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0. Introduction

Let G be a finite group and p be a prime number. Let {X,---,%} be the
set of all irreducible complex characters of G. For a subset / of the index set

{1,---,s}, we put {ts}={x;lj¢€J} and p;——-jEZJ 2 (1)%;.
In [3], K. Harada stated the following ;

ConNjecTURE A. If py(z)=0 for any p-singular element z of G, then {x,}
is a union of p-blocks of G.

He proved that if a Sylow p-subgroup of G is cyclic, then Conjecture A

holds. Also, in [5], we showed that if G is p-solvable, then Conjecture A holds.
In this note, we prove the following two results. :

TuporeMm 1. If a Sylow 2-subgroup of G is dihedral, semidihedral or qua-
ternion, then Conjecture A holds for p=2.

Tueorem 2. If a Sylow 3-subgroup of G is elementary abelian of order 9,
then Conjecture A hold for p=3.

As noted in [3], the proof of Conjecture A is reduced to that of the fol-
lowing ;

ConNjecTURE A’. If p,(z)=0 for any p-singular element z of G and {{;}EB
for a p-block B of G, then {¥;}=¢ or B.

We actually prove the following “block-version” of Theorem 1 and 2.

TuroreM 1/, If a defect group of B is dihedral, semidihedral or quater-
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nion, then Conjecture A’ holds for p=2.

THEOREM 2/. If a defect group of B is elementary abelian of order 9, then
Conjecture A’ holds for p=3.

It is immediate that Theorem 1’ or 2’ together with Theorem A’ in [3]
(cyclic defect case) implies Theorem 1 or 2, respectively.

1. Preliminary lemmas

Let B be a p-block of a finite group G. Suppose that B consists of &(B)
irreducible complex characters X, - --, Zxs, and that /(B) characters ¢,, -+, @ua
are all irreducible Brauer characters associated with B. For zeG, we define
x5(x) to be the column vector of size k(B) whose i-th component is Xu(x). For
1=m=I(B), let d, be the column of size 4(B) whose i-th component din is the
decomposition number of %; with respect to ¢n. Then we have

B
Xa(w):":Z_:jdmgpm(x) for any p-regular element x of G.
In particular,
(B
XB(I)“—'- 7,§1dnasﬁm(1) .

For J&€{1, .-+, k(B)}, let x, be the column of size k(B) whose i-th component c¢:
is defined as follows: if i€/, then ¢;=%(1) and ¢;=0 otherwise.

LeMmma 1. The following are equivalent,

(1) p z)=0 for any p-singular element z of G.
(2) g, is an integral linear combination of dw, m=1, - -+, [(B).

Proof. (1)=(2). Let @, be the principal indecomposable character of G
which corresponds to on. Since p, vanishes on all p-singular elements of G, o,

is an integral linear combination of @m, m=1,---,UB);
(1.1 pr= z} CmPm= %: Qm ; dim¥i=2, (gj amdim)i -

By the linear independence of {¥;}, we obtain
(1.2) x,l-'—— %} a’mdm N

as desired.
(2)=>(1). Suppose that (1.2) holds, then by using equation (1.1) again we
have p;=2 au®n. So (1) holds. This completes the proof.
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In the following three lemmas we will give some conditions on blocks un-
der which Conjecture A’ holds.

LemMa 2. If I(B)=1, then Conjecture A’ holds.

Proof. Suppose that p; satisfies the condition of Conjecture A’. Then by
Lemma 1 we have y,=a,d, for some integer «,. Comparing the components,
we get a;=0 or ¢,(1). So x,=0 or x(1), as desired.

Lemma 3. If &(B)—I{(B)=1, then Conjecture A’ holds.

Proof. For simplicity, we set k=k(B) and [=[B). Since k—I[=1, every
non-identity element in a defect group of B is conjugate to fixed one, say =,
and Cg(x) has the unique block b, with b§=B5. Furthermore, /(b:)=1 and so0
B has the unique column d®=4d7,---,d%) of higher decomposition numbers.
Note that every 47 is an integer.

We may assume that %, is of height 0. For 1=i=/, we put vy=dili—diLs.
Because r; vanishes on all p-singular elements of G, z; is an integral linear
combination of principal indecomposable characters of G in B. Then we have

(1.3) Bxi—d¥xr=0 (mod p*) (=1,---,1),
where z;=%(1) and p*=|G|,.
Now suppose that o, satisfies the condition of Conjecture A’. By Lemma

1, x, is orthogonal to d*;
From (1.3), we have

2 (dree=0 (mod p%).

JE&J
As % is of height 0, we get

2 (@H*=0 (mod p%),
JeJ .

where d is the defect of 5. %} (df)=p¢ and df+0 for all i, we have J=¢ or
i1
{1, -+-, B}, Hence Conjecture A’ holds.

LeMMA 4. Suppose that /(B)=2 and that B has a basic set consisting of
two irreducible complex characters of height 0, Then Conjecture A’ holds for B.

Proof. We may assume that %, and %, have height 0 and {¥, %} forms a
basic set for B. Let D be the decomposition matrix for B with respect to this
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basic set. Suppose that D is decomposable, i.e. by suitable rearranging the
rows, D has the form

X Xa
x.—.gl) a,
: 10
Lacty a
ngmx) le
: 0.
Z::(k) bk
where 7 is a permutation on {1, ---,%}. Then the Cartan matrix C for B has

the form C=(CO‘ 22) where ¢,=3 &, c;=3, b3 Since det C is a power of p, o,

and ¢, are also powers of p. And so {c,c:} are the elementary divisors of C.
By [2] pl57 Theorem 4.16, we may assume that ¢, <p?% and ¢;=p? where d is

the defect of B. As @:,)L"_, @ity 18 an integral linear combination of principal
=1

indecomposable characters of G in B, we have @#(1)=0 (mod |G|;). On the other
hand,

0()= 5, aituo(D=2 e =c (D).

Since %, is of height 0, we get ¢,=0 (mod p%) but this is a contradiction.
Hence D is indecomposable, and so we may assume that D has the form

Ly Xg
%L 410
%L{0 1
Llu v ’

where #=0 and v+£0. As before we set z;=%(1). Then we have
1.4 Ty=UL, +02s .

Let d, and d; be the first and second column vectors of D.
Now suppose that p, satisfies the condition of Conjecture A’. By Lemma 1,

(1.5) xs=d:a+d:f for some integer a, B.

Comparing the first and second components of (1.5), we have a=0 or =z, B=0
or z,. Interchanging x, and ys(1)—y, if necessary, we may assume that a=0.
If B=uz, holds, then we get z;=wvx, by comparing the third component of (1.5).
Since =0, this contradicts (1.4). Therefore =0 and so x,=0 as desired.
This completes the proof.
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2. Proof of Theorem 1’

At first suppose that B is a 2-block of G with dihedral defect group of
order 2". The structure of such a block has been determined in Brauer [1].
By [1] Theorem 1 and 5, we have the following.

B consists of 27-*+3 irreducible complex characters; X, X Zs %, 29 (j=
1,---,2%2=1). All x» have the same degree z*. And if we put z;=%(1),
then we have

(2~1) 51.1,',-{—(‘}2172:—53:L"3~54.1:4=m*,

where §;==+1.

Now suppose that B and p, satisfy the condition of Conjecture A’ for p=2.
We need to show that {X;}=¢ or B.

By Lemma 1, we see that y,=%c, ¢s, s €4, €5, + ., ¢V T=1) is orthogonal to
all columns of higher decomposition numbers for B. So we can apply Proposi-
tion (6G) in [1] for x, to get

(2.2) 8101 F+BaCo= —Gy0y —Bsca=C D=+ o =T
Interchanging g, and ys(1)—g, if necessary, we may assume that cWP=-. =
e =00, If ¢,=x, holds, then c.=a» by (2.2). But this contradicts (2.1).
Thus ¢,=c.=0, and similarly c;=c¢,=0. Therefore y,=0, and so Conjecture A’
holds for B.

When B has a quaternion or semidihedral defect group, we can use the re-
sults of Olsson [6]. We omit the proof since it is similar to that of the dihedral
case.

3. Proof of Theorem 2’

Suppose that B is a 3-block of G with an elementary abelien defect group
of order 9. The author studied the structure of such a block in [4]. The proof
in this section depends heavily on the results in [4], and therefore it is neces-
sary to expect the reader to have some familiarity with [4]. In particular we
use the notations and results in Section 2 of [4] freely.

Suppose that B and p, satisfy the condition of Conjecture A’ for p=3. We
want to show {{;}=¢ or B.

In [4], in order to determine k(B) and /(B) we divide into eleven cases: B
is of type 1, Z: (two cases), Zi, Eia), E«b), Zs Ds(a), Ds(b), Qs OF SDys (see
Table 1 in Section 0 of [4]).

If Bis of type 1 or Eu(b), then we have /(B)=1 and so the result follows
from Lemma 2.

If Bis of type Zs or Qs then we have k(B)—I(B)=1 by the same arguments
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as in the proof of (2H) in [4]. Thus, we get the result by using Lemma 3.

Therefore it remains seven cases, namely, type Z. (two cases), Zi LEu(a),
Dy(a), Ds(b) or SDy.. In this seven cases, we will determine the decomposition
matrix for B to get the result. Let B={X, -+, Zsun} and set zi=%(1), 3"=|Gla.
Note that every %; has height 0 by [2] pl58 Theorem 4.18.

1° Bis of type Z,.
We have A(B)=6, {(B)=4 in this case, B hastwo columns d”, d*¥ of higher
decomposition numbers which satisfy the conditions that

(dw, dr)z (d:n!l’ dzv): 9 , (d;c’ dn:ll)_____ 0 s
d® and d® are integral columns,

where (, ) denotes the usual Hermitian inner product (see the proof of (2D) in

(4.

Then we have the following two possibilities for d*, d**;

d* =4y, e, &3, &4, &5, —2;)

»
dmy=f<€ls &9, &3, &y, 2551 66)

[d7 ='(s1, €2, 25, 24, 23, —226)

ld”:"(sl, €2, &3, $4, — 223, &5)

(3.1) or {

where &= +1.

Assume that the latter case of (3.1) occurs. We will derive a contradiction
from this assumption. Let G, be the set of all 3-regular elements of G. For
se€G,, we get

(x5(s), d9)=(xs(s), &*)=0,

by the orthogonality relations. So we obtain that the following relations hold
on Go;

&y Xy eoks +eaka Feaka Hegls— 2e6ks =0,
617,1 +52%2 —'8323 '—ngd +255X5 +56X(;= 0 .

The decomposision matrix D and the Cartan matrix C for B with respect to
the hasic set {e%y, esks, 4%, so¥s} are as follows;

&y

—&y —3ex —3z: Day 2 3 3 -5
& 3 14 13 -21
D= ? ) C=
& 3 13 14 =21
Qe 285 —3z; —5 =21 =21 . 35

So the elementary divisors of C is {1,1, 9,9}, but this contradicts the well known
property of C ([2] pl57 Theorem 4.16).
Therefore the former case of (3.1) occurs. As (xz(1), d*—d*¥)=0, we have
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és=¢. By the orthogonality relations, we get that the following relations hold
on Gy;

&1k Feoko +egdg ks =25%s5 Lo=Xs.

The decomposition matrix for B with respect to the basic set {eZy, esds, esZs, &ala}
is as follows;

@
B

g &5 & &g

& & & &p.

Since @y=edi+eXs+esks (i=1,2,3,4) is an integral linear combination of princi-
pal indecomposable characters of G in B, we have su;+2s2:=0 (mod 3%). So,

(3'2) SIL I =T =Ly =840y (mod 3“).
By Lemma 1, x,=%c,, -+, o) is orthogonal to d* and d*, and so we have
&10) F 202 50y 84Cs=85C5 Ci=Cq .

As before we may assume that ¢;=c;=0. Thus,

3.3) 3 esci=0.

i=1

Because 3%-2||e;x; and ;=0 or x;, it follows from (3.2) and (3.3) that ¢;=0 for
1=<i=4. Hence g,=0, as desired.

2° Bis of type Dy(a).

By [4] (2F), we have k(B)=9, I(B)=5. B has four columns &, df, d¥, d! of
higher decomposition numbers which satisfy the following conditions (see the
proof of (2F) in [4]);

(df, d)={dy, di) =6, (d}, df)=3,

(dY, d¥)=(d, d})=6, (dV, df)=3,

(d?, d)=0 for any i, je{l, 2},

a7, df, d! and dY are integral columns.

(3.4)
|

From (3.4), we have the following solutions for df, pf, d}, di. (Interchange
{d?, d3} and {d%, dY} if necessary.)
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df=t( €1, & , &3 , &, & , & , 0 E] 0 ’ O )

(35> d'2r=:( 0 ) 0 y O , €4, & 5 €6 4, &1, &3 , &9 )
l ﬂ: (}‘El) "‘262, 0 » HE4y — ME5, 0 5 V&7, — VEg, 0 )
di="e;, 0 , —Asy,pteq, 0, —peg,ver, 0, —rs0),

where &;, A, pr, v==+1.

We may assume that p=1. Then we get (1,»)=(—1, —1), because other-
wise we have a contradiction by computing the elementary divisors of the
Cartan matrix. The decomposition matrix for B with respect to the basic set
{eaXy, eaXa, e3ks, €4y, e5Xs} is as follows;

&1
=]
g3
&y
L+
—gg €& —& —%& &
&7 &7 &7
&g €y €8
\ —& & &

Using the same arguments as in 1°, we have

(36) &1 —&sTstEs L= e —Eq Lo T a1 L= 3Ly — &4 Ty T Elg

Sk —e s +Feate ey —en s Hewr =0 (mod 3¢).
Put y;=e24/3%°% Then ;%0 (mod 3). By (3.6), we get
3.7 [ vi+vs=ys, V2 tui=ve, YstYs=Ys,
| vetwe=wi, wstvi=vs, nitye=ys (mod 9).
From (3.7), we have
3.8 YPEYPSYE U= — U= —Ye B =Y=ye20  (mod 3).

Now let gy=%ci, -+-,ce) and di=eics/3*%. So di=0 or wi and it follows
from the orthogonality relations that

f dl +dz+ds= —(d4+d5+dﬁ)=d7+da+d9 3

3.9
(3.9) 1 di—ditdi=do—ds+ds=ds—ds+ds .

The six terms in (3.9) are all equal, so we denote by d the common value.
Suppose that d=0 (mod 3). Then using (3.8) we see that three dy's in each
term of equations (3.9) are simultaneously zero or non-zero. Therefore we may
assume that di=d.=d;=0, and so we have d,=d:=ds=ds=ds=ds=0 by using
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the second equation of (3.9). Hence y,=0, the desired result.

Next suppose that d=0 (mod 3). We may assume that d=y, (mod 3). Then
we conclude that exactly two of three di's in each term of equations (3.9) are
zero. So,

(dh de d3>:(y1’ 07 O)! (0) Ya, 0) or (Ov Os ya) .

Assume that the first case occurs, then the non-zero d&'s in (3.9) are di, ds, ds
or di, ds, ds. If di, ds and d, are non-zero, then y,=—y;=v, and so 4,=0 (mod
3) by (3.7). The same conclusion holds if d,, ds and dy are non-zero. But this
is a contradiction. In the second and third case, we have a contradiction by
the same argument. Hence d#0 (mod 3) does not occur and so the proof in
case B is of type Dy(a) is complete.

3° Bis of type Eie)
By [4] 2F), we have k(B)=9, [(B)=4. B has five columns d7, d?, d¥, d¥, d™
of higher decomposition numbers which satisfy the conditions that

d¥, d7, d¥ and df satisfy (3.4),
(3.10) (d*¥, d*¥)=9, and d*? is an integral column which is orthogonal to the
above four columns.

For df, di, d¥, d}, we have the solution (3.5). Thus, we determine d*¥ only.
As in 2° we may assume that p=1 in (3.5). Since 2 and v in (3.5) are signs,
we have four possibilities for (4, v). ‘

(a) The case (1, v)=(1,1).
In this case d*¥ is uniguely determined (up to sign) as follows;

d*V= ey, €3, €3, —E4, —E5, 65, &7, &5,y &) -

Since xx(1) is orthogonal to df, df, d¥, d¥, d*¥, we have

3.11) { 812y Feala e Lo =844+ 05t SLs =8 Ly F e L FegLy=0,
’ a1&y ety Feqtr=¢co s &5 5 ez =233+ 65 +53$9(= O) .
Let x,=%c, « -+, o), then similarly we have
(3.12) { €101+ 622 T e3Cs= €404 +85Cs +eoCo==&1Cr +esCste9Co=0,
' 8101+ 8404 707 == €20z +-85C5 +88Cs == £3C3 + 6506 +e9C5(=0) .

We may assume that ¢,=0, and s0 exce+eics=0 by (3.12). Using (3.11) cr=c;3=
0 and so all ¢; are zero. Therefore y,=0, as desired.

(b) The case (4, v)=(1, —1) or (—1,1).
As in (a), d®¥ is uniquely determined (up to sign);



14 Masao Kivora

BY e 4 l(s s s R o e -
A% = Uz, g9, &5, —&4, —&5, —Eg, &7, S5, S0y ) -

The remaining proof is similar to that of (a).

(¢) The case (4, v)=(~1, —1).
In this case, we have the following three possibilities for d*¥;

Ad®Y= +'(zy, &2, €3, —&4, — 25, —Eay 7, 8, E0)
+4(sy, €2, — &3, 024, — 025, — &, 087, — O3, E9) ,
+!(—ey, &, &3, —&y, 025, — 08, &1, Oss, —029), (I=£1).
In the first case, the remaining proof is similar to that of (a). In the second
and third cases, we get a contradiction by computing the elementary divisors
of the Cartan matrix for B.
Hence, the proof in case B is of type E,(a) is complete.

4° B is of type SDi..

In this case, we have k(B)—/(B)=2. B has two columns df, df of higher
decomposition numbers which satisfy the following conditions (see the proof of
(2F) and (2G) in [4]);

(3.13) (df, di)=(dt, d})=6, (di,d})=3.

We have two possibilities; (a) d* and df are integral or (b) df=df. We
argue these two cases separately.

(a) df and df are integral.
By (3.13), df and df are determined as follows;

df::c(sh €2, €3,y &4, €5, 6, 03 0, O) »

d:f:t(oy 07 0) €45 €5y €6, €7, €8y 69) » (573: il) .

So k(B)=9, and the decomposition matrix for B with respect to the basic set
{e1X1, e2Xo, e3Xs, £aXs, €5%5, £7X0, €sXs} 1S the following ;

€1
4]
€3
&4
&5
&g —E&g —E&g —Eg —Eg
&7
€g

&g &g &g —&y &
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Set yi=e;x:/3*%  Then by the same arguments as in 1°, we get
(3.14) UVE =Yy, Y S Y= Ys, Yr=Vs= Yo, Y1+ 9=y (mod 9).

If y1+v.=0 and y,+y,=0 (mod 9) hold, then by (3.14) we have 3y,=0 (mod 9)
but this is absurd. So we may assume that

(315) ?/1+?/4-r=50 (mod 9)
Now let y,=%cy, -+ -, ¢s) and set dy=s,c:/3%"%. Then ;=0 or y,, and it follows
from the orthogonality relations that

9

(3.16) ;;jldi:o, S di=0.

T=4
We may assume that ¢,=0. Thus,
dot+dy+di+ds+di=0.

Using (3.14) and (3.15), we conclude that d;=0 for 1=i=<6. Now the second
equation of (3.16) implies that

d7+dg+d9=0 .

Since y;#0 (mod 3), we have d:=dy=dy=0. Therefore y,=0, the desired result.

(b) di=ds.

In this case, we set dif=a-+bw where o is a cubic root of unity and a, b
are integral columns. From (3.13), a and b are determined as follows (see the
proof of (2F) in [4]);

a="0, s, &3, ¢4, &5, €0) ,

b:L(Eh €g,y 0’ 0: 0) 0) ) (ei: il) .

At this stage the result is easily proved by the same methods as in (a), so
we omit the remaining proof.

Remark. A. Watanabe of Kumamoto University proved that %(B)=9 holds
in case Bis of type SDy. Therefore the case (b) of 4° in the above proof can
be omitted.

5° B is of type Z: (fixed point free action) or of type Dy(h).
In this cases, we have k(B)=6, [(B)=2 ([4] (2B), (2F)). By the same argu-
ments as in 1°, we get that the following relations hold on G,;

X1=XQ+SZ:&, X4=X5=X(3=X1 N

where e=+1. So {X, ¥} is a basic set for B. Hence the result follows from
Lemma 4.
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6° B is of type Z: (not fixed point free action).
In this case, we have k(B)=9, [(B)=2 ([4] (2C)). By the same arguments
as in 1°, we get that the following relations hold on Gy ;

X|=X3+Xa, 24-_—25:%1, Zﬂ:X7=Zg, 13=X9=X3 .

So {%, %3} is a basic set for B. Hence the result follows from Lemma 4.

Thus, we have shown that yx,=0 or x5(1) for Bof all types. This completes
the proof of Theorem 2’ and so Theorem 2 also holds.

Acknowledgement. I wish to express my gratitude to Professor T. Okuyama
for his useful suggestion on Lemma 3, which is motivated by his results.
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