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Abstract

We assume that there is given a finite family of projective subspaces in
certain projective space. Our aim is to prove that the simple homotopy type
of the union of all the subspaces in question is completely determined by the
complex of the nerves resulting from the family, equipped with the filtration
obtained by assigning to each simplex the Krull dimension of the correspond-
ing intersection. This fact enables us to compute the homology groups of the
union and its complement in principle.

§1. Introduction

Let F be one of the following fields: R, C, H. Let cy={Viliel} be a
finite family of euclidean subspaces in F” passing through 0 endowed with the
usual metric. We know that the collection of all the subsets of I forms a
simplicial complex A4(I) called the stendard simplex with the set of vertices I
If p is a simplex of A(I), its geometric realization |p| means the convex hull of
the set I embedded in R and the geometric realization |K| of a subcomplex K
of 4(I) stands for the polyhedron being the union U{lpllpeK}. Let p be a
simplex of 4(I). Then we have an affine subspace V, of F* defined by V,=
N{Viliep}. We write d(p) for dim sV, We adopt the convention here that the
dimension of the vacuous set is —co. For each i in [, we define

Vi=V\0), SVi=(zeVille=1}, PVi={V¥/F¥)

which are naturally the subspaces of (F™* SF*, PF"™ respctively. Further we
put

ax={V¥iel}, Scv={SViliel}, PY={PViliel}.

For each of the families above mentioned, we consider the union of the
spaces belonging to it, that is:
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Pa= U{VEC " iel), P(Scv)=U{SVicSF|iel},
Y(P))=U{PV;C PF"|iel}.
'Now we define the half spaces to be the spaces given as follows:
E(CU*)= U{]p| X POy | (D) < (F)*| pe (1))}
E(SC1)= U{|p| X SFe® c|4(I)|xSF™| ped(I)}
E(PC)= U{lp| X PF“® C|4(D)| x PF"| pe ()}

where F! is identified with the subspace of F™ consisting of vectors whose i-th
component is 0 for each integer i satisfying /+1=i=m whenever /=m.
The main result of this paper is the following.

Tarorem 1.1, ¥ =BCv»), Y(S)=BSev), Y(Py)=EPCY).

The above resuNIt renders us a method in computing the homology groups
of the space PF™\Y(Pcy?). The simplest case is when the identity dimsV,=
n—dim p—1 holds for every p in J(J). Then <V is called in general position.
Now the following Corollary is an easy exercise except the case where F=(,
n=2.

CoroLLARY 1.2. Lel CY be in general position. Then we have a homotopy
equivalence

PF"\?(PW):( ;Sd—l)(d—un
where m=#I—1, d=dim gF and (QS =1 denotes the p-dimensional skeleton of

m
the most economical cellular decomposition of (XS¢).

In the case F=R, this follows from the direct computation. In the case F
=, the existence of the above homotopy equivalence is due to Akio Hattori [3].

The content of this series of papers was already announced in [4].

Finally the author wants to express his hearty thanks to Kazuhiko Aomoto,
Mitsuyoshi Kato and Kyoji -Saito for valuable conversations with them during
the preparation of these papers.

§ 2. Filtered simplicial complex

A filtration F of a topological space B is a family of closed subspaces B,
one for each / in Z, with

-« CpyBcBc B -

If F, F¥ are filirations of B, B’ respectively, a map f: B — B’ of filtered
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spaces is a continuous map with the property fGB)c.B'.

A filtration F of B defines a function F: B-— Z given by the formula
F(b)==inf {{|be;B} for which F-'(J—oo, []) is a closed subspace of B. Conver-
sely a function F':  B— Z on a topological space B with F~'(]—oo, {]) being
a closed subspace for each /, defines a filtration of B.

Let B’ be a closed subspace of B and let i: B'— B be an injection.” If
F: B-—— Z is a filtration of B, then Foi: B'— Z defines a filtration of B’
called the restriction of F, explicitly F'=F+i is defined by B’ =B'N,5.

Let B be a topological space and let / be a unit interval [0, 13. Let
p: BxI—— B be a projection to the first factor B, then Feop: BxI—> Zis by
definition a filtration of Bx I induced from F, in other words F=Fop is defined
by (BXI)=Bx1I.

Let F, I be filtrations of topological spaces B, B’ respectively. Let
F,9:B—> B be two maps of filtered spaces. A homotopy between f and g
is a map Ah:BxI—— B of filtered spaces satisfying the property f=/ois,
g=hei, where i,: B-—> BXxI denotes the inclution defined by #(b)=(b, ).

Analogously a filtration F of a simplicial complex K is defined to be a family
of subcomplexes K, one for each / in Z with

b CL—)KCLKCL.HC ¢

If F, F’ are filtrations of complexes K, K’ respectively, a map f: K — K’ of
filtered complexes is a simplicial map with the property f(K)cC.K'.

Also in this case, there is a one-to-one correspondence between a filtration
F of a simplicial complex K and a function F: K -—> Z satisfying Flp)=F(p")
whenever p<{p’. ~

The restriction of the filtration on a subcomplex is likewise defined.

Clearly a filtration F' of a simplicial complex K defines a filtration |F| of
the corresponding polyhedron |K| by putting |F| (|K|)=]K]. Let F, F be filtra-
tions of simplicial complexes K, K respectively. If f: K -— K’ is a map of
filtered complexes, then the induced map |f|: |K|—|K’| gives rise to a map
of filtered spaces.

ExaMmpLE. Let [ be a finite set of indices and let CiV=={V;liel} be a family
of affine subspaces of F” passing through 0. Let 4(Z) be the standard simplex
with the set of vertices . Then for each simplex p in A(I), there is determined
a subspace V,=nN{Viliep}. We define a function F(): 4(I)—+Z by
F(cP)(p)=—dim V,. As essily seen, F(C) defines a filtration of A(I).

In fact, the function F=F(<|?) has the folloing properties:

0) F(@)=—oco, —n=F({i})=0 for any iel;
) o<y’ implies F(o)=F(p");
i) F(Upe)= 3 Fled—(—DF( N pi).

18451 1518l 1518l

However we are ignorant of when a function F: 4(J)—> Z having the prop-
erties listed above can be realized by a family {7 so as to satisfy F=F(C]).
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A simplicial complex is called ordered if for each simplex,. a simple order
of its vertices is given so that the order of each simplex agrees with the order
of its faces.

A filtration F of an ordered simplicial complex K is a function F: K — Z
satisfying the conditions:

i) FIK': K° — Z is nondecreasing with respect to the order of K?°, that
is o=¢’ implies F(o)=F(d');

il If ¢ is a simplex of K with the set of vertices oy, - -, 0, numbered so
that o<+ - <o, then we have F(¢)=F(o)=max {F(0:)|0=i=q}.

A map f: K — K’ of filtered ordered simplicial complexes is assumed to be
monotone non-decreasing in the sense that f(¢)= f(¢’) whenever ¢=¢’.

Let F be a filtration of a simplicial complex K. ‘K denotes the derived
complex of K: that is the simplicial complex whose set of vertices are the set
of barycenters g taken once for each simplex p in K and for each sequence
such that pe<---<p,, the sequence of the corresponding barycenters g, *- -, fq
is the set of vertices of a simplex 0. We write p=p’ if p<¢’. Then 'K becomes
an ordered simplicial complex with respect to the relation <. Now the derived
filiration 'F of 'K is defined as follows: If ¢ is a simplex with vertices
Boy -y Bg, then F maps o to F(og)=max {F(e:)|0=i=qg}. It is easily checked
that 'F gives rise to a filtration of the ordered simplicial complex ‘K.

Here we should remark that |#| and |'F| satisfy the identity |['Fl|si=|F]|
with the natural identification i: 'K | — |K|.

ExampLe . Let C2={Viliel} be as hefore. Then the derived filtration 'F(C(/)
of the derived complex is defined as follows: If ¢is a simplex in ’4(J) with ver-
tices po, -+ -, By such that po<{---<p, we have "F(CV)(0)=F(CV)pg)= —dim pVy,.

Here we should remark that for any two vertices g, g/ contained in some
simplex in ‘4(I), the condition 'F(CV)(p)="'F(C’)p’) implies V,=V, .

Throughout the rest of this paragraph, we are only concerned with an
ordered simplicial complex K endowed with a filtration.

Now we define a category K as follows: Take the objects to be a set of
all simplices in K. An elementary morphism ¢: ¢ ==>¢ is by difinition a
filtration preserving simplicial map ¢: Clo —> Cl¢’ of ordered simplicial com-
plexes belenging to some simplex in commen: more precisely a simplicial map
¢: Clg—>Clo’ is written as ¢: ¢ =—> ¢’ if both of ¢ and ¢ lie in some
simplex ¢’/ in K and for each pair of vertices a;, 0; of ¢ satisfying s;=¢; we have
wloi)=¢p(o;) and for every vertex a; of o we have F(p(o:))=F(s;). Further a
morphism ¢: o-—> ¢’ is a composite of elementary morphisms ¢; expressed
in the form p=g¢go- - o¢;.

A morphism ¢: o¢—>¢ is called a monomorphism and written  as
¢! o>—> ¢, if for any simplex ¢’/ and any two morphisms ¢, ¢.: ¢’/ — g,
@opo=pop; implies po=¢ .

A morphism ¢: o—>¢ is called an epimorphism and written as
¢ o—¢’, if for any simplex ¢’/ and any two morphisms o, ¢1: o —> g,
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pocp=gpiop implies po=g, .

Given a morphism ¢: ¢ — ¢/, we denote by |¢|: |¢|—|¢’| the continuous
map induced from ¢.

If |o| is an injection, then o is a monomorphism and vice versa. If |p| is
a surjection, then ¢ is an epimorphism, however the converse is not necessarily
true except in the case ¢'<o.

A simplex ¢ is called nondegenerate, if for any two morphisms
@0 11 o —> o we obtain p,=g¢,. Let ¢ be a simplex with vertices go<- - <o, .
Then ¢ is nondegenerate if and only if we have F(o))< - -+ <F(gy).

Let o be a simplex with vertices ¢,<- - +<o,. Let p: ¢—>¢" be a
morphism. Then there exists an increasing sequence of integers 0=
Bo<iy <+ v <ip=g<ip.i=q¢-+1 satisfying the conditions

o(01,)= (o) hSisSina—1 0=h=p
{¢(0in)<€"(“in+x) 0=h=p-—1.

Now the definition of a filtration implies
Foloy,)=Fe(a;) WSiSinn—1 0Sh=p
{FQD(Gin)éF@(ﬂihH) 0=h=p-1

and further the definition of a morphism implies
Foi,)=F(03) WSiZina—1 0=h=p
{F(Gih)éF(ai,m) O=h=p-1.

Here we define Coim ¢, Im ¢ to be the simplices of the form

Coim p=/o1,, g1y, *++, 03,  Imo=|elasy), ¢lai,), -, e(oiy).

These conventions enable us to determine unique morphisms coim ¢, eq ¢ which
render the two diagrams

¢ ¢
6 — ¢ —
coim ¢ [ img ¢ [ [ ime
Coimgp »————» Imyg Coim ¢ > Img
& e €q ¢

commutative where ¢ and im¢ denote the inclusion. In fact, we obtain
(coim @)(o))=04, in=i=in,, and eq¢ is an equivalence being the restriction of
o on Coim ¢.

Let ¢ be a simplex with vertices ¢,<---<o, Then there exists an in-
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creasing sequence 0=i,<i; < -+ - <ip=g<ip,1=¢+1 satisfying the conditions
{F(O‘i,l)=F(a'1;) n=iZiha—1 0=h5p
Fai,)<F(04,,,) 0=h=p-—-1.

We define the normalization v(¢) of s to be a nondegenerate simplex of the
vertices 0;,<04, <+ -+ <oy,. Now we have a morphism »: ¢ — v(¢) which maps
o; to o, for each i satisfying in=isin.—1 with 0=£A=<p. This morphism
will be called the degeneracy of o.

Suppose given a morphism ¢: ¢—> ¢’ with ¢/ being nondegenerate. Then
the simplex Coim ¢ and the morphism coim ¢ depend only on g, not on the choice
of ¢. In fact we can show that Coim¢ and coim ¢ coincide with v(e) and »
respectively. ,

Next we introduce an equivalence relation in the set of all nondegenerate
simplices in K. An equivalence a: ¢—> ¢’ is called a strong congruence, if
there exists a simplex ¢/ in K and a degeneracy map »'/: ¢’/— y(¢’’) s0 as
to make the diagram

7

7

& —— y(d’")

=

/
v P ey a

[4

commutative where the vertical arrows denote the inclusions.

Lemma 2.1. Let 5: o— (o) be a degeneracy of o. Suppose given a
face o’<a. We write 7(¢")=Im(yle’). Let ¢: o —> y(o’) be a morphism such
that the diagram

is commutative wheve the vertical arrows demote the inclutions.
Then there exist a degeneracy 7': o —> v(0’) and a strong congruence
a: o) — 9(d") satisfying the relation p=aoy.

Proof. Consider the following commutative diagram,
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7
¢ ———— (o)

7le’
A 99 A
e G

/

7

M eq e
w(a") > 70"
Since Im ¢ is equal to 7(¢’) and it is nondegenerate, we have u(¢’)=Coim (¢),
o’ )=Im (p|o’).
Lemma 2.2. Let a: o— alo) be a strong congruence. Suppose given a
simplex o/ <o. We write a(c’)=Im (als). Let o' : o —> a(o’) be a morbhism
such that the diagram

is commutative where the vertical arvows denote the inclusions.
Then o' . ¢ —> a(c’) is a strong congruence.

Proof. We have a simplex ¢’/ and the degeneracy »/: ¢/ — u(¢’") such
that the diagram

0 ey a(e’)

is' commutative where 5'/: o'/ —> u(¢’/) denotes the degeneracy of ¢’ and
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vertical arrows mean the inclusions. Since « is a monomorphism, coim (a|s)
=1, and hence a’=eq (a|d).

An equivalence «: ¢ — ¢’ is called a (weak) congruence and denoted by
a: o=c if there are given an integer % and 2% strong congruences

(23] 43 24721 Qak
T=0g ~—> Gy ~— Oy —F *+* “—— Oyp_p ~> Gag—y <— Og1=0"

running alternately to the left and to the right, and « has a factorization
a::(x;kloazk_lo- . -oa;’cal .

Remark Let g, ¢’ be two simplices in K. If a,, a,: o=¢' are two con-
gruences, then we have ap=a;.

LemMa 2.3, Let a: o=ao) be a congruence. For a face ¢ of o, we put
ale”)=Im (a|e’). Let a’: o' — alo’) be a morphism such that the diagram

o
—_— o)

2]

——e— a(o’)

Q
N

is commutative where the vertical arrows mean the inclusions.
Then o’ : o'=a(¢’) is a congruence.

§ 3. Halfspace

Let Fp: B—— Z and Fy: X —- Z be filtrations of spaces B and X respe-
ctively. Then the swm Fp+Fy: BxX— Z is by definition the filtration of
BxX given by (Fs+Fx)b, x)=Fp(b)+Fx(x). New we write £ for the subspace
(Fa+FEx)y([—o0, 0))=¢BxX), that is

E={{(b, 2)e BXX|Fp(b)+Fx(z)=0}
= U{-Bx. X|leZ}.

The space £ will be called the half space of BxX with respect to Fz+Fyx.
Let Fy, Fx be filtrations of spaces B, X respectively. Let Bx X be egipped
with the filtration Fz+ Fx and let E be its half space. Let Fz, Fy. be filtrations
of spaces B’, X' respectively. Let B'XX be eqipped with the filtration Fz Fyx.
and let £’ be its half space. If fz: B— B, fr: X— X' are maps of
filtered spaces, then fazXfx: BXX —> B'XX’ also a map of filtered spaces
and so it induces a map f: E — E'.
- - Let Fp, Fx be filtrations of spaces B, X respectively. Let E be a half
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space of BxX with respect to Fe-+Fy. If i1 B'— B be an inclusion, then
the restriction Fp=Fpoi: B'— Z of Fz on B is defined. Let E’ be a half
space of B'XX with respect to Fg-+Fy. Now the inclusion 7 induces an in-
clusion i: E'— E through which E’ can be embedded onto (B’xXX)NE.

Let Fg, Fx be the filtrations of B, X respectively. We write also £ for
the resulting half space. If p: BxI-—— B be a projection, then Fjp induces
the filtration Fpep: BXI— Z of BxI which will be denoted by the same
notation Fp. Let E’ be a half space of (BxI)xX with respect to Fp+Fx.
Then the projection p yields a projection p: E'— E in terms of which £’
can be shown to be identified with EX/ in such a way that f corresponds with
the projection.

Let Fp and Fa be filtrations of spaces B and B’ respectively. Let Fy bea
filtration of a space X. We write £ and £’ be the corresponding half spaces
of BxX and B’'x X respectively. Let f, g: B— B’ be two maps of filtered
spaces and let 2: BXI— B’ be a homotopy from f to g. Then the maps
F, 4 E— E’ are homotopic and the map h: ExI— E’ gives rise to a
homotopy from f to §. ‘

Let Fx: K— Z be a filtration of a simplical complex K. Then we have
the filtration |Fx|: |K|—> Z of a polyhedron |K|. Let Fy: X——Z be a
filtration of a space X. This filtration allows us to construct a half space E of
|K]x X with respect to |Fx|+Fx which can be expressed in the form

E=U{|o| X a¢wyX|peK}

where |p| means the geometric realization of a simplex p in K and d(p) stands
for the integer — Fx(p).

On the other hand, we know that F defines a derived filtration
'Fr: 'K — Z of the derived complex ‘K. Let ¢ be a simplex of 'K with vertices
fo, *+*, Pg such that pp<{:: <p, By the definition, ‘Fx(s)='Fx(g,) is equal to
Fx(pg). As observed above ‘Fy induces a filtration |'Fg}: VK|—Z. Let
Fy: X-— Z be a filtration of a space X as above. Then we obtain the half
space ‘E of |'K|x X with respect to |'Fx|+Fx too. Now the half space can he
rewritten as

'E=U{|o| X g X|oe'K}

where ’d(o)="d(p,) represents d(p,).

Since the filtrations |F| and |’F| satisfy the identity |'Flei=|F| with the
natural identification i: |’K|— |K], we can easily prove the following Proposi-
tion.

ProrosiTioN 3.1. Let Fx be a filtration of a simplicial complex K and let
Fy be a filtration of a space X. Then the natural identification i: |'K]—|K)|
provides us with an identification

it 'E—E.
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Here we remark that for an arbitrary filtration F of a simplicial complex
K, the derived filtration ’F is a filtration of an ordered simplicial complex ‘K.
So the above Proposition says that we only need to consider filtrations of an
ordered simplicial complex.

ExampLE Let cy={V;|iel} be a family of affine subspaces V; of F” passing
through 0. The filtration F(CY): 4(I) — Z is defined by the formula
Fa))p)=— dimpV, with V,=n{Viliep}. F(C) produces a filtration
|F(cy)|: |4()) — Z of a space |4(I)|. Let Fx: X —— Z be a filtration of a
space X. Now the half space E of |4(])|xX with respect to [F(C)|+F is

E= U{lp| X anXlpe4(I)}

where d(p) denotes — () (p)=dimFrV,.

Let us cosider the derived filtration "F(CV): ‘A(I) —> Z. If ce’4(I) be a
simplex with vertices go, -+, § such that ge<(---<p,, 'F(CV) is given by
') o)=—dimrV,,. Now the half space 'E of |'K|xX with respect
to VA1) +Fx can be written in the form ,

'E= U{|o| X rawX|oe’d(1)}

where ‘d(¢) represents d{pog).

In what follows, we shall be mainly concerned with particular filtrations
F. X-— Z as listed helow:

0) Let Fpn: F™—— Z be the filtration defined by

A= c " ={0lc,F*=F'c.. . F*'=F'C...C,F"=F"

where F! is identified with the subspace of F™ consisting of vecters whose i-th
component vanishes for i larger than /.
Let us denote by E(C{)) the corresponding half space, that is

E(CV)= U{lp| X F¥®|pe A(I)}.

i) Let us denote by (F™* the space F™\{0}. Let Fpnyx be the filtration of
(F™y* defined by (F"y*=(FH)*.
We write E(C*) for the corresponding half space, that is

E(C7*)=U{lp| X (F¥®)*|pe A(I)} .

ii) Let us denote by SF™ the unit sphere of F™ with respect to the usual
norm on F™ Let Fspn be the filtration of SF™ defined by (SF™)=SF".
We write E(SC)) for the corresponding half space, that is

E(SCY)=U{lpl x SF*®|pe 4(I)} .

iii) Let us denote by PF™ the projective space associated with F". Let
Fppn be the filtration of PF™ defined by (PF")= PF"
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We write E(Pcy) for the corresponding half space, that is
E(Pcy)= U{lp| x PF*®|pe A1)} .

§ 4. Normalized maps from half spaces

Let Fx be a filtration of an ordered simplicial complex K and let Fx be a
filtration of a space X. Now we can construct a half space £ of |K|XxX with
respect to |Fx|+Fx.

For later convenience, we want to write K for the half space E above
mentioned and use the notation p for the projection from £ to K. Wlthout fear
" of confusion, for a subcomplex L of K we also use the nota‘uon L to express
the restriction E on L.

Here we introduce the equivalence relation among all nondegenerate g-sim-
plices by congruence as defined in §2 and we choose one representative in
each equivalence class. The resulting complete set of representatives will be

denoted by N,
Let K7 denote the g-skeleton of K. We define a subspace N, of K by

N,=U{lg] X awX|oeNg}

where d(o) denotes —Fx(s). This space lies in Rin p"‘(Nq)
Let ¥ be a topological space and let f be a continuous map from K to V.
Then f is called normalised, if f satisfies the following two conditions:
i) If y: o—> (o) is a nondegeneracy, then we have

Fllol X atorX=(F [IM0) X acn X)2 (X 1).
ii) If «: o— a(o) is a congruence, then we have
£ |lol X acoy X=(||a(0)| X acor X)o (X 1)..

In these two conditions, we employ the notation d(s) to denote — Fx(a).

ProrosiTiON 4.1, Let g be a nonnegative integer. Assume that there is

~r

given a normalized map fo-1: Ro-' — ¥V and a continuous map fj: N oY
such that

FilR nNy=fou |[K-in N,
Then there exists ¢ unique novmalized map
ot K’““‘Uﬁ,,~—-—>l7'
such that
falB==Fu,  folMo=1i.
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Proof. Let ¢ be a g-simplex of K not belonging to N,. We need to con-
struct a map
For o) XamX — ¥
satisfying the compatibility condition
S

Suppose first that ¢ is degenerate. Let y: ¢ — u(o) be the degeneracy of
g. Then we define f, by

Fo=(Fot @) X 2 X)o (X 1).

For ¢ nondegenerate, we choose a unique congruence a: ¢-— a(s) such
that a(s) is contained in N,. Now we define f, by

Fo=(filla@) XawX)o(ax1).

Now we have to check that the compatibility condition is satisfied.

Let ¢’ be a (g—1)-simplex being a face of the g-simplex ¢. From the defini-
tion of filtration, we have Fx(o')=Fx(s) and so obtain d(¢')=d(s). Hence we
can form the inclusion j: ¢@X — awnX. Now it is trivial that the identity

Fa|l0| X acr X=(fom1[|0'| X acen X)o(1X 7)

|aO’| Xd(a)X-'—"fq—lllaO'l Xd(n)X.

holds.
First we assume that ¢ is degenerate, We write 7(¢')=Im (3|0’). Let
¢p: o' — y(¢’) be a morphism

is commutative.
Then the definition of f, implies

fo|lo’t X aor X=(f gt [0} X 2y X )o(lgp] X 1).

On the other hand Lemma 2.1 shows that there exists a degeneracy
7't o'—v(c’) and a strong congruence a: v(¢’) —> y(c’) satisfying p=acy’.
From the assumption f,-, is normalized, so we have

Foeil0') X aor X= (41|10’ X acon X )o(1 X 7)
=(f o1 M0 X aconX)o(l/ | X 1)o(1 X )
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=(fo-1 1700 X acon X)o(lal x Do (l/| X 1)o(1 X 7)
=(F -1 |l9(0")] X aenX)e(lpl X D)L X 7)
=(fo-1]70") Xaer X)o(1 X f)o(lp] X 1)

=(f g1 |70 X aen X)o(lg| X 1).

Thus in this case f satisfies the reqgired condition.

Next ¢ is assumed to be a nondegenerate g-simplex not belonging to Ni.
We write a(¢’)=Im(a|o’). Let a’: ¢ — a(¢’) be a morphism such that the
diagram

I alo’ ]
a,l
¢ —— alo)
is commutative.
Analogously to the case of degenerate slmplex, we have
Follo!| X ey X=(fa|lala”)| X ey X )o(la’| X1).

Now we recall Lemma 2.3 which says that o’: o — a(¢’) gives a con-
gruence. Since f,-; is normalized, we obtain

Fam1]l0'| X ey X=(Fg-1|l0'| X agon X))o (1X f)
=(f g1 ||a(0")] X aeon X)o(|a’| X 1)o(1 X 7)
=(fg-1]la(@”)] X e X)o(1 X Do’ X 1)
=(f ot a(0)| X aer X)o(le| X1).
Consequently in both of these two cases, the compatibility condition

Follo' | Xaenr X=Fomt|lo’| Xaenr X

is satisfied by f, for every fase ¢’ of o.

§5. Functors from a simplicial complex to a category

In what follows, .4 is promised to denote a subcategory of S being the
category of topological spaces.

Let Fx: K—> Z be a filtration of a simplicial complex K. Let .1 be a
category as above. Then a contravariant functor ¥ from K to .1 is a pair of
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functions denoted by Y: K—>4 : One assigns to each simplex p in K an
object ¥(p) in A and the other assigns to each inclusion i: p— p’ in K an
inclusion Y(@): Y(p') — Y(p) in .1 satisfying the routine conditions ¥(1,)=1y,,
Y(i’0d)=Y{(i)- Y(¢’) and the additioal ones:

i) There exists an object ¥(@) in .4 such that for each p in K there exists
a unique inclusion Y(p) — ¥Y(®) in 1.

ii) If p, p’ are two simplices contained in some simplex o'’ in K, then we
have Y{o*p')=Y{p)N Y{0’).

ili) If p, o’ be two simplices in X satisfying p<{p’ and Fx(p)=Fx(p’), then
we have ¥(p)=Y(p").

' Let Fx: K—— Z be a filtration of an ordered simplicial complex. Let .4
be a category as above. Then a covariant functor Z from K to i is a pair
of functions denoted by Z : K—— i : One assigns to each simplex ¢ in K
an object Z(s) and the other assigns to each morphism ¢: ¢— ¢ in K an
inclusion Zlg): Z(s) — Z{¢’) satisfying the conditions Z(l.)=1z¢,,, Z(g op)=
Z(¢")oZ¢) and the supplementary ones as follows:

i) There exists an object Z(w) in .4 and for each simplex ¢ in K there
exists a unique inclusion Z(¢) — Z(w) in A.
i) If o, ¢’ be two vertices of K satisfying o=¢’, and Fx(o)=Fk(¢’), then
we have Z(o)=Z(c').
i) If ¢ is a simplex of K with vertices ¢,<+++ <o, then we have Z(o)=Z(0,).
Let Fr: K— Z be a filtration of a simplicial complex. Let V: K——»zuqs
be a contravariant functor from K to 4. Then we have a filtration
 'Fxi: 'K —— Z of 'K derived from Fx. Let ¢ be a simplex of 'K with vertices
Boy *+y Pg With pe<( - <lp,. "Frlo)='F(g,) is known to equal F(g,). Now the
functor 'Y: ‘K — A derived from Y is defined as follows: Let ¢ be a simplex
with vertices g, * -+, f¢ Such that po<:- <p,. We put 'Y(o)='Y(p0)=Y(0s). As
easily seen, 'Y defines a covariant functor from ‘K to ..

Lemma 5.1, Let Fx be a filtration of an ovdered simplicial complex K.
Let Z be a covariant functor from K to Jl. Then for each surjective morphism
01 o-—d, we have Z(a)=Z(c’). In particular we obtain the following:

i) For each degeneracy u: o—> (o), we have Z(c)=2Z((0s)).

il) For each congruence a: o —— alo), we have Z(o)=Z(a(a)).

Proof. Suppose given a elementary morphism ¢: ¢ == ¢’. Then from
the definition, there exists a simplex ¢’/ with vertices o) <---<ey such that
both of ¢ and ¢’ are faces of ¢’. If ¢ is a simplex with vertices o< <o,
and ¢’ is one with vertices o;<---<oj;. Then we can find increasing sequences
0=i< - - <ip=v and 0=j,< -+ <j,;=7 determined by the property

{afh:ah 0=h=p

o =0} 0=k=yg.
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Hence we can conclude that either s,=0¢} or oj=v, holds.

On the other hand, the definition of a morphism implies Fo}) = Flp(00)) = Flao)
and the equality holds whenever o{=g¢(so). In particular, for any surjective
morphism ¢ we obtain Floy)= F(a,).

Now applying the condition ii) in the definition of covariant functor shows
Z(a0)=Z(a}).

Finally the condition iii) assures Z(s)=Z(o").

Exampre F": Objects, all euclidean subspaces of F™ passing through 0
with the usual metric ; morphisms, all isometric affine maps of such preserving 0.
i) Given an object V in F" we write V* for the open set V\{0}. Given

a morphism », we write »* for the map induced from .

(F™*: Objects, all V*¥s in one-to-one correspondence V*<— ¥V with the
objects V's in F"; morphisms, all »*¥’s in one-to-one correspondence »* «—» with
the morphisms ¢’s in F™.

ii) For an object V in F™, SV stands for the unit sphere in V. For a
morphism », Sv stands for the map induced from v.

SF*:. Objects, all SV’'s with' V’s in F*; morphisms, all Sy’s with »’s in F™

iii) For an object ¥V in F*, PV stands for the projective space associated
with V. For a morphism », Py stands for the map induced from o.

PF": Objects, all PV’s with V’s in F"; morphisms, all Py’'s with #’s in
F",

Let cp={Vijiel} be a finite family of objects in F* The filtration
F(c): M) — Z of A(I) is defined by F(CV)(p)=—dimrV, with V,=nN{Vilieo}.
Now we define Y(Cp?): 4(I) s to be a contravariant functor given by
Y(cy)o)=V,. In the same way, we define the contravariant functors
Y(ey®): A(I) —> (F**, Y(SCV): A(I)— SE", Y(PcU): A(I)—> PE* by
YCU*)(p)=V*, Y(SCU)Xp)=SV,, Y(PC)p)=PV, respectively.

We know that the derived filtration ‘F(C): ‘4(I) — Z is defined as follows.
Let ¢ be a simplex in 74(]) of vertices po,- -+, g With po<{:+-<p,. The defini-
tion shows that 'F(CV)(¢)=—dimrV,,. Besides we get the covariant functor
'Yy 'AI) —> F* derived from Y(C/) which is defined by the formula
’Y(C(/)(o)=V,,0 with the above conventions. For the categories (F™)¥, SF*, PF",
we obtain the formulae ‘Y(CU*)o)=V%, 'Y(SU)N0o)=SV,, 'Y(PV)Xo)=PV,,
correspondingly. '

§€6. Admissible maps from a half space

To begin with, we introduce some terminologies and hypotheses needed for
later discussions.

Let .7 denote a subcategory of the category S of topological spaces.

Now a filtration Fx of an object X in 4 means a filtration Fy of a topolo-
gical space X being an object in /4 such that for each Z, ;X is an object in .1
and for each pair of integers /</, the inclusion (X — ;X is a morphism in_i.
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The first we postulate is the following.

H,) For each compact polyhedron B and each pair of objects X, ¥ in 1,
the natural map

S(B, 8(X, Y)) — S(BxX, Y)

induces a homeomorphism where &(S, 7) denotes the space consisting of all
continuous maps from the source § to the target 7" endowed with the compact
open topology.

Let B be a compact polyhedron. Let X, ¥ be objects in 4. Then a map
Fi BxX— Y is called a JI-map, if f is transformed into S(B, A(X, Y))
- through the correspondence given in the above hypothesis.
The next is the second hypothesis.

H,) For each pair of integers /, // such that /</’, we have =41 AGX, 1.X)
=0if g=V—L

Let Fx be a filtration of a simplicial complex K and let F be a filtration of
an object X in 4. Let ¥ be a contravariant functor from K to 4.
The third hypothesis is the following.

H;) For each simplex p in X, dc,,)X and Y(p) are equivalent in .7 where
d(p) denotes an integer —Fx(p).

Here we introduce the notation ¥ to denote the union U{¥(p)lpeK}.

Suppose given a filtration Fx of an ordered simplicial complex. Then we
have a filtration |Fx| of |K|. Let Fx be a filtration of an object X in 4. Then
K means the half space of |K|xX with respect |Fx|+Fy. Suppose given a
covariant functor Z from K to A Put Z=U{Z(0)|ocK}.

We call amap f: K—Z an admissible map with carrier Z, if for each
¢ in K there exists an /J-map

Fot ol XawX — Z(o)
satisfying the condition
f“UI Xay X=Fks0 fq

where d(¢) denotes the integer —Fx(o) and &,: Z(o) —> Z shows the inclusion.
In what follows, we specialize down to the case of the derived complex.
With the above conventions, we know the existence of the filtration 'Fx of the
complex ‘K. Now |'Fg| denotes an induced filtration of a polyhedron [K]. Let
Fy be a filtration of an object X in 4. Then we obtain a half space 'K of
|’K|x X with respect to |'Fx|+Fy, Further we know that Y derives a covariant
functor 'Y from 'K to 4. Put '¥Y=U{Y()lse’K}. Clealy we have ¥=7.

ExamprLe Let F™ be a category of all euclidean subspaces of F" passing
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through 0 and all isometric affine maps preserving 0. Let CV={V;|iel} be a
finite family of objects in F™ F(CV) is a filtration of 4(]) transforming o into
—d(p) with d(p)=dim V, Fpn is a filtration of an object F™ in F* defined by
putting F"=F!'. Now Y(C) is a contravariant functor from 4(/) to F" as-
signing p into V,.

First we can easily verify that F" fulfils H,).

Next we prove that taking F™ for .4, F! for ,X the hypothesis H,) is satisfied.
Actually, A(X, .X)=U; /U, -, where U, denotes O(/), U({l), Sp(/) correspondingly
whenever F is R, C, H. Then H,) is wellknown.

In order to verify that H,) is satisfied, we only need to remark the follow-
ing. For each simplex p in K, we have d{p)=dim ¢V, and Y()p)=V,, and
hence g X and Y(C/)(p) are equivalent to F o,

The circumstances are the the same also when 7 is (F'™)*, SF", PF", Fyx
is Fmyx, Fspn, Fppr and Y is Y(CU*), Y(SCU), Yrey) respectively.

_ Now it s obvious that we have Y(CU*)=U{Vi*C(F)*liel}
Y(scv)= u{SVicSF™iel}, Y(Pcy)= U{PViC PFjicl).

The first result is that an admissible map has an extention property.

ProrosiTiON 6.1. Let o be a nondegenerate simplex in 'K. Let % be the
restriction of the half space 'K on do. Assume that theve is given an admissible
map f: do—> V with carrier 'Y. Then there exisis an A-map

For ol XX —> 'Y(o)
with 'd(e)= —'Fx(e) salisfving the condition
keofoldo=Ff
where k,: 'Y(a) — ¥ denotes the inclusion.
Proof. Let ¢’ be a face of 4. Then we have- 'd(¢’)z'd(s), hence there exists
an inclusion j: sawX — wwnX In terms of which we obtain a trivial identity
Fllo')| X oaen X=(fllo’] X o X)o(LX ) -

Since f is admissible with carrier 'Y, the definition shows the existence of an
JA-map
fort o XoaeanX — "Y{o")

satisfying the condition
f“o"] )(»(z(m)X:ku'Ofu'

where k... 'Y{(¢') — ¥ denotes the inclusion.
Let 2: 'Y(¢’) — ‘Y(s) be the inclusion. Here we note that the identity
k. =k,ok holds.
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Now we define a map
fat 180l X4y X — "Y(0)
by putting
Fallo'| XramX=ke foro(1X 7).

From the hypothesis H,), f: defines a map in S(|9s], AlanX, 'Y(o))) and
hence represents an element of 7y A(-awmX, 'Y(s)) with g=dimo.

Let o be a simplex with vertices pe,-++, fg such that ge<-+-<p, Then we
have ‘d(o)=d(p,) and 'Y(e)=Y(es,) or equivalently we have JA(uwxX, 'Y(0))=
Hacop X, Y(po))-

Now the hypothesis H) vields a homeomorphism H(anX, 'Y{0))=
AlaceyXsawyX)-

On the other hand, the assumption says that ¢ is nondegenerate and hence
for each i with 0=i=¢g—1 we have Fx(0:)<F{p:;.:) and so d(pg:;)>d(pi:1). This
implies the inequality g=d(p.)—d(pq)-

These results and the hypothesis H,) together assert mg-1 A(awX, Y{(0))=0,
in other words we can form a map

for ol Xg@X — 'Y(o)
satisfying the condition

fe

ProrosiTiON 6.2. For any simplex ¢ in K, we choose a fixed equivalence
flp): awX — Y(p) in A whose existence is assuved in the hypothesis H,).

Then there exists a novmalized admissible map f. ' R — Y with carrier 'Y
such that for each vertex o=p in 'K° with p in K, the diagram

‘ao'l X ld(o)X=fﬁtl .

fV
la] X acr X "Y(a)
Jo) I
am —— ¥(p)

gets commutative where the left vertical arrow denotes the natural identification
obtained by the projection.

Proof. We proceed by induction on the dimension g of .
If ¢=0, for each vertex ¢ we only need to define a map.

fei ol XX — "Y(0)

so as to render the above diagram commutative.
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If 1=q, we assume that a normalized admissible map fe-: (’ Ky —7Y
with carrier 'Y satisfying the required condition. Let N, be a complete set of
representatives taken by one’s in each congruence class of all nondegenerate
g-simplices in 'K.

Take a nondegenerate g-simplex ¢ in N,  Clearly the restriction
i q-l{é}/: 90 — ¥ is a normalized admissible map with carrier /Y. Hence from
Proposition 6.1, there exists a .4-map

for ol XiaanX — "¥(0)

such that &,of, o= fqﬂl(')f\r; where k,: 'Y(0) — ¥ denotes the inclusion.
Gathering these maps, we obtain a normalized admissible map

Ffor (Ey-ufN,— 7

with carrier /Y such that f},](’ﬁ)"“r—f,,,,. ,
The argument in Proposition 4.1. allows us to define a normalized map
Fa: E*— ¥ such that f,,](’ff')q“ulqu fr. It remains to prove that this
map is admissible and has the carrier ‘Y.
Since f; is an admissible map with carrier 'Y for each ¢ in (K)*'UN,
there exists /J-map '

for ol XX — Y(o)

such that fg|lo| X /g X=k.of, where k, is as above.

First we assume that ¢ is a degenerate ¢-simplex. Let 5: ¢ —> (o) be
a degeneracy with v(s) in K%'. The map » is a surjective morphism, so from
the definition of ‘d we have ’d(v(¢))="d(¢) and applying Lemma 5.1. we deduce
"Y(u(e))='Y(s). Hence we can define a map

for ol XX —> " Y(o)

by putting f.=f.wo(vX1). Now it is obvious that f, is .4-map.

Next we consider a nondegenerate g-simplex ¢ not helonging to N, Let
a: g — alo) be a unique congruence such that a(s) belongs to N,. Again the
map « is a surjective morphism, hence we obtain ‘d(a(e))='d(s) and '¥{a(s))=
’Y(s). We define a map

foi ol XX —> " Y(0)

by putting f,=fewo(ax1). It is also an _{-map.

§ 7. Simple homotopy equivalence

The whole of assumptions adopted. in the previous section will equally stand
throughout this section too.
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ProrosiTiON 7.1. Let f: 'R —— ¥ be a normalized admissible map with
carrier 'Y such that for each vertex o=p in 'K with p in K, the diagram

Je
lo] X @y X "Y(o)
o) l
i X —  Y(p)

becomes commutative where the vertical arrow is the projection, the top hovizontal
arvow denotes an A-map and the bottom horizonial arrow means a prescribed
equivalence in .

Then f gives rise to a simple homohopy equivalence.

Proof. First we remark that the proof can be reduced to the case K=4([)
with I=K°.

If it is not the case, we take the standard simplex 4(K") instead and extend
the filtration Fx on 4(K°) by defining Fx(p)= —co for p in 4(K°) not belonging
to K. Further we agree to put _.X=¢. Finally we set Y(p)=¢ for p not
contained in K.

Now a map f: 'K — ¥ can be regarded as a map f: ’A(]?“)~—> Y
which has the required property if we adopt the convention that
flo): anX —> Y{p) means nonsense for p not belonging to K.

Let us introduce some notations requisite for later discussions.

i) For a simplex p in 4(I), we write 4(p) for the simplicial closure of p
and i,: 4(p) — A(I) for the inclusion. Now i, induces

Flo=Fei,: X(o)—Z  defined by  (Flo)(o")=F(o)
Yip=Yoi,: A(p)—> A  defined by  (¥lo)(o")=Y(p).

Here we write d|p=dei,. ‘
Clearly i, derives the inclusion /i,: ‘4(p) —> ‘4(I). Let ¢’ be a simplex in
' 4(p) with vertices g, - -+, g¢ such that p<---</g. Then we have the identities

"(Flp)a")=(Flp)pea)=Flpg)=("Fo'i,)a’)
(Y1) =(Y]p)e)=Y(p)=("Yo'i,)(a").

Moreover we use the notation ‘(d|p)="d>"i,.

ii) For a simplex p in 4(I), A(p) denotes the link of p in A(I), more precisely
X(p) is the simplex in 4(I) satisfying the conditions (o) N o=¢, Ap)xo=4(I). As
above 4(i(p)) means the simplicial closure of A(p). We define *,: 4(2(p)) — 4(I)
to be the map obtained by joining with p. In other words, it is given by
*,(o)=p*0 for o’ in 4(A(p)). This map provides us with the filtration and the
contravariant functor
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Fxp=Fox,: 4(p))— Z  defined by  (Fxp)p) =Fp' *p)
Yip=Yox: 4Mp)—> A defined by (¥ p)o))=Y(¢' *p).

We adopt the convention here that write d * p=d o (*,).
Let %,: ‘4(A(p)) — "4(I) be the simplicial map given as follows: Let o
be a simplex in ‘4((p)) with vertices g;, -+, pq such that p=<(.--<(pg. Then we

N N
define (%,)(¢") to be the simplex with vertices (p;* p),--+, (0g* p)-
Now we can deduce the following :

(% p)o") =(F % p)pg) =F(og % p)=("F = #,)(¢")
(Y p)o')=(Y % p) i) =Y(po; » p)=("Y = %)(0").

We put (d*p)="do %,.

Now we are getting down to the proof, assuming K= 4(I).

If dim A(I)=0, the proof is trivial.

If dim 4(I)=1, we assume that the proposition is proved whenever K=A4(])
with J& 1.

Suppose given a simplex p in 4(J) whose dimension is less than dim 4(1).
Then by the inductive hypothesis we can assume that the following assertions
are true.

7~ 7~

i) Let f': '4(p) —> Y|p be a normalized admissible map with carrier

'(Y]o) such that for each vertex ¢’=p’ in ‘4(p) with o’ in 4(p) the diagram

S

[a'| X rcaipyonX "(Y1o)a")

()
wip X > (Ylp)e")

becomes commutative where the vertical arrow and the horizontal arrows are as
in Proposition 6.2. Then f’ induces a simple homotopy equivalence.

Let f: ’2(7) — ¥ be a map given in the proposition. Then f gives rise
~ o~ ~
to a map f': ‘d(p)— Ylp satisfying the property fo’i,=k’c f’ where
7~ ~
k': Y|p— Y denotes the inclusion. s’ inherits the properties from f which

make f/ a normalized admissible map with carrier /(Y|p). Hence f’ becomes a
simple homotopy equivalence.

Vel I~
iiy Let f7: 4(A(p)) — Y *p be a normalized admissible map with carrier
(Y % p) such that for each vertex o'=p’ in '4(2(p)) with p’ in 4(2(p)) the diagram
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f

0" | Xt (aupy o1y X "(Y*p)(e")

7"
(2] (P'>X (Y*P)(P’)

becomes commutative where the vertical arrow and the horizontal arrows are
as in Proposition 6.2.. Then f7/ gives rise to a simple homotopy equivalence.

Let 7: ’2(7) — ¥V be a map given in the proposition. Now f determines

U P ~

Je 4((e)) — Y p  satisfying the property fo%,=k’o f/ where
R m — ¥ denotes the inclusion. £’/ is shown to be a normalized admis-
sible map with carrier (Y *p). Hence also in this case f/ is a simple homotopy
equivalence.

We come to the final step in proving that f is a simple homotopy equiva-
lence.

We assume that p is a vertex in A(/) and hence i(p) is a proper face of
A4(I) with the highest dimension.

Let us denote by N, and N, the regular neighbourhoods of 4(p) and 4(2p)
respectively. So we have the collapsings

N,NA(p), Nagny N A(A(0))
Further from the definition follows
N(,nN}(p)-:;k\F /Z’(Z(‘ll))’ N[,UN;(,,)=/A(I).

It is easily checked that 1\7',, and N i are the regular neighbourhood of
Vanadd
"4(p) and ’2(2\(;)) respectively.. Thus we have the collapsings

~ o~ ~ P
N, N 4(p), Ny ' 4(p)).
Now we have
2 ~ . o~ ~ ~ N}
NPan(rD: F14((0)), NPUNI(/’)S,A(I)'

Here we note the observation in i) which yields the existence of simple
homotopy equivalences

S~ S~ , Vg g S
i 14(p) — Yp, Fien i 7d(2(0) —> Y12(p)
satisfying the' conditions f o ‘i,=k,o /7, f o laey=ZFrm © Fiw respectively.

Further the arguments in ii) can be applied to show the existence of a
simple homotopy equivalence
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£ i) — Vg

satisfying the conditions f o §,,=k” o f'.
On the other hand, we can easily verify

r~ P I~ I~ I~ ~
YionYia(p)=Y*p, YlpUY|A)=Y.

Finally we consider the following commutative diagram

/ }\7;('0)
o~ 7! \

Ao o s
\ T
Z(p)

\f ,i Y
ve /

where all the vertical arrows except the right extreme f give rise to simple
homotopy equivalences.
Now using the sum formula of the Whitehead torsion, we can conclude

that f induces a simple homotopy equivalence.
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