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Introduction

Various investigations in complex analysis in locally convex topological
vector spaces have been made by many authors (see for example [2], [12]).

We have been concerned with the case of a countably infinite dimensional
topological vector space, which is denoted by X € ([3], [4], [5]). It was shown
that a result similar to Oka-Cartan’s theorem B is valid for our space 2 C ([(5]).
On this basis we will now investigate the relative cohomology groups toward
the hyperfunction theory on infinite dimensional spaces.

In this paper we will show the vanishing of the relative cohomology groups
corresponding to those in the theory of hyperfunctions and analytic functionals
with compact carrier in the case of finite dimensions. As an application this
result gives a negative answer to the following problem: If an open set U in
37 € satisfies the condition that H*(U, ®)=0 for every k=1, then is it pseudo-
convex? In fact, we can show that there exists an open set U which is not
pseudo-convex but satisfies that H*(U, ©)=0 for every kz=1.

In §0 we review the space 3 € and a result used later. In §1 we will give
a flabby resolution of the sheaf @ of germs of holomorphic functions on X C,
which is not the canonical flabby resolution. By using this resolution, we will
show the vanishing of the relative cohomology groups with support in X R.
Let K be a compact set in ) € such that Kc€C™ satisfying that H¥K, Om)=0
for every kz=1l. In §2 it is shown that the relative cohomology groups with
support in K vanish and that the space of analytic functionals with compact
carrier is represented in terms of relative cohomology groups on finite dimen-
sional spaces. As a corollary we prove the existence of open sets which are
not pseudo-convex but whose cohomology groups vanish. In §3 we will intro-
duce the hyperfunctions with an infinite number of holomorphic parameters by
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means of relative cohomology groups.
The author is grateful to Professor A. Kaneko for his helpful discussions
and useful suggestions.

§ 0. Preliminaries

Hereafter we refer to [6, 8, 9] for the general results on the theory of
holomorphic functions of several variables, to [10, 13] for the results on hyper-
functions and to [2, 12] for the general theory of holomorphic functions on in-
finite dimensional topological vector spaces.

Now we introduce the space }; C and state the vanishing of cohomology
groups of a pseudo-convex open set in }; C.

We denote by >, C the direct sum of complex planes € endowed with the
inductive limit topology of the spaces {C"; uR.} were u?,,: C"—C""! is defined
by w2 ((z1, + -+, 20))=(2y, -+, 22,0). For its topological properties see [3]. We
denote by @ the sheaf of germs of holomorphic functions on Y €. Then we
have the following theorem ([1], [3]):

TueoreM 0.1. Let U be a pseudo-convex open set in 3, C. Then we have

HYU,0)=0  for kz1.

We remark that this result was extended to the case of analytic subvarieties
of a pseudo-convex open set in Y, C and further to the case of Stein manifolds
in the sense of )] C (for the detail see [4], [5]).

§ 1. Vanishing of the relative cohomology with support in J R.

In this section we will investigate the relative cohomology groups with
support in Y] R. First we introduce a flabby resolution of the sheaf © of germs
of holomorphic functions on ) C.- We denote the canonical flabby resolution of
the sheaf @, of germs of holomorphic functions on C" as follows:

0 —> Op—> Fh—> G —> Fp —> -+
Hereafter we use the notation:
U,=UNnC".
Let us recall the following isomorphism ([3]):
1.0 @(U)EEEI_@n(Un) )

where the projective limit is taken with respect to the restriction mappings.
The restriction mapping of G4, (Un..) to FEUy) is well defined and denoted by
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ri*i(k). Now we define G%(U) as follows:
B(U)= Um{FKU); ri*'(R)} .
<
The presheaf {FE(U)} defines a sheaf, which is denoted by F%. We denote by

72(R) the restriction mapping of F%(U) to Fi(U,). Let us recall the well known
result (see for example Theorem 8 in Chap. IV, D of [8]).

LemMA 1.1. Let U be a pseudo-convex open sel in C*'. Then t/z.e restric-
tion mapping of On(U) to O(UNCY) is surjective.

Now we have the following

LEmMA 1.2. Let U be an open set in C*' and let S be a locally closed
subset of U. Then the restriction mapping

it R): I's(U, F%v) —> Tsaen(UNCT, F)
is surjective.

Proof 1. Tt is obvious that the restriction mapping of the stalk Oas1z to
the stalk @... is surjective. Then in view of the definition of & the mapping
72+(0) is surjective.

2. Let the sheaf &% be denoted by the sequence:

(1.1) 0 — O —> Ty — Z5 — 0.
Now we consider the following diagram:

0 0u(V) — g%n(v) ——*Z?,H(V) —0

l | l

0 — OV NCY — F(VNC") — ZHVNC") —> 0

If V is pseudo-convex, both rows are exact. It is shown that the second column
is exact. Therefore the restriction mapping of Z&%.(V) to EYUVNC") is sur-
jective. Hence, the induced mapping of the stalk %%..,. to the stalk 2%. is
surjective. In view of the definition of the sheaf &}, the restriction mapping
¥t (1) of Is(U, Fhep) to saen(UNCT, FL) is surjective for an arbitrary open
set U in C™*'. Let the sheaf &} be defined by the following exact sequence:

1.2) 0— Fit —— Gt —— FL—— 0.

We consider the following diagram:
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0— ‘Z%—H(V) — (V) — z;zﬂ( V) ~—0

0— Z(VNC") — GYVNCY — Z(VNC™) — 0
Let ¥V be a pseudo-convex open set in C™'. Then, taking account of the ex-
actness of both rows of the diagram, the restriction mapping of Z,.(V) to
ZLV'NC™ is surjective. Therefore, ¥2+'(2) is surjective. Consequently, we can

show inductively that the restriction mapping 72*(k) of I's(U, Fk.) to Isner
(UNC", &%) is surjective in the similar way. [Q.E.D.]

CoroLLARY 1.3. Let U be an open set in Y, C and let S be an arbitrary
subset of U. Then the vestriction mapping

?’n(k) : FS(U; géa) D FSnC"(Um glfz)
is surjective.
We prepare another lemma.

LemMma 1.4, The sheaf T is flabby.

Proof. Let U be an arbitrary open set in 33 C. We consider the following
diagram : :

0— FC”H\Unﬂ(CnHv G — FEL(CY) — FE(Unir) — 0

l l l

0 — Ienyr, (C™, F7) — FHC™) > FEU») —0
The flabbiness of &% implies that the rows are exact. Owing to Lemma 1.2,

the columns are exact. It follows from Proposition 13.2.2 in [7] (Mittag-Leffler’s
lemma) that &% is flabby. [Q.E.D.]

Remark. It it easy to show that the sheaf is acyclic in stead of flabby.
In fact, we can prove it by applying Proposition 13.3.1 in [7].

Combining the above lemmas, we have the following

ProprosiTION 1.5. The following is a flabby vesolution of @ on 2, C:

00— @ —r Gl Gl T -+

Proof. Let U be a pseudo-convex open set in > C. Then, we will show
that the following sequence is exact:



Relative Cohomology on a Countably Infinite Dimensional Space 21

0-—0(U) — FUU) ~ FLU) > GLU) —> -

Let ¢g be an arbitrary element of F&*(U) for =1 such that p(g)=0. Put g.=
rn(k+1)(g). Consider the diagram:

s FENUnsr) —> Fhol(Unir) — FENUpsy) —> -+ -

l l l

s —> GEYU,)  — GEUR) — FE) — -

Every row is exact (see for example Theorem 7.4.3 in [9]), and therefore for
each g, we can find foeFE(U,) such that p(fa)=gn Since p(ra™ B Fusri)—Fo)=
0 holds, there exists Z,e % *(U,) such that

oln) =12 (R)(fos1) =S -
By virtue of Lemma 1.2, there exists A€ FE7(U,) such that 72%Y(k—1)(Aar)=
kn- Put f1{+1=f7b+1“p(hn+1)- Then

p(frs)=g and "R rr)=ra.

Thus, taking fh. as fu from the beginning, we obtain the sequence {f.}
satisfying the following conditions :

(i) P(fn)=gn’
(ii) 7" R frs1)=Fa.

This sequence determines an element feF%i(U). The way of choosing {fu}
implies that p(f)=¢. In the remaining cases, owing to Lemma 1.1, we can
prove the exactness similarly. Together with Lemma 1.4, we have the required
result. [Q.E.D.]

Remark. The flabby resolution obtained in Proposition 1.5 does not coin-
side with the canonical flabby resolution of the sheaf ®. We write the canonical
flabby resolution as follows:

0— 00— Lo — L0 —> Lb—
We compare them with each other. Let U be an open set in & C. Then,
(_[&,)(U)=U lim hrn @n(Wz.W)
T

(FL(U)=\ lim lm Ou(W.,,),
U o :

z

where W, runs over open neighborhoods of z. Now we consider the foﬂowing
function.
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2k

Then, the germ f at the origin belongs to lim lim @.(Wo..) but does not to
7 Tw,

lim lim @uWs ). Thus the sheaf &9, is different from the sheaf /2.

W n

The following theorem is fundamental in the theory of hyperfunctions.

TueorREM 1.6 [13]. Let U be an open set in C*. Then we have

Hlnog(U, On)=0  for k=#n.
Now, we go on to the main result in this section.

THEOREM 1.7. Let U be an arbitrary open set in 5. C. Then we have
Hroo(U, ©0)=0
Sfor every k=0.
Proof. We consider the diagram:

(1.4 O0—Lzrav(U, F2) —I'srav(U, F) = zrov(U, F) e

(1-4)n+1 OﬁFR”"'an,,ﬂ(Unﬂy ggz—rl)_"FR"“nUn“(UnH: g‘;l+l)->[‘Rn+lf|Un+]<U’ fﬁn-l)"’" tt

l l |

1. D0 0-I'rr0w,(Un ) —= e, (Un, Fr) —I'rraw,(Un F2) =+

l l l

In the above diagram every row (1.4), is exact except the #-th in each row by
Theorem 1.6. By using Lemma 1.2, the similar diagram chase as in proposi-
tion 1.5 leads to the conclusion that the sequence (1.4). is exact.

Remark. In view of | the long exact sequence of relative cohomology groups,
we have also H&Z C, ©)=0 (kz0) for any locally closed subset S of 2 R.
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§2. Analytic functionals with compact carrier and preudo-convex open sets

In this section we will investigate the relative cohomology groups with
support in a compact set K.

Let W be an open set in C*. We denote by Hi(W, O.) the relative coho-
mology groups with compact support. As is well known that the following is
a soft resolution of the sheaf Ox;

@

> e

7 7
0 — Op —> P —> D — Dy

where 9t denotes the sheaf of differential (0, k)-forms with distribution co-
efficients on C* and 9p'=4,. Then, we have

Ker {Ie(W, 98— I'(W, D)

HYW, On)= 5
Im {T(W, @05") —— LW, D)

Let U be an open set in C""'. We denote by &, the sheaf of germs of
infinitely differentiable functions on C". Now we define the mapping

2)2_“ . FIT( Un C", @n) i HICH-I(U, C))‘nn‘«l)
by
R ([PdENAZN - - - NdERD), Fr={{ddZ,NdZ, A - - - NdZ,], flew>

for fe&n,(U), where [ . ] denotes the equivalence class and ¢, > denotes the
bilinear form.
We refer to the following

TueoreM 2.1 [14]. Let W be an open set in C" such that
dim HE (W, On)<oco  for kzl.

Then HHW,On) and HY(W,On) are Fréchet-Schwartz space and dual Fréchet-
Schwartz space, respectively and they ave strongly dual to each other.

CoroLLARY 2.2. Let W be a pseudo-convex open set in C*. Then we have
Or(W)ZHYW, ).
We cite another theorem from the theory of analytic functionals.
TueoreM 2.3 [11]. Let K be a compact set in C™ such that
2.1) HYK,0.)=0  for k=1l.
Then for any open neighborhood W of K we have
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2.2) H (W, 00)=0  for k+n,
2.3) HEW, 0)=0'(K).

Now we well prove the following

THEOREM 2.4. Let K be a compact set in 3, C such that KCC™ and
(2.4) YK, On)=0  for kz=1.
Then, for any open neighborhood U of K in 3, C we have
2.5) Hi(U, 0)=0  for k=0.

Proof. 1t is easy to see that H¥K, ®,)=0 for nz=zm and kz=1l. Thus, by
Theorem 2.3, we have

(2.6) H(Un, On)=0  for k#n, nzm.
Let us consider the following diagram:

2.7 I'y(U, F54)  — I'e(U, FE) — I'e(U, FE™)

o T
| | |

2. T)ass Pr(Unir, F2) —> Te(Unir, Fhvy) —> Tx(Unsr, FED)
(2.7)71 PK(UYH gﬁ_l) —* FK(Un: 3‘7"‘1‘) — Fff(U’ns gﬁ+1)

By (2.6), the sequence (2.7), is exact if #»=m. In view of Lemma 1.2 the
similar diagram chase as in Proposition 1.5 leads to the conclusion that the
sequence (2.7). is exact. This implies that H%(U, ®)=0. [Q.E.D.]

Tueorem 2.5. Let K be a compact se in 3, C satisfying the following con-
dition :

(2.8) K has a fundamental system B of neighborhoods consisting of pseudo-
convex open sets in 3, C.

Then we have

2.9) O'()= lim 1im H(Un, O,

Fidd7) n

wherve U runs over B.
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Proof. Let U be a pseudo-convex open neighborhood of XK. Then by Cor-
ollary 2.2 we have

On(Un) 2 Hi(Un, On) .
Owing to Proposition 2.11 in [3], we have

O'(U)=lim ©(Ux)

= lim Hy(U, On) -

n

Taking into account that O(K)= .EE, O(U), generally we have
KU

O'(K)=lim (D).

KU

Thus we obtain

@'(K)Em _1i_fn_>H2(Un, On) . [Q.E.D.]

KcU n

Now as an application of Theorem 2.4 we discuss the relation between
pseudo-convexity and the vanishing of the cohomology groups. It is well known
that for an open set U in C™ the following conditions are equivalent (see for
example [9]):

(2.10) U is pseudo-convex,
2.11) . HYU, On)=0  for kx=1.
On the other hand we have Theorem 0.1 on the space 3 €. Then we will

discuss whether the inverse holds true or not in the case of ;€. As a corol-
lary of Theorem 2.4, we have the following answer.

COROLLARY 2.6. There exists an open set U which is not pseudo-convex
such that
HYU,@)=0  for kz1.
Proof. Let Whe a pseudo-convex open set in 7, C and let K be a compact
set in C™N W such that
H(K, @)=0  for k=1, nzm.

For example, it is sufficient to choose a compact set in RN W as K. By The-
orem 2.3, we have

H4(Wa, O)=0  for k+n,
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HE(Wa, On)=0(K) .
In view of the long exact squence

0— If}n{( T/Vny On) — Ha( Wrm @n) — HG(VVn"[Q @n) —>
— H}l\‘( I"Vn, @n) — HI(VVm @n) —_—> -FIl(pvn""lfy @n) e

............................................

b H?((I”Vm @n) — [I}C(me @n) I E[L(.I/V-TL—K) @n) > e

we have

HY W, On)=H"(Wp—K, On)
HE (W — K, ©r)=0 for n—-2z=k=1
.H'n"l(‘[/vn—‘[g: 0)=0"(K).

Thus, W,—K is not pseudo-convex. Hence W—K is not pseudo-convex (see

for example Lemma 2.1.5. in [12]). However, considering the long exact se-
quence;

0 —— HY (W, ©) — HY(W, 0) — H'(W—-K, 0) —
— Hiy (W, 0) — H(W, 0) — H(W—-K, 0) —

.......................................

— HY%(W, @) — H¥W, ) — H(W-K, ) —> - --
by Theorem 0.1 and Theorem 2.4 we have
HW-K,0)=0 for k=1.

Thus U=W—K is the required one, [Q.E.D.]
§3. Hyperfunctions with an infinite number of holomorphic parameters

We will show the following

TueoreEM 3.1. R"X Y, C is purely v codimensional to the sheaf © of holo-
morphic functions on Y, C.

Before starting the proof we cite the following theorem from the theory
of hyperfunctions.

TueorREM 3.2 ([12)). R"XC" is purely v codimensional to the sheaf On.r of
germs of holomorphic functions on C**7,

Proof of THEOREM 3.1. Let us consider the following diagram.
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(3. Do
0T grvzeav(U, FL) = grxzenv(U, FL) —Iprvgenv(U, F2)  —--
l l i
| J l
(3. Dy

O_’)FRTXCWHHU"i-I(Uﬂ-%‘1!3"?)-FI)—)FR7.an+1ﬂU71+1((IWH19;1+1)'_)IWRTXC1I+‘ﬂl}’n—i-\(Un'énag§1+l)—+' .
3. Dn

0—I"rrxcrav,(Un, F1) =R 00, (Un, ) =R scrov,(Un Fa) =0+

In the above diagram every row (3.1), is exact except the »-th by Theorem
3.2. Owing to Lemma 1.2, the similar diagram chase as in Proposition 1.5 leads
to the conclusion that the sequence (3.1). is exact except the »th. [Q.E.D.]

Now let U be an open set in 2, €. We put

V0=U’

Vi={zreX C; Imz+0}, iz=l,
M,={V;; j=0,1,---, 7},

M= {V;; i=12, -, 7}.

Then, it is easily see that following proposition holds.

Prorosition 3.3, Let U be an pseudo-convex open set in 3, C. Then we
have

Hereseo(U, O)=H W, M5 O).

For an arbitrary feH'(M,, W.; @) we denote by F the defining function
such that f=[F], Fea(VonVin---NV,). We define the mapping

l:+1: H‘r(m'n EIR;, @) —> Imrl(wrnkh mt;‘%l; C))

by 4. (F)=[F-1], where 1 denotes the function such that 1 on VonVin---N
{ze . C; Im 2,4, >0} and 0 on Von VN - -N{zeX C; Im 2., <0}
Now we will call the sheaf associated with the presheaf

{lim B (DM, M. ; @)= lim Hpnysonp(U, O))
> ‘-—r—*

r

the sheaf of hyperfunctions with an infinite number of holomorphic parameters.
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