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Abstract

Let 2 be a bounded domain in R*® with a Lipschitz continuous boundary 8%.
In electromagnetics, we consider a Hilbert space of vector-valued functions
which, along with their rotations and divergences, are square summable in £2
and whose normal components on 3£ vanish. We will show that this space is
continuously imbedded to {H'(2)}* when 2 is convex, where A'(#) is the usual
first order Sobolev space. In addition, we will derive an inequality for functions
in this Hilbert space. To these aims, we adopt the techniques of Kadlec-Grisvard
and the mixed formulation.
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§1. Introduction

Let 2 be a bounded domain in R* with a Lipschitz continuous boundary 352.
In electromagnetics, we often use the Hilbert space of vector-valued functions
which, along with their rotations and divergences, are square summable in £
and whose normal components vanish on a2, see Duvaut-Lions [4]. This space
is used for example to describe magnetic fields. It is difficult to tell whether
functions in this space have square summable first order derivatives. In other
words, we want to clarify relations between this space and {HY(2)}®, where H'(2)
is the usual first order Sobolev space. It is well-known that the answer is affirm-
ative when 92 is sufficiently smooth, see e.g. Duvaut-Lions [4]. Unfortunately,
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this result is not fully satisfactory for practical purposes, since we must often
deal with domains with non-smooth boundaries such as polyhedra. Furthermore,
the answer is in fact negative for some non-smooth domains, see e.g. Weck [10].

In this paper, we will show that the answer is affirmative and a special
inequality holds when £ is convex. To this end, we will utilize the techniques
of Kadlec-Grisvard and the mixed formulation. That is, after Kadlec [8] and
Grisvard [7], we approximate 2 from the outside by convex domains with smooth
boundaries, for which the answer is affirmative. On the other hand, the mixed
formulation is known as the Lagrange multiplier method in optimization theory
and in numerical analysis of the finite element method. We will take advantage
of the fact that this approach is well suited for dealing with certain constraint
conditions, see e.g. Brezzi [2]. These techniques are essentially the same as
those employed by the second author [9] to derive similar results for the Hilbert
space of electric fields. Finally, it is to be noted that the same results are ob-
tained by Girault-Raviart [6]. However, we publish this paper since our method
of proof is different from theirs and in a sense more natural than theirs.

§ 2. Function spaces and preliminaries

Let 2 be a bounded domain in R® with a Lipschitz continuous boundary 9%.
As usual, L,(Q) designates the Hilbert space of all real functions square sum-
mable in 2. We will denote by (-, -) the inner product of L.(2) or {L.(@)}.
Similarly, we will use || - || to denote the norm of L«(Q) or {L.(Q)}® or {L.(2)}".
We will also use notations such as (-, - ), and || - ||, when it is necessary to
specify domains. H*(@) is the usual first order Sobolev space, which consists of
all real functions in L.(®) with square summable first order derivatives in the
distributional sense. Later, we will also consider H'(R®) in the usual sense.
The norm of H'() is denoted by || - ||z and is given by

llgll e =(lgll*+lgrad ¢l|*)'* for ge H{(Q), (1)

where grad denotes the gradient operator in the distributional sense. We will
also use the notation grads for any vector-valued function ve{H'(2)}*, which
implies that grad v={grad »®, grad v»®, grad pP}e{L.(N}°® with »® (i=1, 2, 3)
being the components of ». '

Let us introduce some real Hilbert spaces appearing in electromagnetics [4]:

H(rot, 2)={ve{L(2)}*; rot ve{L(2)}%}
equipped with the norﬁl
191l zrer, 2 =Cllolf2+ lirot ol[2)72, - (2)
where 7ot implies the rotation operator in the distributional sense,

H{(div, 2)={ve{L(2)}*; div veL,(2)}
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equipped with the norm
s, o=l lidiv 2972, (3)
where dip implies the divérgence operator in the distributional sense,
Hydiv, Q)={veH(div, 2); (dive, g)=—(», grad ¢) for any ge H'(?)}
equipped with the norm of H(div, 2), and
V(@)=H(rot, 2)N Hy(div, £2)

equipped with the norm
ol = lol2+ [[rot o2+ [{div o] for ve V(R). (4)

The inner products of the above Hilbert spaces are standard ones associated
with the norms, although we omit the explicit expressions. Note that the normal
cormaponent of any function » in H(div, @) vanishes on 2% in a weak sense,
since the condition (dive, g)=—(», grad ¢) for all ge H'(2) is rewritten by the
divergence theorem as follows, when » belongs to {H'(@)}' as well and 9% is
sufficiently smooth : '

gw @ - g dr=0; Yge H(@). (5)

Here - denotes the inner product of two vectors, »-is the unit outward normal
vector on 4%, and dy is the infinitesimal element on 2. For details of the

present discussion, see Lemma 7.5.2 of Duvaut-Lions [4].
In what follows, let us. list up some known results. The notations £, @*
and £, (n=1, 2, 3,...) below are all for bounded domains in R*® with Lipschitz

continuous boundaries.

(i) Tor each ge H'(R), there exists an extension ¢' to R* such that ¢'e H*(R?Y),
see Theorem 11.12 of Agmon [1].

(i) {H'(D)® is dense in H(rot, ), see Lemma 7.4.1 of Duvaut-Lions [4].

(ili) Let £ and £* be two domains such that Qc0*. Let » be an arbitrary
element of Hy(div, &), and v»* be the extension of » to 9* by zero outside 2,
that is,

vME)=0(g) for £eQ,  v*(&)=0 for £eQX\Q. (6)

Then »* belongs to Hy(div, £%) with [|[o*]| gy, ao=|[9llgwy, o and dive* is equal
to the extension of divy to 2% by zero outside {2, see the proof of Lemma 7.4.3

of [4].

(iv) Let @ be a domain with a boundary of C*-class. Then {H(2)}*n V{2)
is dense in V(f), see Lemma 7.6.1 of [4].
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(v) Let 2 be a convex domain with a boundary of C*-class. Then it holds
for any ve{H'(Q)1 N V() that

|lgrad o|]* <|[rot »|[*+||div |} . (7)

This follows from Theorem 3.1.1.1 of Grisvard [7] together with the convexity
of £ and the vanishing of normal component of » on 9%2.

(vi) Let Q be a éonvex domain with a boundary of C>-clags. Then, from
(iv) and (v), V(@) is continuously imbedded to {H'(@)}* with

llgrad o|2<|[rot vl|*+||divo||?; ¥ ve V(2). (8)

(vii) Let £ be a convex domain. Then there exists a sequence of domains
{2.)7-1 such that

(vii-1) £, is convex and 2,22 (n=1, 2, 3,...),
(vii-2) 92 is of C=-class (n=1, 2, 3,...), and
(vii-3) sup inf dist(¢, ) — 0 a8 n—> oo,

§e0y, 160

where dist (-, - ) is the Euclidean distance function for R®. As for these, see
Lemma 3.2.1.1 of Grisvard [7]. Note here that any convex domain has a Lip-
schitz continuous boundary. Actually, the statement of Grisvard corresponding
to (vii-2) is that 992, is of C*class. However, it is not difficult to improve the
original statement to the present form since its proof is based on Theorem 33
of Eggleston [5] and the standard mollifier techniques.

(vill) Friedvichs' ineguality Let 2 be a domain which is star-shaped with
respect to any point in an open ball of radius p>0 contained in £. Then each
ge H'(2) with (g, 1)=0 (1=constant function with unit value) satisfies

llgll=C(p, d)llgrad ql|, (9)

where ¢ is the diameter of 2, and C(p, d) is a positive constant which is inde-
pendent of ¢ but can depend continuously on p and 5. For the present results,
see Theorem 3.2 of Dupont-Scott [3].

§3. An imbedding theorem

We will show that H(rot, 2)N Hy(div, 2) is continuously imbedded to {F*(Q))*
when @ is convex. To this end, we first present the following lemma, which
is a simplified version of Theorem 1.1 of Brezzi [2] and is commonly used for
the analysis of the mixed formulation. Hereafter, we will denote the range and
the null space of a linear operator 7' by R(T) and N(T'), respectively.

LemvA. Let X and Y be two real Hilbert spaces with norms || - ||z and
|| + llv, 7espectively. Let B be @ linear bounded operator from X into Y, and let
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B* be the dual of B. We assume that R(B*) is closed in X, or, in other words,
theve exists a positive constant k such that

| B*y||x=kl|ylle for any yeR(B). (10)

Let us consider the problem: given {f, gle XX R(B), find {z, y}e XX R(B) such
that

z+B*y=f, Bz=g. (11

Then the solution {z, y} of (11) exists uniquely in XX R(B) for each {f, g}e XX R(B)
and satisfies the estimation

|l +lwlle = ME)NS N +llglle) (12)

where M(k) is a positive number dependent only on k.

Remark 1. Since R(B*) is closed in X, R(B) is closed in Y. If the solu-
tion {x, y} of (11) is looked for in XX ¥, y is not unique if N(B*)={0}.

Now we can state our main results. The main idea for the proof is ac-
credited to Grisvard [7]. We will refer to the results in the preceding section
as (i), (ii) etc.

THEOREM. Let Q2 be a conmvex bounded domain in R°. Then V(Q)=
H(rot, QY0 Ho(div, ) is continuwously imbedded to {H' ()} with

llgrad o||*=||rot v||*+||div v||* for any ve V(Q). (13)

ReEMARK 2. Similar results are obtained in [9] for the Hilbert space of
vector-valued functions which as well as their rotations and divergences are
square summable in @ and their tangential components vanish on 8%2. However,
an inequality corresponding to (13) is not given there. Such an inequality is
now easy to derive if we adopt the techniques given in the proof below.

Proof. 1° For @, we consider {Qn)i-; of (vil). For any we V(R2) and n=1,
2, 3,..., denote the extensions of #, rot# and div# to £, by zero outside
as u;, (rotw)f and (divu)¥, respectively. Then (rote)¥e{L.(2.))* and, by (iii),
ufe Hy(div, 2,) with divef=(divu)}. Moreover, we will use the notations:

Xo=H(rot, 2n), Yo=H"(22), Zn={H(Qu)}*.

2° TFor n=1,2,3,..., let us find a pair {sn, pu}e XX ¥, such that (Hn, Da,=0
and, for all {wn, gn}eXuX Yo,

(0, Wa)x,, +(grad pn, wa)a, =(6%, wn)o,+ (X0t w)E, Tot wn)s, ] ®
P a

(s, grad gn)o,=(us, grad gn)o,
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where (-, - )x, is the inner product of Xn=FH(rot, 2,). This is a typical problem
described by the mixed formulation. In fact, if we set X=X, and Y=Y, we
can use the Riesz representation theorem to express (a) in the form of (11).
Particularly, B* in this case is an operator from Y, into X, and is characterized
by the relation

(B*¢n, wn)x,=(grad gn, wa)o, for all {wa, galeXnX V.

From this relation, we can show that B*g,=grad ¢, for any g.€Y, if we notice
that grad gn.eX, with rot grad ¢.=0 and hence (grad gn, wn)a,=(grad gn, wa)x,
for any wneX, Then we can also see that R(B), the closure of R(B) in Ya,
is the totality of functions in H'(2,) whose integrals over £, vanish, since
N(B*) (=orthogonal complement of R(B)) consists of all real constant functions
defined in 2.

3° To conclude the unigue existence of the solution of (a) by the preced-
ing lemma, let us first show the following inequality for all 726 R(B), that is,
for all gne H(22) with (gn, 1)a, =0,

sup (grad g, wn)a, [ [lwallx, Z|grad gulla,-
Wy&Xp \(0)

Due to (1), (vii), and (viii), this is a sufficient condition for (10) and the positive
constant corresponding to 2 in (10) can be chosen to be independent of ». To
prove the above inequality, let us consider w,=grad ¢,. Then, as we have al-
ready seen, wneX, with rotw,=0, and hence |jwnl|x,=|lgrad gu|ls,. The desired
inequality immedeately follows from this relation. It is also clear that the func-
tion corresponding to ¢ in (11) actually belongs to R(B), since R(B) has been
shown to be closed and (¥, grad ga)., =0 for any g.€ N(B*)=orthogonal comple-
ment of R(B).

4° Now we have shown the unique existence of {#,, p.} for each n=1 with
the estimation

([l 4| Dnll7r, S Ci(lJ0][5,, + | (rOt 2)3][%, +11(div 2)3¥][5,)°
=Cillullvw

where C, is a positive number independent of # and » (a similar notation C,
will be used later). Moreover, by considering the restriction g5 of gneFH'(2s)
to @2, which belongs to H'(2), we have from the second equation of (a) that

(#n, grad gn)o,=(u¥, grad gn)e, =, grad gn)e
=—(div #, gh)o=—((div %)¥, gn)a,,

since we Ho(div, 2). Thus div s, =(div %)y € Lo(20) With (¢, grad gn)e,= —(diV %a, qn)a,
for any gn.¢ H'(2,). This implies that #, belongs to V(Q2.), and also to Z,={H'(2)}*
by (vi), since each 02, is of C™-class by (vii). To sum up, each {#., pn} belongs
t0 {Za V()% Yo With (br, 1)5,=0 and
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lla]| 2, || nlly, = Colletl v car - (b)

5° Let us denote the restrictions of #, and p. to 2 by #% and p%, respec-
tively. Then ue{H'(Q)} and pLe HY(L). Moreover, the norms of =% and p% do
not exceed those of #, and p., respectively. Then, from (b), [J#|lziays and
128z are uniformly bounded with respect to #. Thus we can choose a sub-
sequence of {{u}, piln-, again denoted by {{z, pilr-, for smlphc:lty, such that
as #—r 0o

s, — 1y weakly in {H'(Q)}, po — po weakly in H'(2),
where {#y, po} is an element of {HY(2)} X H*(2) and satisfies
gl lzrrcans | Loll ey S Call2] oy - (c)

6° For each {w, gle{(H'(Q)F x H(2), there exists by (i) an extension {w', ¢'}
to R® that Dbelongs to. {H'(R®)} x H'(R*. Then the restriction {w}, g} to 2,
belongs to Z,x Y, for any »=1, and we find from (a) that

(ttn, 24}21)‘1',2+(g1‘ad Py 101)a, =2, Wnrerat, 03 5
(un, grad gh)o,=(u, grad q),.

To see the behaviors of the left-hand sides of these equations as n — co, we
first notice the identity

(uni w;z)Xﬂ=(%2,: M))H(mb. ﬂ)+§a \2 {un ¢ KUY'I"(rOt uﬂ) : (rOt wf)}d& ’
n

where d¢ is the infinitesimal element in R°. Since [|#alls, and |jrot )|, are
uniformly bounded with respect to # and the Lebesgue measure of 2\ tends
to 0 as #—— oo by (vii), the last term of this identity converges to 0 as % —
co. Thus, (#n, wh)x,—> (o, W)geet, oy 88 #—>co. Similarly, we find that
(grad pn, wha, ~——>~(grad Do, way (#n, grad gh)s, —> (460, grad @)g, and (Ha, 1)g,=0
~—>(po, 1)y a8 n—>oc0. We have now shown that {uo, po}e{ff‘(g)}“xﬁl(ﬂ)
satisfies (P, 1)p=0 and

(%o, W)gror, o--(8rad po, w)o=(, W)zrcron, m:]

d
(4o, grad g)o=(u, grad g)o (,)
which actually holds for any {w, ¢g}eH{(rot, Q)X H'(2) since, by (ii), {(HY(DP is
dense in H(rot, 2). As {w, O}eH(rot, Q)X H'(2) also satisfies (d), it holds that
uo=u and p,=0 by the uniqueness of the solution assured by applying the pre-
ceding lemma to (d) with X==H(rot, Q) and Y=H®Q). Therefore, any ue V(Q)
belongs to {H'(Q)}* with |[u]|zw@e=Cell#lly from (c). This implies the con-
tinuous imbedding of V(Q) to {HYQ)}%.

- 7° Finally, let us derive (13). As we have seen in 4°, it holds that.
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div un=(div u)¥ . (e)

On the other hand, equating {wn, gn} t0 {#s, Pn} in (@), we have

Hun] ].?ifn + (grad pn: un)ﬂn = ”un] lfr,n -+ (grad Pn, u:‘:)gn

=(83, tn)o,+((rot %), TOt tn)a, ,

from which follows

Netalls, +(grad D3, %)o=(% %3)accos, o -

Letting » tend to oo in the above, we have

Limn s, = |l zon, - @

It follows from (vi), (&), and (f) that

llelf+llgrad #|fs=<lim inf ([lusl3+lgrad 4][2)
=liminf ([{#alls,+1lgrad w.lff,)
=lim ([[#nlfs, +lirot uallb, +[div ual5,)

= |[oe] 4 ||rot wli+|div wlf% .

This implies (13), and the proof is complete.
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