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1. Introduction

A unitary reflection ¢ in C* with its reflecting hyperplane ¥ is an element
g of Uln) whose fixed point set is a hyperplane V in C" A unitary veflection
group G in Uwm) is a finite subgroup of U(xn) generated by unitary reflections in
C". Given a unitary reflection group G, the collection C(G)={Viliel} of walls
of G is the set of all hyperplanes T each of which is a reflecting hyperplane
of some unitary reflection belonging to G. Here we introduce the notation |<(/(G)|
to denote the union U{Viliel} of walls of G. Then G is known to operate freely
on the complement C™\|G/(G)| of the set |G| in C™.

As well-known, the irreducible unitary reflection groups were classified by
Shephard and Todd [5]. According to their results, there exists a series of
unitary reflection groups G(m, [, n) with index being the triple of natural numbers
(m, I, ») satisfying the conditions 2=in and /[m and all other groups are “exceptional”.
Now we recall the definition of G(m, [, n): Gim,{,n) is a subgroup of U(x) con-
sisting of all linear transformations of the form

zi=Cz. (Cn=exp 2zV —1 /m))
where o is an arbitrary permutation in the symmetric group of degree » and
(@1, -+, @) is an arbitrary sequence of » integers satisfying the relation
@+ 4w, =0 mod /,

For this group G=G(m,/,n), we shall use the abbreviated notation CP(G)=

Y(m, [, n) in the sequel.
Now, the objective of this note is to give an elementary proof to the follow-

ing theorem.

TueorEM. For every triple of natuval numbers (m, [, n) salisfying the condi-
tions 2=n and I\m, the complement C™\|CU(m, [, n)| of |<V(m, [, n)| in C" is K(=,1).
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This theorom has been first proved by Brieskorn [1] and Deligne [2] for the
case of G(m,[,n)'s being the Weyl group and announced by Etsuko Bannai for
general G(m, I/, n) in 1976.

Before proving the theorem, we list some known results needed in the
subsequent argument.

LemMa [4), [5). For each triple of natural numbers (m,l, n) satisfying the
conditions 2=n and llm, the collection of walls C\)(m,l,n) of the group G(m,![, n)
has the form as stated in what follows.

If m>1, we have
Cm, L, n)={V(zp), V(zi—lazpll 2h=n, 15i<j=n, 0=2as=m -1}
If m=I, we have
P, m, m)={V(z;— szl si<j=n, 0=a=m—1}.

Here we used the notation V(f)c C™ to denote the variety represented as f'(0)
in terms of a polynomial f(z)eC[z].
Eventually, we obtain

C(m, {, n)=C(m, 1, n)
. the case m>I1=1.

Above facts allow us to reduce the proof of the theorem to the one of the
next proposition.

PROPOSITION. For every triple of natural wumbers (m,l,n) satisfying the
conditions 2=n and =1 or 2=n and m=Il, the complement C"\|<Y(m,[,n)| of
S, 1, )| in C™ is K(xm, 1).

Ending this section, we remark that the groups appearing in the proposition
have generators as stated in the following.

Gim, 1,n) is a subgroup of U(n) generated by the set of linear transforma-
tions ¢, §; with 1=i<n—1 written in the form

g:z1=Lnzy, 2j=2; 2=j=n
$11 2= 2441, Bie1 =24, 2j =25 1=j=n,j*i,i+1

Glm, m,n) is. generated by the set of linear transformations %, s; with 1=i=
#n—1 written in the form

k=052, 2i=Cn21, 2j=2; 3Zj=n

Sit 2h=2441, Zhe1= 84, B= 25 1=j=n, j=i,i+1.

2. Proof of the proposition
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For later convenience, we introduce the notations to dencte some collections
of hyperplanes:

CV(m, n) ={V(za), V(zs—Lazpll Sh=n,1=i<js=n, 0=asm—1}
Vim, n)" ={V(a—Gzpllsi<j=n 0sazm—1}.

Further we designate the union of hyperplanes in each of the above collections
by adding vertical lines on both sides, that is

(Vlm,ny |=V( Tz _I1_(eF—2p)

12hEn 15i<jan
ommy1=V(_TI_(ar—2p).
154<CFEn

Under these conventions, we are going to prove the previous proposition.
The proof proceeds by verifying successive three assertions step by step.

1)y e\, n)| is Kz, 1).

The assertion i) is proved by induction on .

For n=2, the fact in i) can be shown by considering the natural projection
from C®\{0} onto PC?=S%

For n=3, we prove that the K(zx, 1) property of C*\|c((1,n~—1)| implies
the one of C™\|CY(1,n)'|.

Now we consider the projection

a:e\V( Tz I l(zi—zj))w»c"*l\v( M wn 1 (o))

Ishan-1 il jan— 1shan-1 1s58<jan—1
defined by

67)(20, 2y, 0y B =Wy, -, Wn-1)

where w;=z,—z; for 1=isn—1.
We put

z1=(20,21, ***, Zn-1)€C”, w=(w;, +++, Wy1)eC"!
Then assuming @(z)=w, we can easily verify that each of the conditions
wp=0,w;—w;=0 1shsn—1, l5i<js=n—1
holds if and only if each of the conditions.
2—2=0,2—2;=0 lgh=n-1,1si<jsn~1

holds respectively. Thus @ is surjective.
Next we fix a point w in C™! satisfying the conditions

wrx0, w;—w;=0

for-all 7,4,7 with 1=2A=n—1, 1§i<j§rif—1. Then the point z in C™ is in & (w)
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if and only if z satisfies the conditions
Z=2,—ws, 250

for all i with 1=i=<n—1. By projecting & *(w) into its its z,-component, we can
show that &~(w) is diffeomorphic to the space consisting of points in € with the
coordinate z, satisfying the conditions

Zo:’?O, Wy

for all i with 1si=n—1.

Now by integrating an appropriately chosen vector field on € with the
coordinate z,, we can prove that & defines a C* fibre bundle.

Moreover, the above argument shows that the fibre @ '(w) is homotopy
equivalent to the join VS of n copies of S* and so it has the K{x, 1) property.

Here applying the homotopy exact sequence of the fibre bundle &, we can
show that the Kz, 1) property of the base space implies the one of the total
space. Further we have an exact sequence of the fundamental groups

1—> % Z——m, (C™\|TAL, 1) [)—>m(C™\[CU(L, n—1)[)—>1
where * Z denotes a free group with » free generators.

iy C™\|CU(m,n)”’| is Kz, 1).
First we consider the simplest case m=1.
For »=2, the proof is as in i).
Assume #=3. Paying regard to the assertion i), we find that it is enough to
prove that the K(z, 1) property of C*~\|<{/(1, n—1)’| implies the one of C"™\C/(1, n)"’|.
We consider the map
a:em(

08i<jEn~1

(zs—2))—C2\V( _TI [, (w—w))

Wy, +
1shsn—1 1si<jEn—1
defined by
(2o, 21y -y Bnor) =(Way + ++, Waey)

where w;=2,—2z; for 1=sisn-1.
Again the map & is surjective.
Put

z2=(20, 21, ** *, Z20_1)EC", W=y, + -+, Wy-1)€C".

Take a point w in C**\|cY(1,n—1)]. Then z is in @ '(w) if and only if
the relations

;=290 — Wi

hold for all i with 1=<i=»n—1. Now the natural projection from & '(w) into its
zo-component gives a diffeomorphism between @~*(w) and the whole complex line.
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As in the proof of i), & also defines a C* fibre bundle
In this case each fibre is contractible, so @ induces a homotopy equivalence
from the total space into the base space.

Next we treat the general case m=1.
For n=2, the proof is as hefore.
Assume #=3. From i), we only need to show that the K{z,1) property of
C™\|c(1,n—1)"] assures the one of C™\|(m, n)"’|.
Now we define the map
aren V(T @-an)—C\V( I we T i—w)
1 8i<

08i<jsn—1 shan—l 1Si<jan-1
to be the map given by
B(Z0y &1y ** *y Bued) = (Wi, ++ ¢, Was)

where w;=z0—z? for 1=i=n—1.
Put

z=(2o, 21, -+, Zn-1)€C™, wW=(w, -+ +, Wa-1)C™ .
When we assume &(z)=w, each of the conditions
wr=0, w;—w;=0 1sh=n-1, 1Zi<j=n-1
holds if and only if each of the conditions
gr—zr=0, 2r—27=0 1l=h=n-1, 1=i<j=n~1

holds -respectively. This shows the surjectivity of &.
Suppose given a point w in €™ ! satisfying the condition

w0, wi—w;x0

for all 4,i,7 with 1=h=sn—1, 1=i<j<n-1. Then z is in & '(w) if and only if
z satisfies the conditions

=z —w;

for all ¢ with 1si=n—1.

Here we consider the natural projection =;:C"—C sending z to z; for
0=i=n-—1. And we define =}: C"—C to be the map transforming z into z*. Now
we observe the composition wjor;! : md@ (w)—C for 0=i=n-—1. Then the relation
between all the components of the point z in & (z) shows that zjex;' gives rise
to an m-fold branched covering with s branching points w:=x0 for 1=i=xn—1
and with single branching point 0 for i=0. Further we can regard &™'(w) as
the fibre product of the branched coverings npor;' with 0=i=xn—1. These ob-
servations enable us to show that & defines a C* fibre bundle with the fibre
&~ '(w) being a nonsingular punctured irreducible algebraic curve.
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By the way, we compute the first Betti number of the fibre & (w). We
draw simple arcs 7;:[0,11-C on € so that L(0)=0, L(1)=w; with 1sisn-1
and LNL={0} if ixj We put X=U{L]l=i=xn—1}. Then X is a deforma-
tion retract of € and z{|@*(w) is an unramified covering map outside X, so
G w)N(z)"(X) is a deformation retract of & *(w). Now easy computation
shows that the Euler characteristic of & w)N (z))"{(X) is m™ n—m(n—1)) and
hence the first Betti number of & w) is equal to 1+m" (m(n—1)—n).

Combining above results, @& '(w) is homotopy equivalent to f/Sl with
b=14+m""(m(n—1)~n) and consequently endowed with the K(z, 1) property.
The same argument as in i) can be applied to show that the K{(x, 1) property of
C*"\|a/(l,n—1)| implies the one of C™\|C(m,n)’|. Moreover we have an
exact sequence of the fundamental groups

1 % oy (C™\|[CU(m, 1)) —>m(C N[, m=1Y|)—s1

i) C™\|CVim, n)| is Kz, 1).
We define the map

1ShEn 1£hsR

a:C\V( Lz T (@—2p)—C\V( I wn T Gui—w))
1si<jsn 18I<fEn
by the function
(5'(217 Tty z)=(l’01’ t u’n)

with w; =27 for 1=<i=n.
Clealy & is an mmu-fold unramified covering map, so the K{z,1) property of
the base space C™\|C1/(1, »)'| implies the one of the covering space C\|CV(m, n)|.
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