Mathematics

Infinite Dimensional Stein Manifolds

By Yoshihisa FujimoTro

Faculty of Engineering, Tovo University, Kawagoe-shi, Saitama, 850,
(Introduced by A. Kaneko)

(Received Sptember 24, 1985)

Introduction

This paper aims at studying infinite dimensional Stein manifolds and at
deriving an infinite dimensional version of Oka-Cartan’s theorem B.

Various investigations have been made in complex analysis in finite dimen-
sions and many kinds of deep and beautiful results were obtained. In this area,
Stein manifolds have been playing an important role. The infinite dimensional
theory, however, has not yet been fully developed. We shall focus on the case
of Y€, which is a countably infinite dimensional space defined as the inductive
limit of the finite dimensional spaces C* In this connection, Dineen showed in
[1] that H'(U, @e)=0 holds for any pseudo-convex open set U in a topological
vector space with the finite open topology, where (¢ denotes the sheaf of germs
of Gateaux holomorphic functions. It was pointed out by Kajiwara [9] that
U, Og)=0 is valid for every kz1l. We proved in [3] that for every k=1,
HYU, 0)=0 holds for any pseudo-convex open set U in 5 C by using a soft
resolution of the sheaf ¢. Furthermore, in (4], the notion of analytic subvarieties
was introduced and it was shown that for every kz1, H%(V, v)=0 is valid for
an analytic subvariety 1 of a pseudo-convex open set in J,C.

Following these results, in this article we shall introduce the notion of
Stein manifolds in the case of Y€ in the manner quite analogous to that of
finite dimensions, assuming only the following three axioms: Separation axiom,
Local coordinates axiom and Holomorphic convexity axiom. Together with the
above results, we shall obtain the following theorem.

THROREM. Let X be a 3,C-Stein manifold. Then, we have
HYX, =0
for every k=1,

This corresponds to a J;C-version of Oka-Cartan’s Theorem B.
In §1, the notion of Y C-complex manifolds is defined and its properties are
investigated. In §2, introducing the notion of 3 C-Stein manifolds, we shall
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prove the above mentioned theorem by constructing a sequence of X C-Oka-
Weil domains. We refer to [6, 7, 8] for the theory of analytic functions of
several variables, to [2, 10] for the general theory of holomorphic functions on
infinite dimensional topological vector spaces and to [5] for the sheaf theory.

The author wishes to express his hearty gratitude to Professor A. Kaneko
for his valuable advice and continuous discussion. He also wishes to express
his gratitude to Professor H. Komatsu for his precious advice, which encouraged
him and motivated the investigation of this paper.

§1. 3 C-complex manifold

A Hausdorff topological space X is called a Y, R™-manifold if every point in
X has a neighborhood which is homeomorphic to an open set in 7, R™, where
m is a positive integer.

DeriniTION 1.1. A 3 R®*manifold X is called a JC-complex manifold if an
open covering U={U;} of X is given, each element of which is provided with
a homeomorphism ¢. of U, onto an open set {/, in Y€ such that
(1) For any U., U.ell, the mapping

g/)‘,ogﬁ:l : ¢);<an U,cr)_* ¢,{"(U;n Ux)

between open sets in ;€ is biholomorphic.

(i) If ¢ is a homeomorphism of an open set U in X onto an open set in J,C
and the mapping

deog™' s HUNU)— ¢ (UNUT)
is biholomorphic for every U.ell, then U belongs to W.
A triple (U,,¢.,00,) is called a chart on X.

The set @(X) of all holomorphic functions on X, which is endowed with
the topology of uniform convergence on compact subsets of X, is a Fréchet
space.

Now we examine how the intersected two charts are patched together by
the transformation of local coordinates. Taking a countably infinite number of
functions {¢;} on X C, we put ¢=(¢i,¢:, ...). Then the values of the mapping
¢ do not generally helong to Y C. In fact, let (2;) be a system of coordinates

in 2;C and put wizkzi}lzk‘ The mapping ¢ defined by ¢(zi,2:, . ..)=@w;,we, .. .)

is not a mapping of JC into };€. Hence the condition that the values of a
mapping ¢ belong to 3 C gives restrictions to the functions ¢;. Further, if we
assume that ¢ is holomorphic, then we have

ProrositioN 1.1, Let U and V be open sets in Y,C. Suppose that the
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mapping ¢ U—V is holomorphic. Let n be a positive integer such that
UNC*+&. Then for each comnected component E of UNCY, there exists a
positive integer m Such that

HE)YCVNC™,

[Proof] We represent ¢(x)=(¢n(x), ¢elz),...) in the coordinates. Let K
be a compact set in E such that K+@. Here K denotes the interior of K in
the topology of C”. Since ¢(K) is compact, there exists a positive integer m
such that ¢(K)c VN C™. Namely, ¢,(2)=0 holds on K for any j>m. Owing
to the principle of analytic continuation, we have ¢;=0 on £ for any j>m.
Consequently, {EYcVnC™ [Q.ED.]

Applying Proposition 1.1 to the case of 3 C-complex manifolds, we have
the folloing

ProrosITION 1.2. Let X be a 3, C-complex manifold and let (U, ¢=(2;),
) and (Us, ¢o=(wy), {7.) be charts on X. Suppose that U\ Ur+@. Let n be
a positive integer such that ¢(U NUINC*#=@. Then for each connected com-
ponent E of ¢(U,NUINC", theve exists a positive integer m such that

z;=0 on ¢;Y(E)

Jor any j>m.

§2. Y C-Stein manifold
First, we shall introduce the notion of Y C-Stien manifolds.

DeriNtTION 2.1. A g-compact ¥ C-complex manifold X is called a 3 C-Stein
manifold if it satisfies the following conditions:
(i) X is holomorphically convex, that is, for every compact subset K of X,
its holomorphically convex hull

K={zeX; lf(z)l;%sk}plfl for every fe®(X))
is a compact subset of X.
(ii) If 2z, and 2, are different points in X, then there exists fe®(X) such that
SF(z)# f(z0).

(iii) For every zeX there exists a local coordinate system ¢p=(¢hy, ¢n,...) at z
such that ¢re®(X) for every £>0.

Now, we shall state a main result.
TuroreM 2.1. Let X be a Y. C-Stein manifold. Then, we have

HHX, ©)=0
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for every k=1,

For the proof, it is sufficient to consider the case where X is connected.
Next, we define the notion of };C-Oka-Weil domains.

DeriNiTiON 2.2, Let X be a X C-Stein manifold. An open set Win X is
called a F,C-Oka-Weil domain if the following two conditions are satisfied :
(i) There exists an open neighborhood Z of W for which there exists a se-
quence {Z;} of finite dimensional relatively compact analytic subsets of Z such
that Z=\UZ; and that they satisfy the properties:
(1) WP=WnZ is a relatively compact open set in the topology of Z;.
(2) Z; is an analytic subvariety of Z;, ..
(ii) There exists a holomorphic mapping ¥ defined on X with values in Y€
such that #|w is a biholomorphic mapping of W onto an analytic subvariety
of 4)={(z)eC; |z <7}, where r=(r;) and 0<r;=c0,

Together with the result already obtained, we have the following

ProrosiTION 2.2. Let X be a 3,C-Stein manifold and let W be a Y,C-Oka-
Weil domain in X. Then we have

HHYW, ©)=0
Sor every kz=1.

[Proof] Since ¥': W-—V is a biholomorphic mapping, we have the iso-
morphism ~

HYW, )= H"V, vO)

for every £=0. On account of Theorem 2.11 in {4], H*(V, v)=0 holds for
every k=1, Thus, it follows that (W, @)=0 is valid for every k=1. [Q.E.D.]

Here, we claim that a X C-Stein manifold is described as a union of 3C-
Oka-Weil domains. This will play an essential role in the proof of Theorem
2.1.

ProrosiTiON 2.3, Let X be a YC-Stein manifold. Suppose that X is con-
nected. Then, there exists an exhausting sequence {Wa} of 3 C-Oka-Weil domains
such that WaC Wa.

[Proof] Let {K;} be an incxeabing sequence of connected holomorphically

convex compact sets in X such that U Ki=X.

We prepare the terminology. A connected open set W in X is called, by
definition, a finitely relatively compact convex (f.r.c.c. for short) open set if there
exists an open set W'D such that W' is included in some chart (U, ¢, )
and ¢(W’) is convex, and if ¢(W)NC™ is a relatively compact open set in IF n C*
for every #>0 (The condition that ¢(W’) is convex will he used only to guar-
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antee that the intersections of ¢(W”) with finite dimensional spaces are connected).
Then, we claim the first assertion.

AsserTiON 1. Every Ky has an open neighborhood X which satisfies the

following conditions :

(1) XicXiw.

(2) Every X has « covering By consisting of finitely many fr.c.c. open sets;
(UD, g =(p®)), U®), a=1, ..., si such that B.CBy.,.

(3) There exist a finite number of functions hPe®(X), i=1, ..., by such that
for any distinct points x,,%, n X, we can find a function f among {A®,
1=isby; o8y, lsasse, 1=} satisfying f(x)# f(@e).

[Proof of AsserTioON 1] Since K is compact, K is covered by a finite
number of fr.c.c. open set (Ui¥, ¢i® =(h%), Ui®), a=1, ..., sg, such that every
U™ NK;, is connected, We put X=\Uj®. K,=K,xK; is a compact set in

2

X,=Xx X} in the Cartesian product topology and
Nio={(z, 9)eXi; 2, yeU® for some 1, 1=2=st)

is a neighborhood of the diagonal of K. TFor any (z, y)eNgo with x=y, there
exists an f.r.c.c. open set (U™, ¢i® =(p®), [71®) such that z, yeU}® and then,
there exists a local coordinate ¢,% such that ¢{®(z)#¢/% ). If (2, y)e K 1—Ny.o,
then there exists a function 2e@(X) such that 2(z)s/(y). Since /4 is continuous,
there exists a neighborhood Ni. . of (2, %) such that Z(a’)#A(y’) for all
(x', 4" eNk, cu,yy. Since K is compact, there exist finitely many such neigh-
borhoods Ni,i= Nk, .y, i=1, ..., by, which cover Ky—Ngo. Let 2% be the
above chosen function relative to each Ny.:. Now, we choose an open subset
Uy® of U™ for each 1 satisfying the conditions:

(1) U{RNKp=U®,

b
(i) Uy®x Ua®c\'IN,.; for any 4, & with 24,
im0

Putting X{/=\U!®, we define X}/'= ﬁ\ XY}, Taking the topology of 2 C into
kg

2
account, we can easily see that X7’ is open. Further, we choose an [.r.c.c. open
subset UY"® of Uy XY {for each 4 such that UYOnKy=U{%, We set
Uy, =Ui"® for each i=ik, where si=s/+s;+ ... -5 and $,=0, and put Xp=
U UP. Then the condition (1) is satisfied. To verifly the condition (2), it is

a=]
sufficient to consider the covering B,={U¥; 1=a=is,}. The way of choosing
{#¥; 1=i=b;} implies that the condition (3) is fulfilled. [Q.E.D.]

Now, we define » inductively with the help of By :

7720:0,

my=min {n>mp-; PN UR)CUPNC" for 1Easst, if kzl,
n

By using » we define
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d():O, .
de=min {n>de-r; p¥(z)=0 for all ze(pP)({T®NC™), every j>n and

every a and B, 1=a, g=s;}, if k=l.

ASSERTION 2. The integer dy is determined as a finite number.

[Proof of AssErTioN 2] Since U® is fr.c.c., ¢® is defined on U®P. Then
PL(K NT®) is compact. Thus there exists an integer ¢ such that ¢%(K; N UP)
cUPNCY. Hence, my is determined as a finite number. If UPNUP =@, then
pTPNTP)NC™ is compact. Thus ¢Fo(g@) Y p(TPNTP)NC™) is also
compact and it is therefore contained in U®NC" for some #. On the other
hand, since there exists a convex open set J 20 ®, I N C™: is connected. Hence,
owing to the principle of analytic continuation, ¢&;=0 on (4§ -({F nC™:) for
i>n. If UPNUP=@, then there exists a chain of fr.c.c. open sets; U,=U.,,
Uay -« » Ua,=Us such that U, NU,,,,#@ for i=0,N1, ..., i—1. Therefore by
repeating the above argument, ¢%,=0 on (¢@)-(U¥ NC™) for any j>n' and
for some #/, This implies that dj is determined as a finite number. [Q.E.D.]

Then, we define
Yi=The connected component containing Kj; of
{zeXy; ¢P(z)=0 for every j>di and 1=a=si}.
Hereafter, it is always assumed to take an appropriate connected component of
the set on the right hand side in such definitions as the above without mention-
ing explicitly.
The definition of Y implies the following

ASSERTION 3. The sequence {Yy} is an incveasing sequence of finite demen-
sional analytic subsets of X such that X=\JYx.

We construct a sequence of Y,C-Oka-Weil domains using {¥}. Let an
integer ¢, be fixed. First, we can find finitely many holomorphic functions f{¥,
i=1,..., &, on X for which

WO={zeY,; |f9x)|<1 for 1=i=t}

is a relatively compact open set in Y such that K, c W{®. Choosing K,, such
that W cK,,, then, we find finitely many holomorphic functions f%, i=1,...,
t; on X for which

WP={zeY,,; |fPx)|< for 1=i=ss}

is a relatively compact open set in Y., such that K,cW®. By repeating this
procedure, we have {W{}. Hereafter, the sequences {Ky}, {Xyx} and {¥i} will
newly denote the sequences {K.}, {X,} and {Y}, respectively. Now, we choose



Infinite Dimensional Stein Manifolds 129

an open neighborhood W% of W in Y,NX, such that WPc W, Namely,
there exists a positive number &% ; such that
WooawenX,o
WP={zeYs; | fP(x) <1 for 1=i=t; |pP(w)| <o, for
di<jZd, and 1=Za=s,}.
Similarly, in Yy, we can find a pair of positive numbers 6%, ; <0, ; such that
W(g) - W(g) n X2 o)
VP={zeYs; |fP(x)| <] for 1=isty; 6@ (x)| <, ; for
B<jEdy and 1=a=s)DWPNX, D
W®={xeYs; | fP(x)| <1 for 1=i=t; |p&(a)| <P, ; for di<jz=de and
1=ass; |p@(@)| <o, ; for do<jEdy and 1=a=ss).
By repeating this procedure, in Y,, we can find a sequence of positive numbers
PP < .. <N,y such that putting
WEp={zeYn; O (@) <1 for 1Sistii; [T ()| <OF5E™ for
Arn-trm<JEdn-pimir, 1=2a=Sp-pm and 0=m=k—1},

we have
WP WINXKn DWELDODWENXy oD WE,D ... DWW PN X, D WeD,
Then, we define W,=lim W%,

Jemroo

The construction shows that we get W,c X, and
Wi cW,cW,cW,c....
It is easy to see that W, is open.

AsserTiON 4. W, is a 3C-Oka-Weil domain.
[Proof of AsserTiON 4] Taking W,.. as Z and putting Zi=W,..: N Y.,

we can easily see that W,NZ,=W% holds and that the condition (i) of the
Definition 2.2 is satisfied. Now, we define a mapping ¥ as follows:

V=D sz, » FPhssat, » @D igessy 15i5d,

(n+1) n-+4) .
(‘/)n.j )l;:«:;s,,“. dptlaiatdy, 19 v e :((/’«,j )mman,”, [V IRES EF F 1 SN )

This implies that ¥ is a holomorphic mapping of X into };C." We can assume
that |¢#,|<1 on W, for every j>di., and k>n. We put

MS,’,‘}::%W [l (0< M= 00),
M‘f"’=§;lp |45 0< M‘/‘)Q%OO)-
n
Replacing W, by WP, we define M®» and M similarly. Since W§ is a

relatively compact set in X, M®® and MP*® are determined as finite numbers
for every k, « and j. We set
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7’(”)2((M§‘m)15jsbn ’ (lj)léjsbm (A[Zl})léaﬁsn 2 1ETSdy 1; 1, 1: s )

7'(72, k)z((ﬁ4§n'k))15jsbn,(lj)lsj;ét,L,(Afc(x’,xjk))lsassn + 1E78d),
(1i.j)15iss”,l_1+;..-rs,Hk ' dn—i-lgjgdn_i_k>'

where 1; and 1, ; denote the number one.

Now, we show that ¥ maps W, onto an analytic subvariety V, of a poly-
disc d(¥(n)) in X C. First, we show that ¥|y, ,, maps Wi biholomorphically
onto a closed subvariety V@ =¥y (W) of the polydisc J(»(n, k)) in the finite
dimensional subspace of ;C. We can easily see that ¥y, is a one-one proper
holomorphic mapping. Taking account that #ly . is defined by using the local
coordinates at every point in W, we can conclude that ¥ly,,, maps WP bi-

holomorphically onto V. Here we need the following result to complete the
proof.

AssErTION 5. Let wy and vy be the injections of W into W, and of VP
into Vi, respectively. Then we have

Ow,=lim 00w ,
—
P

v,O0=im vis,a O,
(—-——k 4

where Oy and L4 O denole the sheaves of germs of holomorphic functions on
n n
W and VP, respectively.

[Proof of AsserTioN 5] The former follows from Proposition 2.2 in [3] and

latter from Proposition 2.10 in [4]. [Q.E.D.]
Assertion 5, in view of the definition of analytic subvarieties in terms of
> C, implies that ¥': W, —V, is biholomorphic. [QED.]
The sequence {W,} of X C-Oka-Weil domains is the required one, which
finishes the proof of Proposition 2.3. [QE.D.]

Remark. For our case, it is sufficient to treat a connected J;C-Stein mani-
fold X. However, Proposition 2.3 holds without the assumption that X is con-
nected.

Now, in order to prove an approximation theorem, the following lemma is
needed.

LeMMA 2.4 [10]. Let dn)={x)e2C; |x;|<rs} (0<r;=cc). Then, the set of
all polynomials is dense in O(d(7)).
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Then, we can show the following proposition.

ProposiTION 2.5. Let X be a 31C-Stein manifold and let W be a §,C-Oka-
Weil domain in X. Then, every holomorphic function defined on W is approxi-
mated by holomorphic functions defined on X wuniformly on each compact subset
of W.

[Proof] The mapping ¥ maps W onto V biholommorphically. Let 4 be the
sheaf of ideals of V. Since V is an analytic subvariety of 4(r), by virtue of
Theorem 2.7 in [4], H'(d(r), 9)=0 holds. Hence, by Lemma 2.4, we obtain
this result. [QE.D.]

Under the above consideration, we prove Theorem 2.1.

[Proof of THEOrREM 2.1.]7 We shall show this theorem by using the cover-
ing cohomology. Let M be a covering of X. In view of Theorem 3.6 in [3],
we can assume that 9t is a Leray covering. Let {I¥,} be an increasing sequence
of YC-Oka-Weil domains which exhaust X according to Proposition 2.3. We
may assume that for any UeM the set {j; UN\Wy.— W)@} consists of at
most two elements. Let a be an arbitrary k-th cocycle with respect to the
covering .. Since H¥W,,©)=0 holds by Proposition 2.2, there exists a
(k—1)-th cochain B, with respect to M|y, such that §f.=alw,. Thus, d(B.—
Bniilw,)=0. Hence, Bu—pPuiilw, is a (k—1)th cocycle. The case of k=2 is
proved in the same way as in the case of finite dimensions. We shall consider
the case of k=1. Since Bu—pfasilw, €/ (Wa,©), owing to Proposition 2.5 there
exists gn€/'(X, @) such that

“ﬁn“"ﬁn-u"“ﬂn”rﬁrig e

where ||fllw=sup |f(z)|. Putting fu=pu+g:+ ... +ona, we get
”Bn—511.-!41!1%}:’{1'71}';25’52”'7‘.

On account of completeness of O(Wa-1), fn— B converges to a function /z,e O Wy-1)
as k tends to infinity. Since fn—/ltn=fusi—FAni1 00 Waoy, putting f=pn—5a on
Wa-1, we have df=a. [QE.D.)
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