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Introduction

This paper is a continuation of the studies in [S1], [S2], [F1], [F8]and [B]. - Here
we are interested in the following problem: Let D be an ample effective divisor
on a normal vaviety V. Then, does there exist a vational mapping p: V—D de-
fined on an open set U containing D such that the vestviction of p to D is the
identity 7

If the answer is Yes, we can show that ¥ must be a cone over D under
certain mild conditions (see §3). In particular, V' cannot be non-singular in this
case. Motivated by these observations, we will give several sufficient conditions
for the affirmitive answer to the above problem (see §2). It turns out that our
method works well for various types of manifolds D (see (3.4)).

§1. Preliminaries

Basically we employ the notation as in [F1] and [F3].

(1.1) Throughout in this paper we will study the following situation: V
is a normal complete variety of dimension »=3 defined over an algebraically
closed field & of any characteristic. L is a line bundle on V and D is a member
of |L|. We assume that V is non-singular along D and that the restriction of
L to D is ample. The formal completion of V along D will be denoted by V.

(1.2) Lemma. Let F be a line bundle on V such that FCz0 for every curve
Cin V. Then there exists an integer k such that H'V, —F—tL)=0 for any
t=k.

Proof. |F+4sL|%0 for some s>0 by [F5; (6.5)], since L"=L%"{D}>0. Taking
a member E of |F+sL|, we apply [F7; (7.5)].

(1.3) Theorem. There exists a bivational morphism =: V—V" onto a normal
variety V' such that = is an isomorphism on a neighborhood of D and D' =n(D)
is an ample divisor on V'.

For a proof, see [H; p. 110].

(1.4) Corollary. If char (R)=0 and if V is non-singular, then HYV,Op
HYD, ®p) for any g<n—1.

Indeed, H{V, —L)=0 for i<n by Ramanujam’s theorem [R].

(1.5) Corollary. If char (R)=0 and both V and D are smooth, then the
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natural mapping a: Alb (D)—Alb (V') and v: Pic® (V )—Pic® (D) are isomorphisms.

Proof. Both are étale by (1.4). Suppose that FeKer (). From the exact
sequence 0—Qp[F~Ll—>Ov[F1->0p—~0 we infer AV, F—tL)sh\(V,F—@¢+1)L)
for every ¢=1. Hence AYV,F-L)=h(V,F—¢{L) for any #>1, while the latter
vanishes for ¢»0 by (1.3). So HYV,F—L)=0 and A%V, F)z=h(D, Op)=1. This
imples F =0y since FePic"(V). Thus we see that » is injective and is an
isomorphism. Hence so is a.

(1.6) Theorem. The effective Lefschetz condition Leff (V,D) is satisfied.
This means the following:

1) For any open set U DD and any locally free sheaf E on U, there exists
an open set U with DU CU such that the mapping HYU', E)—H'(V E) is
bijective, where B is the restriction of E to V.

2) For any locally free sheaf E on V, theve exist an open set UDD and a
locally free sheaf E on U such that E=E.

For a proof, see [G; Exposé X] or consult [H; §4]. Note that we may
assume that L is ample by virtue of (1.3).

§2. Existence of a rational retraction

(2.1) A rational mapping p: V—D is called a rational retraction of V onto
D if p is defined on a neighborhood U of D and if the restriction of p to D is
the identity.

(2.2) Proposition. Let F be a line bundle on D with Bs|F|=0 and let f:
D—->Wc PN (N=dim|F|) be the morphism defined by the linear system |F|. Sup-
pose that HYD,F—tLp)=0 for every t=1, q=<1 and that F comes from Pic (V).
Then there is a vational mapping ¢ of V onto P¥ defined on a neighborhood of
D such that the restriction of p to D is the morphism f: D—P~. Morveover, if
dimW<n—1, then Im (p)=W.

Proof. By (1.6) we have a line bundle F on an open set U containing D
such that Fp=F and HYU, FYy=H'V, F)=HYD, F). Hence |F| gives a rational
mapping p with the desired property. To prove the second assertion, we may
assume that p is defined everywhere on V by replacing V by the normalization
of the graph of p. Then we infer o(V)=W by the same technique as in [F1;
2.7

(2.3) Corollary. When D=P" !, there exists a rational retraction of V onto
D wunless n=char (R)=3 and Lp=0(3s) for some scZ.

Proof. The obstruction of extending F=@p(1) to Pic (V) lies in the §-vector
spaces {H*D, ~tLp)lt=1,2,.. On the other hand, Lp and ep=0Op(—n—1) come
from Pic (V) because V is non-singular along D. Hence F comes from Pic (V)
except the case described above. So (2.2) applies if Lp=F. If Lp=F, use[F4;
4.3)%

(2.4) Corollary. Let f: DS be a morphism onto a projective variety S with
dim S=dim D—-2=n—3, f«Op=0s. Assume that char (R)=0 and D ‘is non-
singular. Then f extends to a rational mapping p: V—S defined in a neighborhood
of D.
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Proof. We may assume nz4. So, for a very ample line bundle A on S,
we infer that F=f*H come from Pic (V). By the technique in [F1; (2.9)], we
see that (2.2) applies.

(2.5) Corollary. Suppose that D=XXY for some varieties X, Y such that
dim XzdimY =2, AY(X,, —tL,)=h(Y., —tL.)=0 for every izl and for ecvery
general point x, y on X, Y respectively, where X, (vesp. Ys) is the fiber over y
(vesp. x) of the projection D—Y (resp. X) and Ly (resp. L.) is the restriction of
L to it. Assume further that H¥D, —iLp)=0 for every t=1. Then there exists
a rational vetvaction of V onto D.

Proof. Pic (V)—Pic (D) is surjective by the last assumption. Let A be a
very ample line bundle on X and let p: D—X be the projection. For every
i=1 we infer H'(D, p*A—tLp)=0 by the method in [F1; (2.5). Applying (2.2)
to F=p*4 we extend p to a rational mapping V—X defined on a neighborhood
of D. Similarly we extend D-—Y. Combining these extensions we obtain a
rational retraction, as desired.

Remark. If char (%)=0 and X, ¥ are non-singular, then the assumptions
on cohomology groups are valid by the vanishing theorem of Kodaira. This
remark applies also to the following

(2.6) Corollary. Suppose that D= XX Y XZ for some varieties X, Y, Z such
that dim XzdimY=dim Zz1, 2D, —tL.)=h'(Dy, —tL)="'(D,, —tL:)=0 for
every t=1 and any geneval point x, v, z on X, Y, Z respectively, where Dy (vesp.
D,, D,) is the fiber over x (resp. y, z) of the projection D—X (vesp. Y, Z) and
Ly (vesp. Ly, L:) is the vestriction of L to it. Assume further that H*(D, ~tLp)
=0 for every t=1. Then theve exists a rational reiraction of 'V onto D.

Proof is similar to that in (2.5).

(2.7) Proposition. Suppose that D=G,,. ., the Grassmann variely parametyiz-
ing r-dimensional vector subspaces of {&™. Then there exists a rational vetraction
of V onto D wunless r=1, m—r=1 or r=m—r=2.

Proof. Silnilafly as in [F2], we can extepd the universal bundle [:J on D to
a vector bundle £ on V such that HV,E)=HD,E). By (1.6) E extends
further to a vector bundle £ on an open set U containing D such that HY(U, E)
=HYV,E). So, by the standard method for defining a rational mapping to Gu.r
we obtain a desired rational retraction.

(2.8) From now on, in this section, we consider the case in which char (%)
=0 and D is non-singular.

Proposition. Suppose that D is an abelian variety. Then there exists a ra-
tional vetraction of V onto D.

Proof. By the desingularization theory we may assume that V' is non-
singular. Then the Albanese mapping of V gives a desired retraction by (1.5).

Warning. One might think that this method works if D is birationally
equivalent to an Abelian variety. But this is not true. The Albanese mapping
gives a rational mapping p: V—D, but ¢ is not necessarily defined in a neigh-
borhood of D. To construct a counterexample, take an Abelian surface A and
a very ample line bundle H on A Let V=AxP', L=pFHE p¥Or(l) and let
D be a general member of |L|. Then L is very ample on ¥V and D is a
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blowing-up of A with center being H?® points. But one easily sees that there
is no rational retraction of ¥ onto D.

(2.9) Theorem. Suppose that char (R)=0, D is non-singular and that
H' (D, T2 —tLp])=0 for every t=1, where T? is the tangent bundle of D. Then
there exists a rational vetrvaction of V onto D.

Proof. By the desingularization theory we may assume that V is non-
singular. Let 7" be the tangent bundle of V. Similarly as in [FF3; (1.2)], we
infer HYD,T[—tL]p)=0 for any #=2, which implies that H°V,T[—L])—
H(D, TT—Llp) is surjective. Letting N be the normal bundle of D in V, we
infer that the natural matting HYD, T[—Llp)—~H(D,N[—Lp)=HD, Op) is
surjective because (D, T°[ — Lp])=0 by assumption. So we have §e H'(V, T'[—L])
which is mapped to 1e H%D, Op).

Let 9 be the ideal of D in V and set Ouwn=0C%/9™*" for every m=0. Then,
of course, @=proj. lim @, is the structure sheaf of V. Note that =968 is an
@-ideal and @, =@/4™. Since ge H'(V, T[—L)=H"V, 3[T)), 6 can be viewed
as a R-derivation of the sheaf @ of R-algebras such that #(@)c.Z. So #(JF¥c g%
for every % and ¢ induces a derivation 0, of On and an endomorphism &, of
g™ g™t for every m=1. We easily check that ¢, is actually @p-linear. More-
over, #;eBnd (J/9%)=H"D, @p) is nothing but the image of ¢ of by the foregoing
natural surjective mapping. Hence # is an isomorphism. Since char (R)=0, we
also see that 05, is an isomorphim for every m=1. On the other hand, #,=0 is clear.

Now, for any affine open set U in D and any ¢eHY(U, On-.) With (u_.(¢)=
0, we claim, there exists one and only one element ¢ of HYU,®n) such that
Ou(dm)=0 and ¢, is mapped to ¢ by the natural homomorphism Op—>On-. To
see this, take ¢'eH"(U, Ow) which is mapped to ¢. Then 0n(¢)e F™ I™"'COw
since fn-(¢)=0. By the surjectivity of ¢/, we have de H°(U, ™/ 4™+') such that
On(0)=0m(¢). Then ¢m=¢’—aé has the desired property. The uniqueness of ¢n
follows from the injectivity of .

Given any peH°U, Op), we apply the above claim repeatedly to obtain {pn}
eH"(U,@) such that ¢o=¢ and On(ea)=0 for every m=0. By the uniqueness
we infer that this construction gives rise to a homomorphism #*: @p—0 of
sheaf of rings.

Take a very ample line bundle A on D. We define ¢*HePic (V) in the
obvious way. Moreover, we have a mapping 0*: H(D, H)—~H"V,0*H) such
that ¢*{p=¢ for any (e H(D, H). Using (1.6), we take a neighhorhood V, of
D in V and a line bundle H on V, such that the restriction of A to V is ¢*H
and HYV,, HY=HV,0*H). Take a basis &, Ci, -+, L Of HYD, H) and let
E,e HYV,, H) be the extension of 0%C;e HY(V,0*H). Then ;s define a linear
system A on V, such that Ap=|H|. Moreover, for any relation R, -+, Lr)=0
in @D, tH), we have R(*lo, -+ -, 0*y)=0 on V and hence R, -, Zx)=0
in @tecHd "(Va,tﬁ). Therefore A gives a rational mapping onto DcP¥, which
is a desired rational retraction.

(2.10) Remark. There are various types of polarized manifolds (D, Lp)
which satisfy the condition in (2.9) (see [F3]). For example we have:

a) Abelian varieties of dimension =2.
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b) Kummer manifolds of dimension =3.

c) Grassmann varieties Gp, . unless =1, m—7r=1 or r=m—r=2.

d) Non-trivial product D=D, X D;X D,.

e) D=D,xD, with dim D,=dim D,=2.

f) D=D.xD:., the cotangent bundles of both D, and D, are generated by global
sections.

g) D=D;xD, dimD,z2 and the cotangent bundle of D, is generated by global
sections.

h) Fiber bundle D—S, with fiber satisfying the condition (2.9).

i) Manifolds which are isogenous to a manifold satisfying the condition (2.9).
Here, M and M’ are said to be isogenous to each other if they are dominated
by a common manifold via étale morphisms.

j) Blowing-ups of manifolds of dimension =3 as above with center being
finitely many points.

k) Any small deformation of polarized manifolds (D, Lp) satisfying the condi-
tion (2.9).

In particular, (2.9) gives a new proof of (2.8).

(2.11) Remark. The argument in (2.9) proves also the following: If the
natural mapping H'V,T[—L1)—HD, N[—Lp)=H"D, ©Op) is surjective, then
theve exists a rational retraction of V onto D.

(2.12) Proposition. Swuppose thai char ()=0, D is non-singular and that
the cotangent bundle QP of D is a direct sum of two vector bundles E, F of
Dositive vank which ave genevated by global sections. Then there exists a rational
vetraction of V onlo D.

Proof. The Albanese mapping an: D—Alb(D)=A is étale over the normal-
ization W of the image ap(D) because afQ4—07? is surjective by assumption.
In particular W is smooth and 7TP=za$7%. To prove the assertion, we may
assume that V is non-singular. Then Alb(V)=A by (1.5). Moreover, using
(1.4), we infer ap(V)=ap(D) by the same method in [S1; Proposition Il. Hence
we obtain a morphism f: V—W which is an extension of D—W. Restricting
the homomorphism f: TV—/*T" to D, we get a splitting of the exact sequence
0—TP—T}—~>N—0, since T?=T¥. Therefore Fp=N=Ly for F=Ker (f4). Since
HYD,[F—tL]p)=0 for every t=2, we infer that H(V,E—L)=H'D,Op) is
surjective. This implies £ =L in Pic(V). Now, the inclusion F—T" gives (e
HY 7, T[—L)) as in (2.9). So, by (2.11), we obtain the conclusion.

§3. Characterization of cones

(3.1) Theorem. Suppose that therve exists a vational vetraction p of V onto
D and that H'(D, —tLp)=0 for every t=1. Then the graded algebra G(V,L)=
PV, tL) is isomorphic to the polynomial algebra with one variable of degrvee
one over the graded aigebva G(D, Lp)=@;=0H"(D, tLp).

Proof. Replacing V by the normalization of the graph of the rational map-
ping p, we may assume that p: V—D is a morphism. Then we claim
HYV, —p*Lp)=0.
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Indeed, by the exact sequence H'WV, —p*Lp—tL)y—>HYV, —p*Lp—({t—-1)L)—
HY(D, —tLp)=0 for t=1, we obtain AV, —p*Lp)=h'(V, —p*Lp—tL) for every
tz0. The last term vanishes for t»0 by (1.2). So H'(V, —p*Lp)=0.

This claim implies that H(V, L—p*Ly)—~HYD, Op) is surjective. So we
have se HYV, L—p*Lp) such that ¢p induces the isomorphism Lp=(o*Lp)p. Now,
setting @p)=:Rp*¢ for pe HY(D,tLp), we obtain a f-algebra homomorphism
@ : GD, Lpy)y~G(V,L). Clearly #,-®, is the identity for the restriction mapping
v HYV,tL)y->HYD,tLp). Therefore HYV,tL)=Im ($)PKer (;). Take de
HYV,L) such that D is the zero divisor of 6. Then Ker (r)=3H"(V,(¢—1)L).
From these observations we infer that G(V, L) is the polynomial algebra over
Im (@)=G(D, Lp) generated by 6. Thus we complete the proof.

(3.2) Corollary. If in addition L is ample on V, then V is isomorphic to
the cone obtained by contracting a section of P=Py(Lo@Cp) with normal bundle
=[{—Lpl to a normal point. In particular, V is not smooth unless (D,Lp)=
(P o).

(3.3) Corollary. If L is very ample, then V is a projective cone over D.
In particular, (D, Lp) is projectively normal since V' is normal.

Proof. Let &y, -+, &y be a basis of H%D, Lp) and set &;=0(,) for j=1,.--,
M. Then 6, &, -+, & is a basis of A%V, L). For any relation R, -+, {xn)=0
in G(D, Lp), we have R(&, ---,&x)=0 in G(V,L). Hence V" is a cone over D.

(8.4) By virtue of results in §2, (3.1) applies if (D, Lp) is a polarized
manifold of the following types:

a) P"' unless n=char (#)=3.

b) Grassmann variety G, unless r=m—r=2, r=1 or m—r=1.
c) Product of them.

d) Those of the types in (2.10) and (2.12), when char (8)=0.

(8.5) Remark. Combining (2.11) and (3.1), we obtain the following result
in case ®=C.

Suppose that D is non-singular, L is ample and that H WV, TI=L)—~HD, Op)
is surjective. Then V is the cone over D as in (3.2).

This follows also from J. Wahl's result [W; Theorem 2]. Indeed, we have
0eHYV,TIL]) as in (2.9). Let @ be the sheaf of f®-derivations of @p. By (1.6),
@ extends to a section ¢ of ® on an open neighborhood U of D in V. V-U is
a finite set since D is ample. So § extends to a section of @ on the whole
space V' because & is reflexive and has depth =2. Hence J. Wah!l's theorem
applies.

It is amusing to note that the same phenomenon can be interpreted in
different ways.
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