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1. Introduction

A compact orientable 3-manifold is called a Haken manifold if it is irredu-
cible and it contains a two-sided incompressible surface. Through the works
of Haken [3], Waldhausen [10], Thurston [7] and many others, this property
have proved to be one of the most powerful hypothesis in 3-manifold theory.
However there are many 3-manifolds which do not satisfy this hypothesis. In
fact there are certain Seifert fibered spaces which are irreducible but not Haken
(cf. Waldhausen [9], these had been the only known examples of such manifolds
before [7]) and recently Thurston [7] has shown that most 3~manifolds obtained
by performing Dehn surgeries on $° along the figure eight knot have the same
property. Moreover he has shown that they admit hyperbolic structures so
that they cannot be Seifert fibered spaces. Thus they are essentially new ex-
amples of non-Haken manifolds. There are generalizations of this result to 2-
bridge knots by Hatcher-Thurston [5], 2-bridge links by Floyd-Hatcher [3] and
to punctured torus bundles by Floyd-Hatcher [2], Culler-Jaco-Rubinstein [1]. On
the other hand Waldhausen [9] conjectured that any orientable, irreducible 3-
manifold with infinite fundamental group is virtually Haken, namely some finite
covering space of it is Haken and Thurston has proposed a related problem to
determine whether every aspherical or hyperbolic 3-manifold is virtually Haken
or more strongly whether some finite covering space of such manifold has
positive first Betti number (Hempel [6] has expressed this property as the fun-
damental group of the manifold is virtually representable to Z). He has even
asked if every hyperbolic 3-manifold has a finite covering space which fibers
over the circle (cf. Problems 16-18 of [8]). The purpose of this paper is to
examine the above question on the 3-manifolds which are obtained by perform-
ing Dehn surgeries along a section of torus bundles over the circle with hyper-
bolic monodromies. More precisely, assuming a certain condition on the mono-
dromy we shall construct explicit finite coverings of such manifolds with positive
first Betti number. In particular we prove that the fundamental group of the
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3-manifold M(p, 4) which is obtained by performing (g, 2) Dehn surgery on S°
along the figure eight knot (cf. [7]) is virtually representable to Z if p=0 (mod

4) and 2+%#50 (mod 3). In fact it has a 240-fold covering with the first Betti

number at least 2. Our method does not apply to the general problem as it
stands. However we hope that our result might serve as a supporting evidence
towards the affirmative solution of the problem.

2. Finite coverings of punctured torus bundles

Let f be a homeomorphism of the punctured torus T,=7%—D* which is
the identity near the boundary and let E; be the mapping torus of f. f extends
naturally to a homeomorphism of the torus 7 (which we denote by the same
letter) by using the identity mapping on D®. The corresponding mapping torus
My is a closed orientable 3-manifold fibering over the circle with characteristic
homeomorphism (=monodromy) f. Let [fleSL.Z be the matrix representing
the action of f on the first homology group H.(7%) (homology is always assumed
to be with integer coefficients) with respect to the natural generators of it. We
call it the monodromy matrix of E; and also of M,;. The oriented homeomor-
phism class of E; or My depends only on the conjugacy class of the monodromy
matrix [f]. Since we have assumed that f fixes the disk D*c 7% a tubular
neighborhood of the “ zero-section” of M, is identified with D*xS'. We denote
Es(p, 2) for the closed 3-manifold obtained by performing (g, 1) Dehn surgery
on M, along the zero-section. Thus we have Ef1, 0)=DM, in particular. Here-
after we assume that the monodromy matrix [f] is hyperbolic, namely [f] is
assumed to have two distinct real eigenvalues. In this case it is easy to show
that Ex(g, 2) is a rational homology 3-sphere except for the trivial case Z,(1, 0).
Thurston [7] has proved that E {(p, A) admits a hyperbolic structure if we ex-
clude a finite set of choices for (g, 1). Floyd-Hatcher (2] and Culler-Jaco-Rubin-
stein [1] have classified all incompressible surfaces in E; and concluded that
Ef{y, A) is an irreducible non-Haken 3-manifold except for finite set of (4, 2).

Now let T be a regular finite covering space of T, determined by a sur-
jective homomorphism =,(7%) — G, where G is a finite group. =(7}) is a free
group generated by two elements «, . Here we suppose «, 8 to be the standard
generators so that the commutator [«, f] corresponds to the boundary circle,
(see Figure 1, a and f§ are represented by the paths which consist of the simple
closed curves z and v together with the curves which connect them to the

base point &q).
) (s

Figure 1. The generators of n(T))
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Now let o, & be the images of @, 8 in G and let » and m be the orders of
G and [a, b] respectively.

2.1. LemMma. Let g, c, by be the genus of the surface 7:‘0, the number of the
connected components of 31 and the first Betti number of T, respectively. Then
we have

1 #
0"72_(72—.77;) +1

Proof is easy and we omit it.

Now it can be shown that some power of the homeomorphism f: To—>T%
lifts to a homeomorphism f: To——T,. Namely there is a natural number ¢
so that the following diagram commutes:

~

7, I i

| |
4

,110 f 0 o

3

Here we always assume that f is the identity near the boundary of 7. This
is possible if we change ¢ if necessary. Let £y be the mapping torus of 7.
Then the natural map £y — ¢ defines an n-fold covering projection. If we
compose another natural map £,¢ — E, to this projection, we obtain an n¢-fold
covering projection Ey—— E;. The houndary tori of Evy are “(m, ¢)-fold cover-
ing space” of the boundary torus of £;.

2.2, Lemma. The covering space Ey — E; extends to a covering space
over E(y, 2) if and only if p=0 (mod m) and i=0 (mod 2).

Proof. As mentioned before the Lemma, the restriction of the covering
projection By — E to any boundary component of Ey is canonically isomorphic
to the “(m, ¢)-fold covering projection” pm,,: T*—T% where pum, s, t)=
(mms, gt) (s, )eT®). In Ey(y, 2) a simple closed curve on 8E,=T* representing
the homology class (g, DeH\(7T?) bounds a disk. Therefore if the covering
projection Ey — E; extends to Ey(sq, X), this simple closed curve must lift to
a closed curve in the upper 7% under the projection pm,,. It follows that p=0
(mod m) and A=0 (mod ¢). Conversely if this condition is satisfied, then a
simple calculation shows that the (g, 1) Dehn surgery on the lower 7° lifts to
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the (ﬁ , -%) Dehn surgery omn the upper T? This implies that the projection
i>m—+EJ(p, 2), where

V4
E?<i— , —2—> is the closed 3-manifold obtained by performing “(i— ) —f;—) Dehn

v— Ey extends to a covering projection E}(;?—ﬁ; ,

surgery” on each boundary component of Ey simultaneously.

Recall that f is a homeomorphism of 7. Let

k=rank Ker(fu—Id): HiTo) — H(T,).

2.3. LemMmA. The first Betti number b, of Ey(ﬁ , %) is mot less than

k=c+1, where ¢ is the number of connected components of a7, (see Lemma 2.1).

Proof. Consider the Wang exact sequence for the fibration Ty EBy— St

0~ Hy(Ep)—r H( T2 10 (B H(By)— Hy(') —0.
From this we conclude

rank of Hy(Ey)=k.

The Mayer-Vietoris exact sequence for the triple (Fy(% s —j—) ; E7,C}(D2><S‘)i>
¢ i=1
is:

0—H(By(L . 7)) — (S x50 —

HEY@H () (DX S)) — I, <E7 (i , i)) s
From this we obtain

b,=rank H(E?(i‘ s %>>gk——c+1.

3. Special case

In this section we comsider a special case which should clarify the key
point of our construction. Let D, and D, be the left handed Dehn twists about
the curves z and y on the punctured torus T, respectively. The associated
monodromy matrices are
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1 -1
o, )
0 1

o (1 o>
[”_1 1)
—5 -2

3.1. PrOPOSITION. Let f=D%D} (Izence [f]s( 3 l>) Then Efy, 2)

has a 6-fold covering space with the fivst Betti number at least 2 provided p=0
(mod 3).

Proof. Let
ot m(To)—> S,
be the homomorphism difined by
pla)=(12)
p(B)=(123)

where as before a (resp. ) is the element in x,(7%) corresponding to the closed
curve z (resp. ¥) and S, is the symmetric group of degree 3. Then [p(a), p(B)]
=(123) has order 3 so that the corresponding 6-fold covering space T, has genus
3 and its boundary has 2 connected components (¢f. Lemma 2.1). On T, let
a1, @2, oy and yy, . be the lifts of z and y, respectively (see Figure 2)

Figure 2

It is easy to see that D% lifts to a homeomorphism D, of T, which is the
simultaneous left handed Dehn twists about the three curves x, xe, ®s;. Simi-
larly D3 lifts to a homeomorphism D, which is the left handed Dehn twists
about the curves v, y.. Put ’

F=DyoD,.
Then clearly f is a lift of f and it is the identity near d7. Consider the fol-
lowing three homology classes
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[x1]—[22]
[ze]— ]
[91]—[v-]

in H(Ty). It is easy to see that these homology classes are left invariant under
the action of D, and D,. Hence they are invariant cycles under the home-
omorphism f. In fact simple calculations show that the number k=rank Ker
(Fe—Id): H(To)—H(T,) is equal to 8. Therefore by Lemma 2.3 we conclude

3 3
Es(p, 7), 1s not less than 2. In fact further calculations show that it is equal
to 2 unless (g, 2)=(0, 1) in which case it is equal to 3.

that the first Betti number of Ey(fi 2), which is a 6-fold covering space of

4. The case of the figure eight knot complement

In this section we prove

4.1. THEOREM Let M(p, 2) be the closed 3-manifold obtained by performing
(p, &) Dehn surgery on S°* along the figure eight knot (see [7]). Then = (M, )
is virtually representable to Z if p=0 (mod 4) and /1+—]i—/c20 (mod 3). In fact

there is a 240-fold covering space of M(p, 2) with the first Beiti number at least
2.

4.2. ReEmMARK. Thurston [7] has shown that the manifold M4, 1)=234(4, —1)
is Haken and Culler-Jaco-Rubinstein [1] proved that A(16, 1)=M(16, —1) is
virtually Haken. By the above theorem we know that some finite covering
spaces of the manifolds M(4, —1) and M(16, —1) have positive first Betti number.

As is well known, the figure eight knot complement can be considered as

a punctured torus bundle over the circle with monodromy matrix (2 1).

1 1
2 1
f=DzD, (hence [fl= ( ))
1 1

More precisely let

be a homeomorphism of T,. Then it is easy to prove
4.3. Lemma. M(u, 2) is homeomorphic to E;(4, p) for all (p, 7).

(2 1\ . . 3 -1\,
The matrix (1 1> is conjugate to <1 0).
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(3 ——1) 1 1\/2 1\/1 1\t
1 0o Vo v 1o 1
3 -1 0 ~—1)< 1 0)
1 0o\t ol\-3 1)

We make use of this expression to prove Theorem 4.1. To do this we use
the following model for 7,. Let

and we have

v: m(To) —> PSL.R

be the homomorphism defined by

3 L
Y}

r{a) =
RS RS
Y Ve
11
v VY

r(B) =
1 3
V'Y VY

Then » is an isomorphism of #,(7,) onto a discrete subgroup of PSL:R. Hence
we can identify Int 7, with D/Im r, where D={zeC'; |z|<1} is the Poincaré
disc on which PSL.R acts by isometries. A fundamental domain for the action
of /m » on D and the loops x and y, which are now closed geodesics, are ex-
pressed in Figure 3.

Figure 3.
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1 1
V2 V2
Now let R= . e¢PSL,R. It acts on D as a rotation by 90°. We
1
V3 V2
have

R v(a) R'=r(p)
R r(B) Ri=r(a)-.

Hence R acts on Int 7, as an isometry of order 4. We can consider R as a
homeomorphism of T, of order 4 such that its restriction to the boundary 07,
is a rotation by 90° with respect to the orientation on 77, determined by the
closed curve {a, pf]. We have
0 -1
o )
1 0

g=RoDy*,

Hence if we put

then [g]=<§ Aé) Now ¢* is a homeomorphism of 7, which is the identity

on 27,. Since [¢*] is conjugate to [f), E,* is a 4-fold covering space of E;.
We prove

4.4, LEMmMA. EMp, 2) is a 4-fold covering space of Ej(u—2, 44).
Proof. It is easy to see that =,(E,) has the following presentation:
w(Ep)=La, B, 1; rar~' =afa, rfr~=pa>

where 7 is represented by the closed curve {base point} X S'CFE,;. m@E)=m(T*)
is generated by [e, f] and 7. On the other hand =,(F,) has the presentation:

m(Ep=<a, B, 7; 7

where 7 is represented by the curve {base point}x [0, 1] followed by rotation by
90° on 87,. m(dE,) is generated by (@, f] and 7. Now two homeomorphisms
foDy and Dyog of T, are isotopic. Hence we can define a homeomorphism of
E, to E; which induces an isomorphism §: =, (&) — m(&;) such that

2
=~
L
Il
R
ot
3
- ~
=
~
L
il
i
L
Ve

6(a)=«a
0(B)=pa~t and

0(F)=y.
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It is easy to check that ¢0((&, f)=[«, B8] and ¢ induces a canonical isomorphism
6: m(@E,)=mn0E;). Now counsider K and Eu. 0 restricts to an isomorphism
0: m(@Ep)=m(@Fy) where m(0Ep) (resp. m(9E,)) is a free abelian group
generated by [&, B] and 7 (resp. [e, 8] and 7*). Let i, & (resp. %, v) be the
elements of H,(0Eq) (resp. F\(0E ;) repsesenting the “meridian” and “longi-
tude” homology classes. Then clearly # (resp. ») is represented by [e, 8] (resp.
7) and @ is represented by [&, 5]. However # is represented by 7 [a, f1°"
Hence 0x(#t)=u and 0x(8)=v—u. It follows that Eu(y, 1) is homeomorphic to
Erpu—2, 2), which is a 4-fold covering space of E{u—4, 42). This completes
the proof,

Proof of TaeoreM 4.1. First we wish to construct a regular finite covering
space Ty of T, such that the homeomorphisms D;® and R of T, lift to T%. In
view of the eguations

R v(a) R'=7(B)
R r(f) Ri=r(a)?

it suffices to comstruct a surjective homomorphism
o: m(To) — G

where G is a finite group generated by two elements ¢ and b such that (i) b
has order 3 and (ii) @ —> 0, b —> @' defines an antomorphism of G. We define
G as a subgroup of S; generated by the following two elements

a=(123)
b=(145).

It is easy to see that G is actually equal to As (the alternating group of degree
5) and it satisfies the above conditions (i) and (ii). In fact (i) is clear and the
inner automorphism of S; defined by (4253) restricts to the required automorphism
of G=A;. Let T, be the corresponding 60-fold covering space of T,. Since
[¢, b]=(153) has order 3, the genus of 7T\ is equal to 21, the boundary 7, has
20 connected components and b, of T is equal to 61 (cf. Lemma 2.1). Now let
x; (resp. (@, j=1,..., 20) be the connected components of the inverse images
of = (resp. y) in 7. Each projection y; —> y is a 3~fold covering space. Hence
the homeomorphism D;* of T, lifts to a homeomorphism Dj' of T, which is the
simultaneous right handed Dehn twists about the closed curves y; (j=1,..., 20).
By the condition (ii) R lifts to a homeomorphism £ on T, which is an isometry
of order 4 on Int 7. Moreover R sends the closed curve z; (resp. v;) to some
vy (resp. —x;) Now put

§7=ﬁ01~?;7‘.

Clearly § is a lift of g. Hence §* is a lift of ¢*. Since Dj' is the identity on
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3Ty and R has order 4, §* is the identity on #T,. For any homology class
ue H,(Ty), we have
(Dy")w(26)=u+linear combination of [y,]'s
where [y;,)e H\(To) is the homology class of y;. On the other hand we have
Ru(lei)=[vs]
Ru(ly)=~[=s].
Hence we conclude
g4(u)—u=Ilinear combination of [x;] and [y;Ts.

1t follows that the rank of gi—Jd: H.(To)— H (T') cannot exceed 40. Hence
k=rank Ker(gi—1Id) is not less than 21. Therefore &, of Ejip, 2) is not less
than 2 by Lemma 2.3. Now Eydy, 4) is a 60-fold covering space of Egu(3p, 1),
which in turn is a 4~fold covering space of £,(3pu—41, 42) by Lemma 4.4. In
view of Lemma 4.3, we can conclude that Ej(p, 1) is a 240-fold covering space
of M(44, 3p~2). This completes the proof.

5. Generalizations

In is clear that the arguments of the preceding two sections can be gener-
alized in various ways. In this section we present some of them.

Let G be a finite group generated by two elements ¢ and . Let n=order
of G, p=order of a, g=order of b and m=order of [@, ]. Consider the follow-
ing condition on (G, @, b):

" _ (B, n\_ 7
*) (G, @, Hy=n+2 (p%) 2 >0,

5.1. PROPOSITION. Swuppose that there is a finite group G satisfying the
condition (*). Then for any homeomorphism f of Ty which can be expressed as

F=DRoDjlo . . . oDlioDis
so that
g.c.dp:, ..., p0=0 (mod p)
g.c.d.(q,...,00)=0 (mod g),

ni(Ef(p, ) is virtually vepresentable to Z if p=0 (mod m).

Proof. Let z: To— T, be the n-fold covering space of T, defined by the
surjective homomorphism
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o: m(To)y— G
. 7
where o(w)=a and p(B)=0. By Lemma 2.1, the genus of Ty is %&»(n—;ﬁ«)—l—l,

the number of connected components of #7% is;% and b, of T, is n-+1. By the

assumption, the homeomorphisms D? and D§ lift to homeomorphisms D, and D,
of T which are simultaneous left handed Dehn twists about each connected
components of z~'(z) and =~'(y), respectively. Let f be the corresponding lift
of f. Then as in the proof of Theorem 4.1, we have

h=rank Ker (Fu—Id): Hi(To)— HT)>n+1— (% —:-2)

Therefore if (¥) is satisfied, then = (E(x, 1)) is virtually representable to Z if
#=0 (mod m) by Lemma 2.3.

There are many finite groups G with two generators «, b satisfying the
condition (*). Here are several examples.

5.2. ExamprLes. (I) The dihedral group Dp=<a, b; a®=0*=1, bab~'=q").
_[p—2 (p=1 (mod 2)) . o
e(Dy, a, b)= p—4 (=0 (mod 2) so that (D, @, b) satisfies (*) if p=£2, 4.
(II) G=the subgroup of S,., generated by e=(12...p) and b=(23...p+1).
[e, b] has order 2 so that e(G, q, ()):n(l——%-%~)+2>0 if p>38.
(IIT) G is the subgroup of S, generated by a=(12... p) and b=(12... q) (g<p).

[e, b] has order 3 so that (G, a, 1))=%<1——%—»§~~—%«) +2>0 if g>2.
(IV) G=A; generated by a=(128) and b=(145). In this case p=g=m=3 s0
that ¢(G, a, b)=2 (cf. Proof of Theorem 4.1).

Combining Proposition 5.1 and Examples 5.2, we can deduce

5.8, TuroreM. Let AeSL.Z be expressed as

1 —1)”1 1 0\% 1 -1>1’d 1 0\%
A= -
Y G Y N
and let p=g.c.d.(p1, ..., pa) ¢g=g.c.d.(q, . ..qd). Assume that p>1, ¢g>1 and
b or g>2. Then among those 3-manifolds which ave obtained by performing
Dehn surgeries on Mai=mapping torus of A along the zero-section, there are

infinitely many such manifolds whose fundamental groups are virtually represeni-
able to Z.

Finally we generalize Theorem 4.1,
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5.4. TuEOREM. Let AeSL.Z be expressed as
0 —1\"y/1 —1\A/1 0\%
A= ) > ( ) o
1 0/ \0 1/ \1 1
0 —1\"¢/1 -1 pd(l 0\%
1 0/ \o 1/ \1 1
and let p=g.c.d.(Di, - .., Pa),g=g.c.d.(q1, - . -, qa). Assume that g.c.d.(p, @) >2.
Then among those 3-manifolds which are obtained by performing Dehn surgeries

on My along the zero-section, there ave infimitely many such manifolds whose
Sundamental groups are virtually representable to Z.

Proof can be given almost parallel to that of Theorem 4.1. It is only
necessary to replace the alternating group As by the following finite group.
Consider a regular polygon X with 2 (=g.c.d.(p, @) vertices which is placed
on the zz-plane so that at least one vertex is on the z-axis and it is symmetric
with respect to the z-axis. Let K’ be the image of K under the rotation around
the z-axis by 90°. Let V be the set of vertices of K and K’. Now define G
to be the subgroup of the group of perutations of V generated by the following
two elements ¢ and 4. ¢ permutes the vertices of K cyclically and it fixes the
vertices outside K. & is defined to be the element which is conjugate to a by
the rotation around the z-axis by 90°. Then it is easy to check that both of «

2 1

and b have order 4%, [a, b] has order 3 so that ¢(G, «a, b)=n<1———]2~~——:—3~> +2>0.

Moreover the correspondences ‘@ —> b and b —— ¢ define an automorphism of
G.
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