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Abstract

We consider an eigenvalue problem (1)-(2):

0 , 1
(1) ( )d”;(x) +P(ou(z) =2u(z) 0=z él;‘u=<u )).
1 0

o

(2) wa0)+/nes(0)=0, 2(1)+ Hu(1)=0.

a b
Here P=( )G{C‘[O, 1]}t real-valued and %, H are real constants, and
1 152 . ' ’
1 corresponds to an eigenvalue. ‘We denote the set of eigenvalues of (1)-(2) by

. : . ‘ , . a . b )
{Aa(P, b, H )tz under an appropriate numbering. For Q:( )e{G‘[O, 1

- qgr. @
and A, H, H*, ], J*eR\(—1, 1} (H+H*, J#]J*), we obtain the following result
on continuous dependence of coefficients and boundary conditions upon eigen-
values: If Go= Dra—u(|4n(Q, A, J)~2a(P, B, H )| +120(Q, £, J*) ~ (P, b, H¥))) is suffi-
ciently small, then Q- Pllgoo, i+ T — H| +|J*—H*| = M3, for some constant M>0.
Moreover we get ||Q—Pllipunn =M Dre—e (Il +1)(120(Q, &, J) —Aa(P, by H)| +
|2a(Q, 2, J¥)—2a(P, 1, H¥)|). We show also that for given j,, ufeC (neZ), there
exists a unique (Q,],/%e{C0, 1]}*X(R\{—1, 1})* satisfying 2.(Q, % J)=gn
and (@, 4, J¥)=4f under appropriate assumptions on ., pf (neZ) (e.g.
Tl = 2a( P, By H | g — (P, b, H*))) is sufficiently small)). We prove these
results by the principle of contraction mappings and, in order to apply the prin-
ciple, we establish a priori estimates of. so&utmns 'to some hyperbohc systems
and results on perturbation of Riesz bases. * ! O
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§1. Introduction

We consider a system (1.1) of ordinary differential equations of first order
in the interval (0, 1) with boundary conditions (1.2) and (1.3), or (1.2) and (1.4):

dus(x)
dx
dus(z)

dz

(1.2) %5(0) 4 7124,(0) =0,
(1.3) #x(1)+ Hu,(1)=0.
(1.4) (1) +H*u,(1)=0  (H=+=H*).

D1z )ees () +pro()ta() = Aus ()
(1.0

+ (@)1 (28) + paaa)tta() = Aus(w) (O=2=1).

Here pi; (1=i, j=2) are real-valued C'-functions defined on the closed interval
[0, 11, and A, H, H* are real constants. A parameter 1 corresponds to an eigen-
value, ,

For P(-)=(pi;(* iz, 722€{CY0, 1]}%, we define an operator Ap . x in {LX0, 1)}?

0 1\g4.
by the realization of a differential operator ( )g—; +P(x)+- with the bound-
10

ary conditions (1.2) and (1.3). That is,

0 1 ’
(AP,IL.H u)(:z:)=< > dz(‘z‘)"l“.?((ﬂ)%(m) (0<.€(3<1), uG@(AP'h,H)
1 0 x

(1.5)
D(Apnm)= {% = (zh) e{H'(0, 1)}*; %s(0)+A2,(0) =2s(1) + Hur(1) =0} .

Uo,

Here and henceforth, L*0, 1) denotes the Hilbert space of complex-valued square
integrable functions and H*(0, 1) is the ordinary Sobolev space, and (-, ‘)=
(-, dizzonz denotes the inner product in the product space (L0, 1)}%. Let
o(Ap,.n,u) be the spectrum of Ap s,z Then o(Ap.n #) consists entirely of count-
able simple eigenvalues, if |4}, |H]+1 (Russell [10], [11], for instance).

In Yamamoto [12], [18], we discuss an inverse problem of determining the
coefficients pi; (1=, j=2), A, H, H* from the one pair of the eigenvalues of
(1.1)-(1.3) and (1.1), (1.2), (1.4). According to [12], we can see that at most
two of the four coefficients p;; (1=i, j=2) and H, H* can be determined uniquely
from such two sets of the eigenvalues. More precisely, we obtain

TueoreM 0 ([131). - Let &, H, H*, J, J*e R\{—1, 1}, H+H*, and let P and
Q be of the form

a b ¢ b
(1.6) P=( ), Q=< ), @, b, b1, Ds, 1, qa: real-valued C'-functions.
D D 4 4
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If
Q7D olAenn)=0(Arnr) and olA,, ;x)=0(Ap, ),
then we have
(1.8)  a@)=p(), p@)=p(z) (O=z=s1)
and
(1.9) J=H, *=
In this paper we will consider in what sense coefficients and constants in

boundary conditions continuously depend upon the eigenvalues. That is, the
purpose of this paper is to discuss

ProBLEM. Let h, H, H*, J, J*¢ R\{—1, 1} and let P and Q be expressed in
the form (1.6). Then, in order to assure that ||Q—P|cwo+|J—H|+|J*—FH*|
is small, in what sense should {o(Ag.n.r), o(Agn )t e close to {6(Apu n),

(A )2

In ProBLEM, we note that by Theorem 0, the equality {o(Aq,a,s) o(Ag, )}
={0(Ap.n.5), 0(A,, o)} implies Q=P, J=H and J*=H*.
Here and henceforth, we define

”P”(oaco_;])l =”P”gb =£?S%%2IPU($)[

)

for P=(piis1.55:€{C0, 13}%. For pe{C'[0, 1]}%, etc., we adopt similar notation.

(1.10) NP W gigo, e =NIP 1l o

apis(x)
dx

ijz

—max(max [ pis()l, max |-

[F-2.1-91

ReMARK 1. For the Sturm-Liouville equation, a similar problem on con-
tinuous dependence is considered in Hochstadt [3] and Iwasaki [4]. Moreover
we can refer to Mizatani [7].

In order to state our main result, we show Proposmon 1 and introduce a
class A(a, b) of coefficients.

ProrositioN 1. - For Pe{CH0, 111 and h, HeR\{—1, 1}, the following facts
hold.

(1) The set o(Ap.n.2)NR is a finite set.

(I1)  2eo(Apnu) if and only if Aed(Ap pm).

Here and henceforth, let @ denote the complex conjugate of @eC. In Appendix ],
we prove this proposition.

Let us arbitrarily fix @, b¢CY0, 1] and let us define a class A(e, b) by
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a b
(1.1 Ala, b):Kp ); b1, peCYHO, 1), 1'eal~valued}.
1 De '

Throughout this paper, let us assume that all the coeﬁiaent matrices under
consideration belong to A(e, b).
Theorem 0 asserts that the two sets o(Ap..x) and o(A
the class A(e, D).

Henceforth let PeA(a, b) and A, H, H*¢R\{—1, 1} be arbitrarily ﬁxed

By Proposition 1, we can number all the elements of 6(Ap 1, u) in'the follow-
ing manner:

ek determine P in

Let us denote the number of elements of the set a(Ap aa)NR by No.o If Npis
even, then we set ,

(1-12-1) U(AP.h,H)nR={R—rV0,/e, sy 2—:, 21, e, /zNo/z}

(1.12.2) o(Ap,n,m)N{z; Tm Z>O}:{Rn}nz(Ng~:»2)/‘.‘

(1.12.3)  Zm=in (=—(N+2)/2)

and : : '

(1.12.4) Im Zni=zIm 2, (= No/2).

Otherwise (i.e. N, is odd), we set : ‘ .
(1.13.1) G(AP.&.H)ﬂR={2—(Nuv1),vz, cer Aoty Aoy Aoy v, Awg-vr}
(1.13.2)  o(Apa.m)Niz; Im 2>0}={Alnzcxyend T
(1.18.3)  Jw=1, (n=—(No+1)/2)

and

(1.13.4) Im 2pzIm 2 (= (No— 1)/2)

We put
(1.14) » 7‘— 10 W S(PM(S)‘FPM(S))CZS

where we take the principal value of the logarithm. For the asymptotic be-
havior of the eigenvalues, by Russell [10], [11], we know: if we renumbe1

{Anlnez In an appropriate manner, then ,=r-+nz4/—1 +O(—11;>‘ Therefore Im 2,

(»=N;: a sufficiently large natural number) are mutually distinct. Hence the
condition (1.12.4) or (1.13.4) gives a unique numbering ‘to 1, for sufficiently
large ».. Moreover, under the numbering (1.12) or (1.13), we see: for each
neZ, there exists m(n)eZ such that P

= —Trof—L) ol = O oa!
1.15)  Ie=r+mm)ny/ 1+Q(m(7'1,)) and fim(am)| =O(nl).
"For o(A,, g#)={lnez, Wwe-can number all the elements in a similar manner.

To sum up, for o(Ap u.ax)={lulnez and a(AP n k)= {l nez, there eXISt some
Ny, Npe NU{0} such that
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(1.16.1)  1eR (=N,=n=N,)
(1.16.2) =2, ®m=-N,—1)
(1.16.3)  Im ipn=Im 2, (=N)
and

(1.17.1)  2eR (—N.=n=N,)
(1.17.2) =, @®=—N,-1)
(1.17.3)  Im Z.=Im 2 (#=N,).

Here and henceforth, if N; and N, are even, then the subscript “0” of i and
2% is skipped, respectively. Similarly let us number o(Aq,n.s), o(A4, , s+); €tC.

Now we are ready to state our main result, which gives an answer to
PrOBLEM :

THEOREM 1. Let P, QeAla, b), h, H, H*, ], J*e R\{~1, 1}, H*=H* and let
us set S

(1.18) 0(Ap,na)={n}nez and U(APJL,H*) ={¥} ez

and
(1.19) 0(Ag.n.5)={pintnez and O‘(AQ,}L'J*) ={p¥tnez. .

If i(lyn—-lnl—l-lﬂﬁ——li‘?l) is sufficiently small for P, h, H and H*, then we have
the estimates

(1.20) IffH|+‘f*—H*|écﬁé(lﬂn——lnl-l—l/ﬁ'f—li'f )

and - ’ »

(r.21) HQ—PwacowaCXfl(l%l’+1)(\/tn-—2nl+l/1*— ) =0, 1,
where C is some posztwe consz‘czm‘ dependmg on P, b, H and H*.

We denote PcA(a, b) satisfying (1.18) by F(({nlnez, {A¥lnez)). This mapp-
ing & €72 xC%2— Aa, b)c{CH0, 1}}* is well-defined from Theorem 0. The-
orem 1 means that &: €% xCZ — {C'[0, 1}}* is continuous when in €% XCZ
we introduce a distance function

(1 . 22) P(({ln}neZ, {Xﬁ}nez)y (‘{#n}neZy {}fr‘f}vnez )) =n ibgln | -+ 1)(!/111 "'lni + l#’r’f —2’#‘)-

On the other hand, from Pe{CY0, 1]}, we can obtain only (1.15) as the asymp-
totic behavior of ¢(Ap n z). Therefore, in general, the condition P, Qe{C'[0, 1]}*
does mot directly imply the convergence of the series at the right hand side of
(1.22). In other words, Theorem 1 suggests that our inverse problem is i//-posed
in the sense that the topology in €% x CZ assuring the continuity of the mappmg
&, is too strong in comparison with the asymptotic behavior (1.15).

We can observe the ill-posedness of this kind also for the inverse Sturm-
Liouville problem (Hochstadt [3] and Iwasaki [4]).
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We can derive Theorem 1 from Theorem 2, which assures the existence of
QeAla, b), J, J*e R\{—1, 1} satisfying o(Aq,r.s)={tmlnez and o(Ay,, ;%) ={pffnez

provided thatni (Iptn— 2l + |5 —251) is sufficiently small. That is,
THEOREM 2. Let PeAla, b) and h, H, H*e¢R\|—1, 1} (H+H*) be fized, and

let o(Ap 1 u2)={Anlnez and 0(Ap  g) ={}nez satisfy (1.16) and (1.17), respectively.
If two sets of complex numbers {untnez and {4ifinez satisfy

(1.23.1) pneR (—N,=n=N))
(1.23.2)  pa=pia (n=—-N,-1)
(1.23.3) Im pra=Im g (n=Ny)

and

(1.24.1) uxeR (—N:=n=N,)
(1.24.2)  pf=p% (n=—N,—1)

(1.24.3)  Im pf.=Im g (=N,

respectively, and the inequality
(1.28) 5 (] + 11—l + =28 <00

holds, then there exists @ unique (Q, ], J¥)e Ale, b)x(R\{—1, 1})* such that
(1'26) G(AQ.TL.J):{#n}nGZ and O'(Ath'J*>={/l;lf}neZ, )
provided that Zi(lyn-lnlﬂp%-—li’:l) is sufficiently small for P, k, H and H*.

This paper is composed of three sections and seven appendixes. In §2, we
prove Theorem 2, while we postpone proofs of the technical lemmas required
there to Appendixes II-VII. In §3, we prove Theorem 1 on the basis of The-
orem 2. Appendix I is devoted to a proof of Proposition 1 in §1.

Acknowledgements

I would like to express my hearty thanks to Professors Hiroshi. Fujita and
Fumio Kikuchi for their valuable advice and encouragement.

§2. Proof of Theorem 2

In this section, we prove Theorem 2 by constructing @ as a fixed point of
a contraction mapping. To this end, in subsections §2.1-2.5, we define a con-
traction mapping G. ‘

First let us consider a domain where our operator is defined.
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2.1. Definition of the domaz’n

e H— Hx—1
t okt
By the conditions il =;&1 and T +1¢1 we can choose a small constant
M so that
H-1 H*—
2. el eX, g
(@.1) H+1' H*+1¢[ etl

Henceforth let us fix M satisfying (2.1). As the domain, we define a set ir
by

(2.2) Au={(gy g)e{C°10, 1} llgr—prllooo, 11ge —2elloorons =M ).

Here in .Jfu, we introduce the same norm as the one in {C0, 17}%:
(2, w2)ll=max {|ollcoro1, 11oelloopo,u}-

Next let us define an operator G on iy by composing G; (1si=4) given
in §§2.2-2.5:
(2.3) G=GioGs0Gr0Gy,  DG)=cd-

NotATiON. Let o(Ap n u)={lnlnez and o(A,, ,+)={2}lnez, and let {uulnez
and {yhlnez satisfy (1.23)-(1.25). Then we set

2.4) 8= 3 (Ita—7al +lut— 281,
2.5) b= 2, (1l + 11—l + |t~ 2£])
and

ol
(2.6) B= .

1 0

Moreover let us denote the solutions to (2.7) and to (2.8) by
*( .

SANRY A 1
é(, 2)=(¢( ))G{C’EO, 1}* and ¢*( -, 2)=<¢ (
¢2( ) 2) ) ¢*(

2\ "

A
)e{C‘[O, 171,
)

respectively :

BHED | payga, =igls, D OSasD

2.7 1
0, A= .
#0, 2 <—1z)

Bd¢*(§-;, D,_‘P(x)gﬁ*(m, D=26%z, ) (O=os1)

(2.8) 1
%0, )= .
o o-{ 1)
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Here *P(z) is the transpose matrix of P(z). These notations are used throughout

this paper.

Henceforth M; (1=i=32) denote positive constants depending on P, /%, H,
H*, 8y, 6, M, and each M; is bounded as 4, } 0. For simplicity, we adopt notation
[1P]l 0 in place of [|2}ioro,ms -

2.2, Definition of G,

We define G, which transforms each element g={(gi, q») of Jx to
{anlDtnez, {0n(@lnez J, J*,9)eCZ X C2Z X (R\{—1, 1})* X Ay in the following manner :

2.9)

(2.10)

(2.11)

and

(2.12)

2 exp(%S: (@A) 55 —ai()s)

an(‘.l) = 1 .
<H+1>exp(go (Ga(5)—1(5)) ds) +1-H
X(¢2(17 #n) +H¢1(1) /jn» (%GZ)y
~2 exp(—égl (@) =5 +2:(5)~ ()
balg)= J

(1) exp({ (@) ~pu)ds ) +1~F*
X(pol, ) +H¥gi(1, 1)) (meZ),
r=r@=(a+D exp({ -2 ds) +H-1)

% <(H+ 1 exp<S: (@(s) —pg(s))ds) +1-—H>"l

Tr=J*g)= ((H* +1) EXP(S: CEOESHO)) dS> +H*~1 >

% ((H*+1) exp(S: (@) —o(s)) ds) +1 -J{*)A )

Then we set

(2.13)

GI(Q)z({an(Q)}nEZ, {On@tnez, J, T*, q).

We see that G, is well-defined from

Lemma 1. @) We have
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“(H+1) eXpG1 (qa(s) —pa(s)) ds) +1——H‘2Ml
(2.14) .
ZMI

@+ exs(( @o-pisnas) 1 -
for some positive constant M, .

(1) We have
(2.15) J, J#eR\{-1, 1} and J+J*

Proof. (I) The first estimate in (2.14) is proved by:

j(ﬂ+1) exp<g: (@ —pg(s))d.§> +1—H‘

—ir o] -pionas) - L
;IH+1lmin“8”’— Tl ]“"H_i ”

(by (2.1)' and e~¥ <exp S (g2(s) -—pz(s))ds><e“f)
>0.
The second one can be seen similarly.

() In view of (2.14), |H|=1, |H*|#+1 and H=+H* we can prove (2. 15) by
direct computations.

Moreover we have

LemMmA 2. Let geAx and let a.(q) and bu(q) (neZ) be defined by (2.9)
and (2.10), respectively. Then we get

(2.16) 5 (@@ + 15D =Mado
and ‘
(2.17) 2 (Il +1(en@)| + bl = Mo

for some positive constant M.

Here we recall that §, and ¢ are given by (2.4) and (2.5), respectively. In Ap-
pendix II, we prove this lemma.

2.3. Definition of G» .
For the definition, we show Lemma 3.
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LemMA 3. Under all the assumptions of Theorem 2 except for (1.25), we
have the following properties on {3+, pn)tnez.

(1) (the completeness of {¢( -, pn)incz) The system {$( -, p)lnez is @ Riesz
basis in {L*0, 1)}

(I1) (the existence of a complete system biorthogonal to {¢( - , pn)tuez)
There exists some system {Ptnez satisfying (2.18)-(2.22).

(2.18) 0@ igorome SMs  (neZ) for some constant Ms>0.
(2.19) 1PN, prro e =Mi(lml +1)  (neZ), if (1.25) is assumed.
(2.20) o . real-valued (—N1=n=N,) and dP =g m=N,+1).
0, if n¥m
2.21) G- s o), ¢ =Fum=] |
1, if n=m.
(2.22) w= 3, §C-, o)) - 9 for each uelZX0, )"

Here the series at the vight hand side of (2.22) is comvergent in {L*0, 1)}%
Furthermore, for the system {¢( -, ez, similar facts hold. That is,

(1y The system {¢( -, p¥)lnez is a Riesz basis.

Iy There exists some {(Pnez Satisfying
(2.18) 12 poro, e =Ma (n€Z) for some constant M;>0.
(2.19) Nl oo me = Mo(lm] +1) (neZ), if (1.25) is assumed.
(2.20  ¢@: real-valued (—N,=n=N,) and ¢P=¢3 (nzNo+1).
@.21 (@, gk ) =0nm.

2.22y wu= Z (o, G0 ) - @ for each we{LX0, i

In Appendix III, we will prove Lemma 3.
As is seen by Lemma 4 stated below, for {@(g), bn(@)}nez given by (2.9) and
(2.10), we can set

ceuly, @

(2.23) (

and

(2.24) (

n/ D(g7) — by 2 (y)
c1a(¥, q)) TJ—T% a2 3 (@@~ b @IFPW))

21< » 4)
- ) iy RO ORI AT !
022(217 Q) e
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where J=J(g) and J*=J*(g) are given by (2.11) and (2.12). Let us set C( -, @)
=(cis( * s Dzt iz

Lemma 4. (1) On all the assumptions of Theorem 2, we have
(2.25) C(-, q: realvalued.
2.26)  C(-, ge{C10, 1
2.27) 1CC- s Do qu=Mids for some positive constant M.
2.28) 10, Qg =M.

(IL) For ¢®=(g®, ¢Medn (i=1, 2), we have the estimate
(2.20)  [ICC+, g™ —=CL- , ™ gago.00= Mol I — 2Pl oy -

In Appendix IV, we will prove this lemma.
Then we define an operator G, by

2.30)  Gi({an@Dtnez, {bnDnez, J, J*, )=C(", @), ).

By Lemma 4, the operator G, sends ({@n(@)lnez, {0x(@)}nez, J, J*, @) to the four
real-valued C'-functions ¢i;( -, @) (1=i, j=2) and two C’-functions g=(q\, g:).

2.4. Definition of G

0 1 '
Let us recall B=( ) and henceforth let us set
1 0

2.31)  2={(=, v); 0<y<z<L1}.

For the definition of G;, we show
Lemma 5. Let

(2.32)  PeAle, b)c{C0, 1]

and

@ b
(2.33) Q=( ) where (¢, qu)€Ax .
G Qe
(1) For given D=(dihsi,1z2€{C'[0, 11}, theve exists @ unique solution K=
K(-, -, P, Q, D)e{CH{@) to (2.34)-(2.36):

BK(x, y) 8K(m,

y) B
(@, 1)e).
(2.35) Koz, 0y=hK(z, 0) and Kyp(z, 0)=hK.u(z, 0) @ (0=z=1).

(2.34) 2+ Q) K, y)—Klw, v)P(y)=
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(2.36) K1, v)=D(y) (0=y=D).

Furthermore the estimates

(2 37) ”K“(gO(]?)]d§M5”DH(00{0,1]]4
and
(2~ 38) ”K”(Cl(’myl—g-:MS”D”{gl[o,uyt

hold for some positive constant Ms.

(II) For given Qi, Qs in the form (2.33) and D, D,¢{CH0, 11}*, we have the
estimate

(239) ”K<7 “ Py er Dl)—K(y ) P’ QZ’ DZ)”(QO(E)M
—"<=M5(”D2”(gom,mdx”Ql—QZII(CDCO';314+l]Dl""Da”ao)'

In (I) of this lemma, we note that ¢, ¢.€C"[0, 1] is sufficient for the existence
of C'-solution K. In Appendixz V, we will prove this lemma.

In (2.36), let us substitute C(-, @)=(cs;(-, Dhziys= given by (2.23) and (2.24)
into D(-). Then, by Lemma 5, we can set .

(2.40) Gs(CC-, @y @)=K(-, -, P, @, C).
Here we note that @ is given by (2.33).

2.5. Definition of G,
Let us set

1 <—a<-77)"b<$)+p1(m)+pg($> A d(x)+b(x)wpx(x)—m(w)>

2.41 Alx)=—
@40 () 2\ —a(z)+b(z)—pu(@)+Duz)  alz)—b(z)+pi(z)— D)
- (0=x=1)

and let us consider an initial value problem (2.42) and (2.43) for ordinary dif-
ferential equations:

d u(w)) (u(x)\
2.42) & =A R
@9 % (vw) Nt}
(Kx!(x, w)—K'zg(w, .'L')+K12(fl7; w)“‘Km(x: x)
Ku(z, )—Ku(z, 2)+Ko(z, 1)~ Ku(z, ©)

<u(0)> (1)
(2.43) =t )
e Aw(0) /N1

Here K=(Kip)ist,750=Ga(C(+, ¢)). Then we have

) O=z=1).
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LemMma 6. (1) There exists some positive constant M, such that, if

(2.44) 0o=M;,

U
then the solution ( ) to (2.42) and (2.43) satisfies
v

to =

(2.45) w(z), v(z)= O=z=1).!

(II) On the condition (2.44), we can define veal-valued C'-functions vy, 72 by

1 du(z) 1 do(z)

"=t =S T Ty da

(2.46)
1 dulz) | 1 dvlz)
w(z) dr @ olz) dz

73()=po()—

0=z=1).

Furthermore the following estimates hold :

2.47)  lp=rillotlipe—7all =My max | Ko, o).
0SEZaT

(2.48) =il e —7all 0

d[f-,:j(.fl?, x)
dx

, Js 151, js2
0SSl Isral

=M, max( ngajx | Kij(z, 2)|, max
15 @2

).

(II) For ¢@=(@?, ¢.®)e Ay (=1, 2), let us put KD =(Gso Gso Gy)qg®
(i=1, 2). On the assumption (2.44), let (u®, v'®) (i=1, 2) be the solution to

4 [#P) ~ ()
(2.49) ‘zz';(,,m(x))*fl@)(vm(w)>+
(qu><x, 2)—K(z, )+EP(z, 2)—KP(z, w))

Kz, z)—K@(z, 2)+KP(zx, 2)—KP(z, =)

==l i=1, 2)
and ’

u(’i)(o) 1
2.50) ( ):() (i=1, 2),
v(i)(o) 1

and let us set
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1 du®@) 1  dv®)
% (z) dx v®(z) dx

7o) =pi(x)~

(2.51)

PO(2) = pu() — e PHND) 1 00(2)

#®P(z) dx v@(z) dx
O=2x=1, i=1, 2).
Then the estimate
(2.52) @ —7®|| o+ —72ll o= M; max [ Kz, z)—K{(=, x)|
c ¢ 158, 752

holds.
In Appendix VI, we will prove Lemma 6.

Now we proceed to the definition of G, Under the assumption (2.44) of
Lemma 6 (I), let us define G, by

(2.53) Gy(K(-, -, P, Q, O)=(ry, 1),

where K(-, -, P, @, C) and (1, 7,) are given by (2.40) and (2.46), respectively.
Thus we complete the definitions of G,, G, Gs and G;.

2.6. Reduction to a fixed point

In this subsection, we show Lemma 7 which asserts that a fixed point
(@1, gz) of the mapping G gives the functions satisfying all the conditions in
Theorem 2. That is,

LeMMA 7. On all the assumptions of Theorvem 2, let g=(q., g2)e{C0, 1]}
satisfy

(2.54) g=Gq,
and let us put

a b
(2.55) Q= .
d1  ds
Then we have
(2.56) :eC0, 11 (=1, 2)
and
(2.57) o(Aqn.r)={pmlnez and o(A,, +)={ptlnez,

where J, J* are defined by (2.11) and (2.12).
Proof of Lemma 7. Let us assume that g=(g, g2)€{C"[0, 1]}* satisfies (2.54).
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Fitst we will prove (2.56). To this end, we have only to prove
(2.58) Gge{C'[0, 111,

in view of (2.54). Since, by Lemma 5 (I), the relatién (2.26) implies that
_ a b
K, -, P, @, O)clC@), where p_-.<
b b
the definition of G and @, b, p,, $.€C'[0, 1].
Next we will prove (2.57). Firstly we have to show

‘@ b
) and Q=( ), we see (2.58) from
/ g1 G

(2..59) (Aens)Dlmhez and oAy, D pilnez -

For a unique solution K=K{(-, -, P, @, C) to (2.34)-(2.36), the solution (z, v)
to (2.42) and (2.43) satisfies

1 dw(z) 1 dv(x)
u(z) dr o(z) dx

gi(z)=p1(x)—

(2.60)

e 1 du(z) | 1 dv(a)
qa(2) = po(x) M ONT +v(x> T 0=z=1).

Noting (2.45) and (2.43), we integrate (2.60) with respect to z, so that we get
Ko (£18)—qi(s))ds=log u(xz)+log v(x) and So( D2(8) —qo(8))ds =log u(x)—1og v(x),
which imply

w(z)=exp (—;—S: (D1(8) +Da(8) —a(8) —42(5))61’3)
(2.61) s
v<x>=exp(-§~go <pl<s>—pz<s>~ql<s>+q2<s>>ds> (0=z=1).

Solving (2.42) with respect to K;,—XK, and K, —K,. by using (2.61), we obtain
(2.62) Koz, )~ Kz, x) |

=%e"”*“”””‘”(%(@—-q,(x>—qzcx>—p1(x>+pz(x>>
+.}L.g""“””"’“”(-zbm+ql<x>~qz<w)+px<x)+pz(x>> (Osz=1)
and
(2.63) Kz, 2)~Kun(z, z)

~ 0y (&)~ (1)

=i-e () i)~ au(z)+ 1) —5o())
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1~

+ze (—2a(z)—q(z)+qu(z)+ o () +po(z))  (0=2=1).

Here and henceforth, for ze[0, 1], we put

(2.64) 01(3:):—12—8?(611(5)'*151(5))52’5 and 02(“7):”;‘8:(42(3)—?2(3))513
and
hé, —sinhf,
(2.65) R(a:):g"hm( coshdy(xz) sinhdx(x) )
—sinhfy(z) coshfs(x)

, (9’)1(-, 2))
Defining ¢(-, )= by
(,!’2('1 ;{)

(2.66) oz, D=R(@)j(z, z>+g:ff(x, Doy, Ddy 0=z =1),

in virtue of (2.34), (2.35), (2.62) and (2.63), we can apply Lemma 1 (II) in
Yamamoto [12], so that we see that

B df/’E;;, ) +Q@)(z, D=Ag(z, ) (O=z=1)

(2.67) 1
#(0, 2)=( )
—h

In order to prove (2.59), we have only to verify

(2.68) (1, pa)+ T (1, pn)=0 (neZ)
and ‘
(2.69) oL, p¥)+T*0(, p)=0 (neZ).

These verification is done as follows. We have

@90, ¢C, ) =(9C, )y PRCN=(C, prn), GR())=0um

by (2.21), that is, we get

(2.70) (@), 8, tn))=0nm .
Similarly we get
(2.71) (@RC), ¢(-, 1)) =0am .

Next by Ki;(, v)=cu(y, @) 0=y=1, 1=i, j=2), we see
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’ [fu(l, Y) 1 o
(2.72) KL, ) =7 P (@l )PP () = 0@ W))
and
sz(l, ’U) 1 = e
@79 i | TT L U T

where the right hand sides of (2.72) and (2.73) are convergent in {L*0, L)}*
Thus, by using (2.70), the equalities (2.72) and (2.73) imply

((Ku(l, -)) ( ))
» ¢ Yy Un
Km(l, ) : (L2002

— ) 5 b@GED), T ) (re2)

((Kﬂl(l: : >> ( ))
) 975 Yy Hn
KGe(1, 2) # (220,132

*
=]]fi(j]~) _]*{] Z bul@)(@RC), 6(-, )  (meZ).

Therefore we have, for neZ,
a1, )+ Tn(L, pu)
=g~ ( J.coshdy(1)—sinh0,(1))¢: (1, sa)
+e71® (coshfy(1) —~ /- sinh@(1))pe(1, )

((]{21(1, ‘)) _(_“__3) : ((Kll(lv ')) _,(,_._,._),)
+ y P\, Min + /X s QL M
Kot o) P Kot ) )

(by (2.66))

(2.74)

2802 (W-0Q1)

= (H_I_l)ezaz(l)_l_l__H X(¢2(17 ,“‘IL)'{”H(/J)I(L Hﬂ))'{'an(Q)

(by (2.11) and (2.74))
=0 (by the definition (2.9) of aa(q),

which implies (2.68).
For (2.69), we can similarly proceed in view of (2.71), (2.72), (2.73), (2.66),

(2.12) and (2.10).. Thus we complete the proof of (2.68) and (2.69).
Finally we have to prove that

(2-75) - (T(AQ,h,J)C{/"n}neZ
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and
(276) U'(AQ,,L'_,*)C{,U;':}neZo

To this end, we show
LemMa 8. Let us denote the solution to (2.77) by
¢, X))
AR
d¢*(=, 2)
B dz

— Q)M x, D=ip*x, ) (0=z=1)

o0 z)—( 1)
’ nl
Then

(1) The equalities

(2.77)

2.78) GHL, STk, —p)=0  (neZ)
hold.
(I1) For each u:(ul)e{Lz(O, DY, we get
G2
o0 (. )
(2.79) u=n§m—(-zi’-¢—(a;—ﬂ ¢y )

where the right hand side is convergent in {L*0, 1)}* and we set
Cl'n=(¢(': ﬂn), 9’)*(, "‘/l'n))-
Moreover, for {(-, p)inez, we obtain similar results.

In Appendix VII, a proof of this lemma is given.

Now we return to the proof of (2.75) and (2.76). Assume that there exists
vEO’(AQ,n,J) such that

(2.80) v i (neZ).
s ,

Let u= #0 be an eigenvector of Agas associated with v. Then, since
Uy

$*(-, —pn) satisfies (2.77) with 2=—pa and (2.78), and » satisfies #,(0)+%Au,(0)
=uy(1)+Ju,(1)=0, we see by integration by parts that

Q8D (Aot 97, =aD=(w —B 1L $*¢, T+, =)
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Therefore, for neZ, we have

W, ¢*(-, =) =(Aq.n.st, $*(-, =) ' (by Ag,n,st%=yvt)
=%, pg*(-, = pem)) (by (2.81))

=nu'"-(u: Q/)*(: ;—/":))7

which implies (#, ¢*(-, —pa))=0 for each neZ by (2.80). Therefore it follows
from (2.79) that #=0. This contradicts that 0. Thus we see (2.75). Simi-
larly we can prove (2.76). This completes the proof of Lemma 7.

2.7. Completion of the proof of Theovem 2

Applying the principle of contraction mappings (Kolmogorov and Fomin
[6, p. 66), for instance), we complete the proof of Theorem 2. To this end, pro-
vided that 4, is sufficiently small, we have only to verify

(1) G is a comtraction mapping, that is, there exists some constant 0=£<1
such that

IGg® —Gg®|| p=kllg®—g®ll 0 (@, ¢ edn).
(IY G AxCT A
In fact, if (I) and (II) are proved, then since _4x is a closed set in {C°[0, 11}* by

the definition (2.2), the principle of contraction mappings implies the unique
existence of fixed point g=(g, ¢) of G. For this (g1, ), we define / and J* by

a b

(2.11) and (2.12), respectively. Then, in view of Lemma 7, Q=< ) and
g1 ¢

J, J* satisfy (1.26).

Now we proceed to
a b
Proof of (I). For ¢@=(g®, g™edn (i=1, 2), let us set @Q;={ o @
a @
and 7@ =G(K(-, -, P, Qi C(-, g®)))=Gg®, where r®=(r{, r{?). Henceforth,

for brevity, we put K®(z, v)=K(z, y, P, @i, C(-, ¢¥)) (=, v)e4, i=1, 2).
Then, by the estimate (2.39) of Lemma 5, we have

IED =KD o= M(IC(, g pollQu—Qell o +IC(:, g)—=C(+y g®)Iz0)-
Thus, by the estimates (2.27) and (2.29) in Lemma 4, we get
(2.82) KD KO ooz SZMMollg =4 gy

On the other hand, by Lemma 6 (III), we have the estimate

[0 =Pl o+ llr P =7 @] oS M| K — K| o,
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with which we combine (2.82), so that we reach

(2.83) lre> — @] o=2 MMsMdollg™ —g®|l 0

Therefore, if 5, is sufficiently small so that

(2.84) =2 MMM, <1,

then we see that G is a contraction mapping. This shows the assertion (I).

Proof of (II). Let g=(qi, g»)e Ax. Since ¢y (1=i, j<2) are real-valued
functions by (2.25), also the solution K to (2.34)-(2.36) with D=C, is real-valued.
Therefore we see that Gg is real-valued. Next we have to prove that for

(7/17 7'2)=GQ: ,
(2.85) [ri=pillo=M and |lre—poll o =M.

Firstly, by the inequality (2.47) of Lemma 6, we see
280  maxi{llri—pillyo, lire—2all ol =Ms max [Kis(z, v, P, Q, O)l
Tl
a b a b
Here we put P=( ) and Q=< )
D1 P 4 G
Secondly, by the inequality (2.37) of Lemma 5, we have
(2'87) ”I{('y Ty Py Qy c)l’(gn({—;)]4§]‘{5]]c(') Q)”((j(l[o_ﬂu‘

Finally, by the estimate (2.27) of Lemma 4, we have

(2.88) NCCs DI gogo, 134 =M -

Therefore, coinbining (2.86), (2.87) and (2.88), we reach
(2.89) max {|[7: =1l gorg iy » 72— D2ll gogo, gt = MuMs Mo .
Consequently we take a sufficiently small d, so that

(2.90) MMMabo=M,

we see (2.85).

Thus we complete the proof of the assertions (I) and (II), so that Theorem 2
is proved.

§3. Proof of Theorem 1

We prove Theorem 1 separately in the two cases:

Case 1. 8= 3 (Inl+1)pn—al + |~ 4] < oo
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CASE 2. f=o0.

Proof in Case 1. Let QeA(a, b), J, J*e R\(~1, 1} and let

3.1) o(Ag.n.s)=lmlnez  and  o(A, , x)={{f}nez.
If
(3.2) 0= 33 (lpn—al+ |t =2t)

is sufficiently small for P, 4, H and H*, then by Theorem 2, there exist

~ fa D o o~
Q=< )eA(a, b) and J, /*eR\{~1, 1} such that

g1 Ge
3.1y O'(Aa,mf):{ﬂn}nez and G(Aﬁ,h..?'*) ={p¥lnez -
In view of the estimate (2.89), we get
(3.3 G, =Dull o+ [1G— Pel| jo = Mo ,

and, combining the estimates (2.28), (2.38) and (2.48), we can obtain
(3.4) 1g: —2ull jr+11Ga—Pull = Msd .

Moreover, since J and J* are given by (2.11) and (2.12), it follows from (3.3)
that

(3.5) |7 —H | +|]*~H*|
=ML -H 4 [~ B9 [exo ([ @uo—piodas) -1 by 2.10)

=M:d, ' (by (3.3) and the mean value theorem for &%)

On the other hand, by Corollary 1 in Yamamoto [13], the relations (3.1) and

(3.1) imply ‘

gi(z)=aqi(z), Jolz)=q:(x) O=sx=1)

(3.6) . N
I=T, J*=J*

Thus we can obtain (1.20) and (1.21) by (3.3)-(3.6). This completes the proof
of Theorem 1 in Case 1.

Proof in Case 2. In this case, we have to prove

3.7) \H ]|+ | H* — | = Mido
and
(3 . 8) “511 "‘1}—’1”00[0,1] + ”Q’z —?2! |60[o.13§M850 .
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Without loss of generality, we may assume that d,<co. Along the line of
the proof of Theorem 2, we divide the proof into three steps.

First Step. 1In this step, we derive
(3.9.1) ]=((H+1) exp (S:(qz(s) — po(S))ds +H—-1)

x(<H+1> exp ([, (@) -puls)as) +1- H)
d

an
(3.9.2) ((H*+1> exp (], (@) —u(s))as) +H*—1),

x((H*+1) exp ([, (@)~ puls)ds) +1 —H*>

Derivation of (3.9). Since §,<co, we have llilm (fta—2n)=0 and lli}m (e =25
ni-oa nj-ro0
=0, which imply

(3.10) ‘}zilf_g(ﬁ + 714+ (ma(n) —mg(m))m v/ —=1)=0
and
(3.1 ,}z’fi 0+ 72+ (ms(n) —my(m))mA/—1) =0

by Russell [10], (11] (cf. (1.15)). Here and henceforth, we set
1
(3.12) 1=1{ @o-punas

and

_1 (L+h)1-T) 1+ —-H)
n “z'{k’g A=+ EA=RATH) ]

L{iog Q0T o (41010)
(1 R(L+T%) = h)(1+H*)

(3.13)

2=

and mi(n) (1=i=4) denote integers depending upon # such that lim{mu(n)|=co
and |m(n)] =0(|n)), and in (3.13), we take the principal values of the logarithms.
Since #, H, H* J, J*eR\(~1, 1}, and 0eR, we have Im(#-+71)=0 or —1575 or

~éx (i=1,k 2). Therefore (3.10) and (3.11) imply Im(f+7;)=0 and Re(@+7;)=0

(i=1, 2), which are seen to be equivalent to (3.9) by direct computations.
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Second Step. In this step, we prove Lemma 9, which is a converse of
- Lemma 7:

LEMMA 9. Let Bosniw(lﬂn—an-}-]yﬁ»«m) be sufficiently small. If q=(q, G2)
e{CY0, 17)? satisfies
(8.14) ("(AQ.IL.J)={#n}neZ and O"(Ag‘h,';*):{/";lk}%z’

then q is a fixed point of the mapping G defined in §2.

Proof of Lemma 9. By Lemma 1 in [12], there exists a unique solution

¢1(') /z))
¢2('1 l)
+Q(2)(x, H=Af(z, ) O=z=1) and

K=Kz, y)e{C'(@) to (2.34), (2.35), (2.62) and (2.63), and ¢(-, 2)=(

defined by (2.66) satisfies Bﬁ‘@%’-ﬁ

1
(0, 2):( P ) Therefore, since o(Aq.n,s)={pmlnez and pn is a simple eigenvalue,

we see that ¢(-, un) is an eigenvector of Ag, ., s associated with s, so that we
get

(3.15) ¢a(l, ) +T (1, p)=0  (neZ).
Similarly we can get

(3.16) Goll, )FTG(, @)=0  (neZ).
Substituting (2.66) into (3.15) and (3.16), we obtain for neZ,

(((K21+JK11)(1, '))
(Kunt+TE) (1, )/

#(+, ,Un)> =an(g)
[Z2¢0,10)2

and

(( (Ko -+T* K1) (1, -))

(Kaz +]*K1 z) (1, * ) (LA0,10)2

where aq(q), ba(g) are defined by (2.9) and (2.10). From the assumption that g,
is sufficiently small, we can apply (2.22) and (2.22) in Lemma 3; so that w
see that :

(8.17) Ky, )=culy, )  (O=y=l, 1=, j=2).

Here ciy(-, @) (1=4, j=2) are nothing but the functions defined by (2.23) and
(2.24). Considering the hyperbolic equation (2.34) with (2.35) and (3.17), in
view of uniqueness of solutions to the problem (Lemma 5), we see that
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(3.18) K=(G30G20G1)(@)

G, G: and G, being defined by (2.13), (2.30) and (2.40), respectively.
As is seen by direct computations, the equalities (2.62) and (2.63) imply

%
the following: ( ) given by
v

[ u(x)= exp (—;—S: (2:(5) +.bz(8)—q1(8)-—42(8))d8>

1 v(z)= exp (
is the solution to

d u(x)) (u(x))
©.20 2z (v(x) o)

(Ku(w. x) =~ Koo(, 2)+Kin(m, )—Ku(z, x))
Ki(z, z)—Keo(x, 2)+Kalz, 2)—Kiz, z)

(3.19)

Do

S: (£:(5) "ﬁz(s)—QI(S)‘}'Qz(S))dS) O=2=1)

O=z=1)

and

#(0) 1
(3.21) = .
v(0) 1
Here let us recall ﬁhat A(z) is defined by (2.41).

By (3.19), we get gi(x)=pi(z)— Z;g—ac%%?—;é—)dgf and g(x)=pa(z)—
J__du(m) 1 dv(x)

u(x) dz _5(3_03 dz 0=2=1), which imply

(3.22) 7=(a, ¢:)=G.K.

Here we recall that G, is defined by (2.53). The relations (3.18) and (3.22)
imply that g¢=(q, ¢.) is a fixed point of G=GGoGyeG,, Thus we complete
the proof of Lemma 9.

Third Step. By the final stage of the proof of Theorem 2 (§2.7), we see
that if 6, is sufficiently small, then G possesses a unique fixed point (&, §.), and
the estimate
(3.23) 17 =21l jo+ 1172 — el o= Mo

holds. v ' ‘ :
On the other hand, by Lemma 9, ¢g=(gqi, @) is a fixed point of G, so that the
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uniqueness. of fixed points imply §,=¢, and §.=q, that is, we obtain (3.8),
namely, -(1.21) for j=0.

For j=1, the estimate (1.21) is trivial by d=co. In a way similar to
Case 1, we can prove (3.7) by using (3.8). Thus we complete the proof of
Theorem 1.

Appendix 1. Proof of Proposition 1

In view of the results of Russell [10], [11] (cf. (1.15)), we see that for
In€a(Ap.n.u), we have 2n=7'+7zn«/jf+0<%) (as |n]— co) under an appropriate
renumbering. Here 7 is a constant depending on P, %, H (cf. (1.14)). There-
fore we see that 1,¢R for sufficiently large |»|, which means the part (I) of this

proposition,
Now we proceed to a proof of the part (II). Let us assume that 2ea(Ap,n,z),

é1(+, A
and let ¢(-, 2):(/ 2
,¢2 )

P is real-valued and %, HeR, the complex conjugate ¢(-, A) satisfies

) be an eigenvector of Ap sz associated with 2. Since

0
(1 )d%; Y Pa)fe B=15w D 05a=1),
0

#a(0, ) +1g(0, )=0
and”

go(1, V+He:(1, H=0,

by which we see that ¢(-, 4) is an eigenvector of Apn .z associated with 2
That is, we see that leo(Ap n z) implies 1€o(Ap nn). Similarly we can show
that i€o(Ap.u. zr) implies lea(Ap n.z). Thus we complete the proof of Proposi-
tion 1.

Appendix II. Proof of Lemma 2

First, we show the following Lemmas IL1 and IL1, which are useful also

1 0
in Appendix I1I. Let us recall that B:( ) and Q={(z, ¥); 0O<y<z<1}
0 1 ‘

¢ b ‘
Lemma IL1. (1) For given P=( )e{C‘[O, 1M and heR\{—1, 1}, there
. D1 Do

exists a unique U=U(z, v)=Ui(x, Vs 126 {C (D) satisfying (1.1)-(114):

(IL.1) B D 4 Pz, 3)=~ w(;”y’ VB (@ n)ed).
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(IL1.2) Uiz, O)=hAU(x, 0) and Uz, 0)=~AU(z, 0) 0=x=1).

(IL.3) U, )=Vl )=56™505 (ala) + o) —1:(z) ~pla)
OO (@) W)+ i)~ pu(w)  (0SaL).

(I1.4) Uiz, 2)—Usn(z, x)= —lll—e"’l(’"*”“”) (az)+b(x)—p:i(z)— Pl x))

+7]i-e‘”l‘””””2‘”’(—a(x)+b(w)—]5_x($)+Pe($)) O=z=1).

Here and henceforth, for x€[0, 1], we put

(IL5) 771(.9:)=%S° B()+pi()ds  and m(m):—é—go (a(s)+pa(s))ds.
(II) For the solution U=(Usj)izi, ja e have the estimates
(H' 6) ”U”[00(5))4§M9(]IP”lc"[n.1])4r k)
and
(1.7 T ioramn=Mio(|P llicrconmss 7).
(III) For 1eC, let us set
(z, A) coshlx —Asinhiz
(11.8) Sflz, D= =
Wz, 2) sinhAz —Acoshiz
and
coshp(x) —sinhn(x)
(IL.9) S(a:):e"’l""( * * ) =z=1)
—sinhy.(z) coshys(z)
Then ¢(-, 2) defined by
X
(1. 10) oz, D=S(@) (@, D+ e, Dfw, My 0Za=1)

satisfies (2.7).

Similarly the following facts hold:

(IY There exists a unique V=V(z, v)=Vif(®, ¥hsiis:€{C(D} satisfying
(I 1Y—~(11.4):

(L 1y Ba——-wgéﬂ——‘P(:c)V(w, v)= —QL/%—@B (@, ped).

(H 2)' V12($, 0)=~—/’1V11($, 0) and V22($, O)=-—hV21(J7, 0) (Oéx—i—:l).
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ALY Ve, 2)—Vals, x)=—i—e”l‘”“"2(”’(«a(m)+b(m)—?x(fv)+ﬁz(1‘>)
+%e”1<m’“”2m(—a(m)—-b(w)-’:—?:(m)-ﬁ-ﬁz(-’v)) O===1).
1.4y Vilz, £)~Vau(z, x)=-}1—e”1""”"’”’(—a(x)+b(w)—ﬁ:(x)+zﬁz(m))

O )+ ba)—pu(m)~pele))  (0S@S1),

(II) The estimates

(1. 6y 1V |licoa=Ms(I1P |looonns, 4
and
(H- 7)' “V|[zo!(?.»‘)MéMw(HP”ralru,mm h)
hold.

(1Y Let us set

F¥z, 2) coshiz +Asinhiz
(IL.8) ¥, 2)=( >==( )
¥z, 2 sinhix -+ coshiz
and
coshpy(x) sinhp,(z)
(I1.9y T(x)=2"1“”( ) =z=1)
sinhyy(z) coshye(z)/
Then ¢*(-, 2) defined by
(IL.10y Mz, N=T(z)f ¥z, )+ S: Vi, )f*w, ddy  (0=x=1)

satisfies (2.8).

Proof of Lemma I1.1. The parts (I) and (III) follow directly from the parts
() and (II) of Lemma 1 in [12], respectively. On the other hand, we can show
the estimate (II.6) by means of the inequalities for the iterative approximate
solutions for (II.1)-(Il.4). Those inequalities are derived in the course of the
proof of Proposition 1 in [12], and so we omit those derivation. (See Appendix I
in {12]) Similarly the estimate (II.7) can be obtained and so we omit the

detail.
Now we recall that o(Ap,n m)={Inlnez and o(A,, nx)={1F}nez.
Lemma 1L 2. For neZ, we have

(H- 11) “95(, /«"n)"‘¢('» ln)][(G"Eo,::\lzéMl‘#n“‘lnl
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and ; :
(I.12) pCs ) —Cs B oo, = Ml paf — 23]

Here M, is a positive constant depending on |\P|gworyn 2, H, H*, 8o, and M,
remains bounded as 6, is bounded.

Proof of Lewma I1.2. We have only to prove
(I1.13) Iexp(pnx) —exp(Lx)| EM i n—4n)  (0=x=1, neZ)

for a positive constant M7}, with a property similar to M. In fact, assume that
(11.13) is proved. Then, from (II.13) we see

(IL.14) NGy )= 1Cs Zallioonsne EMillpn—2al  (n€Z).

Applying the estimates (II.14) and (II.6) in (II.10), we reach (II.11). Similarly
we can prove (II.12).
Now we return to the proof of (I1.13). By the mean value theorem, we get

(11.15) fexp(paz) —exp(Jnx)| =2 r&?glexp e + A =D Anz) ttn—20]. .

On the other hand, by (1.15) (cf. Russell [10]), for each ne¢Z, there exists m(n)e Z
such that llijrnim(n)]—;co, |m(n)| =0(|n]) and

Xmnd
(11 16) Iy e/ T+ 5

where y is a constant given by (1.14) and a,eC (#eZ) satisfy

(I1.17) a=sup lan|<co.

neZ
Furthermore, by o= i} (ptn— 2n| + | 15~ 2%]), we have
(11.18) IResn] S |RE (ptn— )| + |R€AR| £ | ptn— An| + |REA| =80+ [REXW]
~ (neZ).
From (II. 16)-(I11.18), we can see ‘
lexp (paz +(1—BDnz)| Sexp 2Re y| +2a+3d,) (0=, z=1)
and therefore, we see (IL. 13) by (I1.15).

Now we proceed to the proof of Lemma 2. Since lnea(Ap ».m), we have
Go(L, )+ Hepi (1, 2,)=0 (neZ). Therefore we get

I@o(l, pm)+Hpa(L, pu)l =Ie(l, pn)—pa(l, dn)+H(s(L, pn)— (1, 2a))l
=le(l, ) =@l W +H [lgu(l, pn)—pi(1, )]
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SQA+HDISC, ) —9Cy 2oz (eZ).
Thus Lemma II.2 implies
(I1.19) 62(L, pn) +Hpu(1, p)| EMuslpta—2a]  (n€Z).
Similarly we can get
(11. 20) (pa(l, )+ H*Gu(L, ) SMuy|pk—2% (neZ).

Noting the inequalities (2.14) and the definitions (2.4) and (2.5) of §, and &, we
see that the inequalities (II.19) and (II.20) imply the estimates (2.16) and (2.17),
the conclusion of Lemma 2.

Appendix III. Proof of Lemma 3

Proof of the part (I). A theorem on perturbation of Riesz bases by K. Bari
(Gohberg and Krein [2]) is a key. That is, in order to prove that {¢(:, pa)lnez
is a Riesz basis in {L%0, 1)}?, we have to show the following two facts:

(111 1) Z 1B, )=y llons <00
(IL2)  If 5 cupla, pn)=0 almost everywhere in (0, 1), then cy=0 (neZ).
Proof of (III.1). In view of (II.11) of Lemma II.2 in Appendix II, we get
ngw“éb(': tn) = (-, Zn)l|?L2(o.x>12§n§w|l¢(', sa) — e Zn)”?okﬂro.mz
co ' ca 2 "
=M3 5 =l SMA( S pn—2al) =Mk,
This proves (III. 1).

Proof of (II.2). Let us assume that f cnp(2, pa)=0 almost everywhere in
n=—o0

(0, 1). Then we have for almost all xz€(0, 1),
(IIL. 3) = 3 cabl@, I)=_3 cald(a, pm)=9(@, 2u)).

On the other hand, since {¢(-, A)lnez is a Riesz basis in {L*0, 1)}* (e.g. Russell
[10], [11D), there exists some positive constant . such that

(111 4) Ml £ cadCc, llusonn 2( 2 leal?)” -

Applying (II1.4) in (IIL. 3), we have



98 Masahiro YamMamoTo
- oo 1/2 oo ,
WI&z’(ﬂ:A}JCniz) :<:””=Z_mcﬂ¢(‘y 2ol izeco e

-“—'Hngwcn@(% pa) =3+, Za)lizzan:

éngwlcﬂl oGy pnd—¢(, Anllicernait

=My 5 Jenl =1l (by (IL.11))
§M§1( i |0n12)1/2< }Dfoj l/l‘n“/zn"z)“z (by Schwarz’s inequality)
§M1150<n§.;wlcnlz)uz-

Therefore if 3, is so small that M;;M,.8,<1, then we see ( _i' |cal? l'2=0, which
implies (III. 2).

Proof of the part (II). We divide the proof into the following five steps.

Fiyst Step. For the operator Ap, r defined by (1.5), the adjoint opérator
%0 s given by

" _ 0 1 dv(x)
(A nmviz)=— L o '7}-“+‘P($)v(;c) O<ax<l), wueD(Afnu)

(I11. 5)
Vy

( .co(A;.n,,m:{v:( )e{H‘(o, LF; 040) — s (0)=x(1)— Hoi(1) =0}

Vs

Here tP(z) denotes the transpose of the matrix P(x). Then, by integration by
parts, we obtain

(111.6) (Ap.nztt, ), 200,012 = Afonm ) 2202

for each u#e D(Ap.n.x) and ve D(AS r.x).
Let us recall that ¢(-, 2,) and ¢*(+, —Z1,) is given by (II.10) and (II.10) in
Appendix II, respectively. In this step, we show Lemmas IIL. 1 and III 2.

LeMMA IIL 1. ¢(-, 4) and ¢*(-, =) are eigenvectors of Ap.n.m and Abnu
associated with the eigenvalues Jn and X, vespectively.

Proof. Since Ap.a.x is a differential operator of the first order, all the
eigenvalues are simple, as is easily proved.
Therefore, noting that ¢(-, 1,) satisfies (2.7) with 1=2,, we see that ¢(-, ) is
an eigenvector of Ap m. For ¢*(-, —1z), we can proceed similarly. '
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LemmMa II1.2. Let us set
(IIL?) l Pn=(¢’(', ’27&)7 ¢*('v :I"-))(LE(O,I)]Z (”GZ)'

Then, for each neZ, there exists m(n)eZ such that lhlm |mn(r)| =c0, |m(n)] =0(n!)
and ‘

(II1. 8) pn=1—h2+o<mgn) ) (as |n]—co)
and
(II1.9) ol 2 M

for some positive constant M.

Proof. For the proof, the equalities (II.10) and (II.10) are essential. In
(I1.10), by integration by parts, we can get

(111. 10) S: [Um(% WA, )+ Uz, 9)f(y, ln)]dy

=_;‘Sj [(1 —m)(Uilzx, v)+ Uiz, v))e"
+(A +2)(Uu(z, v)— Uz, y))e'lny]dy
=Lap) (=12, ned).
Here and henceforth we set
(IIL.11) d9(z)
=é"<(1 ~)(Uu(z, x)+Usn(z, x))e="
— QA+ Uz, 2)—Use(z, x))e "
—(A =AY Uiz, 0)+ Usa(m, 00+ A+ Uslz, 0)—Us(z, 0))

? Wz, y) Uz, ?/)) 1y
+So [(Hh)( dy oy )

0Uun(z, (e,
— 1y (e 1) 2l W) [y ).

Similarly we can get

(I11.12) S:wﬂ(x, D, TI)+ Ve, 0w, —m)dy
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~ Lo =1, 2 nez),
2
where
(I11.13) e (x)

=—é~<(l~k)(Vu(x, 2=Vl z))efa”

—A+)( Vi, x)+ Vilz, z))e
—(1=m)(Vilz, 0)—=Vi(z, 0)+A+2)(Vulz, 0)+ Vislx, 0))

([ Tlee ), IV®: 1))

—(1~h )((:Vugg 7 GVw;;c y>>e‘?”]dy>.

Substituting (II1.10) and (III.12) into (II.10) and (II.10)Y, respectively, we have

l e
(IIT. 14) S iz, 2P, Az
0

=1—1z2+2—8 & n(x)dx+];g con(@)d,

n

where

(I11. 15) ¢1.a(x)
=e~ @ (f (%, An) cOShye(x)— fao(®, An) sinhys(z))eP(x)
+e D (— fi(x, A) Sinhp(®)+ fo(@, 2a) cOshya(x))eP ()
+eNO(F(x, —Ia) cOShya(x)+ fH (2, —2n) sinhyy(x))dP(x)
+eND(fH(m, —Ia) Sinhye(@)+ [H(z, —An) cOShpa(2))dP(w)

and

(II1.16) Con(z)=dP(2)eP(2)+dP(x)eP(z)  (0=z=1).

On the other hand, for neZ, there exists m(n)eZ such that &}Lllj?n(n)]zoo,
lzna(z)| =O(|»}) and

(IIL 17) | Am= ) = 1+o(m(n>)

where 7 is given by (1.14) (e.g. [10]. See (1.15).). Therefore we have
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Jfélzp“f(, Z72)”[0“[0.12I)2<00

II1. 18) iy,
( o bgzp”f*(, ‘2")”10%0.1312<00'

Thus, by means of the estimates (I.6), (I.7), (I.6) and (II.7)" in Lemma II.1,
and (II1.17), we see

SUp [ Mooy <o0 and sup 162 Mgy p<o0 (=1, 2)
that is,
(1I1.19) suéa e al Mg <00 (E=1, 2)
ne.
Again, by (III. 17), we have

1 1
(111. 20) 2= O(W) (as |n]—co).

Applying (II1.19) and (III. 20) in (III.14), we reach

1 o 1
, Y —1 2
{\ bte, 105 C, Tidw=1-1 +0( )

which proves (III.8).
Next we proceed to a proof of (III.9). First we will show

(LIL.21) GCs )y ¢, =2N#0  (meZ).
In fact, assume that
(111. 22) (@Cy Ang)y ¥+, —2ng))=0  for some n.cZ.
Then, by Lemma III.1, we see
(@0 Ay $¥C, =In))=(Ap.a g (, Am), $¥(-, =Tag)
=(@(, In)y Abina 9%, =) (by (IIL.6))
=(p() Iy dng $*(-, —ng)) »

so that we get

(III. 23) (¢(', /{m)) ¢*('y "‘Zno»:O f07’ each MFM .

Combining (III. 23) with (IIL. 22), we have (¢(-, An), ¢*(-, —in,))=0 for each meZ.
Therefore, noting that {¢(-, dn)lmez is a Riesz basis in {L*0, 1)}* we see
¢*(-, —2ny)=0, which is a contradiction. Thus we see (III.21).

Now we complete the proof of (III.9). The asymptotic behavior (III.8) and
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|21 imply that |p.|=M{:>0 for each |n|=N,, where N, is sufficiently large.
On the other hand, M(§=m1n|p"|>0 by (III.21). Therefore, setting M=

min{M},, M}, we see (IIL 9) * This completes the proof of Lemma III. 2.
Second Step. In this step, we show

Lemma II1.3. For neZ, we have

(I11. 24) l16C-s 2l goro,me =Mis

(IL. 11) bis 6C-s 1) =6Cs Al gopnme = Masl n—2al

(I11. 25) (e, ) —9Cy )l iprpeme S Miu(n]+1)] pn— )
(II1. 26) *(s =2l gorome =Mis

and

(11L. 27) Ng*Cy =2l npoe =Mua(in] +1).

Proof of (II1.24). By (II.10), we immediately get for neZ,
llgCy Al igogo, e =201SH o HNTU Ay Aadlligugg, e
Therefore, by (I1I.9) and (II.6), we obtain
H¢(.y '277-)”[00[0_1312 éM;'l“f('y 271)”(00[0.1]]! (nGZ),

which means (III.24), in view of (III.18).
Proof of (I111.25). Since ¢(-, 2) satisfies the differential equations in (2.7),
we get

LGl )=, 1)

= "pl(x)(gbl(x: /“n) . ¢1(5?: 277»)) “pﬂ(x)(¢2($’ [ln) —952(-7"7 Zﬂ))

-+ }ln(¢2($ ’ /Jn) “qba(iv, 2a))+ (,Un “‘27&)¢2($ y An)
(111 28)

%%(w, pn)~pe(x, An))

z—a($>(¢1(1’: #n>—¢1(-77, ln))"b(w)@z(f‘?; /l'n)‘—¢2($: )
+pnlpslz, pn)—di(@, )+ (pn—A)pi(z, 2)  (neZ).

On the other hand, since|un|=|pn—7Anl +|2u]l 80+ 12nl DY |ptn—2n| S6o=
mZ_ﬁ (| tm— 2m| + | i — 25, we have

(111. 29) lunl S0+ 7| +0(|n])  (neZ)
by (I11.17).
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Applying (IIL. 24), (II.11) and (II1.29) at the right hand side of (III.28), we get
lldlgs(-, m)—gi(-, DAz o+ d@o(-, )= ga(+5 a))de]] o
éMu(ln"*'l)‘l«‘n"ln' (neZ),

from which we see (III. 25).

Proof of (I11.26) and (I1.27). We can prove (IIL.26) by a way analogous
with the one in the proof of (IIL. 24), noting (II.10) and (II.6)’. Next we proceed
to a proof of (III.27). Since ¢*(-, —2,) satisfies (2.8), we have for each neZ,

G —20) gt (0, — )+ 2u( ), )=, — )
(1I1. 30)
*, —
B 20) )b, )X, — 2=, —In).

In (III.30), we apply (IIl.26) and the asymptotic behavior (III.17) of 2, so that
we have

g, —2a)ldall o+ ldgt(-, —Mn)fdlall o = Miu(lml4+1).
This completes the proof of (III.27), and so Lemma III.3 is proved.
Third Step. We set
(I11. 31) 2z, V)=(Zij(x, Yz ise

= 5 8@ pn)—§(@, In)

n=—co ‘()n

) (2 9l 1T).

Then Z(z, y) is well-defined and has the following properties :

(II1. 32) Z(-, e{CY0, 1M

(I11. 33) Z(+, )e{CY([0, 1™}, if d<eo.

(111.. 34) Zz, y): real-valued.

(1II. 35) Bz, pn)=9(z, 1n)+S:Z(m, Vo, mydy  (0=z=1, neZ).

The purpose of this step is to verify (III. 32)-(III. 35).
Verification of (IIL.32) and (I11.38). First by (II1.9) of Lemma IIL 2, we see
(111. 36) loal =M.
By (II.11), (III. 26) and (III. 36), we have
IGBCy pm)—BC-y Aa))-*6%(e, —Zndl onll pogo, e
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=|oa|™ max |(¢uz, pe)—dilz, NGy, =) EMIMG pn~2|  (n€Z).
051‘3’»1
Since i lpta—2n) £8,<co, the majorant series for the right hand side of

(II1. 31) is convergent. This proves (I111.32). By (IIL.25), (I1I.27) and (III. 36),
we can similarly see (III.33).
Verification of (1I1.34). We show

Lemma L. 4. The equalities

(I11. 37) oz, H=c¢(z, 1)
and
(I11. 38) ¥z, H=¢*(x, )

hold for 2eC.

Proof of Lemma 1. 4. Since, by the definition, ¢(x, ) satisfies (2.7), noting
that P(x) is real-valued and ZeR, we have

( d¢(x’ DD | payile, H=1m D =)

)
¢1 ———Il'

On the other hand, by (2.7), also ¢(x, 1) satisfies (II1.39). Therefore the
uniqueness of solutions to the initial value problem (III.39) means (III.37).
Similarly we can prove (IIL. 38).

(111, 39)

Now we return to the verification of (III.34). Let us recall that the integer
N, is given in (1.16). By Lemma III. 4, we have

AL40Y 30, mm=g(, )y 9, I)=¢(+, Za) and ¢¥(-, —2)=6¢*(:, —2n)
nzN:+1).

By the conditions (1.16.2) and (1.23.2), the equalities (III.40)" imply

(WL40)  B(, @) =¢(-, p-u)y B )=9(, An) and -, —Z)=g*(, —2on)
(nzN+1).

Furthermore since p, is given by (IIL.7), we see by (IIL.40) that

(II1.41) On=p-n (n=N.+1).

On the other hand, by (1.16.1) and (1.23.1), the equalities (III.37) and
(I11. 38) imply that



Inverse Spectral Problem 105

(I11. 42) B, ), 60y A), %, —2n) (=N, =n=N,): real-valued
and hence
(111. 43) om€R (—N=ns=NY).

Since the series at the right hand side of (II.31) is absolutely convergent
as is seen in the verification of (III.32), we have

A, )= 3 O@ ) =42, 20))¢*y, —In)

n==N On

+ lim

N-voo n=Ny+1

(¢(z, pn)—P(z, An))'9*(y, —2n)
On

L O, )=, 1), zn>>
On

by (I11.40) and (III.41).

Therefore, noting also (III.42) and (I11.43), we can see that Z is real-valued.
Thus (IIL. 34) is verified.

Verification of (1I1.35) Since the right hand side of (IIL.31) is uniformly
convergent with respect to (x, 7)€[0, 1%, we have

[, 2o, wiptw, 2y

=5 W "’)—mgb(m’ /lm))S: ¥y, — gy, In)dy

m==e p
=@, )= a, 2N(2 95, <200, W) (neZ).
‘ Pndo
Here we use the equalities
(111. 44) Sl Gy, —2n)P(y, WAy=(@(-; W), $¥(w, —Ia))=0  (n¥#m),

which are derived in the same way as (III.23).
Noting the definition (III.7) of p,, we obtain (IIL 35).

Fourth Step. Let us define an operator F from {C°[0, 1]}* into itself by
1
(I1L. 45) (Pua)=\ 2w, oudy  O=wsD).
0

Henceforth .£(X) denotes the set of bounded linear operators defined on a Banach
space X to itself.
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The purpose of this step is to show that

(111. 46) (L+F)"eL({C0, 111»

and

(II1. 47) 1+F)te LUCT0, 1119, if 6<c0.

To this end, we have only to prove the facts:

(111. 48) F is a compact operator on {C°0, 1]}*.

(111. 49) F is a compact operator on {CY0, 11}3, if 6<o0.
(111. 50) —1 is not an eigenvalue of F.

In fact, by the Riesz-Schauder theorem (Yosida [15, p.283], for example), by
(II1. 50), the facts (I11.48) and (II1.49) imply (III.46) and (IIL 47), respectively.

Verification of (I1I1.48) and (111.49). Let us consider any sequence {#n}na:
c{C[0, 1)}* such that {||#a)| olnz1 is bounded. Since Z(:, -) is bounded and uni-

formly continuous on [0, 1] by (III.32), we see that {||Fal|olnz: is bounded and
that Fu, is equi-continuous with respect to #, that is,

}ig;n sup |(Fan)() — (Fun)(2")| =0.

1=’ |<s

Therefore, by the Ascoli-Arzela theorem, {Fus}us: contains a subsequence con-
vergent in {C°[0, 1])?, which means (III.48). We can similarly prove (III.49) in
view of (111.33), provided that g<co.

Verification of (II1.50). Regarding F defined by (II1.45) as an operator on
{L¥0, 1))?, we can easily see

(I1L. 51) (Fraa)=\ Za, vty

Here F* is the adjoint operator of Fe L({L*0, 1)}*). Therefore we have o(F*)
=¢(F). Thus, in order to verify (IIL 50), it is sufficient to show that

(T11. 52) u+F*u=0 implies ©u=0,
Since {¢(-, In)lnez is a Riesz basis in {£*(0, 1)}* (Russell [10], [11]), we can expand
u. u= fi cug(+, ) for some c,eC (neZ), where this series is convergent in
N=m—ca
{L¥0, 1)}2. Hence we have
(IL53) 0=(l+F*u=_ 2 ol +FR(-, I
(by the boundedness of 1+F'*)
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=§ Cap(+5 ftn) (by (II1.35)).

Since as is proved in the part (I) of this lemma, also {¢(-, un)inez is a Riesz
basis in {£2(0, 1)}?, it follows from (IIL. 53) that ¢,=0 (neZ), namely, #=0. This
proves (III. 52).

Fifth Step. Let us set
(I11. 54) (,bm—_—_—(l—l-ﬁ) O*, —A)  (neZ).

Then we can verify that ¢ satisfies (2.18)-(2.22).

Vem'ﬁcm‘ion of (2.18) and (2.19). We see (2.18) by combining (III.36),
(II1. 26) and (I1I.46). If §<co, then (UI.36), (111.27) and (II1.47) imply (2.19).

Verification of (2.20). Let us consider {C°[0, 1]}* as a real Banach space of
all real-valued C-functions. Then, by (III. 34), we can regard F as an operator
from the real Banach space {C°0, 1]} to itself. Therefore (14 F) 'u is real-
valued for real-valued we{C°[0, 1]}2. Since p,eR and ¢*(-, —2,) is real-valued
(=N, =n=N,) by (1I1.42) and (III.43), also ¢ is real-valued for —N,E=n=N,.

On the other hand, since ~¢*( y =)+ = L @*(+, —A-ny is real-valued for
On

-1

n=N,+1 from (III1.40) and (IIL.41), we see that

also ¢+ =(1+F)" (__9)*( -2,,)—[» G*(-, -wtn)) (= N,+1) is real-valued
o

and so, we get (2.20).
Veriﬁcaﬁon of (2.21), First we have
(I11. 55) (A+F)y =1+ F*,

where the operators are considered in the Hilbert space {L3*(0, 1)}* (Kato [5,
p.169], for example). Now we get

(BCs by O3 2o e =(6C-, /en)’ == (1+F> 1¢*( =)
z_!,)l__«H FR (-, )y (., :7,;;)) (by (II1.88) and (III. 55))
2%(q;(,, )y 5, =) (by (II1.51) and (IIL.35)).

Therefore, in view of (IIL.7), for the verification of (2.21), we have only to use

(I11. 56) @, 2y 5, TIN=0  (nm),
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which is nothing but (III. 23),

Verification of (2.22). Since {(-, pa)lnez is a Riesz basis in {L*0, 1)}* from
the part (I) of Lemma 3, the biorthogonality (2.21) implies that also {¢P}nez is
a Riesz basis in {L*(0, 1)}* (Gohberg and Krein [2, p.310]). Therefore, for each
we{L*0, 1)}, we have

(I1L. 57) u= Z: cmgb“’ in {LX0, 1)}%,
for appropriate ¢,eC (meZ). Then we get

(H ¢( ’ /“77))" Z Cm(‘;[’(n ¢( ’ /"17«))_' Z le)mn (bY (221))

=Cn,

which implies (2.22).
For (I) and (II) of Lemma 3, we can proceed similarly, Thus we complete
the proof of Lemma 3,

Appendix IV. Proof of Lemma 4
(I) Proof of (2.25)-(2.28). We have for 0=sy=1,

lan(@)¢i(¥) — ba(@) P (W)
=(1aa(@)] +16a(@1) - max {1192l oo,y > 195 1goro, e}
=My(len(@] +[0a(a))
by (2.18) and (2.18) in Lemma 3. Therefore, by (2.16) in Lemma 2, Wé get

av.n Z |@n( @)L W) —bal@ P W)

=M 5 (Ian@)| + o@D =Mty (0=y=1).
On the other hand, since the equality

=i (e (| @) -pionds) +1-7)

x (<H*+1> exp (S (2s)—1(5)) ds) FL=F ) xexp (— S (@s(5) —5e(5)) ds}
holds, noting that |lge—psll 0=, we have

(Iv.2)

(IH+1|eM+ [I=HD(H*+1|e¥ + |1 - H*|)| -2

=M.

l] 7= H- H*
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Combining (IV.1) with (IV.2), we see llewllgoy llesell o= Mido.  For ca and ¢y, We
can proceed similarly, so that (2.27) is proved.
In a manner analogous with the one in (IV.1), we get

(Iv.s) Il 3 (@l @)~ b DFPC N iy EMM0,

in virtue of (2.19), (2.19) and (2.17),
The inequalities (IV.2) and (IV.3) imply [leull s Il =Mid. For co and cu,
we can proceed similarly, Thus we complete the proof of (2.26)-(2.28).

Next we have to prove (2.25)., From (IV.1), we see that the series at the
right hand side of (2.23) is absolutely convergent, Therefore we can rewrite
(2.23) as

V-4 N S % R S S0
(Iv.4) et ) TT—J* "‘—“Z’":Nl ang)dr (y)—T:f*_ nEy, 7 QoY
+—-——1—— lim fj (@alq) <x>< Y+ - @)
J—=T* Nosw n-F+ D Pn (Y -a\G)P=n\Y

S lim 5 G+ b))

—T:F Nows  n=H,
Applying (III.40) and (II1.42) in the definition (2.9) of aa(g), we have
(IV.5) (@) =a-n(g) r=N,+1) and au(g)eR (—N,=n=N)).
Similarly we can get
(IV.6) ba(@) =b-n(g) (nZN,+1) and bu(g)eR (—N.Zn=<N,).

By using (IV.5), (IV.6) and (2.20), (2.20Y of Lemma 3 in (IV.4), we conclude
that ¢, and ¢y, are real-valued functions, Similarly we can prove that ¢, and
Cep are real-valued. Thus the part (I) of Lemma 4 is proved,

(L) Proof of (2.29). In view of (2.9), (2,10), (2.16), (2.18), (2.18Y, (2.23),
(2.24) and (II.19), (I.20), (IV.2), we have only to show that, for each

g =" g’)edn (=1, 2),

av.n 2 exp(é-gz (@)= £+ i)~ ()
% ((H+ Dexp (Sl ()~ p@)ds) +1 —H>“1

—2exp (-;-S @(5)~ po(s) +p1<s>—qu><s>>ds)



110 Masahiro YamamoTto

x(@H+nexp (), @ ©-pisnas)+1-1) |

=Mullg -q(ZDH‘COCo,IJJE ’

(V.8) lf(q<‘>>—lf*<q<*>>' J(q”’)if*(q(”)
=Muallg —a® Nl gogg 0

av.e gy =J@®), 17%@™)—T*g™)
= Miallg™ =gl gugg 1y

and

(IV.10) @I, J¥@)| =M.

Proof of IV.7). We have
|[the left hand side of (IV.7)}|

=' <<H+ 1)exp (S: (@(s)— Ms))ds) +1 —H)A
X ((H-+‘1) exp (g: (@(s)~ pe(s))ds> +1- H)”' |

. |2+ exs (£ @©-+a206)+ 21053 pulo)as)

0

1
0

x{exp (34 @@ -aronas)—exo (3, <q;“<s>~—qfﬂ><s>)ds)]
+2(1—Hexp (%S: (hr(s)— ;Ms))ds)

o (3. a0 o) |
= MR H +1exp @M+ ||l go+ 122l o) +211 — Hlexp (M-+ ||l o+ 1123l o))
XNg™® =1l gogg, >

by (2.14) and the mean value theorem for ¢®. This shows (IV.7).
Proof of IV.8), We have

1 , 1
T =T Ta™ =T
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1
A -

(H+1)(H*+1)exp (— S: pg(s)ds)

X <exp ( S: q§“(s)ds> - exp(S: qé"’(s)ds))

+{(H-1)(H*—1)exp (S: pg(s)ds)

<o (-] ) (- )

(by (2.11) and (2.12))

1 —
AH—H

=

<i(H+1)(H*+1)leXP @l1pall go+M)llg —ai®ll o

+I(H~1)(H**Dlexp(zHPaHCo+M)Hqé“—qé”llco) )
(by the mean value theorem).
This shows (IV.8),
Proof of (IV.9). We have
1/lg™)—T(g*™)]

= I(H+ 1)exp (\: (g(s) “Pz(s))d3> +1-H I—1
" l (T +1)exp (S: (@(s)— pg(s))(ls> +1;f] ]*1

X 2 l (1—H%exp (—- S‘: pg(s)ds) (exp(S; q§"(s)ds> —exp(g: q§”(s)ds> ) '
=2M7 |1 —H*exp @l|pell o+ MD)lgt” — ¢8|l

6‘0’

by (2.14) and the mean value theorem, For [/*(¢*?)—T*(g®)|, we can similarly
carry out a proof, This completes the proof of (IV.9),

Proof of (IV.10). By using (2.14) in the definition (2.11) of J(g), we get
=i+ Vexs ([ @ —pionds)+H-1| SO +1ler + 171,

which implies (IV.10) for |/(g)|. For |/*(g)], we can proceed similarly,
Thus we complete the proof of Lemma 4. ‘ -
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Appendix V. Proof of Lemma 5

Let us set
(V.1) 2i=((w, )i 1-a<y<a,~<a<1)
and
(V.2) 2:=N\Q\{(z, v); 1—z=y}.

As in Appendix I of Yamamoto [12], putting

Li(z, =Lz, v, ¢, ¢ D)=Kulz, ¥)—EKu(=, v)
JLz(x, Y=Lz, ¥, @& @ D)=Ku(z, v)— Koz, v)
Lo(z, v)=Lsz, ¥, @1, ¢, D)=Ku(z, ¥)+Kee(w, v)
Lz, v)=Lu(z, ¥, @1 & D)=Kiz, ¥)+Kulz, v)

(V.3)

((z, v)e),

we can rewrite (2.34)~(2.36), so that we obtain (V.4)~(V.6):

aLz<$, y) B aLi(-’L', ?/)__ .
(V.4) oz +d; y =fiz, v, L, Ly, Ls, L)
(=, v)e?, 1=i=4).
Ly(x, 0)=kL(x, 0)+IL.(x, 0)
V.5 {
Lz, O=—IL,(z, 0)—kLy(x, 0) 0=x=1).
(V.6) Ly, v)=n(y) 0=y=l, 1=i=4).

Here we set (V.7)~(V.11):

-1, if i=1, 2
V.7 5i={
1, if i=3, 4.
(V' 8) f’l(xs Y, L!s LZy Lg, L4)=fi(x, Y, Ll, LZ, ,L% Lé, 1y Qz)

=7, auf@, v)Liw, v) o (@, ved).

aue, D=(e, % @ @) =5 (—bY)—Ai0)—hz)—~a()
@@, V=i, U, G 6)=5 (~a)~$iy) +a(z) +2a)

@ule, V=@, ¥, Gy 6= (—aW)+Pu)+a(@)—0:(w)
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4@, V=aulz, v, gy 6=+ (B0)—2:(0)+H(w) (o)

Gnla, ) =an(a, U, @ 6) = (—a)~p:0) +a(z) +i(2)
G, V)=u(a, v, Gy 8)=5 (~0) =1 @) ~H(o)—0(x)
@, W) =an(a, U, Gy 4= (—b@)+P0)+ba)~0:(2)

(V.9) @z, V)=, ¥, ¢, ) =% (a(y) —po(y) +a(z) —q:(z))

an(z, VI=aulz, ¥, ¢, q;)=é—(—a(y)+pz(y)—a(x)+qz(x))

o, V)=, v, an qz>=—’é-<b<y>-pl<y>+b(w)qu<x>)

@@, V)=an(a, v, @ 6)=5 G@)+5:0)—b)—0:(=)

qz>=%(a<y>+pz<y>—a(x)—qxx»

alz, Y=au(z, 4, @y @)= (~b(y)+u(e) +H(z)~gu(a)

a34(‘z! y>-——:a34(x) Y, 41

-

aw(x, Y=au(e, ¥, ¢, ¢)==(@@W)—pv)—a(x)+g(x))

= oo

auz, Y)=au(z, ¥, ¢ q2)=—5 (a(y) +D:(y) — a(x) — ()

au(z, V=au(z, ¥, ¢, q2)=%(b('y)+1>1(y>——b(m)—qn(x)) (=, p)ed).

-

=2k 1R
(V.10) k=g ad =9

r(y)=ry, D)=du(y)—du(y)
r(y)=ry(y, D)=du(y)—duly)
75(y)=7:(y, D)=du(¥)+duly)
r(y)=ry, D)=du(y)+duly) O=y=1).

(V.11

We will prove Lemma 5 separately in each of 2; and ;. In &, our problem
(V.4) and (V.6) is a Cauchy problem and, for thé unique existence of solutions,
we can refer to Nagumo [8] and Petrovsky [9, pp.67-73], for instance. More-
over, in this lemma, we have to prove the estimates, which depend upon the
Cl-norms of p; and the C’norms of g; (i=1, 2),

Proof of Lemma 5 in £2,. First we show
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Lemma V.1, Let f(x, y) and ——222L Df( v) be contimwous functions on £, and

satisfy

(V.12) \f(z, W) So(z) and 1‘”’ (e, y>]</zca«> (@, 1))

for some g, /zeC“[—;-, 1J. Then, for each acC'0, 1), there exists a unique solu-

tion weC\2,) to each of (V.13) and (V.13) :

or

oy

+ flx, ¥) (2, W)eD), w(l, v)= a(y) O=y=1).

, 0wz, y) oz, y)
(V.13) = .

+1(z, v) (=, v)ed), u(l, y)=aly) 0=y=1).

Moreover the solution to each of (V1.13) and (VI.13) satisfies

(V.14) e, )5 lellpo+  a(s)ds O (a Wed)
and
(V.15) 2D <l r+ {5y (@, D).

Proof of Lemma V.1, Since the solutions # to (V.13) and » to (V.13) are
represented in the forms

u(z, y)=a(:lf+y—1)+s f(s, —s+ax+y)ds ((x, v)ely)
o1
and

oy Y=all—atn)+| S s=ato)ds (@, el

respectively, we can immediately see this lemma.

In 7, as is proved below, the solution L; (1=i=<4) to (V.4) andv‘(V. 6) is
given as the limit of uniformly convergent sequence {L{"}nze (1=i=4) defined
inductively by (V.16) and (V.17): :

(V.16) Loz, »)=0 ((z, v)ely, 1=i=4)
L (1=i=4) is the solution to |

ALz, y) +5; LMz, v)
dx } oy

=@, v, LO, LoD, L0, L) (@, 1)e)

(V.17)

L, y=r(y) (0=y=1).



Inverse Spectral Problem 115

In view of Lemma V.1, the sequences {L{"},-0C:CY@)) (1=i=4) are well-defined,
Furthermore we will prove the estimates

MM (L —x)"

(V.18) L, 1)L, )] = 2
and
(V.19) (LG, 9) AL, ”i - Mo —2)"

v (&, 1)ely, n=0, 1=i=4),
where

4

(Mo=max % (e, +118ai1/3)lpo,)

(V. 20) .les) ={2i§ Hrjngom,lj

ﬂfao:g?ﬁ W7l orgo.ss -

Here we see that My is independent of ||dgi/dzl|,y,,, (=1, 2), as is see from
the forms (V.9) of a;; (1=i, j=4). That is, for (g, g.)e.Ax, we have
(V 20 Mis=Mo(M, “P”(m[o,llﬂ)'

Now the proof of (V.18) and (V.19) is done as follows, For =0, we im-
mediately see (V.18) and (V.19). Assume that (V.18) and (V.19) hold true for
n=m. Then since

7
(L L) (g, )~ (LD — LY, )
dx 0y

= j}.’j}l @iz, WYL (e, v)~Liz, v) (2, ey, 1=i=4)

and (L2 — Loy, ¢)=0 0=y =1, 1=i=4), by (V.18) and (V.19) for n=m,
we can put

. MlgM%H(l "‘.%')m
- m !

Moo H (1~ )™

and Mz)= oo

()

in (V.12), so that we get

22, =L, )| PRI g M e

m! (m+1)!
and
’ OL{™ ™ (z, y) AL (x, y) l< S‘ MM 3H(L—5)" ds= MM (L—2)™"
oy dy =)z m - (m+1)!
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in view of Lemma V.1, Thus, by induction, we obtain (V.18) and (V.19) for
each n=0,
By (V.18) and (V.19), for 1=i=4, the series

M8

(Le (@, =L, ) and § (00 oL )

oy oy

3

=0

oLz, y)
oy !

vergences are uniform with respect to (z, y)e2,. Therefore we see that

oL
9y
uniformly with respect to (z, y)el;, so that L;eC' (@) (1=i=4) and L; 1=i=4)
satisfy (V.4) and (V.6), Furthermore, by (V.18), (V.19), for 1=i=4, we get
the estimates

are absolutely convergent to Li(z, v) and respectively, and the con-

J— (1),
Li, Lieco(@). By (V.17), as n— oo, also _a_;__a_(:g__

po v) (1=<i=4) are convergent

(V' 22) ”Lillau((»l)éel{m Ig?éi H?,J'Hgo[n,lj s
(V.23) L /ooy S 85 17

and, by (V.4),
(V'24) ”aLi/am‘“gD(Ifl)§HaLi/ayHCU(Fl).*_“fi(" y Ll: Lﬁ; L3! L4)“gl)(g"l)

. ‘ b's
el e 1731l grgo, g+ Mas €728 Tagm sl o -

The estimates (V.22)-(V.24) show the inequalities on 2; corresponding to (2.37)
and (2.38),

Next we proceed to the proof of the estimate corresponding to (2.39) in ..
To this end, we have only to prove

(V‘25) “Li(') ) qgl): qgl)s Dl)—Li('y ) 452), qu)) DE)HGO(!)_;)
<4, (1Dl g+~ +ID1= Dell

for (g™, gi™eAx (m=1, 2). Here and henceforth, for brevity, we set
ag dy?

Dp=
(V.26) s dge
Lm.i(“;: y)zL‘i(m: Y, an)’ qgm)3 Dm) (ZBGDT, 1§i§4) m=l, 2)-

) (m=1, 2)

Since for m=1, 2, the functions L, ; (1=i=4) are the solutions to hyper-
bolic problems similar to (V.4) and (V.6), we have equations with respect to
Ll,i’Lz.i (1§i§4)3
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a . 0
(v.27) g L= La)z, y)+015y— (L1,s=Ls. i)z, ¥)

4
=jZ=:l (lij(x, Y, Q§l), qgl))(LlJ_L?nj)(w: y)

4
+jZ::1 (aij(x: Y, f]?), 515”)—(11‘1‘(1"; Y, qE2)3 qu)))Lg_j(fL', fl/)
(2, v)ey, 1=i=4)
and ‘

(V.28) (Lii=Lo )L, v)=ry, Di)—rdy, D)  (0=sy=l, 1=isd)
Then, since (z, y)e@; implies 1 —x=y=x, we have
|[the right hand side of (V.27)]|

=Mz max max [(Ly,;~La )2, 9)]

1$/s¢ 1-TSYET
4
+ 2 e, - @, @) —au(, - g, @)l goXmax ||y ] o
= ) 15784 d

=M;g max max [(Ly,;~Le Xz, ¥)l
18784 1-2EYST

+4e%3]| Dol oy 131057 = @ ooy 11687 =@l oy 1)
(by (V.9) and (V.22))
=¢(x).
Applying Lemma V.1, we get
(V.29) max |(Ly,i—~Ls)(z, y)|

=lir(-, D)7+, Dz)“gom,ﬂ“i‘S;G(S)dS (1=i=d).

Let us set O(z)=max max |(Li,:—Le.o)(z, ).
15154 1-Zalsy

Then (V.29) is rewritten as

ox)= ( {Islfgf (e, D=7+, De)ll gogy,i
+465)| Dyl gy 1,108 — G| g g+ 152 ~4%”Hco>>

! 1
+M1sS a(s)ds (Eéwél) s

which implies
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(V.30) o)z max (-, DI=7i, Dol

1
4Dl 08~ o+ 0=, ) (=051,

by Gronwall’s inequality, The inequality (V.30) is equivalent to (V.25), the
conclusion. Thus in 2,, we complete the proof of Lemma 5,

Proof of Lemma 5 in 2, In Q,, we have to consider a hyperbolic problem
(V.4), (V.5) and

(V.31) Lz, 1—a)=by(z) (—é—.\;:cg, j=3 4) .

Here and henceforth we set
(V.32) ba)=Liz, 1-z)= lim Lz’ o) (—]z;gx_s,l, j=3, 4),

where L;eC(3,) (j=3, 4) is the solution to (V.4) and (V.6),

As the approximate sequences for the solution in 2., let us inductively
define {L{™}nao (1=i=4) by (V.33)~(V.35):

(V.33) Lz, y)=0 (2, y)els, 1=i4).
Lz, 2)

xr+y
=Sm+y (=kfs=Ifs, s—a—y, Li®, Li®, L{®, L{)ds

T
+S Fils, —s+aty, L, L@, Lo, LMds

ziy

_kba(l-f-x-!-y) _154<Lt‘zﬂ)

2 2

(V.34 “
Lgn-)—l)(w’ y)

T+Y
=g1+m Ufstkfis, s—a—y, L, Li®, L, L{M)ds
2

x
+S Fals, —s+aty, L, LY, L, L{M)ds

Z+Y

+st<—]:i¢gﬂ> +kb, (1+.;+y> ((z, v)e@s, n=0).

(V.35) L, »=b( 52
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&£
iay Fls, 5=y, Liv, L, L7, L)ds

(2, 7)€, 0220, i=3, 4).

Obviously we see that {L{}n., (L=i=4) are well-defined and L eC'(7;). More-
over, by induction, in a way similar to (V.18) and (V.19), we can obtain the
estimates :

(V. 36) L{’H'l)(m’ ,y)___Lin)(_,L,, ) lg A{%]‘li(}""”)n
(2, v)el2;, #z0, 1=i=4)
and
aL(n—H)(,L,’ ?/) aL(’n)( x, ?/) MMA,_{?a—l(l__,.x)n—l
V. ; w5 =1

(=, e, nzl, 1=i=4).
Here and henceforth, we set
4
Moy =(|&] +10+1) max 2, llaiill gogsy
M =(k|+ 1] +1) 1}153\74( ”bf”m[u.g.q

A’IZG:'Zle(IkI + IZH']-)

(V.38) L x(max 3 eyl e+max 3 lla/oyl o+ 1)
15i54 J=1 18084 F=1 -
+ My

Mo =30+ 1] +1)* max 104 gy

X (max Z ”awnca-i-max Z 'laatj/a?/llco+1)

15884 f =1

From the forms (V.9) of a;; (1=i, j=4), the constants M,y and M, are inde-
pendent of |ldgi/dxll 0 (i=1,2). Hence we can rewrite My, M, Mo and M,y as

Moy =Mu(M, [|P] 00 1)

| M=l 11+ D max [l gy

(V.39 :
Mgy =Ma3(M, ”P”Ch )

Moy=M(M, [|Pl] 5 ) Iﬁfgﬂlbﬂlc%l]

By (V.36) and (V.37), the series ga (L0 (z, ) — L2, v)) and
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@ QL (x, y) oL{™(x, v) : oLz, y)
HZ,;O( 5 3 ) are absolutely convergent to Lz, ¥) and oy
respectively, and the convergences are uniform with respect to (z, y)ef,, that

L, %%EC“(E) (1=i=4). Moreover, letting #—co in (V.34) and (V.35), we get

z4y
L, 9)=seny (~8Fo= 176, s=a—, L L Lo, Lids

-

wkba<l+;+y>~lb4<l+;+y> (@, V@)

+S fl(s, _s+x+yv Lly L2y L3! L4)ds
+Y

T4y .
(V_ 40) Lz(xa _7/):- S]_-«-__.:-*—_’g (lfs +k.f4)(s: S—z—Y, Ll; LZ: Ls, L4)ds

x
+S f2(3, ~—S+x+y, Lly L2y La, L4)d3

T4y

+zba<1_ﬂ£ﬂ/)+kb4<1+;+”) (=, 1)elD

L=, y>=g:_+i—_?_/'fi(3, s—x+y, Li, Ly, Ly, L4)ds+bi(l+”2”_y>

(@, v)ey, i=3, 4).

oL;
ox

Therefore we see that
and (V.31) in 2,.

Thus we have constructed L; (1=i=4) in the respective domains of 2, and
0, s0 that we see that there exists a unique solution L; (1=i=4) to (V.4)-(V.6).
In fact, to this end, we have only to verify that L; (1=i=4) are actually C' on
9,02, This can be seen from the fact that L; (1=i=4) satisfy the integral
equations (V.40) and (V.41) on @, and 2,, respectively:

€C'(2;), and hence L; (1=i=4) satisfy (V.4), (V.5)

Lia, 'y)::n(:c-}—y—-l)—}-gj Fis, —s+a+y, Ly, Ly Lu, L)ds

(V.41) (=, v)efy, i=1, 2)
L, y):?’i(——w+y+1)+gj Fds, s—w+y, Li, La Lo, Lds

((z, w)efy, i=3, 4).

Now we proceed to the proof of the estimates in 2.. By (V. 36), (V.37), (V.39)
and (V.4), for 1=i=4, we see ’
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(V 42) ”L’l“cro(ﬁi)éMZE(M ”P”{gl{o,mu h)xl}laa'i{ HbJHCO
and
(V.43) Ll =Mk, 1P gz B X 1ol

Combining (V.42), (V.43) with (V.22)-(V.24) and recalling (V.32), for 1=i=4,
we obtain

(V. 44) Ll o = MasCM, 1P a0 X 102X 1175 oo
and
(V' 45) ”Li“gl(ﬁ)gM25(M ”P “(gl[u,ljyﬁ ) ]Z) ngiagf ”rj”cl[o‘lj’

which imply (2.37) and (2.38), respectively.
Finally, in order to complete the proof of Lemma 5, in view of (V.25), we
have to prove

(V. 46) IECs - @, g8, D=L, -, @, @ Dl
= 0505 1 g X =0 082 =51
IO =00l g+ IOy ) (sizd

for each (g™, ¢Ye Jx (m=1, 2). Here and henceforth we put L.z, v)=
Li(my Y, ql(m), qéTn)’ Dm) ((53, ’y)GQ, 1:-<.~i§4: m=1; 2) and b§M)(x)=LM.i($; 1_1:)
(%:émél, i=3, 4, m=1, 2) (cf. (V.26)).

‘We show

Lemma V.2, Let f(z, y) and gi%i—@ be continuous functions in 2, and
satisfy
(V.47) |f (=, 0 =g(x) (z, v)ey)
for some geC0, 1. Then

(1) Let aeC‘[—é«, 1] and let ueC\(2y) be the solution to

(V.48) du(z, ¥) " ou(x, y)

o by = @) (=, v)e ), w(z,1—x)=a(x)

<—;—§m§1> .

Then we have
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(V.49) s ) SNl g ) o5 (o 1)),

() Let aeCY0,1] and let veCY(2:) be the solution to

(v.s0) ”-—””((;”y’ Voo ) (o w)eB), oo, O=a(z)  (O=w=1).

Then we have
1 e,
(V.51) [0z, y)léllallcm,nﬁg o(8)ds  ((z,v)ely).

Proof of Lemma V.2. By integrating the equations along the character-
istic curves, the solutions # to (V.48) and » to (V.50) are represented in the
forms

won=e( ZE) [ fesstnds (e

and

oo, =alo+n)+|  Fls —statnds (@ n)el).

Jooy

l4+z—y

5 =1 and z+y=1 for (x, ¥)ef;, we can immediately

Hence, noting that
see this lemma.

We return to the proof of (V.46). We note that on 2,, the functions
L ;—Ls; (i=3,4) satisfy the equations (V.27) and

(V.52)  Lye1—2)~Lo(m, 1—a)=b(a)—b(z) (—;; =1, i=3 4)

Since (z, v)e?,; implies 0 =y<min {z, 1—z}, we have
[[the right hand side of (V.27)]|

£ max ZI |@si(, v, ), @ XN (L, j— Lo 1)z, 9))|

0gYsminly, 1-2} J

+  max Zl%(m y,q?’,qz”)—-au(w,y, g, g8 X | La, (2, ¥)|

as¥smin(x, 1~}

EMymax  max  |[(Ly,;—Le, ), v

15754 02YSminie, 1-2)

*+ My max Il illeolllgt — gl eoro.n +11g6° — @8l ortonn) (by (V.44))

=q(x).
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Hence, by Lemma V.2 (I); we get
1
(o= L ] S0z [ = 0Py g+ ) a(5)ds
Taking the maxima of the both hand sides with respect to y¢[0, min {x, 1—z}],

we have

(V.53) max  max (L3~ L.,o )z, v)|

1=3,4 0SYsmin(x, 1-7)
<< A K@)
'-Ijlﬁziﬂbj b5 ”oo[%,l]

1

+M27§ max  max |(Lu;—La.)s, £)ds

Jr 15754 0stsmin(s, 1~8]

+ My glja:f 7Pl eolg e — g oo+ as” — a8l o) -

Henceforth we set

{m(x)':max max  |(Lyi—Laa)x, vl

(V ‘54) ‘ 1 i=3,4 0SYSmin(x, 1~x}

pe)=max = max  |(Lii~La)(z, v)].
isigd 0sysmin(z 1-2) o

Then we can rewrite (V.53) as . ‘
(V.55) n(@)=max 169 =0Pllpry,y

+ My max Pl eolllge® — gt o+ 11gs> — g5l o0)
1
+M”S As)ds Osz=l).

Next, in 2,, the functions L,,;—L,.; (=1, 2) satisfy the equations (V.27) and

(L1.1=La,1)(z, 0)
=—k(L;,3—Ls,)(2,0)—LLy,s—Le, )z, 0)
(L1,2~Lz.z)($, 0)
={L;,s—La s, 0)+ k(L s—Ls,)(x,0) (0=x=1).

Therefore we proceed in a way similar to (V.53), in view of Lemma V.2 (II)
and (V.44), so that we get for i=1,2

(V.56)

(V.57) max  |(Lyi—Lss)(, ¥

OS‘USmSn(m,‘l-m ) )
< (A]+10) max (Lo, = La, Mo+, O)

1

' +M278 max max '(Ll.j_LZ..%)(s’vt)lds

& 187S4 0Stsminis, 1-8)
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+ M max li7 3l oo, (1l ~ @l goro,a +11g8° ~ @82l o)

=%z +v)

+ Moz Imax 175]] gopo, 211 gt® — 2| oo+ 11g5° — g5 o)
1
+ M S o(s)ds (by (V.54))

< Vel +12)) max 155 bl oo

F M (1] + 171+ 1) max 7Pl eol g — g llo+ 18 — g1l o)

M+ 40 ( onas  (O=a=1).

In the last inequality, we use

1
e +y)§§na;xllb§”~ 52)1100+M278 7(s)ds
=3, Ty
Moy [Pl P+l —gPlle) by (V.55)
1
< max 16— 5§ lloo+ M| r(5)ds

+ M max ll7Plloolllg® — o +11a$ — g1l o)
' (by z+y=x).
By (V.57) and (V.55), we reach
1
@)= Mas 1 = 6l Mas | (6)ds
+Mzs max rPlloollg® —g@ll oo+ g —gPlle)  O=2=1),
which implies
(V.58) (o) =Mue¥s{(max |16 —0llo
+max [rPllolg? ~gPlloHld—aPlle))  0Sw=D),

by Gronwall’s inequality. Since

i??s}f 77('2):{]2?5)4( ”Lfr( ) Q§1): qgn’ Dl)—Li( R QI(Z)» gz), DZ)”C"’@;) »

the inequality (V.58) means (V.46), our conclusion. Thus we complete the
proof of Lemma 5. . ’
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Appendix VI. Proof of Lemma 6

Let @(z) be a fundamental matrix for the linear homogeneous system

d [#=) u(x))

VI.1 — =A O=z=1).
R & (u(x)) w(v(m) f5e=b
That is, @(z) is a 2X2 matrix and satisfies

d(i?(x)

= A()P(z) 0=x=1) and det @(x)#0 O=z=1)

(Coddington and Levinson [1, p.69], for example). Here let us recall that
—a(x)—b(z)+p:1(z)+pax)  alz)+b(x)—pi(x) Pa(m))
—a(x)+b(z)—pu(2) +he(x)  a(@)—b(z)+pi(2)—Pulx)

0=x=1).

A(x)—-w(

u(x) '
Then the solution ( ( )) to (2.42) with (2.43) is given by
oz

#(x)—1 z Ky, v)—Kuly, ¥) + Ky, v) — Kau(y, y)
(VI1.2) ( ) @(x)g "I(y)(
v Ky, y)— Ko(y, )+ Ka(y, v)— Ky, 'y)
0==z=1),

z)—

(1, p.74], for instance),
Now we proceed to

Proof of the part (I) of Lemme 6. By (V1.2), we have
(VL3)  lu(@)—1], lo(2)—1] 16| W’II«cozo,uﬂlW"Hmo:o,m«XI?E; K, )|
0=2z=1).
On the other hand, in view of (2.27) and (2,37), we have
(VI.4) 1K ligoeae = MM .

Therefore, if
(V1.5) 80 = (B2MM(||P | coro i X NP Higoro, s +10) 74,

then we obtain
(V1.6) ' (z)~1, lv(a;)-—ll-f—_%:- O=z=l).

which is the conclusion in the part (I).
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Proof of the part (IT) of Lemma 6. Since by

(-(5) omemn
Ay J=| | O=z=1),
1 0

(u(m)—l)

x)

v(z)—1

+(Kn(x, ) — Koo, 2)+ Koz, 2)— Koz, 2)

) 0=z=1).
Kii(x, w)—*Kzz({&, 2)+ Ko, 2)— Koz, x)

we have

u(z)
VLD T(vw)

Therefore we get
(V1.8) Hdu/dx”oﬂm ut “dv/d‘””caro 1

= Miy(max {jlz—1llgo, [lo—1]lcol+ max | Ki(z, 2)1)

051‘51

=M; max lKi,-(x, z)| by (VI.3).

DS£51

Next dlfferentlatmg the both hand 51des of (VI. 7) with respect to =z, we
get

2 (4@ dam) < <x)—1> 4 (M(x))
+ A(z)——
da’ (v(x)) o \wmy—1) D i)
+ d (Kn(.’l/', (E)—Kzz(JD, "E)'l“f{m(x, m)_Kax(SC, IL‘))
8 \Koi(, )~ Kus(, )+ Kor(z, 2)— Koz, )]

0=x=1).

Therefore by a way cimilar to the one in getting (VI.8), we have

(V1.9) lld*u{d z*|| o+ ||d*v|d || o

Estimating p1—7: and p.—7#, in (2.46) by using (VI.6), (V1.8) and (VI 9), we
reach (2.47) and (2.48). In obtaining (2.48), we note also that

dKif(z, @
=M, max{ max lK’z‘,j(x’, z)l, Jmax Kz, @)
s wpl  ds

Hd”/dwll%a+Hdv/deIGO——MomaX [Kis(z, $)12<Momax | Ky, )],

05-’551 szsl
which is seen from |Ki(z, 2)| =1 (O=o=1, 1=i, j=2) by (VI.4) and (VL.5).
Proof of the part (III) of Lemma 6. 'We. have only to prove
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(VI.10) l|du @ dz| g, ||doP[dal| =M, (=1, 2)
and '

(VL.1L) | H%“’—%‘”Halm 1 [ =P o115 SMM max IIQ”(x, )— Kz”’(x, x)l .
05115!.

If (VI.10) and (VI.11) are proved then from (2. 45), we can derxve 2. 52), the
conclusion.

Verification of (VI1.10). For ey (i=1,2), we get [IKD|lcogns=M:Mido
by (VI.4). Therefore, in a manner sxmllar to (V1.8), vve obtain (VI.10).

Verification of (VI.11). Smce (%P, p®) is the solutxon to (2.49) and (2.50)
(i=1, 2), it follows that (2P —2z®, p —p®) satisfies

) L 7(2) 1) gy
- ((u " ><~‘”))W A ((u ) (z)
(0 —v)(2) (02 ~0)(z)

dx )+d(-‘”) (Oéwéljr

(%U)'—%(E)XO) 0
d < )=( ) Here we set

(v —p®Y(0) o/ .
Kz, 2)— K@, 2)~ (KD (2, 2)— KLz, w)))
( K2, z)— K (@, 2)— (K“’(x, z)— Kz, x))
Kz, )~ K (2, 2)— (K, 2)—KP(z, )
( K (2, z)— K (2, 2)—(KP(z, 2)— K (2, z))

d(z)=

) (O0=2=1).

By the fundamental matrix @(z), we have

() — @) () 2
=0 0wy 0=e=1),

CREND€) '

so that we can easily reach

(VL.13)  [lu® =@ |lot o 0@l oo = Mo max | K, 2)—Kif (2, 2)] -
OS:L‘S

Using (VI.13) in (VI.12) and noting that

lldllv=4 max | Kz, x)— Kz, 2)l,

we can obtain a similar estimate for ||du® —u®)|dx||eo+||dw® —v®)/dz||c .

Thus (VI.11) is proved, and the proof of Lemma 6 is-completed.



128 Masahiro Yamamoro

Appendix VII. Proof of Lemma 8

Since uneo(Ag.n.as) eZ) by (2.59) and o(Ag, 1.s)=0(Abrs) and ¢*(-, 2) satis-
fies (2.77), we see that ¢*(-, —u,) is an eigenvector of A¥,, associated with
the eigenvalue u, (eZ). That is,

(VILL) Al na* (-, = ) =pad*(-, = pin) -

Here we recall that

_ (0 Naww |,
(Aé.h,m)(x)w—<1 0)~3;~+ Qx)u(x) |
and
.@(Aé,n,l)={w=<ul)e{ff 10, DF; uz(O)—-/zu1(0)=uz(1)~fz;1(1)=0}
Uy

(cf. (IL.5)). Thus the part (I) of this lemma is proved. .
Next we will prove the part (II) of this lemma. 7To this end, we define a

transformation 7 in {L*0,1)}* by
(VIL.2) (Tf)z)=R(2)f (z)+ S Kz, 0)f@dy  (0=zsl).

Here R(z) is given by (2.64), (2.65) and K(x, y) is the solution to the problem
(2.34), (2.35), (2.62), (2.63).

Since R(x)~' exists for 0sxz=1 and Ke{CY(D)}, by applying the routine
argument for Volterra’s integral equations of the second kind (for example,
Yosida {14]), we can show that 7! exists and is bounded in {L*0,1)}*. In fact,
setting

KM (g, y)=—R(x)"K(x, v)

K™z, y)=— Sy R(a)K(z, DK™z v)dz  (nz2),

we see that the series ,)E,’IK‘"’(w, y) converges absolutely and uniformly with
respect to (z,v)e?. Let us put
Dz, )= K™ (z,9)  (z,v)ed).

Then we have I'e{C*)}* and
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(T F)a)=R(z) " f(z)+ S Mz, )R f)dy  O<o=<1).

On the other hand, since (2.66) is nothing but ¢(-, p)=T¢(:, pm) (n€Z) and
{¢(-, ptn)tncz is a Riesz basis in {L*0,1)}* by Lemma 3 (I), it follows from the
result in Gohberg and Krein [2, p.309] that also {¢(-, zn)}nez forms a Riesz basis
in {0, L)}

Therefore we have only to prove the expression (2.79). The function
(-, un) satisfies (2.67) with A=y, and pneo(Aq.n.s) is a simple eigenvalue, so
that we get

(VIL.3) Ay pn)= (-, ) (meZ).
Thus we can obtain
(VIL.4) (@, pm)y ¢*C, =)o =0,  if n#Em.

In fact, we have

ﬂM(Sb('! ﬂm)l ¢*('$ "#n))=<AQ-h.J(/J('y /l'In)) Qb*(') "'#'n)) (bY (VII-?)))
=gy pm)y Abna*(c, =pn)) : : (by (III.6))
=(¢(-, tm), ¥ (-, = fin)) (by (VIL.1))
=g, )y P, T,
so that in virtue of pnFpm (m+n), we get (VI 4).
Now we will complete the proof of (2.79). First we have
aﬂE(‘f"’(" ,’ln), ‘/’*('7 '—ll’ﬂ-))qéo (%GZ) .
(In fact, contrarily assume that (¢(-, pn,), ¢*(-, =/in,))=0 for some n,¢Z. Then,
by (VIL.4), we have (¢(-, m), ¢*(+, =mn,))=0 for each zeZ, which implies
¢*(+, = pin)=0 by the completeness of {¢(:, z)lnez. This contradicts ¢*(0, =z,
‘_“(}1;) in (2.77). Thus we see a,+0 (neZ).) k
Since' {¢(:, pn)lncz is a Riesz basis, for each =e{L*0,1))’, we get u=

i’, cad(+, ttm) with appropriate c,eC (neZ). Applying (VIL.4), we obtain ¢,=

(u, ¢*(-, =pa)ar' (neZ), which imply (2.79), our conclusion. Thus we complete
the proof of the part (II) of Lemma 8.

For the system {¢(-, pf)}ncz, We can proceed similarly. Thus Lemma 8 is
proved.
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