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1

In a previous paper [1], we considered pairs of groups G, H satisfying the
following conditions.

(a) G and H have a common 2-subgroup S.
(b) Both |G:S| and |H: S| are odd primes.
(¢) No nonidentity subgroup of S is normal both in. G and in H.
(d) CelO(G)<0(G) and Cu(O(H))LO:(H) .

A closer look at the method of [1] has shown recently that the same method
can handle a more general situation. Specifically, we can replace the condition
(b) above by the condition

() |G:5] and |H: S| are powers of odd primes ¢ and r, respectively, and
Sylow g-subgroups of G and Sylow #-subgroups of H are cyclic and
nontrivial,

and carry out the same analysis to reach the same conclusions, Thus, we can
obtain the following theorems. (The reader is referred to Section 1 of [1] for
the definitions not given below.)

MaIN TurOREM. Let G, H be a pair of groups satisfying the conditions (a),
'), (©), and (d). Let S*=(SNO*G)SNOH)), G*=S*OXG), and H*=S*O*H).
Then the pair (G*, H*) or (H*, G*) is of GLu(2)-tyvpe or G(2)~type or Mi—type
or *F4(2) -type.

THEOREM A. Let G, H be a pair of groups satisfying the conditions (a),
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BN, (©), and (), and assume that Q(Z(S)<Z(H). Then the pair (G*, H*) defined
in the Main Theorem is of Ga(2)'-type or Mis—type or *F(2)-type.

THEOREM B. Let G, H be a pair of groups satisfying the conditions (a), (b'),
(©), and (Q), and asswme that Z(G)2(Z(S)£Z(H). Then GlOG)=H|O(H)=D;
and O(G)=0(H)=E, or Es.

We can obtain further generalizations of the above theorems in certain
cases when the condition (d) is not satisfied. In order to describe them, we
require the following definitions. Let X be a group and Y a subgroup. We
say that X is Y-irreducible (or Y is nearly maximal in X) if Y is contained in
a unique maximal subgroup of X. If a finite group X is S-irreducible for some
Sylow p-subgroup S, we say that X is p-irreducible. The generalizations men-
tioned above are obtained through the following propositions.

1.1. Let G be a finite group, p a prime, and S a Sylow p-subgroup of G.
Assume that G is S-irreducible and G+£S0,(G). Then for every subgroup X of
S, X0p(G) is normal in G if and only if X is normal in G.

Proof. Suppose X0, (G)<|G. Then G=Ng(X)SO,(G) by a Frattini argument,
and so G=Ng(X) by the S-irreducibility.

1.2. Let G, H be a pair of 2-irreducible groups satisfying the conditions
(@), (c), and

(b*) both |G:S| and |H:S] are odd, G#=SO(G), and H+SO(H).

Let ¢:G— G/O(G) and h:H— HJ/O(H) be the natural homomorphisms. Then
there exist groups G and H satisfying the following conditions.
(1) The pair (G, H) satisfies (a), (b*), and (c) with respect to a common
2-subgroup S.
(2) There exist isomorphisms i:G?— G, j: H*— H, and s:5— S such that
zPi=gM =z for all zeS.

Proof. As the restrictions ¢|S and A|S are one to one, we can define the
amalgamated product 7 of GY and H* with respect to ¢|S and %|S. Thus, F is
a group equipped with monomorphisms ¢:G*— F and j:H*—F such that
0IS)i=(|S)j. Let s=(g|S)yi=(k|S)j. We show that the pair (G*, H™) satisfies
(@), (b=), and (c) with respect to the common 2-subgroup S As the pair (G,
H) satisfies (a) and (b™), so does the pair (G%, H™). Suppose some subgroup
Y of S* is normal both in G and in H". Let X=s(Y). Then X<]G’ and
X< H", and so X is normal both in G and in H by 1.1. Therefore, X=1and
(G9t, HM) satisfies (c).

Now, we can prove a corollary to Theorem B. (The interested reader may
observe that we can derive analogous corollaries from the Main Theorem and
Theorem A.)
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CoroLLARY B. Let G, H be a pair of 2-irreducible groups satisfving (a),
(c), and

'y |G :SOG)| and |H:SO(H)| are powers of odd primes g and ¥, resj)eb'
tively, and Sylow q-subgroups of G|O(G) and Sylow r-subgroups of
HIO(H) are cyclic and nontrivial.

Assume further that [G, Q«(ZS)]1£0(G) and [H, X(ZS)ILOH). Then
GIO(GYX OAG)= HIO(H ) X O(H)= Dy and OG)=0(H)=E, or Ej.

Proof. First of all, Ouw,s(G)=0(G) X 0G) and Qq,o(H)=0(H) X O.(H) by 1.1.
Also, 1.2 shows that there exists a pair of groups G, H satisfying (a), (b’), (c),
and (d) with respect to a common 2-subgroup S with G=G/O(G), H=H|OH),
and Z(G):(Z(5)£Z(H) (here, we must use Burnside’s p%?-theorem to verify
(d). Therefore, our assertion follows from Theorem B.

The following remark is useful when we apply Corollary B.

1.3. Let G, H be a pair of 2-irreducible groups satisfying (a), (b”), and (c),
and assume G=H. Then [G, 2(Z(SHILO(G) and [H, 2(Z(S))]EOMH).

Proof. Suppose, say, [G, 2(Z(S)I<OG). Then AHZTH<ZG) for all
TeSyly(G) by 1.1 and Sylow’s theorem and so, as Gz=H, we have 2,(Z(S)<
Z(H). As this violates (c), our assertion holds.

In a previous paper [2], the first author described a new approach to the
thin finite simple groups with many solvable 2-local subgroups, and the main
result of [1] played an important role in it. Therefore, the improvements on
[1] have an effect on [2]. First, we have the following corollary to the Main
Theorem and Theorem A.

CororLary C. Let G, H be a pair of groups satisfying the conditions (a),
M), (c), and (4). Then the following holds.

(1) 38efg, 71<{3, 5}.
(2) If r=b5, then H(Z(S)<Z(H).

This result supersedes Lemma 5.2 of [2] which is derived from Glauber-
man’s “triple factorization theorem”. The interested reader may observe that
we can use Corollary C to condense the proof of Lemma 7.3 of [2] to about a
third of its length. Secondly, the following corollary to Theorem A can replace
Lemmas 7.5, 7.6, 7.7, and 7.8 of [2].

CorROLLARY D. Let G be a finite group, SeSylo(G), C=Ca((ZS))), and
H(S) the set of all maximal 2-local subgroups of G containing S. Assume that
S)=1{M, C} with M=+C and that both M and C are solvable groups with O(M)
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=(C)=1 and with cyclic Sylow subgroups for all odd primes. Then we have
|M:8|=3, |C:S|=38 or 5, and the structure of M and C is described by Theorvem
A.

Proof. Let ¢ and » be prime divisors of |M:MNC| and |C:MNC]|, respec-
tively, and pick a Hall {2, g}-subgroup X of M and a Hall {2, #}-subgroup ¥ of
C so that S<XNY. Then our assumptions show that X and Y satisfy (a), (b’),
(c), and (d) with respect to S. Therefore, the pair (X, Y) is described by
Theorem A. In particular, we have |[X:S]=¢=3 and |¥:S|=r=3 or 5. Now
let S*=(SNONX)NSNONY)), X*=S*O¥X), and Y*=S*O*Y). If »=3, then
(X*, Y*) is of Gu(2)-type or Mi,—type and, consequently, X has precisely two
nontrivial chief factors within Ox(X), while if =5 then (X*, Y*) is of 2F,(2)'-
type and X has four nontrivial chief factors within O«(X). This shows that
[C:MNC| is a power of 7. Therefore, we conclude that |M:MnC|=3,
|C:MNC|=r, and (37, |MNC|)=1. Now assume MNC=S and pick a prime
divisor p» of |[MNC:S|. By theorems of P. Hall on solvable groups, we can
pick an S;-subgroup @ of M, an S.-subgroup R of Y, and an S,-subgroup P of
MNC so that SQ, QP, SR, RP, and SP are all subgroups. As QP and RP are
supersolvable and as p is greater than 3 and 7, it follows that @ and R normalize
P. Lemma 5.1 of [2] now shows that P, @, and R are contained in some member
of M(S), contrary to our assumption. Therefore, MNC=S and the proof is
complete.

In the subsequent sections, we shall prove the previously stated .theorems
keeping parallelism with [1]. The proposition labeled 7.j by a pair of positive
integers ¢, ;j is parallel to the proposition .7 in [1].  (The only exception is the
proposition 2.9 which has no counterpart.) In order to prove i.j, we often need
only duplicate or make obvious changes to the proof in [1], and in that case we
shall omit or only touch upon the proof. Less obvious changes are required in
Sections 7, 8, and 9. Fortunately, however, our arguments have not become
much longer, and the argument for the crucial theorem 9.4 is rather shorter.
than in [1] because it is a somewhat weaker version of its counterpart and we
have made technical progress.

2
In this section, we shall study the following situation.

2.1 Hyportuesis. G is a {2, g}-group, ¢ is an odd prime, and an S,-subgroup
K of G is cyclic and nontrivial.

Under this hypothesis, we let SeSyl(G), Z=0i(Z(S)), R=0:(G), and V=
QAZ(Q)).

2.2. The following holds.
(1) @K is a normal subgroup of G.
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(2) SKY is the only maximal subgroup of G that contains S.

(3) If N is a normal subgroup of G with G=SN and Q< N, then QeSyl(N)
and N contains no S,-subgroup of G.

@) [Q, O(®]=SNO¥G).

(5 S/Q is a cyclic group of order dividing g—1.

(6) If S#Q and ¢Q is an involution of S/@, then a'=2"' (mod Q) for all
zeK.

(7) If (S+Q and) geG-S, then SNS'=Q.

(8) If S=Q and ¢=3, then QK<]G and G/QK'=D;.

Proof. First of all, G is solvable by Burnside’s pg’-theorem. Therefore,
if bars denote images in G/Q, then Cz(O,(G))<0,(G). As KeSyl(G) and X is
cyclic, we have K=04(G), proving (1). As G=SK, every proper subgroup of
G containing S is of the form SL with L<K% As SK¢is a subgroup by (1),
(2) holds. Suppose N is a normal subgroup of G with G#SN. Then, as G=SK,
N contains no S,-subgroup of G. Also, G=N(SNN)-SN by a Frattini argument
and so Ng(SNN)=G by (2). Therefore, if Q<N, then we have Q=SNNe
Syls(N), proving (3). For the proof of (4), see 2.2 of [1].

Suppose S#Q. As CxK)=K and K is cyclic, &+ for all nonidentity ele-
ments feS and zeK. This implies that G is a Frobenius group with kernel &
and complement S. Hence, (6) and (7) follow. Also, S acts faithfully on K/K".

Therefore, S is cyclic of order dividing ¢—1, and if ¢=3 then G/K“'EDG.

2.3. If S+#@, then the following five conditions on elements yeG are equiv-
alent.

(1) ¢4SK"

(2) For all ¢eS—Q and »eS'—Q, <{a, by contains an S,-subgroup of G.

(3) G=(S, x> for all zeS"—Q.

(4) G=(S, S%.

(5 G=<S, .

Proof. Assume (1) and write g=sk with seS and keK. Then k¢KY and so
K=k, Let tQ be an involution of S/Q. Then tki=k-' (mod Q) and #'={t*
=k* (mod @) by 2.2. Therefore, K<, tQ. If ¢eS—Q and »eS—Q, then
&, 1R <La, bHQ by 2.2, and so (e, b) contains an S,subgroup of G. There-
fore, (1) implies (2). Clearly, (2) implies (3), (3) implies (4), (4) implies (5), and
(5) implies (1) by 2.2.

The reader is referred to Section 2 of [1] for the definitions not given below.
2.4, If G=SCx(V'), then the following holds.

1) If 7(S)<Q, then K(S)G.

(2) If J(S)£Q, then ¢g=3 and Z£Z(G).

Proof.  Argue as in [1], noticing that Cs(V)=Q and K£Ce(V') by 2.2.
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2.5. If Ce(@)<Q and g3, then either Z<Z(G) or K(S)G.

Proof. As Ce(Q)<Q, we have Z<V and so, if G=SCs(V), then Z<Z(G).
If G#SC(V), then as g+3, 2.4 shows that K(S)<]|G.

2.6. If Co(@)<Q and ¢=3, then Z<Z(G) or QUK(S)G or Geg’(S).

Proof. We may assume that S#@Q. Then G/QK'=SL,(2) and G is S-irre-
ducible by 2.2. The assertion therefore follows from Theorem D of [3].

The following two lemmas are essentially due to Glauberman (see [1] for
the source).

2.7. If Co(@)<Q and no nonidentity characteristic subgroup of S is normal
in G, then G=¥ X DX E, where E is an elementary abelian 2~-group and either
D=1 or D is the direct product of copies of Ds.

Proof. By 2.5 and 2.6, we have g=3 and Geg’(S). Thus, G/Ca(V )=SLy(2)
=Dy, [@, OV, and W=[V, O¥G)] has order 4 by the definition of &’(S).
As OHGYNCe(V)<Cr(@V/1) and Ce(@)<Q, we have OYG)NCe(V )< and,
consequently, |Ce(V): Q| divides |G:0%G)|. On the other hand, the definition
of g’(S) or 2.2 shows that QeSyly(Ca(V')). Therefore, Co(V)=Q and G/Q=D;.

Let A=AutS and assume that W<@* for all aeA. Then, as [Q, ORI W,
we have Q@ NQ*G for all ee A and so NQ* (eeA) is a nonidentity characteristic
subgroup of S and normal in G. Therefore, we can pick beA so that W@,
Let R=@Q" As W£@Q'=Cs(V?), we have V?£Q. Let teV?—@Q and pick an
element ¢ of order 3 inverted by #. Then ge<t, ) and so RNRIKCo{t, ¢d).
As |Q:RNR% =4 and Cw(g)=1, we conclude that Q=WxCy(t ¢>). Therefore,
G=W<t, 9> xCol{¢, ¢>) and W, gd>=2X,.

Write Co({t, ¢>)=DXE, where E is the direct product of indecomposable
groups not isomorphic to Dy and either D=1 or D is the direct product of copies
of Dy As S=W{EDXDXE and W) =D,, the Krull-Remak-Schmidt theorem
shows that E' is characteristic in S. As it is normal in G, we must have E' =1,
and then we have E%?=1 because Z(S)!=FE?<]G. This completes the proof.

2.8, If Cao(@)<Q and ¢ is an automorphism of S of odd prime power order,
then some nonidentity e-invariant subgroup of S is normal in G.

Proof. Suppose false. Then by 2.7, G=YXD,X .., XDnXE, where Y=
2y, Dy= Dy, and E is an elementary abelian 2-subgroup. Let D;=SNZX. Then,
as Di=D,, the Krull-Remak-Schmidt theorem shows that ¢ permutes the Dy
and so {@) transitively permutes the Dy, 1=i=m. Therefore, m divides the
order of ¢, which is a power of some odd prime p. Now, S has precisely 2™
maximal elementary abelian subgroups and so, as 2™=2 (mod p), at least two
of them, say A and B, are g¢-invariant. As [A, B] is ¢-invariant and nontrivial,
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[A, B] is not normal in G, and so AND, and BN D, are distinct maximal ele-
mentary abelian subgroups of D;. Therefore, we may assume AND;=0,(2),
and then A is g-invariant and normal in G.

2.9. If Co(@)<Q and |K|>g, then the following holds.
(1) Some chief factor of G within @ has order at least 2°.
(2) The Frattini factor group of @ has order at least 2°.

Proof. (1) Suppose false. Then for every chief factor X/Y within @, we
have |K]Cx(X/Y)|=q because GL4s(2) has no cyclic subgroups of order ¢2. Hence,
we have 1#K<Ce(R)<Q, a contradiction.

(2) If |QIQ*=2% then |K/Cx(Q|Q|=q and K*<Ca(Q/Q*)=Q, a contradiction.

3

We begin the proof of the Main Theorem, which we restate as follows.

MaiN TueoreMm. Let G, H be a pair of groups having a common 2-subgroup
S, und assume that |G:S| and |H: S| are powers of odd primes q and r, respec-
tively, and that Sylow g-subgroups of G and Sylow r-subgroups of H are cyclic
and nontrivial. Then one of the following holds.

(1) Some nonidentity subgroup of S is normal both in G and in H.

(2) - Either Ca(OKG))£0(G) or Cu(Ox(H))£0:(H).

(3 If S*=(SNO*G)(SNO¥H))), G*=S*0XG), and H*=S*OH), then (G*,
H*) or (H*, G¥) is of GLy(2)~tvpe or Gi(2)-type or Mistype or *Fi(2)-
type.

As in [1], we shall argue by induction on the order of S, and accordingly
we shall assume the following hypothesis throughout the remainder of the paper.

3.1 HyroTHEeSIS. G and H are groups having a common 2-stbgroup S and
the following conditions are satisfied.

(1) |G:S| and |H: S| are powers of odd primes ¢ and 7, respectively, and
Sylow ¢-subgroups of G and Sylow r-subgroups of H are cyclic and
nontrivial.

(2) No nonidentity subgroup of S is normal both in G and in H

(3) CalOx(G)<0x(G) and Cr(Ox(H))<O(H).

Furthermore, if G and H are groups having a common 2-subgroup S with
IS1<|S] and if G, H, and S satisfy the conditions (1)-(3) above (with G, H, S
replaced by G, H, S), then the conclusion (3) of the Main Theorem holds for
(G, H).
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Under Hypothesis 3.1, we let Q=04(G), R=0,(H), V=2{(Z(Q)), W=2:(Z(R)),
and Z={4(Z(S)). This notation will be used throughout the remainder of the
paper. In this section, we shall make a preliminary study of the pair (G, H),
but, as noted in Section 1, the proofs will mostly be omitted.

3.2. If a subgroup X of S is normalized both by an S,-subgroup of G and
by an S,-subgroup of H, then X=1.

3.3. Suppose S* is a subgroup of S containing [@, O¥G)] and [R, OXH)].
Let G*=S*O%G) and H*=S*Q%H). Then G* and H* satisfy Hypothesis 3.1
with respect to the common 2-subgroup S*,

3.4. The following holds.

(1) Q£R and, in particular, R=S.

@) [@ C(GI£QNER.

(3) QNR+QNR" for every element 2e¢G such that G=(S, z).

(4) The statements (1)-(3) remain true when G, @, and R are replaced by
H, R, and @, respectively.

Proof. Argue as in [1] noticing that if S#& then G=¢(S, 5% for some
zeG by 2.3.

3.5. We have S=QR.

3.6. If 2eG and G=(S, z), then the following holds.

1) @=R°NPRNK).

(2) G=(R*, R).

3) QR*NANR is the direct product of two cyclic groups each of order
|S: R}

(4) The statements (1)~(3) remain true when G, @, and R are replaced by
H, R, and @, respectively.

3.7. If {V, W)<@QnNR, then the following holds.
(1) Either Z<Z(G) or Z<Z(H).
@) If Z<Z(H), then [Z(R), O*H)1=1.

Proof. Argue as in [1] noticing that if [W, O*H)]#1 then H+SCu(W).

3.8. If Z<Z(H), then the following holds.

1) Cp(K)=1 for each KeSyly(G).

(2) QeSylo(Co(V)) and Ca(V') contains no Sg-subgroup of G.

(8) If x and y are elements of G and H, respectively, such that G={S, =}
and H=<S, y, then C (2)<Q for each nonidentity element z of Z*.

Proof. (2) As Z<V and Z£Z(G), we have G+SCe(V), and so the assertion
follows from 2.2.
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(8) As Z°<V, we have Q<Cq(2). If @<Cs(z), then G=(5% Cs(z))> by 2.3
and so zeZ(G), contrary to (1). Therefore, Cy(z)=Q and it will suffice to prove
that C(2)<R. Suppose Cy(z)£R. Then H=(Q, C4(2)) by 2.3 and (2) of 3.6,
and so zeZ(H). But then we have Cs(z)#@ by 3.4, a contradiction.

3.9. Let S*=(SNOAG)HSNO¥H)), G*=S*0¥G), and H*=S*Q*H). Then
the following holds.
1) If (G, H) is of GLg(2)~type or Gy(2)Y~type or Mu-type or *Fu(2)-type,
then S*=S and hence G*=G and H*=H.
(2) If GIQeH|R=D; and Q=R=E,, then (G*, H*) is of GLy(2)-type and
G=H=Y,XZ,. ’

Proof. (2) As in [1], we have that (G*, H*) is of GL(2)-type and so G*=
H*=Z%, As AutX,=2,, we have GH=YX2Z;.

4

4.1 ToeoreMm. (1) If VLR, then GIQ=H|R=Dys and Q=R=E, or Es.
(2) If V<R but ZQ)%R, then (G, H) is of Gu(2)-lype.

Proof. Pick xzeG and yeH so that G=<(S, z) and H=<(S, ¥>. (This is pos-
sible by 2.3.) Arguing as in [1], we immediately get

QNRTNANRNQ'=1

and so (5) of 2.2 shows that the Frattini factor groups of @ and R each are of
order at most 16. Therefore, |G:S|=¢ and |H:S|=r by 2.9, and we can pro-
ceed as in [1].

4.2 THEOREM. Suppose Z<Z(H), V<R, and U={V#) is nonabelian. Then
one of the following holds.

(1) (G, H) is of Gu(2)~type.
(2) GIQ=H|R=D;, Q=Ds¥ Dy, and R=Ds* Ds.

In the latter case, if S*=(SNOYG)SNOXH)), G*=S*0XG), and H*=S*O*H),
then (G*, H*).is of Ga(2)-typbe. ‘ o

Proof. Pick elements xeG and yeH so that G=<(S, ) and [V, V¥]#1
(This is possible by 2.3 and our supposition.) Argue as in [1] making the fol-
lowing change: replace “G/Q=D;” at the end of the first paragraph by
“GICV)=D;”. Then we have g=r=3 and R=Z,* Ds or Ds* Ds at the sixth
paragraph. Consequently, |Q|=|R|=2° by 2.2 and 3.4, and so |G: S|=|H:5]|=3
by 2.9. Now, proceed as in [1].
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5

In the subsequent sections, we shall embed G and H into the amalgamated
product F of G and H over S, pick certain elements geG—S and AeH—S, and
study the sublattice of the subgroup lattice of F generated by Q" and RW»™
(neZ). In this section, we shall recall notations and elementary facts concern-
ing this sublattice.

Let geG—S, he H—S, and define f=gh. For subgroups X of F and integers
n, define X,=X/". Notice that we do not use this notation for elements of F.
For elements zeF, we shall write z'=2"'. Changing the unotation, we shall
denote the sequence

ey Q-z, R-g, Q—l, R—l, Qo, RO: Ql; Rl, QB; RZi---
also by
covy P(—2), P(-1), P(O), P(1), P(2),...

Define the bottom B of this sequence to be the intersection of the P(m): B=
NP@) (neZ). The bottom B is determined by the ordered pair (g, %), and so
we shall write B=B(g, ») if necessary. Notice that B(g, A)=B(#/, ¢’). All the
propositions in Section 5 of [1] remain true without changes.

5.1. SNS.<RN@Q, for all n=1.
5.2. Pm)NPm)= NP if n<m.
5.3. B’'=2A,

5.4. (1) For each integer #, there exists a nonnegative integer k such that
B=Pn)N P(n+k).
(2) Pm)+B=+=P#n)NPn+1) for all .

5.5. If a subgroup X of S is normalized both by ¢ and by %, then X<B.
5.6. If ¢* and 4% are contained in B, then R_,=(R,-1)!=(Rn)* for all #=0.
5.7. Qu<HyaNHy, and R,<GrN Gyt for all n.

The following definition is implicit in [1]. Let & be the set of all pairs
(g, %) of elements of G and H, respectively, such that G=<(S, ¢> and H=(S, A,
and let @’ be the set of all pairs (g, Z)e P such that both ¢* and 4* are contained
in Blg, k). We define
{_CP’ if ¢’ is nonempty,
L pER=
P if P’ is empty.

Therefore, @ and ®* are nonempty by 2.3. The subsequent sections will focus
on P*.
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6

In this section, we shall work under the following hypothesis.
6.1 HypoTHESIS. Z<Z(H).

Throughout this section (g, %) will denote an arbitrary but fixed pair in &,
and we shall retain all the notations defined in Section 5. Thus, X,=X“»" for
subgroups X of F and neZ.

6.2. The following holds.
@ Csh(z)gQ for each nonidentity element z of Z_;.
(2) Cs_(2)<@ for each nonidentity element z of Z.

Proof. As Z.,=2" and (¢, h)ep, (1) follows from 3.8. 3.8 also shows
that if (2, y)eP then C ya(2)<Q for each nonidentity element z of Z. As
Swo'=S_; and (g, A")eP, (2) holds.

6.3. The following six conditions concerning positive integers » are equiv-
alent.

1) Z<Qa.

2) ZNQy+1.

(3) Vu15Q.

@) Zn.<Q.

(5) Za-1NQ+#1.

6) V<Qn-.

In the remainder of this section, we shall assume the following hypothesis
about (g, 7).

6.4 HypoTuesis. There is an integer d>1 such that Z<Qq and Z£ Qa4 .

6.5. The following holds.

(1) Z<@-@-vyNQu<HaNHy.

2) VL@ ta-yNQuu<H N Hys .
B) ZNQu1=1=Z,NQ for all n=d.
(4) @2 VEQ-, for all nzd.

6.6. If (g, AeP*, then VNQs=Z.

Proof. Argue as in [1] making the following change: in the first paragraph,
pick y from L—L7. Also, notice that if I(G)%£Q and I(H)£R then P’'+Z by
2.3 and so (g, 2)e’. (This remark applies also to 6.7 below.)

6.7. If (g, We@*, then ZNRy=1=ZNR_s.
6.8. If (g, A)eP*, then the following holds.
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(1) RadVERe,.
(2) (V-~1y, Vs contains an S,-subgroup of H, which necessarily central-
izes Q—(d-q) N&q.

6.9. If (g, A)eP*, then the following holds.
L |Z|=2.

@) V=Z.XZ.

(3) G/CG( V=D;.

6.10. Assume that (g, A)eP* and let U=(VE). Then U/Z<Q:(Z(R|Z)),
ReSyl(Cx(U|Z)), and Cu(UJZ) contains no S,-subgroup of .

Proof. As in [1], we have U/Z<Q,(Z(R|Z)) and so N=Cgx(UJZ) is a normal
subgroup of H containing R. If H=SN, then V is normalized by H as well as
G, a contradiction. Therefore, H=SN. Hence ReSyl(N) and N contains no
Sr-subgroup of H by 2.2.

7

In this section, we shall study the following situation.
7.1 HypoTHESIS. Z<Z(H), V<R, and U={VE) is abelian.

7.2, If (g9, B)eP, then the following holds.
1) U<@ne™
[e)) Z <L Qum?,

7.3 THEOREM. Suppose (g, h)eP*, Z£QU", and |S:R|=2. Let S*=(SN
O GWSNOYH)), G*=S*0¥G), and H*=S*OH). Then (G*, H*) is of Ms-type.

Proof. (We shall use the notations in Section 5. Thus, X,=X@" for X<
F and neZ.) TFirst of all, 7.2 and our supposition show that (g, /) satisfies
Hypothesis 6.4 with d=2. Therefore, we can use 6.5-6.10. In particular, [Z]
=2 and G/Ce(V)=Ds by 6.9. Also, V_,£R and V,£R., by 6.8, which together
with 7.2 shows that R.,NQ@>=U_,£R and that QN R=UxLR_, because V=V
<U. As |S:R|=2, we conclude that @=<U-,, U, R.,NR>. Similarly, as S>
U £R and S*">U,£R, we have H={U.,, U, R).

Now, [RuNRBR, UnUILZ NZ=1 by 6.10 and 6.9. This shows that
UNU=V as @=<U-,, U, R,NR) and U is elementary abelian. Hence,
[Vr, ULILIU, ULV and [V, U<L[U, U)<V,=V" This shows that
VVrH as H={U-,, Uy, R>. Therefore, U=V V" and |U/Z|=4 by 6.9. 6.10
now shows that H/Cx(U[Z)=D,. Furthermore, Ca(U)=Ca(VINCx(V")=QNQ"
by 3.8, and hence @QNQ*<|H.



On Pairs of Groups Having a Common 2-Subgroup of Odd Indices 23

Let Q*=(U%). As |U/V|=2, we have U/V<2:,(Z(S/V)) and hence Q@*/V<
2(Z(Q|V)). As a consequence, we have [QNQ*, Q*1<U. Now, as U, =U"<
Q*<S, we have H=(Q* Q*, R>. Therefore, [QNQ" ONH)I<U, and U/Z and
R/QNQ" are the only nontrivial chief factors of A within R by 3.6. As both
chief factors have order 4, we conclude that |H:S|=3 by 2.9.

Let R*=(@@*NRYQ**NR). Then [R, @] < Q*NR < R* and, similarly,
[R, Q@*¥]<R* As H=(Q* Q*" R), this implies that B*<]H and that [R, O} H)I<
R*. Hence, [R*, O*(H)]< U, and as [QNQ", O(H)<U, we have Q*NR£Q" and
Q*NE"=Q*NQ. As |S:Q|=2, this shows that R*/U is a product of the two
maximal subgroups @*NR/U and Q**NR|/U, both of which are elementary abel-
ian as Q¥ V<2(ZQ]V)). We conclude that R*/U is elementary abelian. Also,
as @*NRLQ" and Q*NQ"=Q**NQ, we have G=<(R*', R* @) and QNR*=
Q*NR. So, as [Q, R*]<@QnR* we conclude that [@, OYG)]<@*. Now, let
S*=Q*R*, G*=S*0*G), and H*=S*0%H). Then G* and A* satisfy Hypothesis
3.1 with respect to S* by 3.3. Moreover, Oy(G*)=Q* and O.(H*)=R* because
QNS*=Q* QN R¥)=Q* and RNS*=(Q*NR)R*=R*,

As [R*NR, R¥I<(R*)Y LU, we have |[@*, R¥JU:U{=2 and so, as |U: V|=2,
we have |[Q* R*¥]V:Vi=4. This shows that |Q* V:Co»(R*)|=4. Therefore,
Coow(R*¥YN Cos,v(R*) has index at most 16 in @*/V and, moreover, it is contained
in Z(G|V) because G=(R*', R* Q> and Q*/V<Z(Q/V). We conclude that all
chief factors of G within @ have order at most 16, and hence |G:S}=3 by 2.9.
Consequently, we have |Q*/V|=8 because Q*=(U% and |U/V|=2. Hence, @*N
Q'=U and |R*U|=4.

Now, we have got ready to argue as in the last three paragraphs of 7.3 in
[1] to complete the proof.

8

8.1 THEOREM. Suppose Blg, h)+1 for some (¢, h)eP. Let S*=(SNO¥G))-
(SNO¥H)), G*=S*OXG), and H*=S*O¥H). Then one of the following holds.

(1) GlO«G)=H|O(H)z= Do, OG)=DetDs, Ox(H)z=Dw Dy, and (G*, H*) is
of Gu(2) ~type.

(2) GlO(G=H|O(H)=Ds, Ox(R)=DexDs, Ox(H)=DskDs, and (H*, G¥) is
of Go(2)'~type. ‘

(8) (G*, H*) or (H*, G¥*) is of Mis-type and S*=S.

As in [1], we shall derive 8.1 from 8.2 below.

8.2. If B(g, A)#1 for some (g, A)eP, then S*+S and one of the following

holds. ‘

(1) (G, H) or (H, G) satisfies the hypothesis of 4.2. .

2y (G, H) or (H, () satisfies the hypothesis of 7.3 with respect fo some
(g, h)eP.
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The proof of 8.2 will be divided into fifteen parts each having their counter-
part in [1]. Pick (g, £)e P so that |B(g, 4)| is maximal and assume B(g, A)#1.
5.4 shows that there exist integers # and m with n=m such that B(g, A)=
P(n)NP(m). Pick such 5z and m so that k=m—» is minimal. The % is uniquely
determined by the pair (g, %), so we shall write 2=k(g, %) if necessary. Now,
let B=B(g, h) and define ®Pz={(z, y)eP] # and y normalize B}. Arguing as in
[1], we first get the following.

(a) There exists a pair (x, y)eP such that |B(z, y)|=|B| and klz, v) is
even.

Therefore, we may assume the following.
(b) kis even.

Let 2=2¢, 4=20. Then either B=QNQ, or B=RNR,, and we may assume
that the latter holds by the symmetry between G and H. This assumption
enables us to prove the following. :

(c) The following holds.

(1) |INa(B)|=|Ns(B)IH:S].
(2) OxNu(B))=Nr(B)#Ns(B).
(8) Ns(B)<@Q.

In proving (3) above, notice that Nu(S)=S by 2.2. As a consequence of
(c), we have the following.

(d) If (=, y)ePs, then the following holds.
1) Bz, y)=8.

2) k(z, y) is even.

(3) If k(z, y)=2m, then Bz, y)#=QNQ" ",

Now, we shall prove the following by means of (c).

(e) There exists a pair (z, y)ePs such that z*eNg(B) and y*eNg(B).

Proof. By (c), there exists an element weNx(B) such that S*=5". As
' eNg(S)=S<G, v=ghw' is contained in G. Moreover, »eNg(B) by 5.3 and
G=(S, v). Suppose {2} is not a 2-group. Then (v, Q)< KQ for KeSyl(G) by
2.2 and so, as G=<S, »), we have (v, @ =K@. This shows that {») contains
an S;-subgroup of G, which necessarily normalizes B. But also some S,-subgroup
of H normalizes B by (c), which is impossible by 3.2. Therefore, {v) is a 2-
group and so contained in S° for some zeG. As G=(S, v), we have G=<(S, z)
and so if we pick zel{p)—Q so that z?eQ, then zeNu(B), z*eNy(B), and G=
¢S, =y by 2.3. Also, as S*=5", we can pick an element yeN(B)—Nr(B) so that
y*eNg(B) by (¢), and for such y, we have H=(S, y> by 2.3. Therefore, (z, v)
meets all the requirements of (e).
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By virtue of (d) and (e), we may assume‘ the following.
(f) (g, WePsr, ¢*eNy(B), and Ah2eNx(B).

Next, we have the following also from (c).

(g) ¢=2.

Now, for each subgroup X of F, we define X*=N.x, z.(B)/B. In the follow-
ing two propositions, we. shall slightly depart from [1].

(h) The pair (Y (H”)) satisfies the conditions (a), (b’’), and (c) in Section
1 with respect to the common 2-subgroup Q%

Proof. First of all, (f) shows that ¢ acts by conjugation on F* and inter-
changes H* and (H*)* Consequently, H*=(H")} and, as @*Syl.(H®* by (c),
QFeSyL((H")) also. Let LeSyl,(Nx(B)) and notice that LeSyl(H) by (c). Now,
suppose Hi=@Q!O(H*%. Then L centralizes Nz(B)/B. Also, g interchanges Ngz(B)
and NRg»(B) by (f) and so g normalizes NRg,(B)nNR(B). Therefore, if yeL—L",
then B(g, ¥)=N_(B)N Nr(B)=B by 5.5 and, as (g, y)eP, the maximality of |B]
yields that N,,(B)NNr(B)=B. This, however, implies that B=R"NR=R_,NR,
contrary to (g). Therefore, H*+@Q*O(H* and we have shown that (H* (HY))
satisfies (a) and (b’’) in Section 1. In order to verify (c), let X/B be maximal
among all subgroups of @* that are normal both in A* and in (H7)*. Then ¢
normalizes X as ¢ normalizes @* and interchanges H* and (H”). Therefore,
B(g, h)>X>B, and hence X=B.

(i) HYOHHZZ, or XX Z; and Oy HH)=0(H*) X R:.

Proof. As H* is 2~irreducible by 2.2, (h) and 1.2 show that there exists a
pair (G, H) satisfying the conditions (a), (b’), (c), and (d) in Section 1 with
respect to a common 2-subgroup S such that G=HYO(H?®) and H =(H"¥O(H")M.
Also, we have Ou,o(H)=O(H*)XR* by (c) and 1.1. Notice that G, H, and §
satisfy Hypothesis 3.1 as |S|<|S|. Now, suppose 2,(Z(0:(G))) and 2,(Z(0:(H)))
are contained in Ox(G)NOy(H). Then either 2,(ZSN<AG) or Q(ZS)<Z(H)
by 3.7. However, as Hi=(H"), we have G=H and so 2,(ZE)<ZAG)NZH)
as in the proof of 1.3, a contradiction. Therefore, either 2,(Z(0«G))) £ 0.(H) or
Q:(Z(OLH)))£0:(G), and 4.1 shows that G/0«(G)=H|O(A)= D5 and Oy(G)=0x(H)
=E; or Ey. If OyG)=E; then G=3,, while if OG)=Es then G=3,XZ: by
3.9.

From (h) and (i), we get the following.
(j) There exists a pair (x, y)ePp such that #*eN,a (B) and y*eB.

Proof. As heNgx(B) by (f), (h) and (i) show that there exists an element
yeN W(B)—Ng(B) such that y?e¢B, and for such y, we have H=<(S, y) by 2.3.
Also (h) and (i) show that R* and (R”)* are distinct maximal subgroups of @
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As g interchanges them, we have {gMQ* RN (R} =D, and so the coset gNy(B)
contains an element x such that wzeNRg,(B)nNR(B). As G=(S, z) and R”=R",
the pair (z, y) meets all our requirements.

In view of (d) and (j), we shall assume the following.
(k) d*eN,p (B) and /#’eB.
Also, we get the following from (h) and (i).

(1) N, ,(B): Bl=4, and if equality holds then there exists an element
2€Ng(B) such that G={(S, ) and x%¢B.

Proof. (h) and (i) show that @*=D; or DsXZ, and that R* and (R?) are
the two distinct elementary abelian maximal subgroups of Q. Hence, RN (R")
=Z, or E,. Suppose R'N(RY(F=E, Then R*N(R"}=ZHHXZ(H"® by (h)
and (i). Therefore, {gX(R*N(R"¥)=D; by (k), and the coset 9(Na(B)N N ,¢(B))
contains an element x such that z?¢B. The z meets all our requirements.

From (1), we have
(m) ¢=3, and if equality holds then |N_ g (B):B|=4.
Now, we shall prove

(n) [B, ONa(B)l=1.

Proof. Let C be a nonidentity subgroup of @ such that i) Na(B)<Nx(C),
ii) C'=C, and iii) Ng(C) is maximal subject to i) and ii). Arguing as in [1], we
have Ng(C)eSylo(Nx(C)) and that no nonidentity characteristic subgroup of Ng(C)
is normal in Nu(C). Furthermore, we have Ng(C)#Ng(C)YO(N#(C)) by (i) and
so, by 1.1, no nonidentity characteristic subgroup of Np(C)O(N#(C)/O(N(C)) is
normal in Nx(C)/O(Nu(C)). Therefore, 2.6 applied to Ng(C)/O(Nu(C)) shows
that if LeSyly(Nu(B)) then |[Na(B), L)|=4. As [Nz(B), L1£B by (i), we con-
clude that [B, L]=1. (In fact, we have O(Ngx(C))=1 by the AXB-lemma.)

From (n), We have
(o) ¥VnB=1.

Now, we can complete the proof of 8.2. We have £=2 or 3 by (g) and
(m). If ¢4=2, then the arguments of [1] show that (H, G) satisfies the hypothesis
of 4.2 with S*=S. Assume £=3. Then we may assume that ¢*cB as well as
A*eB by (m), (1), and (d), and hence (g, A)eP*. Also, we have |Q|=64 by (0)
and (m). Then the arguments of [1] show that Z<Z(H), V<R, and Z£Q,. If
(V%) is nonabelian, then (G, H) satisfies the hypothesis of 4.2, whereas |Q|=
64, a contradiction.. Therefore, {(V¥> is abelian, and (G, H) satisfies the hy-
pothesis of 7.3 with S*=S.
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9

In this section, we shall work under the following hypothesis.

9.1 HypoTHESIS. Z<Z(H), V<R, U={V#) is abelian, and B(x, y)=1 for
all (z, y)ep.

Because of the last condition in 9.1, ¢’ consists of the pairs of involutions
g, b such that G=(S, ¢g> and H=<S, A). Therefore, if (g, 2)eP*, then the pairs
(¢/s B), (¢, '), and (g, #') are also contained in @*. As in [1], 9.1 has the
following two immediate consequences.

9.2. Every element (g, k)e satisfies Hypothesis 6.4 for some integer 4> 1.

The integer & in 9.2 is uniquely determined by the pair (g, %), and so we
shall write d=d(y, %) if necessary.

9.3. If (g, h)eP, then the following holds.
1) Cs(e)NCs(h)=1.
(2) If zeS"—Q and yeS*—R, then Cs(z)NCs(y)=1.

Proof. As Cs(g)NCs(h)< B(g, ) by 5.5, (1) follows from 9.1. As (z, y)eP
by 2.8, (2) follows from (1).

The remainder of this section is devoted to the proof of the following
theorem.

9.4 THrEOREM. We have d(g, h)=2 for some (g, h)e P*.

We shall assume that d(g, £)>2 for all (g, A)e P*, and argue for a contradic-
tion. In the following propositions 9.5-9.12, (¢, %) will denote an arbitrary buat
fixed pair in P* and we shall use the notations defined in Section 5. Thus,
Xp=X9" for X<F and neZ. Also, we set d=d(g, h).

9.5. We have ZNU,=1=2Z,NU for all nz2,

Proof. We shall first prove ZNUn=1 for n=2. As U,<@Qn:. by 7.2, 6.5
shows that it suffices to consider the case 2=n<d. 6.5 and 5.2 show that
Z iy S Qe2iony M@y KRN @n-1. Also, 6.7 shows that Z_ggniyyNRa-i=1.
Hence, Si1>RNQu-1£Ruy. Similarly, we have Zp<Q:NQuui1 <Q:N R, and
ZgiNRy=1, and hence (")">Q.NR,£R™ - Now, assume that l#zeZNU,.
Then Cs,_,(2)=RNQn-1 £ Rn-y and so Cs,(2)<Qn by 9.3. Hence, Cr,(2)<QnN Ry
Now, [Rn, 21<Z, by 6.10 and so, as |Z|=2 by 6.9, we have |Rn:Cgy(2)|=2.
We conclude that Cz,(2)=QxNR.. Now, as nx2, we have Q,NR,<Q»NR, and
50 Cenman(z)ER™. Also, (S”)=S" centralizes z. This contradicts 9.3 and,
therefore, we have proved ZNU,=1. As (g, 4) is an arbitrary (though fixed)
pair in P*, we may argue with (¢/, #’) in place of (g, %) to conclude that Zn
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U@ =1. Hence, Z*"NU=1 and, as % normalizes Z and U, it follows that
ZWmt N J=1; that is, Z,NU=1

9.6. If n is a nonnegative integer and [U, U;]=1 for all j such that 0=j
=n, then UL@Qns and Un<@.

Proof. We argue by induction on #». We may assume #>0 by 7.2, and
we have U<@,<S, and U,<@Q,<S* by the induction hypothesis.. Then as

Zn1 LU, we have UL Cs, (Zn+1)<Qusr by 6.2. Also, as Z.,<U, we have U,<
csh(Z—J)SQ bY 6.2.

9.7. We have [U, U;]=1.

Proof. As d=3, 6.5 and 5.2 show that V<Q-w-1NQe<RNR,, and
hence V,<R.,. Also, V<U9=U.,. Therefore, [VV), U,]LZ,=2"<V by
6.10, which implies that U., normalizes VV,. That is, U? normalizes VT,
and as (g, /) is arbitrary, we may replace (g, &) by (g, #’) to conclude that U”
normalizes VV*, and hence U* mormalizes VV% Now, assume that U"£R.
Then U R and so, by 2.3, <U?, U?"> contains an S,-subgroup L of H, which
necessarily normalizes V'V As L does not centralize VV*Z by 3.2 and
|VVZ =4 by 6.9, we conclude that r=3. Consequently, |S:R|=2 and so
VVrKUY, R, Ly=H. However, this shows that U=VV*=VV, andso U" =
U =V_.V<R, contrary to our assumption. Therefore, U <R, and replacing
(g, B) by (¢, k), we have UY<R also. Therefore, U.,<R and U<R-;, and
hence [U_;, Ul<Z.,NZ=1 by 6.10 and 6.9. This completes the proof of 9.7.

At this point, we can prove 9.8 below as in [1]. However, unlike [1], we
shall not use it in 9.9.

9.8. We have r=3.
Now, we shall prove the following.

9.9. We have [U, U,]=1 for all » such that 0=n=d-2.

Proof. Suppose [U, Uy]=1 for all j such that 0=j=#n, where 0=n<d-2.
(This is the case for #=0 by 9.1.) We wish to prove [U, Un+]=1. By 9.7, we
may assume 1=#n<d-2, and by 9.6, we have U, <@:<S"<H and U<@Qnu<
Hyuo.o Now, as n+2<d, we have V<@QNQupi2<Rnyy by 6.5 and 5.2, and so
[V, Until€UNZpu=1 by 6.10 and 9.5 as n+1z2. Therefore, Uns1<C(Z-)
<@ by 6.2 and then Up 1 <@NRu<R by 5.2. Therefore, [U, Upil<ZN Uris
=1 by 6.10 and 9.5. The proof of 9.9 is complete by induction.

Arguing as in [1], we can derive the following from 9.8 and 9.9.

9.10. We have d=3 and [Z.,, Z;|=Z.
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9.11. We have U=VV,.
Now, we shall prove the following.

9.12. We have [U", U*]=2.

Proof. . Replacing (g, 4) by (¢’, 4), we shall prove instead that [U?, U™]=Z.
By 9.11 and 6.9, we have U.,=Z,(U-.NU) and U,=(UNU\)Z, and so
[U-, Ul=Z by 9.7 and 9.10. Therefore, [U¥, U]=Z. Now, let KeSyl(G)
and write g=kz with keK and xeS. Let y@Q be an involution of S/Q. Then,
we have UY=UF=U"=UW=U%"% by 2.2, and 2'yeS=Q(RNQ" by 3.5 and
3.6. Therefore, U? and U’ are conjugate under some element of RNQ" and as
ENQ" normalizes both U and Z, we conclude that [UY, U%]=Z, as required.

Now, we complete the proof of 9.4. Let 1#zeZ; and ls:z¥eZ.,. Then
zeS*—R by 6.5 and 6.7, and so [U?, U%?]=Z by 9.12 applied to (g, 2)e P*.
Now, U¥”={z*, V) by 9.11 and 6.9, and V<U”NU. Hence, U"*=(z*, V%
and V*<U*nU. Also, [U”, Ul=1 by 9.7, and so [U, U"*]=1 as z normalizes
U. Therefore, [UY, U ={z* z*]={(z*°, z*¥]), and we conclude that Z=
{22 ={(zz*)*> as |Z|=2. Now, as z¥eZ_,=Z""", we have z*V0'n'gZW*
Also, as 26 Z;=Z9"° we have zV"heZ% =70 Therefore, replacing (g, 4) by
(¢g’, 7') and (z, 2*) by (g*¥'0'W 20 we have

Z={(gV 00 OB YS = (g ®) WO = ZHON

However, this implies that Z=Z_,. With this contradiction, we have established
9.4. ‘

10

10.1 TuroREM. Under Hypothesis 9.1 with |S: R|>2, let S*=(SNOYG))SN
OYH)), G*=S*¥OG), and H*=S*OH). Then |S:S% =2 and (G* H¥*) is of
2R (2 ~type.

Proof. By 9.2 and 9.4, there is a pair (g, 4)e @* which satisfies Hypothesis
6.4 with d=2. Argue as in [1] with this pair, making the following changes.
In the first paragraph, replace “Cmr(U/Z)=R” hy “ReSyl(Cx(UJZ))” and
“HIR=Fy” by “HICa(U|Z)=Fy"”. In the second paragraph, pick an element
yeH of order |H:S| contained in {V_,, V.. Then, at the eighth paragraph,
we can construct a normal series 1<T<P<@ of G such that [T1=32, |P:T|=
8 or 16, and |@: P|=4. Also, we have |U|=32 and |R:U}=16 or 32. There-
fore, |G:S|=¢ and |H:S|=7r by 2.9, and we can proceed as in [1].
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11

We shall conclude the proof of the Main Theorem by summarizing the
results in Sections 3-10. Let S*=(SNOYG)(SNOXH)), G*=S*0¥G), and H*=
S*O*(H). Then G* and H* satisfy Hypothesis 3.1 with respect to the common
2~subgroup S* by 3.3. Assume that Z(G):Z£Z(H). Then (V,W>£QnNR
by 3.7, and hence G/Q=HIR=D; and Q=R=E, or Es by 4.1. Therefore,
(G*, H*) is of GL 4(2)-type by 3.9. Assume, therefore, that Z<Z(H). If VLR,
then Z=QNR by 4.1 and 3.5, which contradicts 3.4. Therefore, V<R. If
U=<{VH®) is nonabelian, then (G*, H*)is of Go(2)'-type by 4.2 and 3.9. Assume,
therefore, that U is abelian. If B(g, A)=1 for some (g, A)eP, then (G*, H*) is
of G(2)-type or M.-type by 8.1 and 8.2. Assume, therefore, that Bz, y)=1
for all (x, ¥)eP. Then by 9.2 and 9.4, there is an element (g, 4)eP* which
satisfies Hypothesis 6.4 with d=2. Therefore, if |S: R|=2, then (G* H*) is of
Mie-type by 7.3. If |S:R[>2, then (G* H*) is of 2F,(2)-type by 10.1. We
have proved the Main Theorem by induction on |S| and also established Theo-
rems A and B.
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