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Abstract

We shall study the reflection of singularities at the boundary for the semi-
linear wave equation Du=F(z, #) in 3 dimensional space-time. We shall show
that if a H%solution (s>3/2) is conormal in the past to a union of a character-
istic plane and its reflected one, then singularities of the solution are reflected
as in the linear case, and that if a A’-solution is conormal to two characteristic
planes and their reflected ones in the past, then the solution can be singular
not only on the four planes but also on the light cone from the point at which
the four planes intersest.

§1. Introduction

In this paper, we study the reflection and the interaction of singularities
of solutions to the following semilinear wave equation,

Yy (—‘&«-i——az—)ua D=Flz,p,4) inQ
. ‘ ‘ atg amg (72/2 )y &, Y)= Xy 2/: Al

with the boundary condition,
(1.2) u=g(t,y)eC*  on {¢, x, v)eRz=0}n0.

Here F and ¢ are real valued C* functions and @ is an open neighborhood of
the origin in R3={({, =, v)eR'x>0}. We shall show that if a single singularity
hits the boundary, it is reflected according to the usual law; but if two singu-
larities hit it, a new singularity may imerge as a result of nonlinear interaction.

For stating our results precisely, we introduce some notation and some
function spaces. For a domain 2 in R" and seR, HYQ) is the Sobolev space
of order s, and Hi.(Q)={ue D(D)|ouec H*(R") for any peD(P)}. When ¥ is a C*
submanifold in £ or a union of two hypersurfaces in 2 which intersect trans-
versally, we define the space of distributions conormal to I as follows (cf.
Hormander [8)).
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DeriNITION 1.1. For seR, we say
weHYZ, o) in Q, if ZioZyo- -0 ZimeH 0 (Q)

for any choice of C* vector fields Z,, Z, -+, Z, which are tangent to ¥ (=0,1,

2, -++). u is called conormal to X if ue\JHY(E, o).
seR

We denote @-=@n{£<0} and O =N {E>0N{(E, =, v)e R*(ChemNE=01N{z>0})
c(@n{<0))). Here and hereafter {<0}={(#, =, ¥)eR*|¢<0} and so on. Cgrwn=
{(t, =, Y)eR3(E—21)> > (z — 20)* + (¥ —y0)* and £ <t} is the backward light cone from
the point (fo, 2o Yo)-

THEOREM 1. Let @, O~ and ©* be as above, and s>3/2. Let X, be the plane
b= zox +yoy with £0<0, yo=0 and zl+yt=1, and I, be ils reflected plane t=—
2oz +yoy. Suppose weH®) satisfies (1.1) and (1.2), and ueH(3I,UZy, co0) in
O~. Then

(1.3) ueC(O*\31U2Ly).

THEOREM 2. Let s, ®, O, O, 31 and 2, be as above. Let X, be the plane
t=xx +yy with z1, 11<0 and x.2+yl=1, and I, be its reflected plame t=—x2
+yy. Suppose ucH*(®) satisfies (1.1) and (1.2), and uweH(2,U U2 U2y, o0)
in O°. Then

(1.4) #eC(O\Z, U, US, U U{=2+1%) .

If the inhomogeneous term F of (1.1) is linear in #, it is well known that
singulalities of % propagate along the null bicharacteristics for the d’Alembertian

0% 0* o

ot ozt oyt
linear, most works are concerned with the solutions which belong to H* (s>3/2)
and H'-singularities (#>>s) were studied. This is because we* implies F(u)eH’,
which makes the problem much easier to handle. If Fis C* and s<r<2s—3/2
+1, H'-singularities propagate in the interior of @ as in the linear case (Rauch
[11], Bony [4]). On the other hand, when »>25—3/2+1, H’-singularities do not
propagate as in the linear case and additional nonlinear H'-singularities can ap-
pear (Beals [3]). (For more general equations, see Bony [4]). For deeper under-
standing of nonlinear interaction, the notion of conormality is useful. If a
solution to (1.1) is conormal in the past with respect to a smooth characteristic
hypersurface, it remains conormal to it in the future (Bony [5]). The same is
true for a pair of smooth characteristic hypersurfaces intersecting transversally
in the future (Bony [5]). But when three progressing waves interact in R?
even if a solution # is conormal in the past, nonlinear interaction can produce
a new singularity (Bony [6], Melrose and Ritter [9]). Indeed, Rauch and Reed
[12] gave an example that demonstrated the appearance of a single nonlinear

in the interior of @ (Hérmander [7]). When F(%) is non-



Interaction of Singularities 133

singularity on the surface of the light cone over the point of triple interaction.

The reflection of singularities at the boundary is also intensively studied.
If F is linear in #, singularities of # are reflected at the boundary according to
the law of geometrical optics (see Nirenberg [10]). If F is C* and s<r<2s—
3/2+1, H'-singularities are reflected as in the linear case (Ali Alabidi [1]). In
this paper, when 7>2s—3/2+1, we study how H'-singularities are reflected and
interact each other at the boundary, under the condition that # is conormal in
the past.

In §2, we prove Theorem 1 and 2, and in §3, we give an example that
demonstrates the appearance of a nonlinear singularity at the boundary.

After completing this paper, the author learned that Sasaki [13] has given
an example with a nonlinear singularity emerging at the boundary for the equa-
tion (8,2 —85°— 8,2 )u=F(0z1).

The author would like to thank Professor Kenji Yajima for helpful discussion
and advice.

§2, Proofs of Theorem 1 and 2
For proving Theorem 1 and 2, the vector field
M=10:+ x0z+y0y
plays an important role. 1 is the generator of the dilation:
("M ), @, y)=[(e", &'z, &'y) .

We should remark that M was used by Beals in [2] to give ancther proof of
the resuls of Bony [6], and Melrose and Ritter [9).

LEMMA 2.1. Let®, 0~ and O be as in 1. Let $>3)2 and ucH(O) satisfy
(1.1) and (1.2). Suppose that MiueHio(") for all jeN. Then

2.1 ueCo(O* N +y2 <) .
Proof. First we show that » satisfies
(2.2) Miue Hip(OF) for all jeN.
Indeed, applying M to (1.1) and using (O, M)=0M—M21=20, we have
2.3 , O(Mu)=M{F(z, y, w+2F(x, y, w)e Hi7(O) .
Since weHiu(@)s>3/2) and #lamo=glt, y1eC",
(2.4) Mt o =109 +yoygeC™=.

Hence the energy estimate for the mixed problem (cf. Hormander [8] Chap.
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XXIV 24.1) vields
(2.5) Mu=H},{(O").

Repeating this argument, we obtain (2.2).

Now take Qo=(fo, zo, Yo)€OQ" With xo®+yo*<£? arbitrarily and (Qo, Po)=(t, %o,
Yo, Tos 0, 70) € THON0.  If fozo+2ofo+vone+0, M is microlocal elliptic at (@, Fo).
Hence an application of the microlocal regularity theorem (cf. Taylor [14] Chap.
VI Prop. 1.10) to (2.2) implies

(2.6) wed*7  at (@, Py) for any j=0,1,2,---.
If foro+ 2obo+yomp=0, we have
of =& —nt#=0  for (ry, &, o) #0
and this implies
2.7 (Qo, Py) ¢ Char .
Hence again by the microlocal regularity theorem, we have
2.8) weH™®  at Q@ P).
It follows from (2.6) and (2.8) that
2.9 ueH':  at Q.
Repeating this argument, we have the desired result
(2.10) weC*  at Q,. [
Proof of Theovem 1. We divide ©*\(2:UJ3,) into the three regions O, O
Os: .

Or={t<zox +yoyiNO",
Cr={I> wox +yt Nt —~ 2oz +yoy} N O,
v ={E> =z Yoy NOT .

We first consider in @;. By the property of finite propagation speed (cf. Taylor
[14] Chap, IV §4), the values of # on (, are determined by those of # on a
set which does not intersect 3 and ¥;. Then by Theorem 3 of Ali Alabidi [1],
we know

2.11) ueC® in 0O,.

Next we consider in @, By the commutator argument of Bony '[5], it is
easy to see that # is conormal to 2; in @U@, This implies

2.12) ~#eC™ - in O,.
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Finally let us show
2.13) #eC® in (.
As the vector field
M.=(E—yw)di+ 20x+(y—€)dy
is tangent to X,U2, and weH* (3 UL, 00) in ®~, we have
(2.14) Miue H(O) for all jeN.

Then by an argument similar to the one used in the proof of Lemma 2.1, we
obtain

2.15 weC({a*+(y =)' <E—pel I N {E> ek N 7).
Since
Ua? +@y—e) <E =)t N{E> et NO)DOs
where the union is taken over ¢ with (ye, 0,¢)€(00 N{x=0}), we conclude
(2.16) #eC* in @, [
Proof of Theorem 2. As in the probf of Theorémkl, we divide @+*\(31U L,
U2, U2, U8 U{2t+9*=¢)) into the four regions Oy, @z Os O

Or={t<zz+yytU{t<z iz +0y)NOT,

O =({t< — oz +yy}U{E<—z12+ 77D NOSNOT,
Os={22+ 2> B} N> — Loz + Yoy} N> — 2 +yy} N O,
Os={2*+y*<BIN{t> — sz +yoy} NE> ~ 21 +1:9 N O .

The smoothness of # in @, O, and @ may be as in the first, second and third
step of the proof of Theorem 1: The finiteness of propagation speed implies

2.17) ueC”™ in @.
The commutator argument of Bony [5] yields
(2.18) : ueC” in @;.

If (¢, =, v)e®,, the backward light cone from (¢, z,y) does not contain the origin.
Using Lemma 2.1 for the vector field M. in the neighborhood of the cone and
taking the union of ({z*+(y—e)*<(f— yne)z}n{t>yas}nc’)*) over ¢ with (7., 0, e)¢
@O N{z=0}), we have

(2.19) ‘ ; #eC* in @a
Since e H(Z,UZ,UZ,U2ZL,, oo) in @ and M is tangent to zj (j=1, 2 3,4), we
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see
(2.20) MiveH(O) for all jeN.
Hence by Lemma 2.1, we obtain

(2.21) ueC* in Os.

Combining (2.17), (2.18), (2.19) and (2.21), we complete the proof of Theorem
2. O

§ 3. Appearance of nonlinear interaction at the boundary

In this section, we construct an example which demonstrates the appearance
of the nonlinear singularity at the boundary, This is analogous to Rauch and
Reed [11] who dealt with the nonlinear interaction in the interior. Let w,=

TaEOREM 3. Lef w; (i=1,2, 3,4) be as above and F(s) be a C* function such
that ‘
E(s) is an odd function,

Fs)=0  for 0<s<-§- and —g—<s, and

_ S sl
F(s)=1 for 3 <s< 3

Then there exists a solution u to the equation

3.1 Dlze = F(u) —0<t<8 and xeR?,

(3.2 2|z, =0=0

such that

(3.3 sing supp # N{—0<t<0}= k:{ {t—ws =0},

(3.4) sing supp # N{0 <t <8} = Q {t—wirz=0U{*=2+y"}.

This theorem gives an example at which we aim. So we devote the rest of
this section to the proof of this theorem. ,

Proof. Let & be the Heaviside function: 4(f)=0 for £<0 and A(t)=1 for
>0. We set PR o
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3.5) Xy= 1Bj At—~w;-z)  (1=1,2,3,4) and

15754

(3.6) Xs=h(t—aw5- )0y —1)—h(t— o, )z —1) .

We need the following two lemmas.

Lemma 3.1 Let V, be the solution for the following initial value problem :

(3.7) DV1=X, —X2—X3+X4 y

3.8) V=0 for ¢<0.

Then

(38.9) . sing supp V1D {t=x,*+ 5% >0} .

Lemma 3.2. Let a(t) be @ C™ function such that 0<a(H)<1, a(t)=1 for t>
—0d and at)=0 for t<~25, and V, be the solution for the initial value problem :

(8.10) OVe=a(®)is,

(3.11) Ve=0  for t<—25.

Then

3.12) sing suppV,C i\;/ {t~w; -z =0}

end if 6 is sufficiently small,
(3.13) Vit V2;<%- For te(—5,0) and zeR®.

Postponing the proof of the Lemma 3.1 and 3.2 to the end of this section, we

continue the proof of Theorem 3. Let Vi=—A{f—w;-2)+A{E—ws-2)+ 28t — w3 2)

—2h(t—ws- ) and u=V,4+V;+ Vs As sing supstcp {t—w;-2=0}, Lemma 3.1
f==)

and Lemma 3.2 imply (3.3) and (3.4). It is obvious that Ox=2%, where X=% ~
Xo—2As+X,+%. By the definition of # and ¥, it is clear that Flu)=X. Hence u
satisfies (3.1). Obviously we see #|z .o=0 from the facts X|»,<o=0 and V|z,-0=0,
(8.7) and (3.10). [

Proof of Lemma 3.1. It suffices to show that V; is singular on {#=2%+y*
and ¢=1}, because V, is homogeneous of degree 2 in (¢, z). First we show that
¥V is singular at (1,1,0). We set.

Wl={t20)2'$ and t.>.®4'$}, Wz={t2w1':ﬂ and tZwa‘.'L‘}, W3={t2w1~$ and
2w x), Wi={t2w 2, t2 0 2, <0 2 and >0}

We denote by %, the characteristic function of A. And for e>0, p and g are
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the points (1,1—¢0) and (1,14 0) respectively. We write the fundamental
solution for the d’Alembertian O as

— 1 2 2\—-1/2 2 2 .
Et, x)= zﬂ(t |z |%) for ##> 2.
We set z(t, z)=Ex(2%y,)— E%lw, — Extw,+ V1. By Hormander’s theorem on the
propagation of singularities [7], we have
sing supp Extw,coWs  (i=1,2,3).

In particular, ExXy, is not singular at (1,1,0). Therefore it suffices to show
that z is singular at (1,1,0). By the definition of z, we have
(3.14) z2(g)=0,
dat'dx’
(3.15) Z(P)*“;‘gﬁ ,\/(t Y|z —x|? '

where P.=W,UC; and C; is the backward light cone from p. Following the
calculation of Rauch and Reed [12], it is easy to see

(3.16) z(p)=Const. &2

(3.14) and (3.16) imply that z is not C* at (1,1,0). Hence V;is not Ctat (1,1,0).
Similarly we can show that V, is not C* at (1,a,b) with @®*+b*=1 and a=0.
Since sing suppV, is closed, we conclude (3.9).

Proof of Lemma 3.2. (3.12) follows by using again Hormander’s theorem
[71. To prove the latter half of the statement of Lemma 3.2, we represent Vi

+ 1, as

At, z)dt'dz’

@10 VeVl TR e

T

using the fundamental solution. Here Cg,., is the backward light cone from
(t, z) and X=X, —Xp—Ls-+X;-+%s Estimating the right hand side of (3.17), we
easily obtain (3.13). [
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