summing up the 
score of every word and normalized by the number of the words in the presented 
utterance, the result can be used as manual score for each shadowed utterance. 
Note that manual assessment of shadowing speech is very time-consuming. It 
took about 1 hour for the expert to evaluation per learner. 

6.5.2  Acoustic conditions for analysis 

The acoustic conditions for analysis for HMM-based evaluation are shown in 
Table 10. The acoustic models we use are triphone HMM models trained on  
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Table 10: Acoustic conditions in HMM-based method 
Sampling 
 
Window 
 
parameters 

16bit / 16kHz 
 
Hamming / 25 ms length/10 ms shift 
 
MFCC, log-energy, and their ΔΔΔ,  

 
 
 
 
 
 
 

Table 11: Acoustic conditions in clustering-based method 
Sampling 
 
Window 
 
Parameters 
 
Threshold 
 

16bit / 16kHz 
 
Hamming / 16 ms length /10 ms shift 
 
MCEP (1～12) 
 
 K = 0.23 
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TIMIT [33] and WSJ [34] databases, which are the same as Chapter 4 and 5.  

The acoustic conditions for analysis in clustering-based automatic 
segmentation are shown in Table 11. The threshold is set to be 0.23 as stopping 
condition. This threshold has been proved valid on different databases of English 
and Japanese. 

6.5.3  Comparison of automatic assessments 

GOP scores，CPR scores and clustering scores are supposed to play an equal 
role in pronunciation evaluation. To demonstrate this, we compared these 3 
methods quantitatively．The correlations at utterance level and speaker level are 
shown in Figure 6.3 and 6.4 respectively.  

Very high correlations have been found between any two of the three scores. 
At utterance level, the correlation between clustering scores and CPR scores is 
0.83, correlation between GOP scores and CPR scores is 0.80 and correlation is 
0.75. At speaker level, the correlations are even higher. As shown in Figure 6.4, 
the correlations between any two of the three measures at speaker level are 
higher than 0.90. 

6.5.4   Correlations between automatic scores and 

manually-rated scores 

The correlations between automatic scores and manually-rated scores at 
utterance-level and speaker-level are shown in figure 6.5 and 6.6 respectively. 
Again, very high correlations have been found. At utterance level, GOP scores 
and CPR scores shadow highest correlation of 0.85 and the correlation between 
clustering is 75. At speaker level, CPR scores shows highest correlation of 0.97 
and the other two scores also show high correlation of 0.94 and 0.92. 

6.5.5  Correlations between automatic scores and TOEIC 

scores 

The correlations between automatic scores and TOEIC scores are shown in 
Figure 6.7.  Since TOEIC scores are at speaker-level and all 27 subjects have 
their TOEIC scores, we calculate GOP scores, CPR scores and clustering scores 
at speaker-level for all subjects. As shown in Figure 6.7, GOP score shows the 
best correlation of 0.82 and language-independent clustering score also shows a 
good result of 0.72. 
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Figure 6.3: Comparison of every two of the three automatic scores at utterance 
level 

 

 

 

 

 

Figure 6.4: Comparison of every three automatic scores at speaker level 
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Figure 6.5: Correlation between automatic scores and manual scores at 
utterance level 

 

 

 

Figure 6.6: Correlation between automatic scores and manual scores at speaker 
level 

 

 

 

Figure 6.7: Correlation between automatic scores and TOEIC  
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6.6 Discussion 

In read speech evaluation, even by using similar HMM-based GOP techniques, 
much lower correlations between machine and human scores were reported in 
recently published studies [29, 52]. This might be because shadowing poses a 
cognitive load on learners adequately and, therefore, the shadowing productions 
may reflect the learners’ “true” proficiency level rather precisely. We will 
conduct comparison experiment of shadowing and read speech or so-called 
reading-aloud. 

6.7 Conclusions 

In this chapter, we have proposed three scoring methods for utterances 
generated through shadowing: GOP scores, CPR scores and clustering scores. 
For GOP scores, both acoustic models and transcripts are required. For CPR 
scores, only acoustic models are required and for clustering scores, neither 
acoustic models nor transcripts are required.  

We described how to implement these techniques and compared them with 
each other. Evaluation experiment results show that automatic scores have strong 
correlation with manual scores or learners’ overall language proficiency. 
Comparison of scores derived from different techniques shows that the proposed 
language-independent clustering-based scoring technique is still available for 
evaluation of shadowing productions. 
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Reading-aloud  
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7.1 Introduction 

As mentioned in the previous chapter, shadowing is becoming more and more 
popular in English education in Japan and learners’ shadowed speech can be 
good indicators of their true language proficiency.  

Reading-aloud has always been a popular practice to improve speaking skill in 
language learning. Unlike shadowing, utterances generated through reading 
aloud, or so-called read speech, are more stable and closer to the speaking style 
of the speech corpuses on which acoustic models (HMMs) are often trained. 
Therefore, read speech is often used for automatic pronunciation evaluation. 
Improving the evaluation performance on read speech is also one of the goals of 
our research. 

In this chapter, we compare shadowing to the conventional practice of 
reading-aloud and in order to examine how cognitive loads affect learners’ 
speech, we also consider two situations of shadowing with and without text 
presented. With text, the difficulty of shadowing is reduced. We use Goodness of 
Pronunciation (GOP) based scores calculated through HMMs as automatic 
scores. Correlations between automatic scores and speakers’ TOEIC overall 
proficiency scores are investigated to analyze the results based on the tasks 
posed on learners with various cognitive loads. 

 

7.2 Automatic Scores 

Since supervised automatic scoring methods show better results on shadowing 
and is widely used for evaluating read-speech (reading-aloud speech), supervised 
automatic scores will be used for the comparison experiments between 
shadowing and reading-aloud. We use HMM-based GOP and F-GOP scores 
described in Chapter 5 as measurements for intelligibility of learners’ shadowing 
and reading-aloud speech.  

For acoustic models, we use HMM triphone models trained on TIMIT and 
WSJ databases as basic acoustic models. We then apply MLLR global adaptation 
to the basic acoustic models to examine effects of speaker adaptation on 
shadowing and reading-aloud. 

 

7.3 Data collection 

In order to compare shadowing with reading aloud, we have designed a 
program to record learners’ utterances in three modes with different levels of 
phonation difficulty: shadowing (only native model utterances are presented), 
reading aloud (only texts are presented), and shadowing with texts (both native 
model utterances and text contents are presented). In shadowing and  
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Table 12: Subjects’ TOEIC scores 
Proficiency TOEIC scores Average  
Advanced 955, 926, 855, 832, 

825, 792, 773, 752 
838 

Intermediate 687, 686, 668, 563, 
524,  

625 

Beginners 496, 425, 399, 378, 
252 

392 

 

 

shadowing-with-text modes, learners were required to repeat at the same speed 
as that of the presented native utterances, but in reading-aloud mode, learners 
were allowed to read the presented text at his/her own pace. For each mode, the 
contents of presented utterances or texts were carefully selected by experts so 
that they contain three levels of semantic difficulty: easy, intermediate, and 
difficult. The subjects were instructed to first record their shadowing productions, 
then shadowing with text and finally reading aloud of each task with different 
level of semantic difficulty. Utterances under these conditions were collected 
from 18 Japanese learners (8 advanced learners, 5 intermediate learners and 5 
beginners) with a variety of proficiency.  

We use TOEIC (Test of English as International Communication) scores as the 
references of learners’ overall language proficiency.  The subjects’ TOEIC 
scores are shown in Table 12. 

7.4 Evaluation Experiments 

7.4.1  Comparison of shadowing, shadowing with text and 

reading aloud by using GOP scores 

The correlations between GOP scores and TOEIC scores are shown in Table 
13.  In all tasks with three different levels of difficulty, GOP scores calculated 
from shadowing showed the highest correlations. The results from shadowing 
with text are lower than shadowing but better than reading aloud. Shadowing 
with the intermediate level of semantic difficulty shows the highest correlation of 
0.81. This indicates that the contents of shadowing need to be carefully chosen to 
better measure learners’ proficiency. 

We then applied MLLR adaption by using a part of each learner’s utterances 
from reading aloud to the native acoustic models. The results are shown in Table 
14. Although the improvement of reading aloud utterances are more significant 
than shadowing, automatic scores calculated from shadowing utterances still 
show better performances. This further confirms the advantage of shadowing 
over reading aloud in overall language proficiency assessment. 
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Table 13: Correlations between GOP scores and TOEIC scores without 
adaptation 

Level of difficulty Shadowing Shadowing 
with text 

Reading aloud 

Easy 
 

0.74 0.65 0.48 

Intermediate 
 

0.81 0.68 0.59 

Difficult 
 

0.71 0.67 0.61 

 
 
 
 
 
 

Table 14:  Correlations between GOP scores and TOEIC scores with MLLR 
adaptation 

Level of difficulty Shadowing Shadowing 
with text 

Reading aloud 

Easy 
 

0.74 0.68 0.60 

Intermediate 
 

0.82 0.71 0.68 

Difficult 
 

0.70 0.69 0.67 
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7.4.1  Comparison of shadowing, shadowing with text and 

reading aloud by using F-GOP scores 

We calculate F-GOP scores with acoustic models and then conducted MLLR 
global adaptation by using part of the utterances for reading-aloud as adaption 
data. Correlation between F-GOP scores and TOEIC scores is used as automatic 
scoring performance measurement. 

Figure 7.1 shows the results of correlations of F-GOP scores and TOEIC by 
using original HMM acoustic models (without adaptation) with three different 
levels of difficulty: easy, intermediate and difficult, compared with GOP. Figure 
7.2 shows the performance of F-GOP scores with or without MLLR global 
adaptation.  

As shown in Figure 7.1, although F-GOP without adaptation did not improve 
the scoring performances on shadowing, the improvement on read speech 
(reading aloud) is rather significant. We consider this might because the forced 
aligned boundary information F-GOP refers to is not as accurate in the case of 
shadowing as that of read speech.  

As shown in Figure 7.2, with MLLR adaptation, the performance of F-GOP 
can be further improved. In GOP or F-GOP scoring, with or without adaptation, 
shadowing always out perform shadowing-with-text or reading-aloud. By 
comparing the results in terms of different levels of text difficulty, shadowing 
with intermediate level of text difficulty show better results than “easy” or 
“difficult” levels. 

 

7.5 Discussion 

In every different task, shadowing has shown better results than reading aloud. 
This indicates that shadowing, which poses a certain amount of cognitive load on 
learners, can better reflect the true language proficiency of the learners.  

However, MLLR adaptation, which improved the results of reading-aloud 
significantly, did not improve the performances of shadowing evaluation as 
much. We considered that it is because the difference of the speaking style 
between shadowing and reading aloud, even by the same speaker, causes much 
of the mismatches between utterances generated through shadowing and the 
original acoustic models. The use of read speech as adaptation data can not 
reduce the mismatches caused by the difference of speaking style. In order to 
further improve the performance of shadowing evaluation, we need to address 
the problems caused by the speaking style of shadowing in the future. 

 



Chapter 7 Comparison of Shadowing and Reading-aloud 

－ 70 － 

 

 

 

 
 

Figure 7.1: Comparison of F-GOP and GOP 

 

 

 

 

 

 

Figure 7.2: Performance of F-GOP with adaptation 
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7.6 Conclusions 

In this chapter, we compare automatic proficiency assessment results on 
utterances generated through three different ways of pronunciation practices: 
shadowing, shadowing with text, and reading aloud. Three different degrees of 
difficulty of the presented text or native utterances are employed to examine the 
effects of cognitive loads posed on learners.  

Experimental results show that shadowing with a proper degree of difficulty, 
or cognitive load, can be used to assess language learners’ proficiency with the 
best accuracy. We also analyze the effect of MLLR adaptation on automatic 
scores and find out that MLLR improves the performances on reading out 
significantly but little improvement is found on shadowing. We are planning to 
investigate the change of learner’s proficiency after routinely shadowing 
practices over a period. 
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Chapter 8         
Prosodic Evaluation of Shadowing 
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8.1 Introduction 

In the previous chapters, we have proposed several automatic scoring methods 
for first-time shadowing, in which case the presented speech has not been seen or 
heard by the subjects before shadowing. High correlations between automatic 
scores of first-time shadowing and TOEIC overall proficiency scores have been 
found. 

However, we found that learners used different strategies to shadow a given 
native utterance. For example, some learners might focus on the contents of the 
presented utterance and repeat individual words with their own style of speaking. 
Some might focus on segmental phoneme pronunciations and others might only 
focus on the prosodic features yet ignoring the intelligibility of pronunciations. 

In order to further analyze segmental and prosodic features of shadowing 
speech, instead of first-time shadowing, more stable personal-best shadowing 
utterances, which are recorded after sufficient practices without the transcription, 
are used for our analysis. Figure 8.1 shows a procedure of recording learners’ 
utterances of shadowing and reading-aloud. This study focus on how learners’ 
degree of understanding the contents during shadowing affects their 
pronunciations in shadowed utterances in terms of phoneme intelligibility and 
prosodic fluency. To measure learners’ degree of understanding the contents, we 
introduce two types of scores. One is a comprehension test that contains 7 
questions. Each question asks learners to choose the best answers out of 4 
candidates according to the presented native speech they heard during shadowing. 
The other is learners’ self-check of words that they do not recognize during 
shadowing. In this case, the transcription of the native speech is shown to the 
learners and, by referring to it, they are required to mark out any words they did 
not follow up during the personal-best shadowing. We prepare other two types of 
scores. We ask a language expert to rate the shadowing utterances in term of 
prosodic features, intonation and rhythm, and an overall prosodic score is 
assigned to each subject. TOEIC score is also provided from the learners.  

For automatic analysis, we use Goodness of Pronunciation scores as the 
measure for phoneme intelligibility. As for prosodic features, we focus on 
F0-based and power-based DTW distances between shadowed utterances and the 
presented native speech, utterance-level variance of F0, length of pauses and rate 
of speech. The relations between reference scores and automatic scores are 
examined. 

8.2 Data collection 

32 subjects participated in our shadowing data collection. These subjects are 
Japanese learners of English from two universities in Japan and their TOEIC 
scores are shown in Table 15.  

The contents of presented speech were carefully chosen by a language expert 
that contains 14 sentences of an intermediate level of difficulty. The presented 
native speech was provided by an English teacher of native General American  
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Table 15: Subjects’ TOEIC scores 
TOEIC scores Number of subjects 

600-800 13 
400-600 11 
100-400 8 

 
 
 
 
 
 
 

 

Figure 8.1: Recording procedure of shadowing. 
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English speaker with normal speed but with a variety of changes in intonation.  

The contents of the presented speech are shown in Appendix D. The 
transcription or speech was never presented to the subjects before recordings. 
The subjects were asked not only to pay attention to segmental pronunciations, 
but also to the prosodic features of the presented speech and to mimic them as 
closely as possible instead of speaking in their own ways. 

After recording the first-time shadowing, the subjects were asked to take a 
comprehension test. The test is written in Japanese with seven questions related 
to the contents of the presented speech. For each question, the subjects need to 
choose the best answer out of four candidates. After the comprehension test, the 
subjects practiced shadowing for several times until they became familiar with 
the native pronunciations. Then the subjects’ personal-best shadowing was 
recorded. After personal-best shadowing recording, the transcript was presented 
to the subjects and while listening to their own recorded personal-best shadowing 
utterances, they were asked to mark out any words that they did not recognize 
during shadowing. 

Now that the transcript has been shown to the subjects, we record their 
shadowing speech one more time for comparison with their personal-best 
shadowing. We will refer to this final shadowing recording as final-shadowing 
hereafter. Figure 8.1 shows the total procedure of a sequence of recordings 
including a comprehension test. 

8.3 Reference scores 

For reference scores, first, we calculate the number of words that the subjects 
recognized correctly during shadowing and define recognized word scores 
(RWS) based on the subjects’ self-check results as below. 

 

RWS = number of recognized words
total number of words ×100%      (8.1)    

 

                                                                            

And comprehension test scores (CTS) is defined as, 

 

%100
questions ofnumbertotal

answerscorrect  ofnumber CTS ×=          (8.2) 

 

These two scores measure learners’ degree of understanding the contents of 
the native utterances in different ways. RWS and CTS correspond to word-level 
comprehension and overall comprehension, respectively. 
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When learners are asked to shadow presented native utterances, they 
sometimes pay more attention to the prosodic aspects, intonation and rhythm, of 
the presented utterances. In order to measure prosodic proficiency, we ask an 
English education expert to rate a score for each subject based on the expert’s 
subjective impression of that learner’s prosodic fluency. We refer to this score as 
manually-rated prosodic score (MPS).  

Table 16 shows the correlations of any two of the referenced scores including 
TOEIC scores. RWS shows very high correlation with TOEIC overall 
proficiency scores and manual prosodic scores (MPS). This indicates that the 
level of word recognition during shadowing not only reflect learners’ overall 
language proficiency  but also affects prosodic fluency of shadowed utterances. 
The relatively low correlation between CTS and MPS might indicate that it is 
possible to mimic prosodic features of the presented speech without 
comprehending the whole contents. 

8.4 Scores based on prosodic measures 

8.4.1  Fundamental frequency (F0) 

In our experiment, F0 is extracted by using Praat [50], which analyzes F0 
every 5 ms with 20ms frames of each utterance. The log scale values of F0 are 
normalized to cancel the differences due to gender.  In addition, F0 pattern is 
smoothed with regression fitting. 

[30] uses the DTW distances between native utterances and learners’ read 
speech as measure for intonation proficiency. In the case of shadowing, the 
presented native speech is the only source that learners refer to during shadowing. 
The distances of presented native utterances and learners’ shadowed ones are 
reasonable measure for intonation fluency. 

 

 

 

Table 16: Correlations between any two of the referenced scores 

 
 RWS CTS TOEIC MPS 

RWS 1 0.53 0.70 0.72 
CTS  1 0.73 0.54 

TOEIC   1 0.72 
MPS    1 
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Word-level DTW distances we use is defined as below, 
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where d(i,j) is a local difference between normalized F0 values of  the i-th 
frame of shadowed utterance and the j-th frame of the presented speech and 
g(1,1)=d(1,1). If the speech segment of a word has I frames in native speech, and 
its corresponding segment has J frames in learners’ shadowed speech, the DTW 
distance of this word is calculated by, 

 

JI
JIglearnernativeD

+
=

),(),(     .                    (8.7) 

 

We refer to scores calculated by Equation (8.7) as F0_DTW. The smaller 
F0_DTW is，the shorter the distance between the 2 utterances, i.e. the closer the 
learner’s pitch pattern is to the presented native speech. 

According to [56], at utterance level, Japanese learners’ pitch contours are 
more flat than those of native English speakers’ are. Thus, the variance of 
normalized F0 at utterance level can be used as an indicator to judge if the 
learners’ shadowed utterances are Japanese-like or native-like.  

In the case of shadowing, differences of F0 variance among different levels of 
learners are rather clear. For example, Figure 8.2 shows the F0 pattern of 
presented native speech, Figure 8.3 shows the F0 pattern of an advanced 
learners’ shadowed utterance and Figure 8.4 shows the F0 pattern of an 
intermediate learner’s shadowed utterance. As shown in these figures, 
intermediate learner’s pitch contour is much smoother than that of advance 
learner or the native speaker. 

8.4.2  Power 

Power (or intensity) parameters are also extracted by Praat. Power contours of 
learners’ utterances have strong relation with the rhythm of their speech.  

DTW distances between intensity contours of learners’ shadowed speech and 
the presented native speech are calculated in the same way as mentioned in 
previous section. We refer to these scores as Power_DTW scores. 
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Figure 8.2: Pitch contour of presented native speech. 
 
 

 

Figure 8.3: Pitch contour of an advanced learner’s shadowing speech. 
 
 

 

Figure 8.4: Pitch contour of a intermediate learner’s shadowing speech 
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8.4.3  Length of pauses 

Pauses are automatically detected by using a threshold-based scheme for the 
values of power. Durations of silence segments between words are calculated and 
normalized by the length of the presented utterance. We consider that there 
should be more pauses in a learner’s shadow speech if he or her cannot follow 
the presented speech. 

8.4.4  Rate of speech 

Rate of speech (ROS) is calculated as, 

 

Silenceutterance

phonemes

DD
N

ROS
−

=       ,                            (8)  

 

where phonemesN is the number of phonemes and utterancD  is the duration of the 
utterance and silenceD  is the length of silence. 

ROS can be used as an indicator of fluency of learners’ shadowed speech or 
how well a learner can repeat the present speech at the same speed. 

 

8.5 Evaluation Experiments 

8.5.1  Correlations between automatic scores and reference 

scores 

For personal-best shadowing, we investigate correlations between every 
automatic scores described in Section 8.4 and referenced scores mentioned in 
Section 8.3. Correlations between automatic scores and recognized word scores 
(RWS) are shown in Table 17. GOP scores, F0-based scores and ROS show 
better results than scores based on power or pauses. 

Correlations between automatic prosodic scores and manual prosodic scores 
(MPS) are shown in Table 18. Again, F0-based scores perform better than 
Power-based scores and ROS shows better result than Pauses. 
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Table 17: Correlations between automatic scores and RWS (Recognized word 
scores) 

Measures Correlation 

GOP 0.63 

F0_DTW -0.45 

F0_variance 0.55 

Power_DTW -0.30 

Pauses -0.20 

ROS 0.58 

 

 

 

 

Table 18: Correlation between automatic prosodic scores and MPS (manual 
prosodic scores) 

Measures Correlation 

F0_DTW -0.55 

F0_variance 0.49 

Power_DTW -0.30 

Pauses -0.37 

ROS 0.59 
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8.5.2  Multiple regression models 

We use a set of multiple regression models to combine different measures. The 
combined scores are given by the following equation, 

 

∑
=

=
K

k
kk FS

1

α                                             (9) 

 

where kF  is the k-th feature score of K scores and kα is obtained by using 
training data. 

Here we adopted leave-one-out cross verification to estimate target scores with 
different features. First, we use the 6 measures shown in Table 17 to estimate 
RWS. The correlation between estimated scores and RWS is 0.68 which higher 
than any one of the features. Although the result is lower than the correlation 
between RWS and TOEIC or MPS (shown in Table 16), the differences are not 
significant. We then use the five automatic scores based on prosodic features to 
estimate MPS. The correlation between the estimated scores and MPS is 0.6, 
which is again higher than any single measure.  

8.5.3  Comparison of personal-best shadowing and final 

shadowing 

The difference between personal-best shadowing and final shadowing is that 
final shadowing is done after checking the individual words in the presented 
native speech. We have expected that learners’ pronunciation might improve 
significantly by checking the transcript. However, by closely examining the MPS 
of both types of shadowing speech, we find that they are very similar. 

Considering the fact that there are no advanced learners whose TOEIC scores 
are higher than 800 in the subjects, the correlations we obtain are rather high. 

Correlations between RWS and automatic scores calculated by using the data 
of personal-best shadowing and final shadowing are shown in Table 19. 
Although correlations between GOP and RWS change significantly, in the case 
of prosodic measures, the correlations are almost the same. This indicates that 
knowing the contents of showing might not help learners with their prosodic 
fluency in shadowing. Correlations between MPS and automatic scores 
calculated by using the data of personal-best shadowing and final shadowing are 
shown in Table 20. Similar conclusion can be draw as in the case of RWS that 
except GOP, other feature scores show similar conrrelations. 
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Table 19: Correlations between automatic scores and RWS, comparing 
personal-best shadowing with final shadowing 

 
Measures Personal-best 

shadowing 
Final 

shadowing 
GOP 0.63 0.55 

F0_DTW -0.45 -0.43 
F0_variance 0.55 0.56 
Power_DTW -0.3 -0.2 

Pauses -0.2 -0.25 
ROS 0.58 0.56 

 

 

 

 

 

 

Table 20: Correlations between automatic scores and MPS, comparing 
personal-best shadowing with final shadowing 

 
Measures Personal-best 

shadowing 
Final 

shadowing 
GOP 0.65 0.58 

F0_DTW -0.55 -0.50 
F0_variance 0.49 0.47 
Power_DTW -0.30 -0.29 

Pauses -0.37 -0.39 
ROS 0.59 0.60 

 



Chapter 8 Prosodic Evaluation of Shadowing 

－ 83 － 

 

8.6 Conclusions 

In this chapter, we analyze shadowing with automatic measures related to 
phoneme indelibility and prosodic fluency. We compare these automatic 
measures with several reference scores and propose several methods for 
shadowing evaluation. Experimental results show that the proposed automatic 
scoring methods are suitable for shadowing evaluation. Comparison of 
personal-best shadowing and  final shadowing shows that  knowing the 
contents before shadowing does not necessarily affect the prosodic aspects of 
learners’ shadowed utterances. Future works include detailed comparison of 
shadowing with other conventional training methods, especially on prosodic 
aspects. 
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9.1 Summary 

In this thesis, several novel methods have been presented for improvement in 
pronunciation evaluation of reading-aloud and shadowing speech based on 
speech processing technology. 

A detailed introduction of background knowledge is presented in Chapter 2 
and an overview of various exiting CALL systems and the technology behind 
them are closely examined in Chapter 3. 

From Chapter 4 to 5, we address the over-adaption problem that occurs when 
using conventional MLLR adaption for pronunciation evaluation and propose a 
novel adaptation technique, Regularized Maximum Likelihood Linear 
Regression (Regularized-MLLR), for CALL systems. The idea is to use a group 
of teachers' transformations to regularize learners' transformations so that 
erroneous pronunciations will not be transformed into good pronunciations. 

First, we investigate the effects of MLLR on pronunciation evaluation in two 
ways: automatic scoring and error detection. Experimental results show that 
although the MLLR global adaptation (number of regression classes is one) can 
indeed improve evaluation performances, when the number of regression classes 
increases and more details of learners' pronunciations are adapted, 
over-adaptation occurs so that erroneous pronunciations are recognized as 
correct ones. However, even with over-adaptation, conventional adaption can 
still improve precision rate of error detection performance, which indicates that 
false rejections can be reduced by conventional MLLR. 

Based on these results, we implement two forms of Regularized-MLLR, 
R-MLLR1 and R-MLLR2 by using teachers' perfect pronunciations to regularize 
learners' transformations. R-MLLR1 uses the average of a group of teachers' 
transformation matrices as a constraint adding to the conventional MLLR 
transformations. This constraint prevents radical transformations when there are 
too many errors in the adaptation data. R-MLL2 uses linear combination of the 
teachers' MLLR transformation matrices to represent each learner's 
transformation. This approach does not directly use learners' MLLR 
transformations that are estimated from their imperfect pronunciations, therefore 
prevents over-adaption. 

We compare R-MLLR1 and R-MLLR2 with conventional MLLR by 
conducting experiments on the same conditions as we investigate the adverse 
effects of MLLR. Automatic scoring and error detection experiments show that 
the proposed methods outperform conventional MLLR. By adding constraints to 
MLLR, R-MLLR1 indeed reduces the adverse effects of MLLR, yet 
performances still drop due to over-adaptation. R-MLLR2 not only out-performs 
MLLR global adaption, which is widely use for CALL, but also prevents 
over-adaptation by using linear combinations of teachers' matrices instead of 
using learners' directly. The proposed methods can better utilize speaker 
adaptation and prevent adverse effects, thus more suitable for CALL systems. 

From Chapter 5 to 8, we proposed method for segmental and prosodic 
evaluation of shadowing speech and compare shadowing with reading aloud. We 
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first propose supervised and un-supervised methods for automatic scoring of 
shadowing. Correlations between automatic scores and manual scores or TOEIC 
overall proficiency score are investigated. Experimental results show that very 
high correlations between automatic scores and manual scores or TOEIC scores 
have been found. The language independent unsupervised method is also 
available for shadowing evaluation. 

We then compare shadowing with reading aloud with different cognitive load 
posed on the subjects. Experimental results show that with adequate amount of 
cognitive load, shadowing can better reflect learners’ true proficiency than 
conventional reading aloud. We conduct speaker adaption for shadowing and 
reading aloud and find that speaker adaption have much more effects on 
reading-aloud than shadowing. 

Finally, we propose prosodic evaluation for personal-best shadowing and final 
shadowing. Personal-best shadowing is the shadowing speech recorded after 
extensive practices and final shadowing is the shadowing speech recorded after 
the transcriptions are presented. By combining different prosodic aspects such as 
F0, power, pauses and rate of speech, we can obtain a reliable score for each 
speaker. The performance of TOEIC score prediction can be further improved by 
combing prosodic scores with GOP scores. The comparison of personal-best 
shadowing and final shadowing shows that showing the text contents to the 
learners does not necessarily improve their prosodic proficiency. 

9.2 Future work 

To regularize learners' transformation, we only use the 20 teachers' speech 
data from ERJ database. Increasing the number of teachers will increase the 
variety of speaker characteristics of the teachers' data we use for regulation. We 
need to investigate if increasing the number of teachers would improve the 
effectiveness of adaptation. 

The method we use to cluster model parameters into regression classes for 
MLLR and Regularized-MLLR is according to how close they are in acoustic 
space. By using some phonetic expertise in deciding which components should 
be clustered together, we might obtain better recognition and error detection 
results. 

Other adaptation techniques such as MAP and Eigenvoices need to be 
examined and compared with MLLR-based methods. By looking into the details 
of each method, we can combine them to further improve evaluation 
performances for CALL systems. 

Since the proposed speaker adaption techniques are language-independent for 
pronunciation evaluation, we would also like to test them on different databases 
of different languages such as Japanese, Chinese etc. 

For shadowing evaluation, we need to examine the long-term effect on 
learners’ proficiency of shadowing practice. Error detection should be conducted 
on shadowing when the learners are more familiar with shadowing and their 
shadowed utterances do not become so broken and recognizable with automatic 
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speech recognition (ASR). We also need to compare evaluation results of 
shadowing on different conditions such as changing the speech of presented 
speech, the dialect of accent of the presented speech, etc.  

Since manual segmental or prosodic scores are rated by one expert, we need to 
increase the number of experts and compare the manual scores by different raters. 
For prosodic scores, an overall score of each learner’s prosodic proficiency is 
given by the expert. We need to examine different aspects of prosodic such as 
intonation and rhythm separately and find out if there is any relationship between 
them. 
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Appendix A 
The phoneme set with 39 phonemes of CMU pronunciation dictionary used 

for acoustic models are shown as below. 

 
Phoneme Example Translation 

        ------- ------- ----------- 
        aa odd     aa d 
        ae at     ae t 
        ah hut     hh ah t 
        ao ought ao t 
        aw cow     k aw 
        ay hide   hh ay d 
        b  be     b iy 
        ch cheese ch iy z 
        d  dee     d iy 
        dh thee  dh iy 
        eh ed     eh d 
        er hurt  hh er t 
        ey ate     ey t 
        f  fee     f iy 
        g  green g r iy n 
        hh he    hh iy 
        ih it    ih t 
        iy eat   iy t 
        jh gee     jh iy 
        k  key   k iy 
        l  lee   l iy 
        m  me   m iy 
        n  knee n   iy 
        ng ping  p ih ng 
        ow oat   ow t 
        oy toy   t oy 
        p  pee   p iy 
        r  read  r iy d 
        s  sea   s iy 
        sh she   sh iy 
        t  tea   t iy 
        th theta     th ey t ah 
        uh hood hh uh d 
        uw two  t uw 
        v  vee   v iy 
        w  we   w iy 
        y  yieldy   iy l d 
        z  zee   z iy 
        zh seizure s iy zh er
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Appendix B 
Text content for first-time shadowing 

 
In 1996, three men in California were taken to a hospital with strange symptoms.  They felt 

dizzy, tired, and weak. They couldn’t speak, and they had trouble breathing. The hospital doctors 
thought the men had been poisoned, but couldn’t work out what was wrong with them. Then 
they found out the three men were all chefs, and they had just shared a dish of fugu. Fugu, the 
Japanese name for the puffer fish, is one of the strangest fish in the ocean. The puffer fish gets its 
name from the way the fish protects itself from enemies. Whenever it is attacked, the fish puffs 
up (blows up) its body to over twice its normal size! The reason the three men were taken to the 
hospital is because the puffer fish is also very poisonous. As a rule, if you eat a whole puffer fish, 
you will probably die. The three men had a close call, but they all survived. The symptoms of 
fugu poisoning are a strange feeling around the mouth and throat, and difficulty breathing. You 
can’t breathe and your body can’t get any air. Your brain still works perfectly, however, so you 
know you are dying, but you can’t speak or do anything about it. Despite the danger of fugu 
poisoning, this strange, ugly, and very poisonous fish is actually a very expensive, and very 
popular, kind of food in Japan. Customers pay up to$200 per person to eat a fugu meal.  
Because of the danger, fugu can only be prepared by chefs with a special license from the 
government. These chefs are trained to identify and remove the poisonous parts of the fish. Most 
people who die from eating fugu these days are people who have tried their hand at preparing the 
fish themselves. Fugu is said to be so delicious that it has even started to be imported into Hong 
Kong and the United States. Several tons of fugu are now exported from Japan every year. 
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Appendix C 
Text contents with 3 levels of difficulty for comparing shadowing and 

reading-aloud. 

Level 1: Easy 
February 14 is a day for people who have fallen in love. On this day, these men and women 

give gifts and cards to each other to celebrate Valentine’s Day. At first, February 14 was the old 
Roman festival, Lupercalia. Then, on February 14, 270 A.D., a man named Valentine was killed 
by the Romans because of his Christian beliefs. Before Valentine was killed, he fell in love with 
the daughter of his jailer and would pass notes to her. His final note read, “From your Valentine.” 
Later, February 14 became known as Saint Valentine’s Day. Since then, people in love around the 
world have given gifts and cards to each other on Saint Valentine’s Day. Gloves, chocolates, and 
even underwear have all been popular as gifts. Valentine cards did not become popular until the 
1750s. The first Valentine cards were made by hand. People wrote their own words on the cards, 
usually a kind or funny message. Cards made by machines became more popular around 1850. 
All of a sudden, Valentine’s Day became a big holiday for people who made and sold cards. Now, 
every year around February 14, cards and chocolates fill stores around the world, for all the 
people who have fallen in love. 

 

Level 2: Intermediate 
In 1996, three men in California were taken to a hospital with strange symptoms.  They felt 

dizzy, tired, and weak. They couldn’t speak, and they had trouble breathing. The hospital doctors 
thought the men had been poisoned, but couldn’t work out what was wrong with them. Then 
they found out the three men were all chefs, and they had just shared a dish of fugu. Fugu, the 
Japanese name for the puffer fish, is one of the strangest fish in the ocean. The puffer fish gets its 
name from the way the fish protects itself from enemies. Whenever it is attacked, the fish puffs 
up (blows up) its body to over twice its normal size! The reason the three men were taken to the 
hospital is because the puffer fish is also very poisonous. As a rule, if you eat a whole puffer fish, 
you will probably die. The three men had a close call, but they all survived. The symptoms of 
fugu poisoning are a strange feeling around the mouth and throat, and difficulty breathing. You 
can’t breathe and your body can’t get any air. Your brain still works perfectly, however, so you 
know you are dying, but you can’t speak or do anything about it. Despite the danger of fugu 
poisoning, this strange, ugly, and very poisonous fish is actually a very expensive, and very 
popular, kind of food in Japan. Customers pay up to$200 per person to eat a fugu meal.  
Because of the danger, fugu can only be prepared by chefs with a special license from the 
government. These chefs are trained to identify and remove the poisonous parts of the fish. Most 
people who die from eating fugu these days are people who have tried their hand at preparing the 
fish themselves. Fugu is said to be so delicious that it has even started to be imported into Hong 
Kong and the United States. Several tons of fugu are now exported from Japan every year.  

 
Level 3: Difficult 
 

Otaku is now a popular word used to refer to young people -mainly males- whose 
“lives ”center around their hobbies, usually computers, computer games, comic books and 
animated films Akihabara has long been famous as a major electronic appliance shopping district, 
but these days it is also well known as a mecca for otaku.",FALSE The word otaku literally 
means“your house,” and is also a polite form of “you.”",FALSE Sometime in the 1980s, the word 
came into general use as a term for these young enthusiasts, because such people tend to confine 
themselves to their own rooms where they can indulge in their hobbies to their hearts’ content 
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without interference from others .",FALSE Such people also used the term otaku to refer to each 
other, a way of showing each other sympathy and respect, so to speak. ",FALSE At first the term 
had a largely negative connotation, suggesting an isolated, fanatical person with poor social skills 
(especially when it came to girls and dating) and no common sense.  Since otaku tended to 
prefer each other’s company and dressed oddly as well, the otaku subculture was often made fun 
of. The growing number of such people can be attributed to several factors. For one, there is 
young people’s greater economic power, which has enabled them to buy the expensive electronic 
goods that are the backbone of their hobbies. Declining birthrates mean that most couples have 
on average only one or two children, which means that parents have more money to lavish on 
their children (grandparents can afford to be more generous, too). Another factor for the rise of 
the otaku is the rapid development of computer technology, which is particularly attractive to 
boys and young men. Modern parents often believe that computers are the key to success in 
today’s information technology world, so they tend to buy expensive gadgets for their children. A 
final factor might be the growing emphasis on individuality in Japanese society. People today 
think being different is cool. Otaku is usually translated into English as “nerd.” The word “geek” 
is used to refer to young people who are specifically interested in computer technology. Otaku, 
by the way, are no longer looked down upon as they once were. In fact, they are just as often 
admired for their expertise in one specific field.  
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Appndix D 
Text content of personal-best shadowing for prosodic evaluation. 

 
The MacDonald’s house has been broken into.  A policeman has come to check it out.  He 

finds a boy standing nearby.  The policeman is now talking to the boy.  He wants to know how 
the door of the MacDonald’s house was broken open.  The boy said that it had already been 
broken before he and his friend went to the house.  He said that they simply walked into the 
house.  The police officer asked, “why were your fingerprints found all over the door?  And 
why were your boots scratched?  It was you who kicked the door open, wasn’t it?  Why did 
you steal the stereo and the CDs?  Did you just want to have a bit of fun, or were you trying to 
get some money?  Now then, tell me the truth.”  I don’t want to hear any more of your lies. 
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