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Introduction

We consider the semilinear evolution equation in a real Banach space X
with a real n-dimensional parameter 2 of the form

(E) BmLurNa B, 150,

with an initial value #(0)=m,. Here L is the generator of an analytic semigroup
and N(z, ) is a nonlinear operator of class C* with N, 0)=0 and D,N(0, 0)=0
(DN, 0) denotes the Fréchet derivative of N(z, 2) with respect to = at (z, 4)
=(0, 0)). We are interested in the case that the evolution equation (E) is
“structually unstable” at 1=0. The simplest situation occurs in the case that
L satisfies one of the following conditions:

(i) 0 is an eigenvalue of L with algebraic multiplicity one and

Re p<—a {(x>0).

Per?(%}efﬂl
(ii) =i are eigenvalues of L with algebraic multiplicity one and

/:G«(g}\lg.—nRe p<ma (@>0).

The case (i) is discussed in [17]. In the present paper we consider the case (ii).
In this case, it is well known that non-equilibrium periodic orbits may bifurcate
from (z, )=(0, 0). (See, e.g., [6], [14], [27], [32].) Also, we may assume with-
out loss of generality that N0, 2)=0. Then (0, 2) is a stationary solution of
(E). (A pair (z, 2) is, by definition, a stationary solution of (E) if (=, 2) satisfies
Laz+N(z, 2)=0.)

The purpose of this paper is to investigate the asymptotic behavior of a
solution #(¢, x,, 4) as £ — co with an initial value #, given near 0. In particular
we are interested in the case that for some 1 there exist at least two periodic
orbits of (B). First we want to ask if «(f, @, 1) converges to a periodic orbit
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as f—oo, If it does, the following comes into question: to which periodic
orbit does it converge as t——co? We shall answer these questions by classi-
fying initial values x, in terms of the asymptotic behavior of a solution #(Z, z, 2)
of (E) as f— oo,

Here we interpret the problem which will be discussed throughout this
paper. We only consider the case that a nonlinear operator NN is small and a
solution of (E) may blow up, hence we introduce the local version of the notion
of an w-limit set. Let U and ¥ be some neighborhoods of 0 in X with UcV.
Let moel?. A local w-limit set Quv(xe, X) Oof u(f, z,, ) with respect to {U, V}
is defined as follows:

N {u(t, o, 2): tels, co)} if u(t, 2o, DV, >0
Qu,v(20, =1 **°
otherwise

where the bar denotes the closure.
Now our problem can be formulated as follows.

ProBLEM. For appropriate neighborhoods U and V with UcV, determine
R, vlwe, 2). Here U is independent of A

To begin with we state our results on a local e-limit set.

TuEorREM 1. There exisits a positive number d and neighborhoods U, U(R)
(21<A) of 0 in X with UCUQ) such that a local w-limit set Qu.ua(ze, ) of @
solution u(t, 20, ) of (E) (with respect to {U, UY) consists of a single periodic
orbit y(mo, A) (which may be an equilibrium point {0}) in UQ) if Qu.um(®e, 1) is
not empty. Furthermore, u(t, zo, 2) converges to the perviodic ovbit y(me, 2) as
{— co,

In order to solve our problem, we therefore have to determine whether
Su.va(@, A) is empty or not, and if it is not empty, we have to determine the
mapping zo — (@, 4). We shall show that these are completely determined
by the behavior of the bifurcation function and the position of an initial value
situated around the stable manifolds of periodic orbits of (E). In the next we
state a special form of this result (see Theorem 3.14 for a more general form).

THEOREM 2. Let d, U, and UQ) (|2|<d) be as in Theorem 1. Suppose that
there exists a unique non-equilibrium periodic orbit y(2) in UQD), and suppose that
it is asymptotically stable. Then, for all €U, Qu,yn(@o, ) is not empty. Further-
more if 20 MO, 1), then y(xo, N)={0}, and if e U\MO, 2), then y(zo, )=7(2).
Here (0, 2) is the stable manifold of @ stationary solution (0, 2) of codimension
two.

Further we can conclude that by the study of the asymptotic behavior we
can completely determine the stability of periodic orbits of (E) near 0 (Th. 3.1).
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As a direct consequence of the stability theorem (Th. 3.1), we obtain the
following theorem.

THEOREM 3. (Bifurcation thovem) Let 2 be a real number. If a statinary
solution (0, 2) changes its stability ot 1=0, then non-equilibvium periodic orbits
bifurcate from (x, 2)=(0, 0).

In Section 1, we state assumptions made throughout the present paper. In
Section 2, we define the bifurcation function using the center manifold theorem,
and establish the relation between the critical eigenvalue of the linearized Poin-
caré map and the bifurcation function (Th. 2.11). In Section 3, we define the
stable manifolds of periodic orbits (which are of condimension one) and the
inside (outside) of the stable manifolds. Using them, in the end of Section 3
we shall establish our main results (Ths. 3.1, 3.2, 3.13, and 3.14).
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§1. Preliminaries

1.1. Let X be a real Banach space. Suppose that Z is a linear operator
in X and that N(-, ) is a nonlinear operator in X with a real z-dimensional
parameter A. Throughout the present paper we postulate the following two
hypotheses concerning L and N.

HvporHrsis 1. (i) L generates an analytic semigroup {e'¥}i5e in X.

(ii) =i are eigenvalues of L with algebraic multiplicity one and there
exists a positive constant « such that the other part of the spectrum ¢’(L) of
L satisfies

&g Re e

In the above, L is regarded as a unique linear extension of L to the com-
plexification X, of X.

Throughout the present paper we fix # such that 0<pA<1. All the results
are valid for any fixed B within this range. We denote by X, the Banach
space consisting of all elements in the domain of (—L+1). “The norm of X;
is the graph norm of (—L+1)%.

Hyporuesis 2, The nonlinear operator N is a C*mapping of some neigh-
borhood of (0, 0) in Xyx R™ into X such that N0, 2)=0 and D.N(0, 0)=0.
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1.2. It follows from Hypothesis 1 (i) that the kernel Ker (L-i) of L-i is
spanned by some geeXe. Since i is an isolated eigenvalue with algebraic mul-
tiplicity one, the range R(L-i) of L-i is a closed subspace of codimension one
in X., and ¢. is not contained in R(L-i) (Kato [21, Chap. IV, Th. 5.28]). Hence
there exists a continuous linear functional ¢; on X, such that (=, ¢:>=0 for
xeR(L-i) and (g, ¢z y+0. We may assume that {ge, ¢ >=2.

Since we treat an evolution equation (E) in a real Banach space X, we set

pe=1+idn,  ¢5eX, j=1, 2,
e | X=l—igi,
where ¢}, 7=1, 2, is a continuous linear functional on X. Then we have
Loi=—gs,  Lgpo=¢1,
La, ¢;0=(—1)"Xa, ¢i-y>, J7=1, 2,
s Pu>=05x, J, k=1, 2.
Using ¢y, ¢r (7, k=1, 2) we decompose X, X; into direct sums
X=span {¢, ¢:}PZ,
Xs=span {¢, $2}DZ;,
where
Z={zeX: Lz, ¢;>=0, j=I, 2},
Zy={zeXp: <=, ¢;|Xp=0, j=1, 2}.

We define projections P and @ from X onto span {¢,, ¢:} and Z, respectively,
by '

Pz={z, ¢pop:i+<z, g and Qz=x—Px.

The restriction P|X; (resp. @|X;) of P (resp. &) to X; is also the projection
from X, onto span {¢, ¢.} (resp. Z5). For simplicity we also denote P|.X; (resp.
Q| X;) by P (resp. Q).

For later convenience we replace the norm || ||z on X; by the equivalent
norm :

llzll=max {V<{z, ¢*+<z, ¢°, |Qz|ls}.
Then we have

llzll=max {{[Pzll, [|Q=ll}.

Finally we denote by By(d) the open ball having radius d and centered at
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the origin in a Banach space Y.

1.3. Existence theorem and some definitions We begin with the definition
of a solution of (E). Let 1 be fixed.

DeriniTION 1,1. For fixed T>0, a function #(#) is called a solution of (E)
on [0, T if

(i) #(®)eC(0, T), Xy,

oy du(t)
(ii) 7
(iii) (%) is contained in the domain of L for 0<#< T and in that of N(-, )

for 0<#< 7, and
(iv) w(?) satisfies (B) for 0<¢< T and #(0)=mx,.

eC((0, T), X),

Then we have the following existence theorem.

THEOREM 1.2. Under Hypotheses 1 and 2, for any T, 0<T'<co, there exists k
an open neighborhood Wx A of (0, 0) in Xy X R™ such that for each (x,, 1)e WX,
(E) has a unique solution u(t) on [0, T).

The proof is done by the standard argument. See, e.g., Henny [13].

We shall introduce some geometrical terminology in the theory of dynamical
systems [4, 11, 13].

Let T7>0 be fixed. Let W and 4 be as in Theorem 1.2 with ggglLLN(w, |

bounded. Let i€ be fixed. Then it follows that for each z,€ W there exists
a maximal number 0<z(2,, )< oo such that a solution #(f) of (E) uniquely exists
on [0, z(x, A)) and satisfies u(2)e W for 2e[0, z(zo, A)). See [13, Th. 3.3.4].

In the following we fix such W and 4, and denote a unique solution #(z) of
(E) on [0, w(zo, A) by w(t, o, A).

By an orbit of the solution #(¢, x,, 1), we mean the set {#(¢, zo, 1) : 0L i< (w0, )}
in X An orbit of a stationary solution (resp. a periodic solution) of (E) is called
an equilibrium point (resp. a periodic orbit) of (E).

We say that a set SCW is invariant if for any z.€S, z(zo, A)=c0 and u(i,
@0, A)€S for all £>0. Then it is obvious that an equilibrium point and a periodic
orbit in W are invariant sets.

We say that an invariant set S is stable 1f for any ne1ghborhood Uof S
there exists a neighborhood V of S such that for any woeV, (xo, )=0c0 and
wu(t, xo, A)eU for all 1>0. We say that an invariant set S is unstable if it is
not stable. We say that an invariant set S is asymptotically stable if it is stable
and there exists a neighborhood ¥V of S such that for any €V, (x,, A)=co
and #(f, x, A) converges to S as ¢ — co,

We say that a stationary solution » (resp a periodic solution 20(?)) in W is
asymptotically stable, stable, and unstable (resp. orbitally asymptotically stable,
orbitally stable, and orbitally unstable), if an equilibrium point {v} (resp. a peri-
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odic orbit {w(#):¢>0}) is asymptotically stable, stable, and unstable, respectively.
Finally we define a local e-limit set of wu(t, ., 2).

DerFmviTiON 1.3. Let U and V be some neighborhoods of 0 in X, with
UcVcW. Let zeU. The local w-limit set Qp, v(zo, 2) Of wu(t, 20, 1) With respect
to {U, V'} is defined as follows:

N {w(Z, xo, 2) : tels, 00)} if (o, A) =00, #(t, z, eV, t>0
QU.V(.’L‘O, 2)= =0
& otherwise

where the bar denotes the closure in the topology of Xj.

§ 2. Reduction

2.1. The center manifold theorem We state the center manifold theorem.
It plays an essential role in the study of the existence and stability of periodic
orbits of (E). Indeed it has been used by a number of authors, e.g., [2, 3, 4,
12, 13, 26, 29, 171

TurOREM 2.1. (Center manifold theorem) Under Hypotheses 1 and 2, there
exist di>0 with Bx(d,)C W and Brr(d))C A, and a C-mapping zs of {(a1, @z, 2):
(@1, ar)eBre(d:), 2€Brn(dy)} into Bzy(d\) such thai

2.1) z5(0, 0, 2)=0,  Dsz5(0, 0, 0)=0, D¢ z4(0, 0, 0)=0,

1 Do z5@s, as, M<1/4 for (@i, an DeBr(d)XBre(d:), j=1, 2
and such that for each 2, |A|<d., a two-dimensional manifold C, represented by
@.2) Cr=las +asget aan, @, )i (@, @)eBm(dd)
has the following propevties for each t>0:

(i) Local invariance: If x€Cy and (s, z, )€Bxyd:) for all s, 0<s<1,
then u(s, zo, eCi 0Ls<E

(ii) Local attractivity: If u(s, m, )eBx/di) for all s, 0<s<t, then

2.3 llzal@s(s), ax(s), 2)—Quls, xo, )|
<Kiem|[2(ai(0), as(0), A—Qumzofl, 0<s<t,

where ai(s)=<u(s, zy, 2), ¢;> (7=1, 2), a is as in Hypothesis 1 (i), and K is a
constant independent of t, 2 and x..

For the proof of Theorem 2.1, see, e.g., [2], (13, Ths. 6.1.2, 6.1.4, and
6.1.7], [22], and [18].
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Using the center manifold theorem, we reduce the existence problem of
periodic orbits in a (possibly infinite-dimensional) Banach space to that of fixed
points of a one-dimensional map. This reduction is well known (see, e.g., [12,
27, 297). In what follows we state it following Marsden and McCracken [27,
Sec. 3]. First in the rest of this section we reduce it to that of periodic orhits
of a two-dimensional space. Then, in Section 2.2, we further reduce it to that
of fixed points of a one-dimensional map.

We fix 2, |2|<d,, and simply write «(Z, @) for u(t, o, 2). Using the decom-
position Xy=span {¢, ¢:}DZ; we decompose u(f, o) into the form

w(t, zo, )=a()¢1+ a2 +v(F) .
Then the vequation (E) is decomposed into the system of differential equations
da(t)/dt=(=1)""1as () +<{NasOpr+ @b +00), D), 87, j=1, 2,
{dﬂ(l‘)/ at= L)+ QN(a:(1)p: + au(t)po+v(t), 2)
with the initial value
2.5) ai0)=Czy, 95>, =12, 2(0)=Qz0.

In the case that xz,e(,, (E) can be reduced to the two-dimensional ordinary
differential equation

(2.6) daj(@)/dt=(—1)as-,O)+ f @), a:(t), D), j=1, 2,
2.7 a0)=aj0, Jj=1, 2,

where f; is defined by

(2.8) filar, @, N=(Napi+aspatza, a 2, 1), ¢35, i=1, 2,
for (a, a.)eBr:(d,), AeBgra(dy).

Indeed the following propositions hold.

ProrosiTION 2.2. Assume that Hypotheses 1 and 2 are satisfied. Let x.€Ca.
Then if, for some s>0, a solution u(t, z) of (E) satisfies u(t, zo)eBxy(di) for all
4, 0<E<s, then u(t, z0)eCi, 0<E<s, and aB)=<ult, @), >, 1=1, 2, is @ solution
of (2.6)-(2.7) with the initial value a; v={xv, ¢}, j=1, 2. Conversely if, for some
s>0, @ solution (a:(2), a:(D)) of (2.6)~(2.7) satisfies (a,(8), a:(t))eBgr:(d,) for all ¢,
0<i<s, then u()=a:()p,+ @D+ 26(a: (), ae(t), 2) is @ solution of (E) with the
initial value zy=a,, ob:+da, o2+ 25(a1, 0, @20, A) -

ProrosiTiON 2.3, Under Hypotheses 1 and 2, if w(f) is a periodic solution
of (B) in Bx/d), then ait)=<w(@), ¢3>, j=1, 2, is a periodic solution of (2.6)
and w(t) satisfies :



114 Tatsuo Iton

w(t)=a:(D)ps +as(O)e+2p(a:(B), ax(t), 2).

Conversely if (a.(t), ax(¥)) is a periodic solution of (2.6) in Br:(d)), then w(t)=
a1+ as(B)pe+26(@n(R), ax(D), 2) is a periodic solution of (E).

Propositions 2.2 and 2.3 can easily be proved by the local invariance and
the local attractivity of a center manifold ¢, See, e.g., [3, 27].

2.2. Reduction to the one-dimensional problem In this section we reduce
the existence problem of periodic orbits of (2.6) to that of fixed points of a
one-dimensional map. Then ‘we give conditions which completely characterize
the stability of fixed points of the one-dimensional map.

Following Marsden and McCracken [27, Sect. 3] we consider (2.6) in the
polar coordinate :

@ =% cosf, ar=rsing.
Then (2.6) has the form
2.9) {dr/ dt=R(r, 8, 2)
di/di=—1+6(, 6, 2),
where
R(r, 0, D)=fy(rcos 8, vsin b, 2) cos + fa(rcosd, rsind, Nsing,
Or, 6, 2)
L/r{—fi(rcos @, vsin 0, A))sind+ fo(rcosh, ¥sin b, 1) cos 8}, if »=0,
:{-—afl/aal(o, 0, 2) cos @ sin #—811/0a(0, 0, 2)sin® 6
+072/00:(0, 0, 2) COS? 6+0,/3ax(0, 0, 2)sin 6 cos 4, if 7=0.

We denote the solution (#(#), 6(2) of (2.9) with #(0)=», and 0(0)=6, by
(r(t; 7o, Oo, ), O; #o, 0oy 2)).

LemMA 2.4. There exist d (0<d’<d) and a C'-mapping t of
Bri (d") X (—2z=, 01X Bra(d,’) into R such that

0(z(ve, 0o, 2); 7o, 0o, )=—2r, (0, 85, 0)=2r+0,.

Proof. By (2.1) and (2.8) we have f;eC? and
F#0, 0, D=0,  Dyf0, 0, 0)=0,  Da, 740, 0, 0)=0,
for j, k=1, 2. Therefore
(2.10) RQ,-0, =0, oR/3r(0, 6, 0)=0, &0, ¢, 0)=0.
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Hence it follows that #, 6 are C* in #, 6, and 2, and that
7(t; 0, G, 0)=0, ot; 0, o, OY=—1¢+0,,
a6/dt2r+04; 0, 0o, 0)=—1.

Thus, applying the implicit function theorem, we get the lemma.

By (2.10) there exists a positive constant K such that for any (7, 0., A€
Bri(d,") X (—2x, 01x Ber(d,")

(2.11) K- ro|<|r(t; 70, o, DK K|7], 0t <Le(re, o, 2).

Since we are interested only in periodic orbits, it is sufficient, by Lemma
2.4, to consider periodic. solutions of (2.6)~(2.7) with 7,>0, #,=0. We write
simply 7(¢; 7, 2), 00t; #, ), «(v, 2) for #(¢; 7, 0, A), 0(¢; #, O, A), =(7, O, 2), respec-
tively.

Now we define a bhifurcation function p by
(2.12) P, A=r(z(r, 2); 7, 2) for (7, )eBr: xrr(d),
where d, is a positive number with
(2.13) dy<K~'d,’ (K a positive number as in (2.11)).

Then, by Lemma 2.4, peC* and p(0, 2)=0.
The relation between periodic orbits of (2.6) and fixed points of p(-, ) is

clarified by the following two propositions.

ProrosiTiON 2.5. If 7, 0<v<dy, is @ fixed poini of p(-, 1), then
{al(t)m’(t; v, A)cosdt; ¥, )

(2.14)
a(B)=#(t; 7, 2)sin 0(t; 7, A)

is a periodic solution of (2.6). Conversely, if (a.(t), ax(2)) is a periodic solution
of (2.6) with 0<a,(0)<ds, a:(0)=0, then a\(0) is a fixed point of p(-, A).

ProrosiTiON 2.6, The periodic solution of (2.6) given by (2.14) is orbitally
(asymptotically) stable if and only if the fixed point v, 0<r<dy, of p(-, ) is
(asymptotically) stable.

Thus the existence problem of periodic orbits of (E) is reduced to that of
fixed points of p(:, 2). Since we are only concerned with periodic orbits of (E),
Proposition 2.3 and Lemma 2.4 show that it is sufficient to consider a periodic
solution w(Z, @o, 2) of (E) with an initial value of the form mzy=7g;+z24(r, 0, 1)
for our purposes. In what follows, we denote a periodic solution #(%, z,, 1) with
zo=7r¢1+25(7, 0, ) by w(t; 7, ), that is,

(2.15)  w(t; 7, D=ult, z0, A, ze=rgs+2:r, 0, 2), plr, D=7, r=0.



116 Tatsuo ITon

By w(-; 7, 2) we denote the orbit of a periodic solution w(¢; #, 1). Note that
w(-; 7, A) is a non-equilibrium periodic orbit if and only if >0 is a fixed point,
that w(-; 0, 2)={0}, and that <(r, 2) is the period of a periodic orbit w(-; 7, 2)
if #>0.

2.3. The aim of this paper is not only to show that there eixsts a one-to-
one correspondence between periodic orbits of (E) and fixed points of p(+, 2), but
also to show that a periodic orbit of (E) is (asymptotically) stable if and only if
the corresponding fixed point of (-, 1) is (asymptotically) stable. In the rest
of this section, we give the conditions which completely characterize the stability
of a fixed point 7 of p(+, 2). Then, in Section 3, we shall show that those con-
ditions also characterize the stability of the corresponding periodic orbit of (E).

Since (0p/37)(0, 0)=1 (see [27, Lemma 3.7), we can, if necessary, choose d; >0
s0 small that

(2.16) @p/or)y, 1)>0, (r, DeBrrw{ds).

Since p(-, 2) is a map on a one-dimensional space and since 9p/8r is positive,
we easily see that the stability of a fixed point 7 is determined by the sign of
(7, A=y near y=7. To be more precise, we introduce the following terminology,
which completely describes the behavior of p(y, 2)—y near y=vr.

DeriniTION 2.7. (i) A function g(y, 2) is said to be outer-(resp. inner-)
positive at (y, )=(r, 2) if ¢(3, )>0 for all y>» (resp. y<7) near 7.

(ii) A function g(y, 2) is said to be outer-(resp. inner-) oscillatory at (7, 2)
=(r, 1) if there exists a sequence {r,)5., with r.l7 (resp. 7.tr) and g(r,, 2)=0.

(i) A function g(y, 1) is said to be outer-(resp. inner-) negative if ¢(y, )<0
for all y>r(resp. y<#) near r.

Then we have
ProrosiTioN 2.8. A fixed point v of p(y, 1) is wunstable if and only if
D@, A)—y is outer-positive or inner-negative at (v, A)=(r, ). Moreover it is asymp-

lotically stable if and only if ply, D)—7y is outer-negative and imner-positive al
(y D=(r, 2).

ReMARK 2.9. Proposition 2.8 can be summarized by the following table:

—— outer s
negative oscillatory potitive
inner T
positive asyng;%‘ically stable unstable
oscillatory stable stable unstable
negative unstable unstable unstable
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DeriniTioN 2.10. We say that a periodic solution w(¢; 7, 2) of (E) is outer-
(resp. inner-) positive, oscillatory, and negative if p(y, 2)—7 is outer-(resp. inner-)
positive, oscillatory, and negative at y=v, respectively.

In Section 3, we shall show that the above table also applies to the orbital
stability of w(-; », 2) (Th. 3.1).

The stability of periodic orbits are usually determined by the critical (i,
near one) eigenvalue of the linearized Poincaré map [7, 10, 13, 15, 27, 28, 35].
Therefore Theorem 3.1 suggests that there exists close relation between the
critical eigenvalue and the bifurcation function p(+, 2). Before proceeding to
Section 3, we investigate it in the next section 2.4.

2.4. The eigenvalue of the lineavized Poincaré map and the bifurcation
Function p(+, 1) In this section we establish a fundamental relation between the
critical eigenvalue of the linearized Poincaré map and the bifurcation function.
Let w(-; 7, ) (#>0) be fixed. First, we define a Poincaré map of w(-; 7, A).
To this end, we decompose (E) as follows, using the cylindrical coordinate (7, 6, 2):

d;gt) ={N, ¢y cos 0(t)+<N, ¢ap sin 6(F)
‘“"‘dggt) =—1 4";%{ ~ <N, ¢ sin 0@)+<{N, ¢:» cos O(E)} ,
da(t) _

where  {u(D), ¢y =D cos0(8), <u(@), g =r{sino@®), 2 =Qul), N=
N(r(t) cos 0(H)p: +7(F) sin 0Dz +2(8), 2). Let Yy=span {¢:}@Zs Then, by similar
arguments as in the proof of Lemma 2.4, we see that there exists a C*
mapping ¢ of a neighborhood U of 7¢,+2s(, 0, 2) in ¥, such that

ey, 2, v, B, =0, yeU,
?(7"/514‘3&9(7’» 07 2): Z)=T(1", ’.i)'

A Poincaré map of w(-; 7, 2) is defined by P(y)=u(2(y, 2), 7, ), yeU. Then
the following theorem holds.

THEOREM 2.11, Let w(-; 7, 2) be « non-equilibvium periodic orbit of (E).
Then

(2.17)  DyPlrgi+ar, 0, D)r+Da,zr, 0, D]=@p(r, /) $1+Da,ze(r, 0, )].
Proof. By definitions of p and P, we have for v néar ¥

(2.18) P, D=CP'gi+2(r", 0, ), ¢,

(2.19) P pi+24r', 0, D)=<P, $Ddi+2(<P, D, 0, 2.
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Differentiating both sides of (2.19) with respect to 7 at #’=v, and noticing (2.18)
and

Plrgy+2z5(r, 0, D)=r¢,+25r, 0, 1),
we obtain (2.17). Q.E.D.

REMARK 2.12. On the stability of a stationary solution (0, 1), Marsden and
McCracken [27, Lemma 3.7] gives the following relation

ap(o’ 2) ___.823123 £/ Im e
3
ar

where x(2) is an eigenvalue near i of the linearized operator L-D.N(0, 2).

ReMARK 2.13. Since x(0)=:, the critical eigenvalue of the linearized Poin-
caré map D,Pw(0; 7, 2) is ap/ar(r, 2). It is well know that if the critical eigen-
value 0p/d7(7, 2) is less (resp. larger) than 1, then the periodic solution w(¢; 7, 2)
is orbitally asymptotically stable (resp. orbitally unstable). By Definitions 2.7
and 2.10, if ap/or(r, <1 (resp. (9p/or)(r, 2)>1) then w(l; 7, 1) is outer-negative
and inner-positive (resp. outer-positive and inner-negative). Theorem 3.1 says
that the stability is also determined even if (8p/07)(r, 2)=L1.

§ 3. Stability and asymptotic behavior

3.1. Stability and Dbifurcation In the following theorems, by the term
“stable”, “unstable”, or “asymptotically stable” we mean “stable, unstable, or
asymptotically stable in the topology of X;”. In this section, we state our main
results on stability and bifurcation.

TueoREM 3.1. (Stability theovem) Under Hypotheses 1 and 2, theve exists
a positive number d for which the following statement hold:

(i) A stationary solution (0, 2) of (E) in Bxy(d) is unstable if and only if
it is outer-positive (see Def. 2.10). Moreover it is asymptotically stable if and
only if it is outer-negative.

(ii) A non-stationary periodic solution w(t; r, 2) (given by (2.15)) of (E) in
Bx(d) is orbitally unstable if and only if it is ouler-positive or inner-negative.
Moveover it is orbitally asympiotically stable if and only if it is outer-negative
and inner-positive.

THEOREM 3.2 (Bifurcation theorem) Assume that Hypotheses 1 and 2 be
satisfied. Let 2 be a rveal number. Then if a stationary solution (0, 1) of (E)
changes its stability at 2=0, then non-equilibvium periodic orbits of (B) bifurcate
From (x, )=(0, 0).
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ReEMARK 3.3. Theorem 3.1 can be summarized by the table in Remark 2.9

ReMARK 3.4, If the condition (i) dRe x(0)/04+0, is satisfied, then non-equi-
librium periodic orbits of (E) bifurcate from (z, A)=(0, 0) (see, e.g., [7], [27]).
The condition (i) can be replaced by one of the following conditions (ii)-(iv): -

(ii) Res()>0 for i>0 and a stationary solution (0, 0) is asymptotically
stable [3, 41

(iii) Rex(2) changes its sign at 1=0 [35].

(iv) A stationary solution (0, 1) is stable for 1<0 and unstable for 2>0 [e,
Chap. 9].

All the above conditions (i)~(iv) are sufficient for a stationary solution (0, 2) to
change its stability at 4=0. (Note Theorem 3.1 and Remark 2.13).

3.2. Reduction of Theoremn 3.2 to Theorem 3.1 We claim that there exists
a sequence {(#a, )%~ such that #,>0, p(#n, )=%n, and (#n, 4)—> (0, 0) as
#n—> oo, If this is proved, then, by Propositions 2.3 and 2.5, and by recalling
that w(- ; #, 2) is non-equilibrium if >0, we have non-equilibrium periodic orbits
w(+; ¥n, ). Hence (z, 2)=(0, 0) is a bifurcation point.

We now prove the above claim. Suppose that there does not exist such a
sequence. Then, by Theorem 3.1 and our assumption on a stationary soltion
(0, 2), there exists ¢>0 such that for each 2, 2] <e, p(y, D—7 is right-positive
or right-negative at y=0. Again by Theorem 3.1 and our assumption on (0, 1),
there exist two sequences {Af}y.;, {Az}i=1 such that 2 —> 0, 2; —> 0, p(y, 43)—7
is right-positive at y=0, and p(y, 42)—7 is right-negative at y=0. Hence there
exists 7,>0 such that

Pny A —1>0,  pra, A7)—ra<0,

and 7,10 as #— 0. Hence by the mean value theorem, there exists a number
A between At and 2; such that p(rn, Aw—72=0. Thus we have a contradiction.
This completes the proof of Theorem 3.2.

3.38. The stable manifold theorem Let w(t; », 1) be a periodic solution of
(E). We characterize initial values =z, such that the solution wu(f, ., 1) of (F)
exists on [0, oo) and converges to the periodic solution w(¢; 7, 2) of (E) with
the exponential rate a(e is a constant as in Hypothesis 1):

3.1) : lla(t, w0, —t; 7, D|<Kee™, 20,
where K, is some positive constant. This characterization is known as the stable

manifold theorem. In this paper, we use it in the following form.

THEOREM 3.5. (Stable manifold theovem) Under Hypotheses 1 and 2, there
exists a positive constant dy for which the following statement holds: For each
(%, 2)eBx,(ds)X Brn(ds) there exists a C-mapping a,(z; =, 2, =1, 2, of Bzyds)
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tnto R* with
(3.2) a0; z, =0, [|Dwasz; z, DI|<1/2 for zeBzyds)

such that for each 2, |A|<ds, @ manifold i(x, 1) of codimension two represented
by

(3.3 Mz, Z)E{x-l;a}gzaj(z; Z, Dpj+2:2€ By (ds)}

has the following properties :
(1) If ult, =, 2)eBx,dy), t=0, and if
(3.4) ety @0, D—ult, 2, D<K, t=0,

then xoe Mz, 2), wheve K, is a positive constant independent of t, z, 2
(ii) Suppose that for some s>0, u(t, z, NeBx,(ds), 0<t<s.
Then if zo€ J(x, 2), then

3.9) llult, 2o, D—ult, 3, DI<Kse™av—2ll, 0<i<s,

where K, is a positive constant independent of ¢, x, A
Furthermore if w(t) is a periodic solution of (E) in Bx(ds), then asz; w(t), 2),
7=1, 2, is continuous in (z, t).

The proof of Theorem 3.5 is standard. See, e.g. [3, 4, 11, 13, 14, and 23].

Let w(-; 7, 4), |2]<ds, be a periodic orbit in Bxyds). Then for each z=
w(s; 7, A, s20, u(t, x, eBxy(ds) holds for >0, since u(t, z, N=ult, w(s; 7, 2),
N=w(t+s; 7, 2 holds for #>0. (See (2.15)). Hence, with z replaced by
w(s; 7, A), (3.5) holds for ¢>0. We call (0, 2) the stable manifold of a stationary
solution (0, 2).

In what follows, we shall define a stable manifold of a non-equilibrium
periodic orbit w(-; 7, ) and give its properties. To this end, we consider the
set \J Jlw(s; 7 2), ). Inthe following, for simplicity, we write 2s(b,, b,) and

0L Lo (7, D)
aj(z; ) for zy(by, by, 2) and a4(z; x, 2), respectively. Also, we simply write w(s)

and b;(s) for w(s; r, 2) and <w(s; 7, 2), ¢;>, respectively. We note that w(s)=
jz; b(8)ps+2(01(S), Uy(s)). By the definition of .Fi(z, 1), we have
=1,2

U w(s), )

I€s<e(1 )

{w(8)+ 2 asz; w(s)gs+z: 26 Bxy(ds))

S8Lr ()

U2 BsS)+as(z; w(s))ps+z+Qus): 26 Bxy(da)} -

osxSr(r Do J=1
We shall investigate its local structure. Let

(3.6) dy=min {ds/3, K,K-/3} .
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Let us consider the set
(3.7 M, Z)E&sgr,;sﬁ(w(s)’ MNiz: ||Qul|<dd}.
Then, by (2.1) and (3.2), we get
(3.8 M, 2)
= \J {5 (0(s)+asz—zsbi(s), ba(8))5 w(s))ghj+2: z€ Bxy(da)} .

08€5(r, ) f=1,2

If we set
(3.9 gi(by, bg; Z)Ebj'l*aj(z*zﬂ(bu b2) ;k;:zbic!ﬁk'i-ap(bl. b.), i=1, 2,
for (bi, b:)eBr:(d,), then

(3.10) M(r, 2)
= {2 0;(0i(8), b(s); 2)p;+2: 2z Bzy(da)} -

0S8 e(1,d) F=1,2

We consider the intersection of (7, 2) and a plane {x: Qx=z}. For each
ZEBzﬂ(da), we set

8.11) Clr, 25 2)
={(01(01(8), 0o(8)5 2), ga(Da(s), Da(s); 2)): 0<s<e(r, D)}

We note that if we identify the plane {r: Qz=2} with R? then (v, 2; 2) is
the intersection of 9H(», 1) with the plane {x: Qz=z}. The structures of
HM(r, D), C(r, 2; 2) are given by

ProrosiTiON 3.6. Let w(-; 7, 2) be a non-equilibvium peviodic orbit in Bx(ds).
Then the following hold :

(i) The set G(r, 2) defined by (3.7) is a C'-manifold of codimension one.
(ii) For each zeBzdy), C(r, 2; 2) is a Jordan curve in Bri(d).

To prove this we require the following lemma, which will repeatedly be
used later on.

Lemma 3.7. For each zeBgzdi), a mapping g.=(q:(+, «; 2)) of {(b, ba)e
Bre(dy): for x=big+bape+25by, bsy 2), ult, =, AeBxy(ds), t=0} into R* is one-to-
one, where g; is defined by (3.9).

Proof. Suppose that g;(by, be; 2)=g;(bi, b:; 2) (=c¢;), 7=1, 2. Then if we
set
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&= =lebj¢j+3ﬁ(b1, by, 2), 'm=j§7b}¢j+zﬁ(b’jb;, 2,

then we have by (3.3) and (3.9),
{HEj-—;ijqu“l"ZGj:z(m;, Z)Hgﬁz(xz; 1)1
and by (2.1) and (3.2), we get
(3.12) [l — 25| < 3d4/2 (7=1, 2).
Hence, applying Theorem 3.5 (ii), we have the inequalities
Hu(t: &, 2)—%(t: Z jy 1>I|SK36—'“Hx—mj|I, tZO (j=1! 2)'

Adding both sides of the inequalities, we get by (3.6) and (3.12),

N, 1, D)—ull, 22y, DL Kae™™|z: — 2]

£3K3d43—"L£K2€—“L, tZO .

Hence, by Theorem 3.5 (i), we obtain x,€.5(xs, 2). On the other hand, by (2.1)
and (3.2), we get Cin Hxe, D={z}. Therefore, since xe(C; it follows that
2=, and so b;=0b; (j=1, 2). Q.E.D.

Proof of Proposition 3.6. Proof of (i): Let (¢, &, 2) be a point in H(r, ).
Then by (8.10) there exists a £>0 such that &;=g;(b:(D), 0:(8); 2), =1, 2. Here
we can assume that the domain of definition of b;()=<w(¥), ¢7)> is extended on
the whole of R'. Let 4 be an open interval containing # with length smaller
than =(r, 7). If we construct a homeomorphism § of 9 XBgzyd:) onto a neigh-
borhood of (&, &, 2) in M(r, 2), then we can conclude that 9(r, 2) is a C°-
manifold of codimension one. We define a mapping §=(g:, o, §s) by setting

(3.13) d5(s, D=050:(s), ba(s); 2) (F=L, 2), Gss, 2)=2

for (s, 2)eJ X Bz,(d.). We shall show that § is a homeomorphism. First, by
Theorem 3.5, we see that ¢ is continuous, and by (3.10), the image of § is a
neighborhood of (é;, ¢, 2). We next show that § is one-to-one. Suppose that
als, 2)=4(s’, '), ie., dis, 2)=4,s', 2’), j=1, 2, and z=z2'. Then, by the defini-
tion of §;, we have g;(bi(s), bu(S); 2)=g;(b:(s"), ba(s"); 2). Hence, by Lemma 3.7,
we get b;(s)=b,(s’). Since b;(s), j=1, 2, is periodic with period z(», 1) and since
the length of 4 is smaller than z(#, 1), we obtain that s=s’. Lastly, we show
that ¢-! is continuous. Let (¢, ¢, 2), (ci, ¢1, 2’) be points in the image of §.
Set

Q-I(Gh Cay Z)=(b1(5), bg(S), Z), g—l(cé, C;, z’):(b1(3’>, bz(S,), Z’)‘

Then, by (3.2), (3.9), and (3.13), the inequalities
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lej—c31=15(s, 2)—as, 2)|—1d(s's 2)~a,(s’, &)
=1d:(s, 2)—a,(s’, )| —1/2|]z—2'||
hold. Hence we get
(3.14) lasts, &)= 0,(5', DI<lej—cl+1/2l)e—2]].

Let zeBzy(d,) be fixed. We consider a mapping §,=(g(+, 2), §a(+, 2)): J —> R
Since ¢ is continuous and one-to-one, so is .. Therefore, by the domain in-
variance theorem [34], we have that §;' is continuous. Hence, together with
the inequality (3.14), we can conclude that §~' is continuous. Thus the proof
of (i) is complete.

Proof of (ii): By (2.1), (3.2), and (3.11), we have C(r, 2; 2)CBre(ds). - Since
ai(bi(s), ba(s); 2) is continuous in s and since {(bi(s), ba(s)):0<s<z(, D)} is a
Jordan curve, we see by Lemma 3.7 that O(r, 1; 2) is a Jordan curve. QUE.D.

In what - follows we exclusively consider a periodic orbit (w, 2) in
B (di) X Bra(ds).

DerinrTioN 3.8. We call the manifold S(r, 2) defined by (3.7) the stable
manifold of the non-equilibrium periodic orbit w(-; 7, 1) of (E). We also call
MO, D=0, DN {x:||Qzl|<d) the stable manifold of the stationary solution
0, 2) of (E).

In virtue of Proposition 3.6 (ii), we can define the inside (outside) of the
stable manifold .%(r, 1) of codimension one as follows.

DeriNiTION 3.9. A point z with ||Pz||<ds and |Qx||<d, is said to be con-
tained inside (resp. outside) H(r, 2) if K=z, ¢i», {x, $>) is contained inside (resp.
outside) the Jordan curve C(r, 1; Qx) defined by (3.11).

The set of all points inside (resp. outside) .%(», 2) is denoted by Mu(7, 1)
(resp. HMow(r, A)). The set {x: ||Pz||<ds ||Qz|l<d:\. MO, 2) is denoted by
Mout(0, 2). For later convenience, we understand that (0, ) means @.

In the rest of this section, we prove two propositions on the properties of
Mr, 7). The former gives the relation between the positions of two stable
manifolds of periodic orbits of (E). The latter concerns that between a solution
of (E) and the stable manifold of a periodic orbit.

ProrosITION 3.10. Let 2, |2|<ds, be fixed. Let w(s,7; 2), j=1, 2, be periodic
orbits in Bxy(ds) with 0<r,<r.. Then

(3.15) , M7y, T Min(re, 2).

PrOPOSITION 3.11. Let ‘A, |2|<ds, be fixed. Lel w(-; 7, ) be a non-equi-
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librium periodic orbit in Bxds). Then if zoe Mi(r, 2) (resp. G, ), HMoulr, 2))
and if, for some s>0, ||Pu(t, zo, D||<ds, ||Qu(t, o, D||<ds, 0<E<s, then

(3.16) u(t, o, e Minlr, 2) (vesp. H(r, 2), HMoulr, 3)), 0<I<s.

For the proofs of Propositions 3.10 and 3.11, we need the following lemma.

Lemma 3.12. () (ci, ¢2) is contained inside (vesp. outside) the Jordan curve
{(51(8), ba(s)) 1 0L s<o(r, A} if and only if (¢, ¢2) is contained inside (vesp. outside)
the Jordan curve C(r, 2; z4(ci, C2)).

(i) Let zeBzyds). If (v, ) is contained inside C(r, 1; z) then there exists
d’ >0 such that for each z'eZ; with ||2—2'||<d’, (61, €2) i contained inside (7,
A5 7).

The proof of Lemma 3.12 will he given after the proofs of Propositions
3.10 and 3.11.

Proof of Proposition 3.10. By Lemma 3.12 (i) and by the hypothesis that
0<L7 <7, We have

(3.17) ZU(' s iy l)cj/lin(rz, Z) .

Suppose that (3.15) does not hold. Then, by the definition of (71, 1), there
exist zew(-; 71, 2) and =, [|[@Qz]|<d;, such that xe Fi(z;, 1) and 2¢& Mix(rs, A).
Hence, by Lemma 3.12 (ii) and (3.17), there exists & such that e F(x;, )N
(¥, 2). This implies that QzeZx(d,) and that there exists z,ew(-; 7, ) such
that #e.i(z:, )N F(ze, ). Since z;e,, we get by (3.3), (3.10),

&, $70=0sKzr, ¢, <oy 905 QEB)=0;(C2y $0, {2, $rp; QF), j=1, 2.

Hence, by Lemma 3.7, we have {(mz, ¢;>=<(xs, ¢y, k=1, 2. Since z;eC; we
get x,=w,. This, however, contradicts the hypothesis that 0<#7, <, since z¢€
w(s s 7y A, 7=1, 2. QED.

Pyroof of Proposition 3.11. We shall consider only the case that zoe Min(7, 2).
In the case that @ee HM(7, ) U HMowl?, 2), the proof is similar. Suppose that (3.16)
does not hold. We set

(3.18) T=sup{r: u(t, 2o, e M7, 2), 0<i<}.
Then, by Lemma 3.12 (ii), we have 0<T<s and (T, zo, De.H(r, ). By the

’

definition of (7, 2), this means that w(T, zo, e F(w(; 7, 2), A) for some §>0,
and so by (3.2), (3.3), and (3.6), we get

(T, oy D—0(8 5 7, DI=NQu(T, o, )—Qu(S; 7, D||<2d,:<ds.

Therefore we can apply Theorem 3.5 (if). We recall here that w(t; 7, )=2u(t, z, 2)
and x=7¢s+2(r, 0), then using the semigroup property of a solution u(¢+s, x, )
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=u(t, u(s, z, A), 1), we get by (3.6),
(2, 2o, 2)~wlt—T+8§; 7, D
=w(t—T, w(T, zs, 2), D—ult—T, w(§; 7, 2), |
S KON ag(T, 20, D—rl(; 7, D
<24, KD < Koo, t>T.

Hence, by the continuity of u(e, @, A) there exists 7, 0<T <7, such that

llt, 2o A)~w(t—T+8; 7, Dl|<Kwe=eD, ¢>T. Thus, using the semigroup pro-
perty, we obtain by Theorem 3.5 (i)

(3.18) w(T, ®o, Ve (T —T+8; 7, 2), A).

(Here we assume that the domain of w(t; 7, A) is extended on the whole of R?).
Since [|Qu(T, o, Dl|<dy, we get w(T, xo, )€, 2). This contradicts (3.18) and
T<T. QED.

Proof of Lemma 3.12. We first recall the following fact from the degree
theory [34]:

Let ¢ be a Jordan curve and let Cin (resp. Cow) denote the inside (resp.
outside) of ¢. Suppose that c=(c,, c)éC. Then if ¢eCin (resp. Cow), then
deg(c, 1, Cin)=1 (resp. deg(c, 1, Cin)=0).

By (2.1) and (3.2), we get the following inequalities.
(3/4)jgzllrf~bj(8)lSjg.?zlaj—w(bx(S), ba(s) 5 2p(cy, c2))l
<(4/5) 2 les—by(s)l-
F=1,2

Using these inequalities, we can see that c=(ci, ¢2)eC(r, 1; 25(cy, ¢;) if and only
it ceC={(bi(s), ba(s)):0<s<Le(r, ). For the proof of (i), it therefore suffices to
show that

deg(c, 1, Cw)=deg(c, 1, Cinlr, 2; 24lc, €2))).

This can be proved by applying the standard arguments as in the proof of the
homotopy invariance property of degree to the above inequalities [34, Chap. III).
For the proof of (ii), we only need to note that (7, A; 2) is compact. Then
we can prove (ii) by the same way as in the proof of (i). QED.

3.4. Asymiotic behavior We now state our results on the asymptotic be-
havior of solutions”ofg(E).

THEOREM 3.13. Under Hypotheses 1 and 2, there exist @ positive number d
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and neighborhoods U, UR), |A{<d, of 0 in X; with U contained in U(2) and in-
dependent of 2 such that the local w-limit set Qu y(ze, 1) of @& solution u(t, xo, )
of (B) (with respect to {U, U(A)}) comsists of a single perviodic orbit y(z., 2) (which
may be an equilibvium {0}) in UQQ) if Du.vwlze, 4) is not empty. Furthermore,
w(t, xo, 2) comverges to the periodic orbit Az, 2) as t—roco.

The next theorem shows that the mapping Qp,un(+, ): U—>2% can be
determined by the behavior of the bifurcation function p(-, 1) and the position
of an initial value &z, situated around the stable manifolds of periodic orbits
of (E).

To describe these circumstances, we need to consider the following sets:

(8.20) Rz, D=7 : 20€ Mow(r, ) Or me€ (7, 2), 0<rLd},
(3.21) Ro(mo, D=2 2o€ Min(r, 2) Or moc M7, 2), 0<r<d},
where d>0 is as in Theorem 3.13. We set

7’1-"—‘7’1(‘2'0, J)ESUP 7, 7’2=7’2(.Tro, R)Einf 7
TER) (Xp:4) TER(Tg.2)

if Ro(mo, )= @. Then, by the continuity of p(-, 2), it follows that 0< 7, <7, and
p(ry, D=r; j=1, 2. Note that R;(x, 1)30.

Using the above Rj(xo, ), ¥(z0, 4), the mapping Qu v+, ) can be deter-
mined as follows.

TureorREM 3.14. Let d, U, and UA) be as in Theorem 3.13. Then the follow-
ing statements hold: Let xyeU. If Ry(zs, 1) is not empty, then

(1) 7me, D=ralzo, ) (=7), or

(i) oG, D<y Sfor #i(zo, A<y <r2(20, A), OF

(i) ply, A>7 for rilae, H<y<rne, A).
If Ry, 2) is empty, then either

iv) ply, D<y for rime, N<y<d, or

(v) oy, D>y for nlwm, A<r<d.

We have LQp.yoy(ze D=, in Cases ()~(iv) and L2u vz, N=@ in Case (V).
Furtheymore, v(ze, )=w(s; vi(xo, 2), &) in Cases (1), (ii), and (iv), and 1(z, )=
w(s; r{we, 2), A) in Case (iii).

Remark 3.15. Chafee [3, 4] showed, under the additional condition (i) in
Remark 3.4, that «(¢, x,, 4) converges either to {0} or to an invariant set on (.,
which are bounded by two periodic orbits of (E), as ¢ —> co.
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3.5. Proofs of Theorems 3.1, 3.2, and 3.13 Theorem 3.1 is an immediate
consequence of Theorems 3.13 and 3.14. In the following, we shall give the
proofs of Theorems 3.13 and 3.14.

Proofs of Theorems 3.13 and 8.14. Let K, K, K>1 be constants as in
Theorems 2.1, 3.5, and (2.11), respectively. We set A =max (K}, K;, K} Let
k be a positive number and set

(3.22) 6=h/4K), f.=2hK, g,=4hK*, d=6hEK.
We choose £ so small that
(3.23) Kd<di, |IDsziby, by, DII<1/(24K), j=1, 2,

for (by, by, DeBre(Kd)X Brn(d).

In what follows, we fix such a number %, and we shall define two sets U, U(2)
as in the statement of Theorem 3.13. Then we shall show that the assertions
of Theorems 3.13 and 3.14 hold with such 4, U, and U(2). )

Before proceeding to define U, U(2), we state the following lemmas.

Lemma 3.16. Let 7 be a fixed point of p(+, A). Then the following state-
ments hold :

(i) If 0<7v<ls, then
L S DN e IQall <A@ 1Pall< g}
(ii) If d<vr<K-'d, then
B(es, M={w [Pl <y, Q2| <AYC HMinlr, 1) .
(i) If £2§7<K"1d,,, then By (60)C Mu(7, ).
Lemma 3.17. Let v be a fixed point of p(-, 1) with 0<r<d. then if me€
Minr, D)0\ Bxy(4:) (resp. G(r, DN Bxy(61), then for 120
ult, mo, D€ Min(r, )0 {z:||Qul||</}
(resp. u(t, x, e Mlr, HN{z:|Qz|]|<A).

Lemma 3.18. For each weBx 61, iz, ANCa consists of a single point &
and is included in Bxy(6:). Furihermore if ze M(r, 2) (vesp. HMinlr, )y Mou(r, D)
then ze M, 2) (resp. Mm(r, ), Moulr, D).

The proofs of Lemmas 3.16, 3.17, and 3.18 will be given after the proofs
of Theorems 3.13 and 3.14.

On the basis of Lemma 3.16, we define U, U(2) as follows. We set U=
Bxy(4:). For the difinition of U(2), we consider the set
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(3.24) Ry={r:p(r, D=r, £<r<d}).
In the case that R()=@, we define
UR=B(4s, h)={z:||Pzl|<4s, ||Qull<h},
and in the case that R(2)# @, we define
V) =(HMia(#(2), UMD, D)N{z: ||Ql|<h},

where 7(2) 285%7‘ Then, from our definitions of U, U(4), it follows by Lemma
3.16 that Uc U Bx,(ds) and that

(3.25) (M, DU Min(r, )Nz ||Qu|| <A} UQ)
for any 0<r<d with p(r, 2)=7.

Now we shall show that the U, U(2) defined above satisfy the assertions of
Theorems 3.13 and 3.14. Let}x,eU be given. Then, from the definition of
Rz, 2) (j=1, 2) (see (3.20), (3.31)) and from the continuity of pa(-, 2), it follows
that in the case that Ry(z,, )=, (), (ii), or (iii) of Theorem 3.14 holds and
in the case that Ru(zo, )=@, (iv) or (v) of Theorem 3.14 holds. We shall prove
Theorems 3.13 and 3.14 considering cases (i)-(v) separately.

Case (i). In this case we have by (3.20), (3.21),
(3.26) Ri(2o, =Rz, )={7?}, To€ (P, ).

We first show that Qu yay(ze, )F@. By (3.26) and by Lemma 3.16 (iii), we
get 0<7<¢,. Hence, by Lemma 3.17, we obtain

w(t, zo, NeM(®, DN {z:||Qz||<h}, £=0.

Therefore, by (3.25), it follows that u(f, o, )eU(R), 1=0, i.e., Luv.vw(z, DFD.

We next show that #(¢, z,, 1) converges to the periodic orbit w(-; 7, 2) as
t—roo. By (3.26), there exists s such that moe M(w(s; # 2), 2). Since
w(=; 7, YT Bx(ds), (3.5) holds for £>0 with » replaced by w(s; 7, ). Therefore
u(t, zo, ) converges to the periodic orbit w(-: 7, 1) as ¢ — co.

Cases (ii), (iii). In these cases, we have
(3.27) %06 Mous(r1, 2) N Man(r, 2) .
We first show that Oy yay(ze A¥F@. By Lemma 3.17, we obtain
u(t, wo, A€ Mnlrs, )N {z:||Qul|<A},  220.

Hence, by (3.25), it follows that u(f, z., A)eU), {=0, ie., Qu,uvwlz, D+ D.
We next show that «(¢, z,, A) converges to the periodic orbit w(-; i, )
(resp. w(-; 73, A)) as t—> oo in the case (ii) (resp. (iii)). By Lemma 3.18 and
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(3.28), there exists # such that
o?eﬁﬁ(wo, DN Ca, 2€ Mows(r1, HN HMin(rz, 2).

Therefore, by Propositions 2.2, 2.5, 2.6, and 2.8, it follows that (¢, 2, 2) con-
verges to the periodic orbit w(-; 7y, 1) (vesp. w(+; 73, A)) in the case (ii) (resp.
case (iii)). Since #e Fl(w,, 1) and since u(t, z, 2)eBxy(ds), £20, we conclude, by
Theorem 3.5 (ii), that u(¢, =, 2) converges to the same periodic orbit as #(Z, &, 1)
does.

Case (iv). In this case, we have
(3-28) Z0€ Mowlry, ).

Since Rz, A)=@, we get by Lemma 3.16 (iii) and (3.24), R()=@. Hence, by
definition of U(1), we have U(2)=DB(¢s, k). '

We first show that Qu.uenlze, DFD, ie., ult, zo, 1)eB(ds, k), t=0. Since
z0€ U(=DBxy(4r), there exists s>0 such that

(3.29) ffault, zo, Dll<bs, 0<LELs.

We claim that (8.29) holds for all #>0. Assume the contrary. Then there
exists 7'>0 such that

(3.30) lloalt, zo, DN<bs,  O<ELT; (T, 2o, Al|=4s-

On the other hand, by Lemma 3.18, there exists # such that #e:N J(wo, )N
Bx,(4,). Hence, applying Theorem 3.5 (ii), we get

(3.81) lat, 2, D~ult, mo, D|<Kse H|&—mol], 0<E<T.

We estimate the right-hand side of (3.31). Since 2¢.5(x, 1), we have by defini-
tion of ﬂz(.’&'o, 2),

:ﬁ—xo=j§2aj(Qﬁ —Qz0; Bo)pj+Q(z—2a0) .
Since #eC, we get by (3.23),
lQa(<4:/(12 K¥).
Hence, by (3.2), we have
12— 0| = [|Q2 — Quwo|| < 1+ £2/(12 K #).
Therefore we obtain by (3.22), (3.23), and (3.31), -
(3.32)  |lutt, 2, D—ult, 30, Dl|<Kallst /(12 R)< <85, 0<t<T.

Since 2€C;N Bxy(¢) and since the case (iv) holds, we get by Proposition 2.2
and (2.11), ' ‘
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(3.33) u(l, &, NeBx (Ke)NC., #20.

Hence, by (3.32), we get for 0<¢< 7T,

(3.34) e, mo, DL \2t, 2, D)—ult, o, H||+u, 2, Dl
SKi(ls+02/(12 K+ Kbr< s

This, however, contradicts (3.30). Thus we can conclude that |ju(t, zo, | <4s,
t>0. Using this instead of (3.30), the similar argument allows us to conclude
that (3.31), (3.32), and (3.34) hold for all #>0. Therefore it will follow that
Qu.vn(ze, AF@ once we show that |[Pu(t, z, D||<hk, =0, since UQ)=
B(¢s, k). This inequality is proved as follows. Since (3.32) holds for #>0, we
have

NQut, 2, )—Qu(t, =0, |<Ki(bi+2/12KY),  t=0.

On the other hand, since u(t, &, )€ Bxs(Kt:)NC1, we get [|Qult, 3, A)||< 4/(12 K*),
t>=0. Therefore we have

1Qu(t, zo, N||<||Qut, 20, N—Qult, 2, A)||+||Qult, % N
| <Kyl +4:/12 )+ 4,/12 K %)
<h, t>0.
Thus we obtain Qv.v(To, NFED.

We next show that #(#, x,, 1) converges to the periodic orbit w(.; 7, 2) as
t —> co. Since £2eC:N HMoulr:, 1) N Bx,(¢:) and we are treating the case (iv), it fol-
lows, by Propositions 2.2, 2.5, 2.6, and 2.8, that «(z, £, 1) converges to w(+; #,, A) as
t—co. Hence u(t, x,, ) converges. to w(-; 7, 4), since (3.31) holds for all £>0.

Case (v). As in the case (iv), it follows that
20€ Mous(rs, 2),  UX)=B4s, %),
and there exists # such that £eC,N H(wo, )N Bxy(le), € HMowlrs, 2)-and
(3.35) llmo— 2l < 1+ £2/(12 K9 .

We show that Qp.pen(ze, 2)=@, ie., for some s>0, u(s, z,, )EB(4s, 4).. Assume
the contrary. Then we have

(3.36) w(t, w0, A)EBs, ), . t>0.

Hence, applying Theorem 3.5 (ii), we get |

. _ | lloa(t, 2, D)—u(t, zo, Z)IA!.SKae”“‘Hﬁ—xoll, £20.
By (3.22), (3.25), and (3.36), we get |
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(3.37) llu(t, &, DNLlult, 2, D—ult, zo, Dl+ul, 20, D]
<Kyt +8/A2 )+ :<d.

On the other hand, since 2e(:N Mou(r:, ) and since the case (v) holds, it fol-
lows, by Propositions 2.2, 2.5, 2.6, and 2.8, that there exists s>0 such that

{ult, 2, ), ¢ >d.
This, however, contradicts (3.37). Thus we have Qp,vw (%, )=0. QED.
Thus the proofs of Theorems 3.13 and 3.14 will be complete once we prove

Lemmas 3.16, 3.17, and 3.18. In the rest of this section we prove them.

Proaf of Lemma 3.16, By (3.10) and (3.11), for the proofs of (i), (i), and
(i) it suffices to show that for each zeBz,h), the following statements hold,
respectively: (7, 2; 2)CBre(4s), 0<r<4s; Bre(fs) is included inside C(#, 2; 2),
d<r<Kd,; and Br(4) is included inside C(r, 1; 2), fo<r<K-'d;. These fol-
low immediately from (3.2), (3.22), and (3.23). ‘ Q.ED.

Proof of Lemma 3.17. We prove the lemma in the case that zee, Hin(r, DN
Bx(4:), since the proof is simpler than in the case that z,e (7, DN Byy4). In
that case there exists s>0 such that

(8.38) w(t, To, )€ Minlr, HN{z:||Qzl|<AH}, 0<tLs.

We show that (3.38) holds for all #>0. Assume the contrary. Then there
exists T>0 such that (3.38) holds for 0<¢<T, and w(T, =, e M, 2) or
1Qu(T, o, Al|=h. Since, by Proposition 3.6 (ii), (3.22), (3.23), and (3.38),

(3.39) 'M(t, Zo, Z)GB(ds, da) , OStST,

we have by Proposition 3.11, u(f, o, A€ Mi(r, 2) for 0<¢<T. Therefore we
obtain ||Qu(T, z, 2)||=h In the following, we show that this is impossible. By
Theorem 2.1 and (8.39), we have for 0~1<T,

(3.40) |Qu(t, @0, A—2an(t), ax(t)i<Kie™||Qwo—25(ar(0), @Ol

where a;(t)=<u(t, 20, ), ¢1> (j=1, 2). On the other hand, since u(f, 2o, )€ Hin
(r, ») for 0<¢< T, we get by (3.2), (3.8), and (3.23),

(341) ”PZ&(Z, Lo, R)”
ssxl(pil)le(s; 7, D”é;i‘i%',g za/(Qu~Qw(s v A wis;r, el

ogs<r(r,

<Kr+(1Quit, xo, Dl+Er/(12 K*)
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<13Kd/12+h,  0<t<T.
Hence, by (2.22), (3.23), and (3.40) we have for 0<¢<T
|Qult, zo, V||
<K||Qzo—24(a1(0), a(O)]]+||zx(ai(t), @)
SK([1Qaoll+ ||Paol /(12 K 4)+| | Pult, xo, D||/(12 K*)
<13 Ki0/12+(13 Kd/12+7)/(12 B#)
<h QED.

Proof of Lemma 3.18. Suppose that zel.N . Gz, 2). We first show that
ZeBxy(4:). Since 2eC; we have

(B.42) 2= Zoditalon @) 6= 6, =1, 2.
Oxn the other hand, since #e.9i(x, 1), we have for some 2eBz,(dy)
(3.43) F=a+t 7 aiE; 2)gt+e.
By (8.42) and (3.43), we get
(3.44) c;={a, py>+aizic, c)—Qau; x, 1),  j=1, 2.
Using the equality ||P#||=v&Tc, we have by (2.1), (3.2),

WPz < || Pl + ||za(cy, ca)ll+ Q]| < 2|+ |P2]l/2 .
Hence we get by (3.22),

|Pz]|<4)|x]| <46, < 4.

Since [|Qz]|<||P2]/2 by (2.1) and (3.42), we obtain ZeBx,(¢.). We next show
that C.N SM(x, 2) consists of a single point. Since (3.44) holds for Ze(C,N i(z,
A), we consider a mapping §=(4,, §.) defined by

gj(cl’ C?-)=<x; ¢;>+j§zaj(zﬁ<cly CZ)_Q$ 3 53) ) ]=19 2

for (¢i, ¢:)eBre(4:). Then, by (2.1), (3.2), and (3.22), it follows that § maps
Bg:(4,) into itself and is a contraction on Bg:(4,). Hence there exists a unique
fixed point Z of §, which implies that {2}=C.N .Mz, DN Bx,(f:). Thus, together
with the result obtained in the preceding paragraph, we get {#}=C,N Fi(x, A).

Lastly we show that Ze HMow(r, 1) (resp. Muw(r, 2), M, D) if 2e Mow(r, 2)
(resp. HMilr, 2, M, 2). We consider only the case ze Mow(r, ). In other
cases, the proofs are similar. Suppose that %€ Mow(r, ). Then either ze
HMan(7, 2) or e M, 2). In either case, since £e¢(,;, we have by Proposition 2.2
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and (2.11),

(3.45) u(t, &, NeBx (Kd), t>0.

On the other hand, since zeBx,(4:), there exists s>0 such that
(3.46) u(t, z, A)eBx,(ds), 0<I<s.

Since ze HM(x, 2), Theorem 3.5 (ii) yields

(3.47) llut, 2, D—ult, 7, Dl|<Keedlz—zl, 0<t<s.

We show that (3.46) and (3.47) hold for all +>0. Suppose that (3.46) does not
hold. Then there exists 7>0 such that u(t, z, D)eBx,(ds), 0<t<T;

(3.48) (T, =, Dl|=d; .
Since (3.47) holds for 0<t< T, we get by (8.22), (8.23), and (3.45),
a2, , DIz, 2, DI+ Ks((l2]]+ll])
<Kd+({be+4)<Kd+Kd<ds

for 0<¢<T. This contradicts (3.48). Thus (3.46) holds for all >0, and so
(3.47) holds for all £>0. Hence by (3.22), (3.23), and (3.6), we get for £>0

lluct, 2, H—ult, = DlI<Ke™||&— x|
SKy(bat 1) < Kre™™.

Therefore, applying Theorem 3.5 (i), we obtain that xze (%, 2). Hence, by the
same arguments as in the proof of Proposition 3.11, we can conclude that ze
FMin(r, 3) (resp. Mz, D) if Te Mwm(r, ) (resp. .M(r, 2)), which contradicts the
hypothesis that ze HMoulr, ). Q.E.D.
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