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Abstract

A relation between the modified wave operator W3 with a stationary modifier
and W3 with a time-dependent modifier and a relation between the correspond-
ing scattering amplitudes Ss(4, o, ') and Sp(4, w, o’) are obtained for long-range
potentials. One related problem is proposed.

§0. Introduction

We consider the Schridinger operators on 4 =L¥R™), n=2:

0.1) ~ 2 2 =
[:[z: Ho 'l' V .

The potentialjV= V{x) isla real-valued C* function on R™ such that for some
constant 0<e<1 and for all multi-indices «

0.2) 05 Viz)| S Colad™1—,

where {@)=(1-+|z*)"* and 95=(3/0x1)" - --(8/02s)"» , a=(ar,-+*, ). Under this
assumption, H, and X define self-adjoint operators on .4 with the domains
D(H)=D(H)=H?*R") (=the Sobolev space of order 2).

In [4] we have introduced the modified wave operators W=s-lim ¢#¥ Jg-it#o

Lrgoo
. with a time-independent (stationary) modifier 7 for the long-range potentials
satisfying (0.2), and proved that W% are complete. In a subsequent paper [5]
we have proved that the corresponding scattering matrix S,(2) has a smooth
integral kernel S,s(2, o, »’) when A>0 and wo’ (w, 0’€S*"). Further, also in
[5], we have solved the inverse problem for. V(z) satisfying (0.2) with 1/2<e<1
making use of S;(4, w, o) (see Th. 0.4 in [5]).

On the other hand, using a solution W(¢, #) of the Hamilton-Jacobi equation
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0.3) oW /ot=\E*/2+ V(eW/a&) ,
and setting
0.4) X, )=W(E, D—tlE*/2,

we can construct the usual modified wave operators Wi= Wf;(X):s-‘lim ettH
>0

e W =g.lim gitHg~1XxWp~itH where ¢ *"® and the time-dependent modifier e~#*®

Lrkoo

are defined by

2" WO fg)=(Fe T OG- f)(z)
(0.5) {

e~ XD fp) = (G~ TEOG-1F) (),

and & denotes the Fourier transformation :
0.6) FF@=@0 ] e 1)

It is known (see e.g. [3], [6], [11)) that W(X) are complete. Further we can
construct the usual S-matrix Sp(2)=S%) from WH(X). According to Agmon’s
announcement [1, Th. 2-(ii)], S$(1) has also a smooth integral kernel $%(4, w, w’)
when w#w’, but unfortunately the proof has not been published yet. In this
paper, we shall prove

THEOREM 0.1. Let V(z) satisfy (0.2) for some constant 0<e<1. Then there
exist veal-valued C= functions ¢., x(£) of £eR"~—{0} such that

0.7) SEQA, 0, o)=e+xVENS(2, w, o )e - xYH
for A>0 and w+o'.

We thus obtain the smoothness of S%(2, w, o’) for w¥e’ via (0.7) from that
of Ss(2, o, «’). Moreover it follows from the proof of (0.7) (see Lemma 2.3
below) that there exists a solution W,(&, £) of the Hamilton-Jacobi equation (0.3)
such that Wi(X;)=W3% hence S3(4, o, )=8:0, o, '), where X, is defined
by (0.4) with W="W,.

It is clear by (0.7) that the scattering cross sections as(2, ®, 0')=|Ss(4, , o)
and o¥(2, o, o) =[S, o, o’)|* are identical. In this sence the physics is deter-
mined uniquely and independently of our choice of the modifiers J and e~ix®,
However the so-called “phase shift” is not uniguely determined. Thus there
remains one problem:

(0.8) Which modifier ¢~"*® gives the “correct” phase shift?

This problem includes the one of finding out the “correct” phase shift for long-
range potentials. From the mathematical point of view, the modifier g-%s®
seems 10 give at least a convenient one, because the scattering amplitude
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Ss(2, 0, 0") constructed from W3(X,)=W% is suitable in treating the inverse
problems for some long-range potentials as stated above.

The plan of the paper is as follows. In Section 1, we review some facts
about the constructions of W% and Wi=W%(X) and of Ss(2) and Sp(2)=SEQ).

In Section 2, we prove the existence of the limits U% :s—zlim et Jo=itdu  ywhich
~» koo

gives a relation between W% and W#(X). Theorem 0.1 will then be proved by
using this relation and Theorem A.4 in the appendix. In the final appendix,
we summarize from [7] some results of the method of stationary phase neces-
sary for us. '

§1. The modified wave operators W3 and W3, and the corresponding scatter-
ing amplitudes

We first consider W%. We recall the following lemma from [4, Th. 2.5] or
[5, Th. 2.1].

LemMa 1.1, Let —1<oo<on<l and d>0. Then there exist o constant R>2
and a real-valued C* function o(z, &)=pa(®, E)=0u, «. oz, &) satisfving the fol-
lowing properties :

(i) For |6l=d/2, |z|zR/2 and cos(z, &)=x-&/|x||éle[—1, a]Uloy, 1],
1.1 |0z, E)P/2+ V(x)=|£1/2.

(i) For any a, B, there is a constant C3>0 such that for ail (z, £)e R*™®
1.2) 0508 p(z, &)—z-E)|SCuplad’71"KE .
Further o(z, &)=x-¢ for |z|=R/4 or £|=d/4.

In the following, we shall use the solution ¢(z, &)=ge, o, al®, & of (1.1)
defined by [4, (2.26)] or {5, (2.11)1.
Given d>0, choose a real-valued C* function b(&)=04&) of £eR™ so that

(1.3) b(E)=04(8)=1 for |£|z=d and =0 for |&|=d/2.

Letting ¢(x, &)=gpu(z, £) where —1<0o<01<1 are arbitrarily fixed, we define a
Fourier integral operator J(d) by

1.4) J(d)f () =(2z)" 08-356"""*‘““"'“1’)(6)]’ (w)dyds .

Here Os-SS .-+ dydé means the usual oscillatory integral (cf. e.g. [10]). J(d) is

known to define a bounded operator on #(cf. e.g. [9, Sect. 4]). The modified
wave operators W3, are defined by
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(1.5) W 5cr=s-lim ¢* J(d)e~ " .
~> 0

It is known ((4]) that W3, exist; define isometries on Ex(/ o) 4 where [I'y=
[d*/2, o) and Ex(4) is the spectral measure for Hy; verify WiwEn(l)dl=
Eu(la) H“(H) (completeness) where H*(H) is the absolutely continuous sub-
space for H; and satisfy the intertwining property :

(1.6) EaMW)Wiay=WiwEx(d), JdCR'.
Therefore the S-operator S;, defined by

t.7m Ser=(W5w)*Wiw

is a unitary operator on Bl ¢) % and commutes with H,.

REMARK 1.2. Sy, above is equal to S(I"¢) defined by (3.9) in [5], hence
all the results concerning S(I7¢) in [5] also hold for our Ss¢,. - This is seen by
noting that W3, defined by (1.5) above are equal to W#(["y) (j=1, 2) defined
by (3.8) of [5} There W#(I"y) were defined by using a stationary modifier J;
(see [5, (3.1)]) with an amplitude function a@;(x, &) satisfying a transport equation
({5, (2.12))). Owing to the second estimate in (2.20) of [5] and applying the
method of stationary phase ([2]), we can easily show that Je~®#f (feEwn(I"s)90)
asymptotically equals /(d)e *#of as z.‘.——% +oo. From this follows W5a= W75«
hence Sy =S(I"s) on Eg(I'a).9(. ’ ‘

Next we consider the usual modified wave operators W =1W3(X). For this
purpose we record the following lemma (see [2, Th. 3.8] and [11, Prop. 2.7]).

LeMmMma 1.3, There exists a real-valued C= function W(E, t) satisfying the
following properties :

(1) For any d>0 there is a constant T>0 such that for |¢|=d and |t}=T
(1.8) W, B)=IE1P/2+ V(@: W(E, 1) .

(ii) For any d>0, 0<eo<e and a, theve is a constant C,>0 such that for
|€lzd and |t|=1
1.9) {IH?[W(S, D—HER/ 2] =Cad™0,

[ V(9: W&, ONI=Cultd ™.

Given a W{(¢, f) satisfying this lemma, we define the modified wave operators
Wi(X), X(¢ t)=WE, 1)—tlEf/2, by

(1.10) WEX)= s_;liin PUH gmIX D =ity

=g-lim giHg~W®

t-rkoo
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where ¢”"® and ¢ are defined by (0.5). It is also known (cf. e.g. [3], [6],
[11]) that W3HX) exist; define isometries on 4 ; verify WHX) = 9*(H)
(completeness) ; and satisfy the intertwining property. Thus the S-operator S%
defined by

(1.11) Sp=(Wa(X)*W5(X)

is a unitary operator on 4 and commutes with H,.

We next define the scattering matrices Syy(2) and S%(2). Let & be the
Fourier transformation defined by (0.6). We define the operators Sy, and §%
by .

‘ Srawr=FSra T,
(1.12)

SE=aSEF.

Then S, is a unitary operator on J{a—EZ‘Ezz,,(I’d) LY R3, d¢) where RE=
{€cR"|¢|=d), and.S% is a unitary operator. on f=F. =L R" df). Since
Srw and S§ both commute with |4/2, they are decomposable with respect

to |§*/2: SJ(d)"‘S Slcd)(z)dl on 44 and SE= Sj) S¥d2 on 4. Namely

Sran f)XE=SralE 1“/2)f($) (fediq) for ae. €eRy, and (S¥g)&)=S3(EP/2)()
(ge d) for ae. £eR™ where Ssi(2) and SH(A) are unitary operators on LA(S™?)
defined for ae. 1>d%/2 and a.e. 2>0, respectwely Sseay(A) and S%EQ2) are called
scattering matrices or S-matrices.

It is known ([5] and Remark 1.2 above) that the integral kernel
Srcty(Ay @, @) 0of Srn(2) exists for 1>d?/2 and w+#e’'eS** and is C* in (4, v, »’)
if 2>d*/2 and w+w’. From the representation formula ({5, Th. 3.3-(3.7)] of
Srear(?) and the arguments in [5, Sect. 4], it follows that '

(113) l S,/((L)(ﬂ, w, 0)')25‘7((1:)(2, ﬁ), (l),)

for V2i>max (d, d) and o, «'€S™' if w#o and d, d’>0. Since d>0 was
arbitrary in the above, we can thus define S.f(z, w, o) for all 2>0 and w#e’ by

(1.14) éz(l w, )= 5‘,;(,0(2 w, cu)

with choosing d>0 such that ,2>d2/2 Sa(2, m, m’) is called the scattering am-
plitude. The integral kernel S, w, o’) of SF(2) is also called the scattering
amplitude, if it exists.

§2. The connecting operators UZ
Let d>0. We define on Eu(Ia) %
2.1 U{(d)-—-s;lim e O J(d)eitHo
-+ o .
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= s;lim (W Wgitl )(gitH J( J)g~itH0)
> oo

=(WH X)) Wi -

THEOREM 2.1. For d>0, the limits UZ(d) exist and define unitary operators
on Ex (I3 commuting with Hy. Further

(2.2) W3a=WHX)U%(d)
and
2.3) Sreay=UXd)*SFUE(d) .

Proof is clear by (2.1) and the completeness and intertwining property of
Fw and WH(X).

We set
(2.4) UXd)=qUXd)F" on Hi=FEa(ls)%.
We shall prove

THEOREM 2.2. Let d>0 and ucCo(RL). Then there exist veal-valued C
Junctions ¢%,x(&) of &, |&|>d, such that for Ee R}

(2.5) CHDu)E)=e"txO u(f).
Further for another d’ >0

2-6) o4, 2(E) =L x(§) for |§|>max(d, d').

From this theorem and density arguments it follows that for fe 4«
(2.7) THDNE) =52 f(©)
in 47q. This and (2.3) yield the existence of S¥(%, w, ") and that
2.8 Sra(d 0, )= xVEOGEQ o, o Yot x

for 1>d?/2 and w#o’. This with (1.14) and (2.6) proves Theorem 0.1.

Proof of Theorem 2.2. We consider U%(d) only, since U%(d) can be treated
similarly. Let d>0 and #eC(R%) be fixed.
By (2.1), (2.4), and Theorem 2.1

(2.9) ﬁ{(d)u=s-tlig1 Ux(d, tyw.

Here U%(d, t) is defined by
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(2.10) O*(d, tyuxe)
=(FeVOJ( et o u)(E)
=W (G J(d)F ) e u(n))(E)

=eiW(5'”(27t)“" OS_SSei(—f-xw(mm)—unln/z) u(r))dxdv s

where we have used (0.6), (1.14), and b(»)=1 on supp »C Rj.
Take compact sets K and K’ of R*—{0} such that supp zeK€K’, and
choose a C* function e(y) such that

1 on K,

(2.11) al )={
? 0 outside K.

Then a(p)u(y)=u(y). Let x be a rapidly decreasing function on R™ such that
%(0)=1. Then by the definition of the oscillatory integral, we have from (2.10)

(2.12) @r)Tx(d, Hu)e)

=giWiED lim‘ggei(v-é~ﬁ+w(0.$)-—t]:r:l2/2) d(x)u(x)%(aﬂ)dﬁdx
0

for £eR7% and £>0.

In order to apply Theorem A.4 in the appendix, we set

NG 5 10::— -0+ '0:0 H = 22:
(2.13) {9’(6 @, O)=—§-0+% #& 5 )=lal/

Xz, 0)=—¢0, x)+0-z, alz, 0)=a(z)p),

where o(@) is a C= function such that p(@)=1 for |¢|=1 and =0 for |9|=1/2.
Then the integral on the right-hand side of (2.12) is equal to

(2.14) (Ag,o, ue ™IS 1),
where A.,., ¢>0, is defined by (A.2) in the app}endix, and
(2.15) VAT
= Sge“'5"’**"”'”)'““2’5 a(z)(1— o(0))u(z)x(ef)dbdz .

It is easy to check that the above ¢, ¢, X and ¢ satisfy the conditions (C¢),
(C¢), (CX) and (Ca) in the appendix with
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'P=KxXR3, '=K'XR%s,

I'=Vx{6cR"™ |6)>1/4} (V being a bounded open neighborhood of K’ in R"),
1/2>8>0, e=5 (¢ being the constant in (0.2)),

K =1-4,

(2.16)

1>0>1/2 with #/=3p-2,
]Z;zhp,:o B

(Here we have used the estimate (1.2) to show (CX).) Further, it is also easy
to see that ¢(¢; =, 6) and ¢(&; x) satisfy the assumptions 1° and 2° of Proposi-

tion A.1 in the appendix with z.(&)=~0(€)=¢ and W being a compact set in I
such that ' xXQ2'eW.

Therefore we can apply Theorem A.4 to the first term in (2.14) to see
that for £eQ2=KnNRj

(2 . 17) ]ij:-}z} I 1;41:\:01 <A5v e ue—’lt¢> _(Zﬁ)nexinlée’ltf(t,f‘. Jtc(L.E).ﬂc(f»E))ldet ]I—l/zug.é(o)] =0 .

Here f and (z., 0o)( &) are defined as in Proposition A.1. Namely for EeRY
and £>1

(2.18) 7@, &; =, O)=—¢&-0—|x*/2+¢(t0, x)/t,
and (z:, 8¢, €) is a unique solution of

azf(ti E; Te 00)=”mc+(az¢)(tﬁc, .Tz'c)/t:O,
2.19) { c

Buf(t, €; ze, Uo)=—E—Bop)(tle, xe)=0

such that for £>1, £e2’=K' N R%,, and all

(2.20) e, 0t O—(E ON=Ca.
(See Proposition A.2 and the estimate (1.2).) Further
(2.21) ]‘—:](t1 E; xC(ty E): GC(t: E))i

where J(t, &; x, 0) is defined by (A.7):

Hoedop)(10, =)  (Dadop)(t0, x))

(2.22) J@ €5 =, b‘)=(
(aeamso)(w, x) -1

¢ is the signature of the real symmetric matrix /, and #.(y) is defined by
(A.15): ‘ ) o

(2.28) ; W () =alz+zdt, E)ptO+0:E, ENulz+zt, £)
XAz, O ,0r=ppr; €L Dy e(W)]
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where ¢ and 7 are the C= functions on R*X R" determined by Morse lemma
(Lemma A. 3) such that (=, 8)=1 near (z, #)=0, ¢:(0)=0, and |det 3y (0)|=1.
Thus for £eR(cK) and £>1

2.24) uh () =u(adlt, £)),

which converges to u(€) as ¢t — oo by (2.20). Further by (1.2), (2.20), (2.21),
and (2.22), we have for £e2(c R%) '

(2.25) %im [det JI=1.

Therefore (2.17) implies
(2.26) lim | lifn {Ae,e, ue™ Wy —(2m)"e~¥Wa®® 4(£)] =0

oo
for £eRQ=KNR?%, where for éeR?% and £»1
(2.27) aE, = —ro/d—1tf(, &; z(t, &), O(t, £)).

Since K was arbitrary as far as suppueKeR"—{0}, (2.26) holds for all £e Rj.
Note also that, from our definition [4, (2.26)] or [5, (2.11)] of ¢(z, §)=gdz, &),
da(€, 1) defined by (2.27) satisfies for d, d'>0

(2.28) ¢alé, D=¢e(§, )  for |€|>max(d, d').

To deal with the second term I(, ) in (2.14), we integrate by parts with
respect to x in the integral (2.15) using

(2.29) L= ]m]*z(ix -3a), 1Lt o pitizmiB2 |

Then denoting the transposed operator of L by !L, we have for ¢=1, >0, and
£eR™ :

(2.30) LE, 8
- Sgew‘”—wfﬂ(l — DO LY (O aau())dod

where we have used u(z)=0 for |z|<d. Since the support of the integrand of
(2.30) is compact in R"X R" the limit o, t)=1iﬁ1 I(¢& 1) exists and satisfies
%im I& H=0 for éeR™ Combining this with (2.26) by (2.12) and (2.14), we
obtain for £e¢ R% :

(2. 31) }im] ([jX(d’ B)6)(E) — giW Eb—1a&:00(8Y] =),

Thus it now suffices to show that the limit

(2.32) ¢%, 2(©)=lim (W, H)—¢al§, 1)
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exists and defines a C~ function of &, |{£|>d. In fact, (2.5) follows from (2.9),
(2.10), (2.31), and (2.82), and (2.6) follows from (2.28) and (2.32).
For this purpose, we prepare the following

LemMA 2.3. Let d>0. Then there is a constant T=Ty>0 such that for
€lz=d and t=T, ¢q&, 1) satisfies the Hamilton-Jacobi equation

(2.33) BuulE, £)=IE1"/2+ V(@eult, 1)) -
Further for any a, 0|21, and e, 0<e,<min (e, 1/2)
(2.34) [0 gal§, 1) —HEP/2]| =Coeilt' ™,

where Ca., is a constant independent of t=T and |&|=d.

Proof. Using (2.18), (2.19), and (2.27), we have

.55 {a,m, BD=—Ft &; a0, 0)—HALNE &5 2o 0=ty OF/2,
Qepal€, B)=—HB:)E, &; xe, De)=10c1, &).

By (2.19)

(2.36) | 2= B0} 20e, I,

and by (2.20)
(2.37) {

cos (e, x)=0y

for |¢|=d and =T, if T is large enough, where R and ¢, are the constants in
Lemma 1.1. Therefore by (1.1) of Lemma 1.1

(2.38) [@o)(@e, e)l*/2+ V(Ele) = zc|*/2

for =T and |¢|=d. Then (2.33) follows from (2,35), (2.36), and (2.38), and
(2.34) follows from (2.20) and (2.35). The proof of the lemma is complete.

ProrPOSITION 2.4. The limit ¢%, x(&) in (2.32) exists and defines a real-valued
C® function of |£|>d.

Proof. We mimic the argument of Hormander [2, pp. 86-87]. Let K, and
K be compact sets in R™ such that K;eKeR%. Since W(§, 1) and ¢q&, #) are
C* and satisfy the same Hamilton-Jacobi equation (2.33), we have with R(¢, &)
=WI(§, t)—gal§, ?)

(2.39) 90 R(2, §)=0Lo.W(E, 8)—dualé, 1))
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=oL V(O WE, 1) — Videhals, £)]
=ofaR(t, &)-alt, O],

where
(2.40) att, &=\’ 0.V:ult, 1+ 03:RG, ) .

a(t, &) satisfies for all @, t=T(>1), and £eK

(2.41) 10%a(, &)|=CLH—1
for some constant C,. This inequality follows from (0.2) and the inequality
(2.42) [08[0eha(€, D)+00:R(t, £)—1E]|=Cult)™,

which is derived from (1.9) and (2.34). Let &(4, ») be the solution of
dé
(2.43) Zz't'(t’ n=—alt, &¢ 7)), &I, p=neks,
where K,€K is a compact set to be determined later. Then &, n)eK for ¢z=T
if T is large enough, and satisfies for any « and (=7
(2.44) 1956, —I=CLTH™.
Therefore Kyan—> &, n)eK is a diffeomorphism for any fixed =T if T is
large enough, and has an inverse K,3¢& — y(f, €)eK, satisfying for any « and

=T

(2.45) 050n(t, E)—E=CLTH™.
By (2.39) and (2.43), we have

a -
(2.46) ;Z;[R(t, £(t, )1=0,

hence for some function y(5) independent,of #

(2.47) Rl &R ) =rG), neko, t2T.

This implies that 7(7) is C* in peK, and R(t, &=70;{¢, £&)). Thus by (2.45)
(2.48) |0zR(Z, 6)|=Ce

for any a, £¢K,, and ¢=7. This with (2.39) and (2.41) implies that 9,0(R(Z, &)
is integrable with respect to =T uniformly in £eK, for any «. This concludes

the proof of the proposition.
The proof of Theorem 2.2 is complete.
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Appendix

In this appendix, we summarize from [7] some facts about the asymptotic
behavior of o

(A.1) {Age, ue™™ 2y (ueCP(R™)

as t—oo. Here the distribution A . is defined by
(A.2) ey wy={ [ esce-xenata, puiayen)ads

for ueCP(R™), >0, and ée2&R™ (m=1), where X is a rapidly decreasing func-
tion of #e RY (N=1) with x(0)=1.

Let I" be an open conic set in R"X(RY—{0}) (#=0). We assume the follow-
ing conditions on ¢ and ¢:

(Co) $(&; x, 6) is a real-valued C* function defined on @’ xI", where £ is
a bounded open neighborhood of £, and satisfies for all £e&’

(a) ¢¢; z )=t4(¢; =, 0), >0, (z, O)el,
(b) (O, 0a)p)E; =, 0)#0, (x, O)el.

(C¢) ¢(&; x) is a real-valued C= function on £'XR" such that for all &e®”
and wesupp u, d.¢(&; z)70.

‘Let II; and II, be the projections from R"XR" onto R"™ and R¥, respec-
tively, and let real numbers p, d, %, %, and # be fixed as follows:

(A.3) 1>0>1/2>6>0, By, AR, ' =30-2.
We assume the following conditions on X and @:

(CX) X(z, 0) is a real-valued C* function on R"XR”, and for any compact
set L of (/") and multi-indices a, f, there is a constant C,; such that for any

(%, 0)eLXIL(I")
A4 {I(BzaéX)($, O = CoplO>' 101, laf+ 1Bl =2,
: ](8365)()(.?, O)| S C g OV ot +u=m11 g1 1 |B] 23,

(Ca) a(=, 0) is'a C* function on R*X R¥, and for any compact set L of R”

and multi-indices «, 8, there is a constant C,s; such that for any (z, /)eLx R¥
[|Giaza)(m, O)|=Caplph, lal + Bl =1,

(A.5)
1!(858561)(% O ZCopOyretiT =l o] +|8] 22.

Further, for some compact set K of I', @ satisfies a(z, §)=0 for (z, 0)e R*XRY
—{(=z, t0)|tz1, (=, O)eK}.
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ProPOSITION A.1. Suppose that there is a compact set W of I' satisfying
the following two conditions:

1° For any &ef there is a unique point (x(£), 0.(5)) in the intevior of W
such. that

‘ {am(s; 2(), 0u(8))=0,
(A. 6)
Dap(E 5 Do), O(EN)=0uh(&; weal £D)-
2° For any ¢’ and (z, HeW,
3400 040z
det( o00f i )(E; z, 0)=0.
0000 0wz — 050500

Then there exist a constani T>1 and a bounded open neiglzborﬁood U of 2 with
U satisfying the following two conditions :

(i) For any t>T, &eU, and (z, O)eW,

Doof  Oudf
(A7) J@, &; =, 0)=( > L, & m, 0)
o ddof  Dabaf

is a regular symmetric maivix, where
(A.8) ft & @, 0)=9(; , O)—g(&; w)— X, 10)/t.

Further theve is a constant C such that for t>T, ¢eU, and (x, )eW

‘ Bodop Dalop
(A.9) 'f(l‘, ¢&; =, 0)—( )(&; z, 0)‘<Cz"".

(i) There exists a uniquely determined function (ze, 0)(4, &): (T, co)x U
— W such that

@) for any t>T and ¢cU
{ax f(z‘ &; x, 00)=0,
00f (2, &; e, '{)c)"'o

(h) (e, 0c) is @ C* function on (T, c:o)xU
©) (me, 0ty &)= (@ery OYENZCE? for (¢, £)e(T, )X U, and
Ay J&, &3 2, 0o) is a regular matrix for (¢, £)e(T, co)x U.

(A.10)

NEE

Proof is similar to that of Proposition 2.2 of [6].

Further if we assume the following condition on X(.i, 0) in addition tO’(CX);
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(A.11) [@02X Nz, ) SCaplfp*~"7'"! for all e, §,

then (ii)~(c) of Proposition A.1 is improved as follows.

ProrosiTioN A.2. Let X satisfy (CX) and (A.11). Then (z., 0.t &) satisfies
for all (¢, &)e(T, o)X U and w

(A.12) 08l(2e, 0c)t, &) (Tmy O)E)] SCut™?,
where C, is independent of (¢, £).

Proof is again similar to that of Proposition 2.2 of [6].

In order to state our main theorem in this appendix, we prepare the fol-
lowing Morse lemma:

Lemwma A.3. There exists an open ball BC R™Y with cem‘erko such that
Jor any (i, £)e(T, o)X 2 there exist an open nezghbor/zood Vie of 0 in R™Y and
a C= diffeomorphism ¢u,¢: Vi.e — B satisfying

(i) @, 0)=0, {#, &)e(T, co)x 2,

(i) F &3 pue@)+(ze, 0t D=F( &3 B 0)+CAG Sy, /2, veVie,
(, &)e(T, o)X 2, where

8900 f 0200 f

)(t, &; zel?, §), 02, £), and

(A.13) A, 5)=<

(iii) |det d,0.,600)]=1, (¢, &e(T, o)X Q.
For the proof, see [2, Appendix].

THEOREM A.4. Let the conditions (Cp), (C¢), (CX), (Ca), and the conditions
1° and 2° of Proposition A.1 be satisfied. Then the following hold: :

(1) For any t>0 and e, the limit

(A.14) lim (Ao, ue™)

exists and defines a distvibution Aco.
(ii) Choose 1eCP(R™¥) so that supp XC:B zmd Wz, O)=1 near (z, 6)=0,
where B is the ball in Lemma A.3. Let ui (y), e=0, be defined by

(A. 15) u, e(?/) d(x+wc(l‘ £), (0+0.1, E)))u(a:+xc(f £)
XUt +0e(t, MUz, 0)l w04, |dEL Dyipr, e(W)].

Then for any e=0-and £eQ
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(A_ 16) %im ! <Ae.s s ue—it¢($;-)>,__(271.)(N-rn)/ze:inldeuf(z.e;wc(t,e),ﬂc(t.e))met ]'i-l/z ui.e(o)]

=0,

Here J=](t, €; zut, &), 0, &) and o is the signature of J.

This theorem is a special case of Theorem 1.2 in [7]. Note that our situa-

tion in the above corresponds to the case ¢ =0 in [7], so Theorem 1.2 in [7] is
applicable to our case without any change (cf. [8]).

{1d

[2]
sl
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5]
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