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Abstract

A simplified proof of the eigenfunction expansion theorems for Schridinger
operators is given. These results also include a generalization to complex
potentials of the results obtained for real potentials in the previous parts [8]
and [4].

Introduction

The purpose of the present paper, Part III, is twofold. The first and main
purpose is to give a simplified proof of eigenfunction expansion theorems dis-
cussed in the previous Part II [4]. Namely, in constructing eigenfunctions we
utilize Riesz lemma in this'Part instead of the concrete expression of the funda-
mental solutions constructed in Part I [8). In this sense our new proof is purely
of functional analytic nature and hopefully is more transparent than before,
The second purpose is to extend our results in Part II to include complex valued
B~ potentials V(w; z) depending analytically on a complex parameter weB with
B a domain in the complex plane C={z+iy|z, yeR'}, i=+~/—1. The analytical
dependency on weB is included here in order to discuss an analytic extension
of eigenfunctions in the case of dilation analytic potentials elsewhere.

We consider the Schrédinger operator

(1) H(w)=Ho+ V(o ), qu,% jﬁglaz/axg, n=1,

and assume that V{w; ) belongs to $*=G=(R%) locally uniformly in -weB’ 4nd
is-analytic in we B for each fixed zeR”. Then H(w) is an anlytic famlly of ‘type
(4) with domain PD(H(w))=H*R"), the Sobolev space of order two. We further
assume the existence and intertwining property of some wave operators and
the related properties of the fundamental solution U(w; £)=exp(—~itH(w)) for
H(w). These assumptions will be given ‘in a general form in Sect. 1. -Under
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these assumptions, we construct eigenfunctions which expand the range of wave
operators using the Riesz lemma instead of the results in Part I. We then apply
these results in Sect. 2 to the weakly coupled N-body systems (Nz=2) with very
short-range complex potentials and to the systems with real N-body potentials
plus complex 2-body short-range potentials.

We use the same notation and conventions as in Part I and Part II. We
quote the sections, formulae, theorems, and references in these Parts as Sect.
IL 1 for sections, (I.1.5) for formulae, Theorem II.1 for theorems, and (I.1] for
references.

§1. General theory

Our first assumption on V(e ; z) is an analytic version of Assumption I in
Part I:

AssumpTioN V. i) For any compact set K of B and multi-index «,

M, K)= Wels(ux}gm [0:V(w; x)}<oco.

ii) For each zeR", Vl(w; ) is analytic in weB.

Under this assumption, Theorem 1.1 guarantees the unique existence of the
fundamental solution Ulw ; #)=exp(—itH(w)) of

(.1 (De+H()) Ulw; =0, = Ule; 0)=1,

and gives a representation (I.1.4-1.5) of U(w; #) as a Fourier integral operator,
which is bounded in B(4), H=L*R"™, locally uniformly in weB for each teR!
and forms a group of operators in B(J4() with respect to ¢ by (I.2.25). (We
should state here a correction that the bar over V(z z) in the integrands of
(1.2.4-2.5)and in the definition of the symbol of A(Z s, ¥) in Sect. 1.2 must be
deleted). Further, since in this case U(w; ) can also be expressed as

.2) Uto: =em(l+ 5§t 7 atVio; - Viws 1),

where V(o; )= V(w)e ™, V(w)=V(w; z)-, one sees by Assumption V-i)
that for weK and feR"

(1.3) 1U(@; Dllsn=e™®"t.

Thus zeC belongs to the resolvent set o(H(w)) of H{w) if |Im z|>M(0, K) and
weK. Since P(H(w))=H*(R"™ independent of weB and V() is analytic in weB
in B(4() by Assumption V, {H(w)les therefore forms an analytic family of type
(A) (for the definition and related properties, see [7, VII.2] and [11, XI1.2]). We
also note that Assumption V and the expansion (1.2) imply that exp( itH(w))
is analytic in B(4() with respect to weB.
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We now consider the same situation as in Sect. I[.1. Namely, the variable
xeR" nz=1, is decomposed as x=(z, x,), z;€R™ (m=1, 1,20, n=n,+n,), and
the conjugate variables of z, z; are denoted by £, £, respectively. Accordingly,
I =L*R" is decomposed as a tensor product:

(1.4) H=901& I, j[jr_-LE(Rgg) (G=1, 2) (4 :=C if n,=0).

Fix one ¢eH*RE) with |lo|la.=1 and define Pf=(f, ¢)p for fFfedl,. Let
Wt £)eC(R"—{0}) (feR"yand T(£,)eC*(R™) be real-valued with |35, T(&,)] £Cu(é)?
for all @, and define W(H)=F LW, £)-1F, and T(D.)=F7[T(&)-1F,, where
F; and & are Fourier transformations from 4(; to ﬁjEU(R?]J) and from 4 to
J=LYR?), respectively. Let E\(4) be the spectral measure for the self-adjoint
operator T(Dg,) in 41, and let 2eR'. Under these circumstances, we make the
following assumption which is a version of Assumptions IIl. and IV, in Part IL

AssumpTIiON VI, There exist a Borel set 4 of R and a family {Pu(w; 4}lues
of bounded (not necessarily orthogonal) projections on 4 satisfying the follow-
ing conditions :

1) Piw; 4) is analytic in B(4) with respect to weB and commutes with
H(w): Pilw; HH(w)CH(w)Pow; 4).

ii) For any compact subset K of B,
(1.5) sup 1Hexp(—z’t[:[(w)).l”’i(a); Dl <oo,

weK, LER:
iii) * For any welB,

(1.6) lim sup |l Py’ ; d)—e P, Dllaca =0,

o’ -s0, €8 LERL

iv). For each webB, there exist the strong limits on .4 :

1.7 Wilw; A)::st-lim Pulw; D HFNE(D R P)e™WP Qe 1),
b 200
1.8) Yi(w; 4) ﬁsa-lim Pylw; Ay (L) ® Po)e™ P @ e 1) .

v). For each weB, one has on D(T(Dx) ® Li+il, Q® IL),

(1.9) H@)Wy(w; H=Wilo; T (De) ® L+1L R L),

(1.10) H@*Yslo; A)=Y(o; YT (D) @ L+iL R ).
vi). For each webB,

(1.11) Pio; H=Wilo; HY (0; 4)*,

1.12) El)® Po=Yu(; 4 Walor; 4).

We call Wo(w; 4) the (modified) wave operators, which are not necessarily
partial isometries on 4. But Weilw; 4)|@mwerpx has inverse Yi(w; 4)*|p, o
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by (1.11) and (1.12), hence the range R(W.lw; Dlgwmerys) equals Pulw; N4
We now define F.(v; H=F Y. (0; NH)* and Folw; 4)=Wulw; H)F'. Then

(1.13) Fo(w; DFulw; H=Pulw; 1),
Folw; DF(w; H=E(4)® Py,

by (1.11) and (1.12), where E\(4)=F . E(N)F" and P,=.P,g;. We set
I D =E\(DIt;=LN(4)), where I'(D)={&eR™|T(&)ed}l. Our main result of
this section is the following

THEOREM 1. Let Assumptions V and VI be satisfied. Then for each weB,
there exist functions ¢.(w; z, &), $u(w; x, £)EH (RE) Q Limy-(I'«(4)) for all real
s>n/2, integer k=0, and even integers mo>n/2, hence eC(R:, IHiweld)), which
satisfy the following properties.

1) For f, geS=SR™)

(1.14) (Fo(o; DF, 9)
=) <(Ful0; , £) R BE), 1@ @ (B4 ® L)fE)>,
(1.15) (f, Fslos o)

=20 <pul@; @ &) ® ¢ 0@ R EBu(d) ® L)F(E)>.

The conditions (1.14) cmg’ (1.15) determine 3. and ¢. wuniquely, respectively.
ily The functions ¢.(w; x, &) and ¢.(0; x, &) are analytic with respect to
weB in C(BY, H110(d)), and satisfy

(1.16) (H(@)~(TE)+ )Pl z, £)=0,
(H(0)~(TE)+D)gulw; z, £)=0.

Here the amalyticity in C=(RL, Fie(d)) means the analyticity in HE(RD ®
Ll \(4)) for any real s>n/2, integer k=0, and even integer mo>n/2.

i) If Vie; x) is real and P.lw; 4) is self-adjoint for real weB, then
Bulw; =z, &) and ¢.(B; x, &) coincide with each other for o, @eB in
C=(RE, Hipoe(d)).

Remarks. 1° By (1.13), this theorem gives an eigenfunction expansion on
RWalo; Dliguersa)=Plo; 4)9.

2° When V{x) is real-valued, this theorem includes Theorems II.1 and II.2
as a special case with 4=R!, P.(w; 4)=1, and V() a constant self-adjoint operator
V(z). except for the pointwise bound result (II.2.3). Notice that we have adopted
here in (1.15) the complex conjugate of ¢.(z, &) in (I[.1.6) as eigenfunctions
¢¢(¢D; z, &1).

Proof. of Theovem 1. We first prove i) and ii) only for F.(w; 4). The
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other cases can be treated similarly. For fe 4, we have by Assumption VI-iv),~
1.7

(1.17) Gio; DFf(@)=W.(0; H)f(@)=(Day™ s-lim Z(w, )f(z)

in ,4( Here m, is an even integer greater than »/2, s-lim means the strong
limit in H™(R)c 9, and with Ze(&)=<(&)~"e 47

(1.18) Zlo, H)f(x)
=1o(Da)e™™ Py 5 AEA(D) @ Po)(e™ P Q e7*) f ().
Since Xoe 4 and
(1.19) %o(Da)g(2) = (2m)™" ZS € Xo(ENFg)é)ds
for gedl, we have from (1.18)

(1.20) Zw, ()
=Q2r) " FeH P (w; HE(L) Q@ P)eP @ e ™) f, e7 %o(§))dr.

Since ¢ is analytic in B(J) with respect to weB as remarked after (1.3),
we have using Assumption VI-i) and (1.20) that

(1.21) Zw, £)f(x) is analytic in weB for each zeR"™ and feR'.

On the other hand, from (1.20) and Assumption VI-ii), it easily follows that

(1.22) SUD _ |2, DF @) SCallel] (B4 @ P,
(1.28) SUp 12w, F ()= Zlw, D@ SCxlitll1Lf A,
(.24 sup 2o/, 9f ()~ Zo, D)

=CU|H 71 sup [l Py(w’ 5 =" Py (w5 Dllacn,

for some constants Cx and C>0 with C independent of o, w’eB.

Given a countable dense subset B of B, feg, and a sequence {f} tending
to infinjty as [ — oo, we can choose, by Assumption VI-iv),~(1.7) and a diagonal
argument, a subsequence #=#(f) of {#} and a null set N=N(f) of R™ such
that, for all weB and xeR"—N(f), we have the existence of the following limit
and the relation k

(1.25) lim Zlw, 1)/ (@) =2(Da) W ; 4)f ().
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Now given ¢>0 and weB, we can take w,e8 by (1.24) and Assumption VI-iii)
so that

(1.26) sup |Z{o, £)f(z)=Zwy OF ()| <e/3.

Thus one has for all zeR"—N and integers %, m>1
(1.27) [Zw, tn)f(x)—Zo, tn)f(2)|
<2¢/3+ |Z((l)o, tk)f(x)_z(ml), tm)f('ﬁ)l )

The right hand side is asymptotically less than ¢ as %, m — oo, since woeB. We
have so far proved that for any fe 4 and any sejuence #— oo (as [—co) there
are a subsequence {#(f)} of {#} and a null set N(f) of K™ such that for all
zeR"—N(f) and weB, there exists the limit

(1.28) lim Z(, £(F)f(2),
which equals

(1.29) YD) W (0; D)f(x)

for a.e. xeR™

Now using (1.23) and arguing quite similarly to the proof of Theorem II.1,
we can prove that there exist a null set N. of R” and a sequence # — oo (as
k— o0) such that, for all xeR"—N., weB and fe g, the limit

(1.30) lim Zo, #)f(@)

exists, and is equal for a.e. xzeR" to
(1.31) WD) W (0; Df(x).

Since (1.30) is continuous in weB by (1.24) and Assumption VI-iii), we see by
(1.21), (1.22) and Morera’s theorem that the limit (1.30) is analytic in weB for
each reR"—N, and fe 4.

Taking f=f1® f. (fs€9;) in (1.20), we see by (1.22) and Riesz lemma
that for each teR!, zeR" and weB there exists a function b,(w; £, z, &H)ed:(4)
such that

(L.s2) ' Zo, (f, ® f2))
=<zn)wz§E,(Am(s,)bw(m; t, @, 20de X (for @)

and

(1.33) Sup o lw; & 2, Nawn=Crkll%l].

Then, the existence of the limit (1.30) implies that of the following weak limit
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in 4.(4) for all zeR"—N, and weB:
(1.34) bilo; @, &)=wlimb,(w; &, z, &).

By (1.33) we have for zeR"—N, and weK
(1.35) [1b5(@; @, lldia=CrlXol].

Namely, bj(0; 2, £)eL=(RE, F(4)THL(RD R H:(4) (s>n/2) locally uniformly
in weB. Thus, since (1.30) is analytic in weB for all zeR*—~N, and fe 4, o
is (1.34) as an 4(4)-valued function of weB for each zeR"—N, as well as an
H (R R4 ,(4)-valued function of weB, where s>n/2 and we have used Morera's
theorem. Further from (1.30), (1.31), (1.32) and (1.34), we have for a.e. xeR"
and fjeﬂj

(1.36) (D)W ; D(f1 ® fa)x)
=(27r)'"/2§ bi(w; @ E)E()Fi(€)de X (fo, 8).

Thus we have constructed a distribution @&.(e; =, E)=(Dz)™b}(w; =z, £1)€
H=(RY) @ 41:(4) (s>n/2) which satisfies (1.14). The relation (1.16) is proved in
quite the same way as in the proof of Theorem II.1 by using (1.14), the defini-
tion of F.(w; 4), Assumptions V-i) and VI-v),—(1.9).

By (1.3), there exists 2,>0 such that it,e p(H(w)) for all we K. We can there-
fore make an argument quite similar to the proof of Theorem II.2. Namely,
similarly to (II.2.8) we get for weK and even integers 2=0

(1.37) $lw; @, &)
=(T(&:)+ A= i2e) ™0/ H{) — o)~ Mo+0/2 D, ymo bila; =, &1),

where we have used Assumption V-i) (see the proof of Theorem II.2). Thus
B (w; x, &)eHE(RD ® L2y - [(4)) for o €K and all even integers £=0, mq,>n/2,
and real s>#/2, and in particular @.(w; @, £)eC(R2, H10(d)) for all weB. Now
(1.37) and the fact that {H{w)}.ez is an analytic family of type (4) and bi(w; =, &)
is analytic in H?,(R?%) ® 4:(4) imply that ¢,(w; =, &) is analytic with respect to
weB in C™(R3, H1y0e(4)).

We finally prove iii), Under the assumption of iii), H{w)*=H(w) and
Pilw; H*=P.lw; 4) for real weB. Hence for real weB

(1.38) Falo; A =Flo; 4).

Thus by the uniqueness result in i), ¢.(®; @, &)=@(w; x, &) for real weB,
which together with the analyticity of ¢.(w; x, &) and @.(w; x, &) in weB
proves iii). The proof of Theorem 1 is complete.

Remarks. 1° In the present case; b (w; ¢ =, &) in (1.832) is given expli-
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citly by
(1.39) bulw b, @, &)

=§ e itw, E;)+n]p+(m : A)*[e“i‘”s'm% a;{;(w i 1 &, x)] ¢(§2)d52 ,

which and (1.34) give an extended version of (II.1.10). Here P.(w; 4)=
FP(0; HF'; ¢=TFp; and a¥(w; 4, & x) is defined by (1.3.1) with Viz)=T{(w; 2)
and X(¢, y)=%(&)edl, and belongs to .4 for each w, #, # by (I.3.1) and the L*-
boundedness of E(f, 0, z) in (1.2.19) (cf. Sect. 1.3). (1.39) follows from (1.18)
by noting that

(1.40) Xo(Da)e™ ) = (gmtH W™ y (D, ))*
=(e M af(w; t, Do, X'))*,

which is seen by (I.8.4) and (I.3.2).

2° In Assumption VI-iv).—~(1.7), (1.8), the factor E,(d)e W® =g~ W® £ (1) can
be replaced by any other bounded modified free propagators, e.g., by Jg %7z
E\(4) with JieB(4(,). Also in this situation the proof of Theorem 1 works well
once the assumptions are satisfied. Some examples of this type of modified
propagators are found in e.g. [2], [3], [11.13].

§2. Complex short-range potentials

In this section, we treat the two examples of application of Theorem 1 as
stated in the introduction.

2.1. Weakly coupled N-body systems (Nz=2) We consider the potentials of
the form

2.1) eWVw; X)==lcizj Vidw; ri—7),  X=(r, -, 7¥x),

where 7, j=1,---, N, r;€R” (v=3), #eC, and Vijw; ) (reR") satisfies Assump-
tion V with x=7 and n=y there. In addition, we assume

AssumpTioN VI Vife; 7) (1=i<j=N) satisfies
2.2) [Vifw; NI=Cay*
for weB and reR" with some constants C and >0.

Choosing Jacobi coordinates z=(x1, - -, zv-1)eR", 2;€R", n=bu(N—1), one can
rewrite (2.1) as

(2.3) oo iV(w; x):,;% Vio; a9y,
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where z% denotes the representation of 7;—r; by our Jacobi coordinates .
Then our Schriédinger operator is

2.4) H w)=Ho+cViw; z), Hi=—4/2.

‘With this situation, we take in Assumption VI

(2.5) 4=R!, P.w; RY=I, n,=n, n,=0, E(R)=I,

Wi, &)=tT(), T§)=¢&"/2, 2=0.
Then

LEMMA. There exists a constant k=h(B)>0 such that, for |e|<k, Assump-
tion VI holds good.

Proof. Assumption VI-i) is clearly satisfied. Set
(2.6) Ciw)=|Vi(w; aH)]|"*

for weB and =, j), 1=<i<j=<N. Then by Assumption VII and lorjo-O’Carroll
estimates ({1], see also [11, Theorem XIII. 27])

2.7 awlw)=_sup [|Cw)(Ho—2)""Clw)||can <o
ZeC—R!

for all weB and I=(, j), k=(, j'), LSi<j=N, 1=¢ <’ =N with au(e) uniformly
bounded in weB. Namely, all assumptions in Kato [6, Theorem 1.5] are satisfied
with T'=Ho, 4 =L*R"), X' =@ I (L=3F)), A=(Clw)), B=((sgn Vi(w; z))C@),
and N=N(w)=norm of the matrix (au(w))m, where sgn a=a/|a| (¢#0), =0 (a=0).
Thus for (Kl<k(B)Ei§ {N(w)™*}, our Assumption VI-ii), iv)s, v}, and vi). hold

by [6, Theorems 1.5, 3.9 and 4.1]. Assumption VI-iii) is proved as follows. We
write

2.8) (e~ ttH e — g=HH ) £ )
== (SZ e RN 0! § 3t~ Vilo ; ablle < fdx, g).
With A=<z (2.8) is bounded by

2.9 (2nYle| £ sup Ka* #{Vi(o'; )= Video; @)
X[ Al coll All o * 1A Nl
where
s sup L aerrp
SO IAllr= sup —={"_llde™ms|pat.

Since l}AIJH‘Mé(l—-N(w)_l;cl)""]IAHH,, and similarly for IIAiIH,(w,,* by [6, (1.5)]
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PV iw; #*) is continuous with respect to weB in B*R") by Assumptions
V and VII, Assumption VI-iii) follows from (2.8) and (2.9). This concludes the
proof of the lemma.

Thus we have proved

THEOREM 2. Let Assumptions V and VII be satisfied for the paiv potentials
Vikeo; ¥) in (2.1). Let |m]<k(B)=i161£ {N(@)™"}, where N(w) is the norm of the

matriz (aulw)) defined by (2.7). Then the conclusions of Theorem 1 hold for
the Hamiltonian H. (o) in (2.4). Further in this case F.(w; R")is e bicontinuous
bijection from 9 onto 9 with the inverse Filw; RY), and ¢.(w; =, £ and
gﬁ(w; x, &) give eigenfunction expansions on Y.

2.2. Real N-body plus complex 2-body short-ramnge potentials In this case
V(w; z) has the form

(2.11) Viw; .x)=VN(x)-|- Vs(w; ),
(2.12) V‘v($)=1si szj:w Vi),

where Vi(")e B=(R")v=3) is real-valued and Vs(w; x)e B°(R™") (n=v(N-1)) is
complex-valued. We further assume

AssumpTioN VIII. There exist constants e, and >0 such that:

i) For ]a].S_l‘and reR’

@13 Vi SCadyinn.

ii) For any corﬁpact set K of B, wekK, and xeR"
2.14) | Vsl; @)l =Cadad,
and Vs(w; x) is analytic in weB for each zeR™

We set
(2.15) H =H+Vy(z), Hw)=H+Vso; z),
(2.16) A= 0%, Ba)=() " V(w; o),
@.17) Qo; D=BR(@A, Ri(D=(Hi—5-, Ime0.

Then by the results of Tamura [12] (cf. also Perry-Sigal-Simon [10]) and Assump-
tion VIII, we have

(2.18) wnSup AR @) Allscn + Bl@)Ry(@) Bl lsunt <oo

114 (4g) >0

for any compact set X of B and a bounded open set 4, of R bounded away
from the point spectra and threshold points of H,, where
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(2.19) I.(doy={pxiv|ped, v>0}.

(Note that, if ,>1 in (2.13), we have only to assume (2.13) for a=0. See [12])
Further, Q(w; 2) is an analytic family of compact operators on 4 in (w, 2)eBX
11,(4,), and for each weB there exists the boundary value

(2.20) Qlw; /ziiO)Eliyl Qw; pt)
vif

in B(gr) which is continuous in ped, and analytic in weB. We here make the
following

AssumpTioN IX. For all weB and ped,, —1 is not an eigenvalue of
Qw; p£i0).

Then the inverse (1+Q(w; r+i0))"! exists, belongs to B(4) locally uniformly
in weB and ped,, and is continuous in B(J) with respect to weB and pedo.
Thus all assumptions (A-1), (B-2) and (A-3)’ of Kako-Yajima [5] are satisfied for
T.=H,, A, Blw), and 4,, hence all results in [5] hold in our case. In particular,
Lemma 2.1 of [5] implies the unique existence of an operator FE(w; 4) (for a
bounded Borel set 4 with 4c4,) belonging to B(4() locally uniformly in weB
such that

(2.21) (Blw; D, 9)

77:.

ZIH? —2—1—[&1((]?((1); pt+i)—Rw; p—iv))f, o)dy

for f, ge ¥, where for Imz+0
2.22) R(w; 2)=Ri(2)~Ri(2)A(l+Q(w; 2))"' Blw)Ri(2)
=(H(w)—2)".

E(w; 4) is a spectral measure for H(w) in the sense of [5, Theorem 2.2]. We
fix one bounded Borel set 4 of R' with 44, in the following.
With the same notation as in Sect. I1.3.4 with V{z)=Va(z), we set in Sect.

1 for the channel a:'(;;i :::g:)

(2.23) ny=v(k—1), ny=u(N—F),
99(332) =§D¢($Q)E Lﬁ 7];(:”(01)), A= l_zj; Zf") ,

k=1
~ s

TE)=- 2 4

In these circumstances, we assume for A, the following
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AssumpTioN X. There exists a real-valued function W(, &)eC™(R™—{0})
such that the strong limit

(2.24) Lo(DH=9:(4)

25;122 e F(E(4;) @ Po)e ™ ® e 1)
exists on %, where 4;=4—2={p—2|pe}, and satisfies on YT Dz) ® L+ ® L)
(2.25) H\Q(4)=0,(4)T(Dz) @ Li+2L, ® ).

When ¢ in (2.13) is greater than 1, it is known that (2.24) exists and
satisfies (2.25) with W(¢, &)=¢T(&,) (see [11.12]) and that @ R(LL(D)=Ex (4)H

(see [1.19]) (note that the summation here is over all « including « with 2=1).
For the case 1>¢,>0, see [11.6], [II.2].
By [5, Theorem 4.1] and its proof, the strong limits on 4

(2.26) Walw: A)=s1lim "7 Bo; D™ Ex,(4),
¥ ilo; A)=s-lim 7" Bo; 4yt Ex ()

exist and are bounded locally uniformly in weB, where Eg,(4) is the spectral

measure for the self-adjoint operator H,. Further by [5, Theorem 3.2], the

inverse W.(w; )z, wa) =Y (w; H* exists on Elw; 4)4 and is bounded
1

locally uniformly in weB. We set
2.27) Puw; £)=W.(w; HPaw w?(@; %,

where Pg is the orthogonal projection onto the closed subspace R of 4. By
(2.25) and the intertwining property of W ilw; 4)and ¥.(o; 4 (5, (3.4), (3.5))),
P.(w; 4) commutes with H(w).

LemMA. Under the above situation, Assumptions V and VI are satisfied with
E\(4) replaced by E\(d5).

Proof. Assumption V is clearly satisfied. By [5, (3.7)] (cf. also [6, (3.11)]
(2.28) e tHOR s =W (w; De B W o(o; HEw; 4).

This and the local boundedness in weB of W.(w; 4) and Wo(w; 4)'Elw; 4)=
Y (w; 4)* yield

229 sup e~ B(w; e <o0

for any compact set K of B. On the other hand, since Qw; p£=%:0) is analytic
in weB in B(Y(), so is the inverse (1+Q(w; p=xi0)~' for ped by Assumption

IX. Then (2.18), (2.21), (2.22), Assumption VIII-ii), and the analyticity in weB
of ¢"#@ imply that ¢*#* E(w; 4) is analytic in weB in B(4). Thus by (2.26),
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(2.29), and Morera’s theorem, W,.(w; 4) and ¥.(0; 4) are analytic with respect
to weB in B(4r), hence P.(w; 4) is also analytic in weB by (2.27), which proves
Assumption VI-i). Assumption VI-i) follows from (2.29) and the relation

(2.30) Ew; HPu(w; H=Pi(w; 4),

which is seen by (2.26) and (2.27).

To prove Assumption VI-iii), by the relation (2.30) and the analyticity of
P.(w; 4) in weB, we have only to show (1.6) with P.(w; 4) replaced by E(e ; 4).
For this purpose, we use the representation (see [5, (4.2), 2.7)])

(2.31) (@ HOkw; Of, 9)

1 ; . .
=131;1;1 2—;;54 e ((R(w; p+iv)—R(w; p—i))f, ¢)du

E%?f s U e (R tiv) — Rulp— i) f, 0)dp

—[, e+ Qs g+ B@)R i), AR(p—in)i)dp

+{ e+ Qs p—b ) BO)R(u—in)f, ARutin)dn].

It thus suffices to consider only the second and third terms to prove Assumption
VI-ii). We write the second integral on the right hand side of (2.31) as
I\t o, f, ¢).. Then writing z=p+i», v>0, we have

(2.32) ait; o, @5 f, 9)
=|I4t, o, f, -1t o, f, DI

=({ Jar@ulran) x
x([ -+ 2 =0+Qw; ) IHIBWOR @S I d

+ [ J0+Q@; 2 FIBN)— BuaY I Ri@)f 'dn),

where 1/2<3<(1+¢)/2. The operators B(e’), <x>~?, and A are H;-smooth on
4,54 locally uniformly in o’eB by (2.18). Since (1+Q(w; #=£:0))~* and Blw){z)’
are continuous with respect to weB in B(4), and [[(1+Q(w; 2%i0)) s is
uniformly bounded in ued by the compactness of 4c4,, we thus see that
(2.33) limlim sup d&¢ o, w; f, ¢)=0.

ot vi0 3,11 S1=gll=1
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The third term on the right hand side of (2.31) is treated similarly, and we
obtain Assumption VI-iii).

From the chain rule and the existence and intertwining property of the
limits (2.24) and (2.26) follow Assumption VI-iv)., v). and

2.39) Wulo; H)=W.(o; H2.4),
Yilw; H=Yil0; H)2.().

Then Assumption VI-vi). follows from (2.34), (2.27), (2.25), and the relations
Vilw; W (o; £)=Ex(4) (5, (3.6)]) and 2.(4)*Q.(4)=E:(4;) ® P,, which con-
cludes the proof of the lemma.

Thus we have proved

THEOREM 3. Let Vif(r)e B(R") (v=23) be real-valued, and let Vs(w ; x)e 7(R™)
(n=v(N—1)) be complex-valued, and let Assumption VIII be satisfied for Vi; and
Vs. Let 4, be an open set of R bounded away from the point spectra and thre-
sholds of H, and satisfy Assumption IX, and let 4 be a bounded Bovel set with
dcd, satisfying Assumption X. Then the conclusions of Theorem 1 hold for
the Hamiltonian H(w), with E(4) and I'i(d) replaced by Ey(4) and I'i(4))
vespectively. Further in the case that e, in Assumption VIII is greater than 1,
{per ol 2y Far) ® BulE*™Na and (s, ol 3, Sacer) ® BlE" ™) give eigenfunction
expansions on Elw; HH =W (o} A)(@;) R(RHA) in the sense of (1.13). (For the
notation heve, see Sect. 11.3.4. For a with k=1, we follow the convention that

¢-.t) a=$t, a=1)~

We remark that this theorem gives an extension of the results of Mochizuki
[9]), where he assumes that Vs(z)=Vs(w; z) (xeR®) is independent of « and
satisfies (2.14) with ¢>1, allowing some local singularities.
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