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Abstract

Let f(xz, ) be a hyperfunction whose support with respect to  is contained
in a compact set K. We prove that a (necessary and) sufficient condition for
S(x, %) to contain # as real analytic parameters is that | f(=z, e(x)dz becomes
real analytic in # for any ¢(z)e A(K).

1. The notion of hyperfunctions with real analytic parameters ¢ was in-
troduced by M. Sato in [4] as a section of the sheaf B A= Fnim(Os:lcnxrm).
Later, with the development of the theory of S.S. it was re-interpreted as a
hyperfunction which satisfies

(1) S.8. flx, H)NiS™dt =@. -

Let T denote an open subset of the parameter space, and consider such a hyper-
function f(z, H)eBAR"XT). Let K be a compact subset of R™ A typical
consequence of these definitions is that if supp fcKx T, then for any g(x)e A(K)
the integral

(2) { o )7, 1t

becomes a real analytic function of fe7. In this paper we shall show that
conversely the analyticity of (2) for any ¢ implies that f contains ¢ as real
analytic parameters.

The author posed this problem about 20 years ago, asked to researchers in
hyperfunction theory at that time, and was informed of a negative answer from
the S-K-K group, but without a proof. The author then sought a concrete
counter-example from time to time, and recently thus came to an opposite con-
clusion.

Note that this is rather a problem of pure curiosity. For, we know further
that for any ¢(f, £)e A(T X U), where £¢UU is another set of arbitrary parameters,
the integral

(3) [ o #1080, B0
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becomes real analytic in the joint variables (7, ), and in this form the converse
is known to be true by S-K-K from long ago. This fact has been sufficient for
the applications hitherto.

The proof of the converse of this latter may be easily proved, e.g. employ-
-ing Kashiwara’s twisted Radon decomposition of the delta function:

¥ = | . Wiz, 0o,

We omit the concrete form of W(z,w) or its defining function W(z, ). (See
e.g. S-K-K [4], Chapter III, Example 1.2.5, or [2], (2.3.25)). Let 4;,cR", j=1,
..., N denote convex polyhedral cones whose dual cones 4,° give a partition
of 8§77, Put

(4) Wiz, 4°) = | e, a)do.

8"lng

Then, by the assumption the function

F]'(z3 t) :=SR" f(xy t)WT(Z'—-.Z:, Ajo)y

becomes real analytic in (f, Rez, Imz), and complex holomorphic in z. Thus
we can see that Fy(z, =) becomes holomorphic on a 0-wedge of the form (R*x T)
+1I7;0 such that I";N{0=0}=4;, hence

Fa, ) = 53 Fia, 0+l ,0)

contains ¢ as real analytic parameters. From this proof we can even see that

in the assumption of (3) the number of arbitrary parameters & may he restricted
to 2n.

2. Now we precisely formulate our result and prove it.

Turorem. Let f(x, 1) be a hyperfunction defined on R"XT with support
contained in KX T, where KCR™ is a compact subset. Assume that for any
o(x)e AK) the integral (2) becomes real analytic in teT. Then f(x,1) contains
t as real analytic parameters (i.e. satisfies (1)).

Since the assertion is local in #, we assume that T is bounded in the sequel.
Let f(x,#) denote a hyperfunction extension of f(x,#) with compact support
cKxT. Let now 4; be cones in the ¢ space R™ whose duals give a partition
of §™1, and let W{(¢, 4,°) denote functions similar to (4) in these variables.
Then

fm, 8) = g fizf) on R'XT,

with — fiz, ) = fla, )% W, 4,°).
Since
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g g POV i, D =<E - o(z)f (z, t)dx)*W(t, 4,°) on R"xT,

fi(x, t) satisfies the same assumption as f(z,#). Thus it suffices to prove the
theorem for each fj(x,#). Hence we can assume from the beginning that

S.S. flz,5) € R*X Tx{(&dz+0dt); 6e4°)

for some convex open cone 4c R™
N
Let then jU I';° o871 he a partition by the duals of the convex polyhedral
=]
cones I';cR™™ and let W((x, #), I';°) denote the components of Kashiwara’'s
decomposition in dimension n-+-#. Assume that 77,° is a neighbohood of {0} x4°
in §*m=, Then

I';°nNS.S. FnS™de = @, for j=2,
and we can see by an elementary calculus of S.S. that
f(x; Z)%W((m, t): Ffo)y ) .7:2: . ':N

all contain ¢ as real analytic parameters. Hence for any bounded domain DDXK,
for pe J(D) the integral

[, 7/ totwas,  j=2,...N

becomes real analytic in £ Hence it suffices to show the following assertion
which in itself may be interesting:

Levmma 1. Let fz, §)=F(z, H)-+iI'0) be a hyperfunction which is the boundary
value from a unique wedge such that I'°NS"‘dx=Q, and which is veal analytic
on a neighborhood of (R™™\K)XT. Assume that there exists a bounded region
DDK, such that for any pe A(D) the integral

{, 7 Dtz

becomes veal analytic in t. Then f(x,t) contains t as real analytic pavameters.

In terms of the defining function, shrinking T a little if necessary, we can
further specify the assumption of this lemma as follows:

Lemma 2. Let I'CR™™ be a convex open come such that its projection to
the t space is a proper convex come 4. Let F(z, ©) be a function satisfying the
following conditions :

1) Flz, ) is holomorphic in a wedge (DX T+ n{|Im<|<A}), and further
can be analytically continued to a neighborhood of (D\K)xT.

2) For any o(z)e A(D), if we choose a path D deforming D into the domain
where F( -, 7) and ¢ are both holomorphic, then the integral
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Sﬁ Fz, D)z,

which is originally holomorphic in the wedge T—l—i{:_red ; [Imz| <A}, can be analy-
tically continwed to a weighborhood of the edge T.
Then F((z,t)+il'0) contains t as real analytic parameters in DX T,

Remark that this assumption does not necessarily imply that F(z, r) can be
continued to a neighborhood of T.

Proof of Lemma 2. Without loss of generality we can put
d={s;>B|s']},  ['={s;>Bls’|+Clyl},

where s, y denote the imaginary coordinates of =, z respectively, and s'=

(82, ..., Sm). Choose a<A,b>B. By the assumption, we have a well defined
mapping
(5) ?: OD)— T +il0=b|s'|=5,=a})

w . w

o(z) — gﬁ F(z, )¢(2)dz.

We shall first show that this becomes a continuous linear mapping between

these DFS type spaces. We apply the closed graph theorem. Fix >0 arbitrarily
and consider the diagram

p°9

(D) (T +ife<b|s’|=a})
) : ”T

T +i{0=<bls'| =a}).

The restriction ¢ is obviously continuous. The horizontal arrow is easily seen
to be continuous by means of the definition. Thus in view of the uniqueness
of the analytic continuation we can see that the graph of @ is closed.

Now let Jg)z!j" be a partition of §™ ' by the duals of the convex polyhedral
=1
cones 4;° in the x space. Then

Fie,7)= P, W=t 4,0
becomes an element of
(6) OR+idy, OT +i{0=sbls'| =s:=a}),
where 4; is a proper subcone of 4; In fact, the correspondence

(7) ¥: R"+idy — (D)
w

w
2z — W(z—¢, 4;°)
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is obviously holomorphic in the sense of the topology; hence it remains holo-
morphic after the composition with the continuous linear mapping (5). On the
other hand, the space (6) is contained in

R +id)x (T +i{0=b|s'| =s, =a)).

This can be shown e.g. as follows: Choose a compact subset L of R™+idy.
Then by the continuous mapping ®o¥, L is mapped to a compact subset of
(T +i{0=b|s’|<s,=<a}). Recall that a compact set in the latter space comes
from a bounded set in ®(W) for some open neighborhood W of T +i{0=b)s']
=s;=a}. Hence especially, the elements are holomorphic in r in this fixed
neighborhood W independent of zeL. Thus for any point £=(ty, ..., ta)eT, We
can find small constants §>¢>0 such that Fy(z, ) is holomorphic in

Int (L) x{|r,—#t,— 0| <e} x{jz;—t5] <e, j=2,...,m}
and for any fixed zeInt(L) it is holomorphic in 7 in
{ley—8—18| <o+e} X{|ryj—t] <e, 7=2,...,m}.

Thus by Hartogs’ lemma (see e.g. [1], Chapter VII, Theorem 2), F(z, =) becomes
jointly holomorphic in

Int (L)X {|ey—# —18| <d+e} X {Jo—1t5| <e, 7=2,...,m}

Since teT is arbitrary, we conclude that Fy(z, r) is holomorphic in a neighbor-
hood of (R™+id/)X(T+i{0=b|s’|<si=a}). By Kashiwara’s lemma Fy(z,t) is
then continued analytically to a wedge domain whose opening becomes a cone
I'y containing 4y x{0=b|s’|=s,}, hence having a non-void intersection with s=0.
Thus Fi{(x, £)+il"/0) contains ¢ as real analytic parameters. Since their sum
is equal to F((x,#)+il"0) on Dx T, this latter also contains # as real analytic
parameters there.
The proof of our main theorem is thus completed.

3. Finally we apply our result to a characterization of differential operators.
This improves results in [3] in some sense.

COROLLARY. A sheaf endomorphism @ of i which possesses a hyperfunction
kernel function, is in fact a differential operator (of infinite order in hyperfunc-
tion semse).

Proof. Let K(x,y) be the kernel function. We have
(8) supp K(z, ) < {z=y},
(D)) = SK(w, Vo(y)dy € AR)  for every ¢ e AD).

Thus we can apply our theorem locally in 2 to conclude that K(z, y) contains
x as real analytic parameters. In view of (8) and the watermelon theorem, we
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then conclude that
S.S. K(z, y) C {(z, &, Eldz~dy)); zefR, £eS* ).

Thus we obtain another hyperfunction L(z, ¥) with support in y=0 and con-
taining x as real analytic parameters such that Kz, y)=L(z,z—y). Such a
hyperfunction L(z,¥) is obviously a @[{0}]-valued real analytic function in the
strong sense and hence can be written in the form /[(x, D,)d(y), where J is an
infinite order differential operator with real analytic parameters z. (See the
proof of Corollary 2.3 in [3]). Thus we conclude that @p=J(z, Ds)p.

It should be noted that the above Corollary does not assert that every sheaf
endomorphism of 7 is a differential operator; the existence of a kernel hyper-
function amounts to assuming some continuity.
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