Mathematics

A Remark on the Stability Condition for the
Raviart-Thomas Mixed Finite Elements

By Fumio KIKUCHI

Department of Mathematics, College of Arts and Sciences,
University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received November 19, 1985)

1. Introduction

Raviart and Thomas [10] presented a family of mixed finite element models
for the Dirichlet problem of the Poisson equation

div (grad 2)=¢ in 2, 1=0 on 92, (1)

where £ is a bounded polygonal domain in R* with boundary a2, i is an un-
known function defined over £ (=closure of ), and ¢ is a given function defined
in 2. They first decomposed the differential equation in (1) as

u—grad 1=0, divu=yq, (2)

and then introduced a weak form to this system of equations. It is to be noted
that they used a Hilbert space other than Sobolev spaces in the weak formula-
tion as will be shown later. As usual, we must construct suitable finite-
dimensional subspaces of this Hilbert space to solve the present problem by the
finite element method, and we can find examples of such subspaces in [10].
The arising finite element models are of mixed type, since the weak formulation
may be related to a saddle-point type variational principle, see Brezzi [4), Their
idea has drawn much attention in various fields such as plasticity, fluid mechan-
ics, and electromagnetism [1], although it is seldom used to solve the original
problem (1). However, a non-conforming model equivalent to the simplest mixed
model is now known, see Arnold-Brezzi [2] and Marini [9).

In establishing the validity of mixed finite element models, it is essential
to check the stability condition of Babuska-Brezzi [3,4]. Raviart and Thomas
[10] showed this in a fairly complicated fashion. Later, Fortin [6] simplified the
proof by using a special operator, but, unfortunately, his original idea is valid
only when £ is a comvex bounded polygonal domain.

In this note, we will generalize the idea of Fortin to the case where 2 is
a general bounded polygonal domain. To this end, we will use another domain
£y such that Qc,. Then using the operator introduced by Fortin, we can
show the stability condition for the Raviart-Thomas finite elements. Such an



152 Fumio Kikucur

idea has been used in some other problems in numerical analysis of the finite
element method: see e. g. Kikuchi [8] and Suzuki [11].

2. Preliminaries

Let @ be a bounded domain in R? and let L.(@), HYQ), HYL2) and HQ)
be the usual real Sobolev spaces related to 2. For convenience, the inner pro-
duct of L.(2) and {L,(2)}* are both denoted by (,-). Similarly, the norm of
Lo(2) and {L())* are both denoted by {|-|]. Moreover, the norm of {HYQ)}* is
designated by |}-]l;. If it is necessary to specify the domain in the notations
of inner products or norms, we will use notations such as (-,)g, |||l 2nd {|*|)1, o
We also define a Hilbert space of real vector functions by

H(div, Dy={ve{L(2)}?*; divveLy(2)} (3)
equipped with the norm
2]z, ={ll0]1* +{{div o||*}2 . (4)

Clearly, this is not a usual Sobolev space. The independent variable for func-
tions defined in 2 is denoted by z={x1, z.}.

A weak formulation appropriate for (2) is: given g¢el.(Q), find {u,41}e
H(div, 2) X Ls(2) such that

(2, v)+(2, div o)=0, (div u, ) =(g, 1) (5)

for all {v, pje H(div, 2) X L:(2). This is a mixed formulation since two types of
unknown functions » and 2 appear, and may be related to a saddle-point type
varjational principle unlike the original problem (1): see Raviart-Thomas [10].

Hereafter, we assume that @ is a bounded polvgoral domain in R:. To
solve (6) by the finite element method, we first consider a regular family of
triangulations {IT™},c, of 2, where the index set 4 is a hounded subset of 10, cof
which has zero as an accumulation point. In the finite element method, % is
the maximum side length of all triangles in each triangulation 7%, and the
terminology “regular” roughly means that the triangles in 7% are not too flat
when #~—0. For precise meaning of “regular”, see for example Ciarlet [5].

The next step is to construct a suitable finite-dimensional subspace of
H(div, @)% Ly(@2) over each 7™ Raviart and Thomas introduced a variety of
such finite element spaces in [10]. A typical (and the simplest) example is
given by the following VX W, for each kel

(i) Each vs,eV) is a linear polynomial vector function of the form {a,+ a1,
as-+ax2s} in each triangle Te€T* where a1, a» and a, are coefficients, and
the normal component of #; is continuous across the interelement bound-
aries. Note that the coefficient of =, in the first component is common
to that of z, in the second component.
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(it ) Each peW, is a constant function in each TeT™ (and not necessarily
continuous in £). In other words, s is a step function in 2.

It is fairly easy to see that the present V.x W, is actually a finite-dimensional
subspace of H(div, @)X L.(2). Raviart and Thomas proposed a variety of tri-
angular finite elements as well as some quadrilateral ones. The results in this
note will be proved for the afore-mentioned finite element model, but are actu-
ally valid for any other models that Raviart and Thomas presented.

Now the finite element analog of (5) for each Ae.d is: given gelL,y(?), find
{ZéiL, /YIL}G an X Wh such that

(Mn, vh) -+ (/2&, div Uh) =0 B (le Uy, /fh) :((/y /lh‘) ( 6 )

for all {vn, g€ VaX Wy, In numerical analysis of this type of mixed finite
element methods, it is essential to establish the following Babuska-Brezzi stability
condition [3,4]:

sup (div vu, p)N0all g, Z Ellpall Vime W, (7)
W EF A (0]

where % is a positive constant independent of Ze.l. Raviart and Thomas showed
the above condition for the afore-mentioned family of finite element spaces in a
fairly complicated fashion. Later, Fortin [6] considerably simplified the proof
when £ has a sufficiently smooth boundary. Unfortunately, polygonal domains
do not have sufficiently smooth boundaries. Nevertheless, his method remains
valid if @ is convex, as we will see later. His proof is based on the following
lemma, which holds even when £ is not convex.

Lemma 1 (Fortin [6]) Let {ViX Wilses be the Raviari-Thomas family of finite
element spaces over « vegular family of triangulations {T"),e; of @ bounded po-
lygonal domain £ in R:. Then, there exists a family of mappings {1} e, Such
that Il for each hed is a mapping from {H*{D}): into Vi and saiisfies that

(div 11y, /llxv):: (div v, /ln) ’ V{Z}, llh}e{[[j (Q)}ﬂ X W, (8)
Tl e = Culloll 5 VoelH@)F, (9)

where C, is a positive constant independent of hed.

3. Main Results

We will show in this section that the family of finite element spaces
{ViX Wale: explained in the preceding section satisfies the Babuska-Brezzi
stability condition when £ is a general bounded polygonal domain. To this end,
we consider a bounded domain £, in R*® such that 2cQ,.

First, let us recall the following wellknown results given for example in
Grisvard [7].
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LemmMa 2 Let Oy be o bounded domain in R* which is convex or has a suffi-
ciently smooth boundary. Then, for each p*eLq(2,), therve exists a unique function
g*e Hi(L0) N H Qo) such that

div (grad ¢*)=4%,  [|grad ¢*[l,.0, = Coll*/la, » (10)

where Cy IS a positive constant dependent only on £,.

By using the lemma above and the operator /7, introduced in the preceding
section, we can show the following main results.

THEOREM Let {ViX Wilies be the Raviari-Thomas family of finite element spaces
over a regular family of triangulations {T"},e, of a bounded polygonal domain £
in R Then there exists a positive constant k (independent of hed) such that

Sup (dlv Uh,y .’“”b)/lLvh”H(div,ﬂ)ék”#h”.@ N V/.LILG VV?L . (11)

DR}

Proof Fix a bounded convex domain &, such that Qc, (actually, 2, need not
be convex if its boundary is smooth enough). For each sueW,CL:(2), let us
define its extension g to @, as follows:

()= (@) if weQ; @) =0 if 2eQ\Q.

Clearly, pf belongs to Lu(2s) with [|pflle,=llzlle. Then, by Lemma 2, there
exists a unique ¢*e HY(Qy) N H*(2y) such that

div (grad ¢*)=sf, llgrad ¢*(];,0,= Coll il log =Collpeallo «

Let us consider the restriction ¢ of ¢* to 2, and put v=grad ¢. Then ve{H ()}
c H(div, 2), and

divy=div (grad ¢)=ps, lolhe=llgrad ¢l e =Collzenllo -

We now consider If,ve V), for this », where 1T, is the operator given in Lemma
1. Then

(div ITho, pa)e=div v, pndo=|lpealll
l|HthH(dlv,méclnvnx.aéc102“/‘h”0 .

From these two relations, we have, if u,#0,
(div o, ﬂh)gluﬂhﬂnymw,a):>:(clcz)_1||!‘1L||:) .

The desired relation immediately follows from the above, and the proof is com-
plete.

Remark If Q itself is convex, we can take {2, as 2 in the present proof. This
is exactly what Fortin did in [6], and our proof is an extension of his proof.
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