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Abstract
Using the theory of the second microlocalization, we prove a theorem on

propagation of Gevrey singularities for a class of Grusin type operators whose
characteristic sets have natural hicharacteristic foliations.

§1. Notation and statement of the result

If X is an open set of RY and v>1, the Gevrey class of order v, which we
denote by G"(X), is the set of all #eC=(X) such that for every compact set
Kc X there is a constant Cx with

|0z0(2)| <CgH(a 1) weK,

for all multi-indices aeN¥.
If ueQ/(X) we denote by WF,(«) the G* wave front set of # introduced by
Hérmander [8]. Then #is in G* in the complement of =(WF,(x)), where = denotes
the projection of T%(X) to X.
‘ Let " be the submanifold in T*(R¥)\0 of codimension 24-+d’ given by

S={(w, E)eTHR\NO; &=+ =24=0, &=+ - =£y0: =0},
where 0<d<d-+d' <N. With this ¥ we set
Ri=R{XR}=RIXREXRE, (d+n=N, d'+d"=n)

and denote by &=(z, n)=(z, 7/, »”/) the dual variables of z=(% v)=(, ¥/, v'")e

RiXREXR{.. (In this coordinate T={(t, y, 7, o/, ''); [t|=]|z|=|y'|=0, »’#0}).
For a fixed integer 2>1 we shall consider a differential operator of order

m with polynomial coefficients of the form:

1.1 P=p(t, Di, D))= 5 @up#'DiD7,

Inl+|ﬁ2 <m,
Irl=tal+15"1+Q+N) | B7 |~m

where (a, B, )=(a, f, B, PDeNIXNUXN" XN and (D;, Dy)=(~id,, —idy).
Then the symbol p(Z, =, y) has the following quasi-homogeneity:

1.2) DE/2, Xy Xy My )=, <, oy "), A0
7,7
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with p=1/(1+%).
Let p, denote the principal symbol given by
1.3) Dolt, =, )= ) N . Bugel 7" .

’

faf+f
lrl‘=h'f}3 ‘1

For a point (%, §=(0, #; 0, 0, )eX (|7'"|+0) we suppose :
(H-1) There exists a constant ¢>>0 such that
12olt, 7, 7 Y =l 1+ 1EW™, @, 7)eREX REX R .

The operators of this form have been studied by Gru$in in [4], [5], [6] in
the C” theory and for v>1+/% we have proved in [16] G microhypoellipticity
of P under the additional hypothesis:

{H-2) TFor all y’e¢R¥, Ker p@t, D, o', #")Ne(RE={0}.

The purpose of this paper is to study G’ singularities for 1<v<1+4.
Let us introduce the submanifold A>3 given by

A=, v; o 0y 7VETHRINO; 7/ =0},

Then in the canonical way A defines a bicharacteristic foliation in % as well as
in 4; that is, each leaf I’y is an integral submanifold of dimension 4’ of the
vector fields generated by {dy,, -+, 9y} (Note that T,([)=T(Z)NT,(Z)* for
all pel™).

‘We get the following theorem on the propagation of singularities.

TueoREM 1.1. Let I'y be the bicharacteristic leaf passing through (&, £)eX
defined as above and W be an open set containing (z, &) such that I'yNW is
connected. Suppose that P is an operator of the form (1.1) satisfying (H-1) for
(z, &) and that 1<v<l+h. If ue D' (RY) and WEPWNTAW=1ip then either
FoNWNAWE()=¢ or I'sN W WEF, ().

REMARK 1.2. When %=1 and v=1 this is & spacial case of Theorem 2 in
Grigis-Schapira-Sjostrand [3]. See also Sjostrand [17], [18] and Hasegawa [7] in
this connexion.

In [16] we have construced the left parametrix of P under the hypothesis
(H-1) and (H-2). However, in Theorem 1.1 (H-2) is not assumed for P. Thus
we need to prepare the theory of the second microlocalizarion; which will be
given in Section 2. Then we shall prove Theorem 1.1 using the results in [16]
and in Section 2.

§2. Second microlocalization in Gevrey class

In the analytic theory, the notion of second microlocalization along an in-
volutive submanifold was introduced by Kashiwara-Kawai [9). In [17], Sjéstrand
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defined the second wave front set along the Lagrangian submanifold. Then
Lebeau extended the notion to the isotropic submanifold in [13].

Recently, Esser introduced a modified notion of the second microlocalization
in order to obtain propagation property for Gevrey singularities. Here we
prepare several notation on this theory following Esser [2]. (See also Kishida
[10D. ‘

Let us introduce the Fourier-Bros-lagolnitzer transform (F.B.L. tr.):

@.1) TS, H=[e-2" fla)dz, (Fe&'(RM)

associated to x: TH(RY\03(z, &) ——> z—ifeCY. Then TW®f is defined on
CY¥x R{, holomorphic with respect to z and bounded by Cei™2*%(142)* for i>1.

For fe&'(R¥) we have (&, &%WFEF,(f) if and only if there are constants C, ¢>0
such that

2.2) |TD £z, )| KCettmeie-ed for |z (f—if)| <cC.

Let 4 be the involutive submanifold of T*(RY):

A={(z, §eTHRN); &=+ -=£4=0} (1<d'<N),

and [', be the bicharacteristic leaf passing through (&, é)ezl. Then A and I,
can be identified with x(d)={zeC¥; Imz’'=0} and x(I)={zeC?; Imz'=0, 2'=
&'/ —i&'"} respectively, where z=(z/, 2'")eC% X C¥-¢,

Let g4(2)=|Imz’’|?/2; which is the pluri-subharmonic function canonically
associated to 4. If © is a neighborhood of Zex(/1), we denote by H'¢(2) the

space of holomorphic functions #(z, 2) in £ with a parameter 2>0 such that
for all Kcc@ and >0 there exists Cx,, with the estimate:

(2.3) la(z, D|<C,, 0102+ for zeK .

For 2e¢/ we also use the notation: weH; if there is a neighborhood w; of 2
such that weH%"(wz).
If ueH%*4(Q) we denote by S%(%) the subset in 2N #x(4) defined by:

(2.4) 2¢Sy(w) if and only if there exist a neighborhood w; of 2 and constants
C, ¢>0 such that

|u(z, 2)| <Cet*a=**" for zew; .

Then we have the following two lemmas:

LevMA 2.1. Let Ty be a bicharacteristic leaf in A and o be a commected
open set in I'y containing (&, 8. If ueHy, for all zex(w) ond &—itdSy(u) then
(@) S%(w)=¢. ~

Lemma 2.2, Let (&, Hed, fe&/(RY). If & ERWELS) and T®feHis-u
then &—ic&SyT®f).
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Following Laubin-Esser [11], we introduce the F.B.IL tr. of second kind along
Az :

(2.5) TS0, === A @) (e (R,

Then 7@ f(w, p, 2) is a holomorphic function with respect to weC¥ with the
bound :

|T§2’f(w, 1, 2)} éceulmw"lzza-umlmw'izlz(l +2)k

It was shown in [1] and [13] that the relation between Tf and T®f is
as follows:

are
@80 T7w, 1y D= () | TS, W,

where po=p/(1—p) and
@7  TOfGE

~—1 1 ar/2 i -<E'> V/> @ < , RE/ . Rdf'
“E(an) SRd, e (1—~z REZE >T,ff g —i—, 2, p, l)R_—-HS’I’

where R>0 is in our disposal and p=|&'|/(R+|&']).

DeriniTiON 2.3, If 1<u<+co and fe&'(RY), the second wave front set
along A of f, denoted by WEP,(f), is the subset in T,(T*(R¥)\0) defined by
the following condition :

2.8) (&, 0, &5 6"WFR(f)

if and only if there exist C, ¢>0, pu€l0, 1[ and a decreasing function o(2) with
lim o(2)=0 such that

2=r400

(2.9> ]Tff) f(w, , 2)]ScellImuﬁ”l2/2+lp|Imw’Izz/—-L'X[x
for
(2.10) 0< i< ptoy Mr>o(DAV”, " — (&' —i5")| + '’ — (&' —i€"")| <c.

‘We have

LEMMA 2.4. Let (&, £)ed and Fe&'(RY). Then TOfeH s ¢ if and only
if w3 &, ENWER(f)=¢, where ny: T{T*RYWN0)——>4 is the canonical pro-
Jjection. ‘

Qur definitions of A and WF$), are slightly different to those in Esser [2].
However, Lemma 2.1, 2.2 and 2.4 are proved by almost words to words transla-
tion of the proofs of Lemma 3.3, 3.1 and Theorem 2.2 in [2] respectively.

- At last, we introduce the space of the partially holomorphic Gevrey func-
tions in QCRY X R¥-% as follows: - feG ' A(R) if and only if for every compact
set Kc @ there is a constant C such that ,
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(2.11) |05 95.. f(z)| <Cl+ ol (a'1)” for zeK.

By deforming the dz’ contour in the definition of 7 f into a complex
domain one can easily show the following

LemMa 2.5. If fe&'(RY)NG'Ap(Q) then T feHY, for every zer(z™Y(Q)
NA) and every 1<y < +co,

§3. Proof of Theorem 1.1

As in [16] Section 2, we may suppose #=0, £é=(0, 0, 7)=(0, ..., 0, 1) and
set @=(P*P)* with 2km>d-+1. Since (H-2) is not assumed for P, here we shall
introduce the pseudo-differential oprator R=#(D,) with the symbol:

]vr]zz(um
(3 N 1) T(E)z Ivnlzkm/(l +h) exp (-W)’

where / is a positive integer to be fixed later.

Consider the operator @+R. Then it satisfies (H-2) because € is a non
negative self-adjoint operator. We also note that though not being polynomial,
7 is holomorphic with the uniform bound O(]&|*™ 1+ in a small quasi-homo-
geneous neighborhood of & of the form:

{7, 7")eC¥xC*"; [Imy/| <e(|Re 7| +|Rey')),
177”/Re 7?71“';/”| e}

With this fact we can apply the results in Section 2 in [16] to @+R. Then
we obtain the pseudo-differential operator K,=k,(#, D:, D,) such that

(38.2) K¥Q+R)=g(Dy).

Here the symbol 2, has the form A, £)g(¢) with %, defined in a fixed conic
neighborhood V, of & and geC(R¥) such that supp(g)c V, and that .

la\ 71!

(3.3) orate <0 (151)
for |a|<|&]. Moreover k, satisfies the estimate:

3.4) 10595 05" ko2, 7, P SCIHPRLA )P (e |'=0]4]) =+

Iﬁ:}‘ Plaw| lﬂl L‘B—/l Py 18] ]—ﬁ::l P18
(m) (151#-4-[0’1*(154)) <1£| )
for |e-|+|8I<é], fwhere £=(r, p)=(z, ¥/, ¥'")eRY, (a, B)=(a., a-, B/, p'/)eN*

X N N¥ x N¢“, :
By Proposition 3.2 and 3.6 in [16] we have

(8.5)  WFAK){(®E v, &, w; 7, g, —7, —DeTHBN0; v/'=w", (v, PeVa},
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(3.6) K, vy, s, weG""* Ay, »(BY X R")\diag (RY)).

Here we identify the operator K, with its distribution kernel and WFy=WF,
denotes the analytic wave front set.

If (z, =(0; 0, 0, 7/)eX then the bicharacteristic leaf is I'e={(, ¥/, 0; 0,
0, 7/); v'eR¥}. For any compact set Fcz(IoN W) there exist a neighborhood
Uc cOr={zeR"; |z|<R} of F and a conic neighborhood ¥ of & such that

(3.7) WE.(Pu)n U x(V\0)=¢,

where U7, V denote the closures of U, V respectively.

After replacing » by ¢z with a suitable ¢eC(Og) we can suppose #€&’(Or)
with no influence on (3.7).

We fix two conic neighborhoods Vi, ¥, of £ with ViccV.ccVnV, and
take a cut off function ¢ given by Lemma 3.1 in Métivier [14] such that g(¢)=1
if £eV, and |€|>2, suppgc V. and satisfies (3.3).

Now we write for #e&’(Or)

(3.8) g(Dryu=K¥Qu-+K¥FRu
=K} Qu+RK}u

We shall apply the theory of second microlocalization along the involutive
submanifold :

A={{t, y; 7, o', y)eTHRM\0; =0}
Hereafter, we shall use the notation in Section 2 with
=y, "= v''") and &=y, &' =(z, ')
First we study RK¥u. Now choose [ so that (1+4)—(1/2)>v. Then
3.9) (s it =y | for | 24, 9a>0,

where v/ =(1+4+4)—(1/20).
On the other hand, writing

Ky ©)= =Rl Dulz)do
we see that (K¥u) eC=(RY), supp(K¥u)c V; and

(3.10) (K5 )& <C(L+[¢])*

with some C, % real
Lemma 3.1, WEQ(RKFu)N\n7\(To)=9.
Proof. Consider

6.1 TPRKF w)w, p, 2)
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— Sg—zew"—x“)2/2~1n<w'—x')2/2+me e (SJ(KZ" u)/\(&)dxdél

First we show that for any 6>0 the contribution from |(&/+ApImw/’, p€’/+
Ap Imw'’)| =d2u are dominated by

(3 . 12) Czk'eexllmw"lz/aum1mw|2/z—cap

for 2¢>=1 with some ¢>0.
To see this we deform the dx contour. The exponent of the integrand
has the real part

3.13) «JZ-IRe (w”——x”)l.z-—-%—lee (' —a")"
2 2
+ & m w =)+ S ullm =)t —¢ I e
=——';—IRe(w”—-m”)l“’-——';m}Re(w’—m’)]z-i——;f\lmw”lg+}2—p|lmw’12

—(AImw +&7) Im o' —(p Ima’ +£) Im :v’——;-llm x”|2~%pllm |,

Now deforming the contour to

_ 8¢ +apImaw’, P+ Imw'”)
TIEF e Ima, g apImaw’)]

Im x (s=0/3)

we have
(3.14) —QImw’+&)Im z" —(ApIm o’ +£)Im x’-——%llmw”!"’~%;¢lIm '

< —(0/)E +apTme’, p&’+ipImu’’ )| +(0%/9)An
<~ @/ONE + AT, p+ 2 Tm a0 —(3%/9) 2p

for |(&/+ipIma’, p&’+2pImw'”)| =84, By (3.13) and (3.14), the integral over
(& +Ap Ima’, p&" +Apw'’)| >y, RexeR¥ is dominated by
(3 ) 15) c (1 __]_l)k' e-—l’\lmw"lzlz— 21 Tmw’ |2/2~322p/9

if 2p=>1.
Next we consider the contribution from |(¢/+2pImw’, p&" +ApImw'’)| <ddp.
Now suppose that 2p>22". If 60 is sufficiently small then on the set

(3.16) (&, &7; (¢ +rpImuw’, pe’+2plmw’)| <y, for some w such that
1-0<|Imw’| <146 and |Ima” +&*| <6}
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we have |&|=|y|=|7.|'"". Using (3.9), we can then obtain the estimate
(3 .17) C(L+2)+" g\ Tmw! (22 —ip| Lmw! Y2~z

for its contribution when 2p>22'¥. From (3.15) and (3.17) we conclude that
()N WFP(RK ¥ u)=¢, because v >v. []

Note that Lemma 3.1 implies
(3.18) TO(RK¥ u)eH?, for all zex(l)

in view of Lemma 2.4.

Next we consider KF Qu. Let § be another cut off function satisfying (3.3)
with supp g V and §(&)=1 for £V, |5|>2, where ¥, is an open cone such that
VccV,ccv.

Noticing that WF,(Qu)c WF,(Pu), we then get by (3.7)

(3.19) WE(§(Dy)Qu)yc WE(Pu)yN(RY x V)Y~ (Op\U),
(3.20) WE,(1—§(D2))Qu)C WE(Pu)N(RY x(RY \P ) CO=X (RP\V)).
Hence we can write

3.21) Qu=1tr, §(De)Qu+ 1o (1~ %5 Yi(D)Qu+ 7o (1—G(D:)Q
(5 Uy +ﬂz +?)3).

Here Xy denotes the characteristic function of each set B and
Fo={(z', ' )eRY; (2, O)eF, |z"|<Le}

with ¢>0 so small that F,cU.

In the following we assume further that
(3.22) F is convex with an analytic boundary in =(/"),

By (3.19) we see that

WEw)c{(z, £); (2, €)eT i), |2"|<e &/ =0Ur"({z; |a"|2e).

Hence by (3.5)
(3.23) K§veG*(Int(F.),

where Int(F,) denotes the interior of F..
Since supp (v,) COr\F,, it follows by (3.6)

(3.24) K¥veGU Jp (It (F))).
Thus by Lemma 2.5,
(3.25) TO(K¥v)eH, for all zee(m '(Int(F)NA).
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In view of (3.20),

WE,(v5)cOgrX (RN\V’!) ) T%R (R¥).

Again by (3.5) this yields

(3.26) K§Fv,€G (Int (F)).
Consequently, by (3.18) and (3.23)-(3.26), we have

(3.27) 9(Da)u =11+,

where

and

with

w,=KF (01 +vs)eG (Int (£.))

ty=Kfvo+RKFu

T®(un)e Hy,, for all zew(z='Int(F)NL ).

Now we apply Lemma 2.1, 2.2 and obtain

(3.28) If (z, &en(Int(F)NT, and (z, EEWE,(us)

then =~ !(Int(F.)N 7o N WE (1) =¢.

Because g=1 in the neighborhood V; of §

WF,(u) N o~ (Int (F)) N o= WF,(z) Nz~ Int (F)HN L.

Therefore (3.21) implies Theorem 1.1 for W=a"1(Int(F.)).

Since any compact set in I',N W can be covered by a finite number of such

W’s we have actually proved Theorem 1.1,
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