Rational Retractions onto Ample Divisors

By Takao Fujita

Department of Mathematics, The College of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received February 8, 1983)

Introduction

This paper is a continuation of the studies in [S1], [S2], [F1], [F3] and [B]. Here we are interested in the following problem: Let D be an ample effective divisor on a normal variety V. Then, does there exist a rational mapping $\rho: V \rightarrow D$ defined on an open set U containing D such that the restriction of ρ to D is the identity?

If the answer is Yes, we can show that V must be a cone over D under certain mild conditions (see § 3). In particular, V cannot be non-singular in this case. Motivated by these observations, we will give several sufficient conditions for the affirmitive answer to the above problem (see § 2). It turns out that our method works well for various types of manifolds D (see (3.4)).

§ 1. Preliminaries

Basically we employ the notation as in [F1] and [F3].

- (1.1) Throughout in this paper we will study the following situation: V is a normal complete variety of dimension $n \ge 3$ defined over an algebraically closed field \Re of any characteristic. L is a line bundle on V and D is a member of |L|. We assume that V is non-singular along D and that the restriction of L to D is ample. The formal completion of V along D will be denoted by \hat{V} .
- (1.2) Lemma. Let F be a line bundle on V such that $FC \ge 0$ for every curve C in V. Then there exists an integer k such that $H^1(V, -F-tL)=0$ for any $t \ge k$.
- Proof. $|F+sL| \neq \emptyset$ for some s>0 by [F5; (6.5)], since $L^n = L_D^{n-1}\{D\} > 0$. Taking a member E of |F+sL|, we apply [F7; (7.5)].
- (1.3) Theorem. There exists a birational morphism $\pi: V \to V'$ onto a normal variety V' such that π is an isomorphism on a neighborhood of D and $D' = \pi(D)$ is an ample divisor on V'.

For a proof, see [H; p. 110].

(1.4) Corollary. If char $(\Re)=0$ and if V is non-singular, then $H^q(V,\mathcal{O}_V)\cong H^q(D,\mathcal{O}_D)$ for any q< n-1.

Indeed, $H^i(V, -L) = 0$ for i < n by Ramanujam's theorem [R].

(1.5) Corollary. If char $(\Re)=0$ and both V and D are smooth, then the

natural mapping α : Alb $(D) \rightarrow$ Alb (V) and r: Pic 0 $(V) \rightarrow$ Pic 0 (D) are isomorphisms. Proof. Both are étale by (1.4). Suppose that $F \in \text{Ker}(r)$. From the exact sequence $0 \rightarrow \mathcal{O}_V[F-L] \rightarrow \mathcal{O}_V[F] \rightarrow \mathcal{O}_D \rightarrow 0$ we infer $h^1(V, F-tL) \leq h^1(V, F-(t+1)L)$ for every $t \geq 1$. Hence $h^1(V, F-L) \leq h^1(V, F-tL)$ for any t > 1, while the latter vanishes for $t \gg 0$ by (1.3). So $H^1(V, F-L) = 0$ and $h^0(V, F) \geq h^0(D, \mathcal{O}_D) = 1$. This imples $F \cong \mathcal{O}_V$ since $F \in \text{Pic}^0(V)$. Thus we see that r is injective and is an isomorphism. Hence so is α .

- (1.6) Theorem. The effective Lefschetz condition Leff (V, D) is satisfied. This means the following:
- 1) For any open set $U\supset D$ and any locally free sheaf E on U, there exists an open set U' with $D\subset U'\subset U$ such that the mapping $H^0(U',E)\to H^0(\hat{V},\hat{E})$ is bijective, where \hat{E} is the restriction of E to \hat{V} .
- 2) For any locally free sheaf E on \hat{V} , there exist an open set $U \supset D$ and a locally free sheaf E on U such that $\hat{E} = E$.

For a proof, see [G; Exposé X] or consult $[H; \S 4]$. Note that we may assume that L is ample by virtue of (1.3).

§ 2. Existence of a rational retraction

- (2.1) A rational mapping $\rho: V \rightarrow D$ is called a *rational retraction* of V onto D if ρ is defined on a neighborhood U of D and if the restriction of ρ to D is the identity.
- (2.2) Proposition. Let F be a line bundle on D with $Bs|F|=\emptyset$ and let $f: D \rightarrow W \subset P^N$ ($N=\dim|F|$) be the morphism defined by the linear system |F|. Suppose that $H^q(D, F-tL_D)=0$ for every $t\geq 1$, $q\leq 1$ and that F comes from $Pic(\hat{V})$. Then there is a rational mapping ρ of V onto P^N defined on a neighborhood of D such that the restriction of ρ to D is the morphism $f: D \rightarrow P^N$. Moreover, if $\dim W < n-1$, then $Im(\rho) = W$.

Proof. By (1.6) we have a line bundle \tilde{F} on an open set U containing D such that $\tilde{F}_D = F$ and $H^0(U, \tilde{F}) \cong H^0(\hat{V}, \hat{F}) \cong H^0(D, F)$. Hence $|\tilde{F}|$ gives a rational mapping ρ with the desired property. To prove the second assertion, we may assume that ρ is defined everywhere on V by replacing V by the normalization of the graph of ρ . Then we infer $\rho(V) = W$ by the same technique as in [F1; (2.7)].

(2.3) Corollary. When $D \cong P^{n-1}$, there exists a rational retraction of V onto D unless $n = \operatorname{char}(\Re) = 3$ and $L_D = \mathcal{O}(3s)$ for some $s \in \mathbb{Z}$.

Proof. The obstruction of extending $F = \mathcal{O}_D(1)$ to Pic (\hat{V}) lies in the \Re -vector spaces $\{H^2(D, -tL_D)\}_{t=1,2,...}$. On the other hand, L_D and $\omega_D = \mathcal{O}_D(-n-1)$ come from Pic (\hat{V}) because V is non-singular along D. Hence F comes from Pic (\hat{V}) except the case described above. So (2.2) applies if $L_D \neq F$. If $L_D = F$, use [F4; (4.3)].

(2.4) Corollary. Let $f: D \rightarrow S$ be a morphism onto a projective variety S with $\dim S \leq \dim D - 2 = n - 3$, $f_*\mathcal{O}_D = \mathcal{O}_S$. Assume that $\operatorname{char}(\Re) = 0$ and D is non-singular. Then f extends to a rational mapping $\rho: V \rightarrow S$ defined in a neighborhood of D.

Proof. We may assume $n \ge 4$. So, for a very ample line bundle H on S, we infer that F = f * H come from $Pic(\hat{V})$. By the technique in [F1; (2.9)], we see that (2.2) applies.

(2.5) Corollary. Suppose that $D \cong X \times Y$ for some varieties X, Y such that $\dim X \ge \dim Y \ge 2$, $h^1(X_y, -tL_y) = h^1(Y_x, -tL_x) = 0$ for every $t \ge 1$ and for every general point x, y on X, Y respectively, where X_y (resp. Y_x) is the fiber over y (resp. x) of the projection $D \to Y$ (resp. x) and x (resp. x) is the restriction of x to it. Assume further that x0, x1 and x2 for every x3. Then there exists a rational retraction of x2 onto x3.

Proof. Pic $(\hat{V}) \rightarrow \text{Pic}(D)$ is surjective by the last assumption. Let A be a very ample line bundle on X and let $p: D \rightarrow X$ be the projection. For every $t \ge 1$ we infer $H^1(D, p*A - tL_D) = 0$ by the method in [F1; (2.5)]. Applying (2.2) to F = p*A we extend p to a rational mapping $V \rightarrow X$ defined on a neighborhood of D. Similarly we extend $D \rightarrow Y$. Combining these extensions we obtain a rational retraction, as desired.

Remark. If $char(\Re)=0$ and X, Y are non-singular, then the assumptions on cohomology groups are valid by the vanishing theorem of Kodaira. This remark applies also to the following

(2.6) Corollary. Suppose that $D \cong X \times Y \times Z$ for some varieties X, Y, Z such that $\dim X \ge \dim Y \ge \dim Z \ge 1$, $h^1(D_x, -tL_x) = h^1(D_y, -tL_y) = h^1(D_z, -tL_z) = 0$ for every $t \ge 1$ and any general point x, y, z on X, Y, Z respectively, where D_x (resp. D_y , D_z) is the fiber over x (resp. y, z) of the projection $D \to X$ (resp. Y, Z) and L_x (resp. L_y , L_z) is the restriction of L to it. Assume further that $H^2(D, -tL_D) = 0$ for every $t \ge 1$. Then there exists a rational retraction of V onto D.

Proof is similar to that in (2.5).

(2.7) Proposition. Suppose that $D \cong G_{m,r}$, the Grassmann variety parametrizing r-dimensional vector subspaces of \Re^m . Then there exists a rational retraction of V onto D unless r=1, m-r=1 or r=m-r=2.

Proof. Similarly as in [F2], we can extend the universal bundle E on D to a vector bundle \hat{E} on \hat{V} such that $H^0(\hat{V},\hat{E}) \cong H^0(D,E)$. By (1.6) \hat{E} extends further to a vector bundle \tilde{E} on an open set U containing D such that $H^0(U,\bar{E}) \cong H^0(\hat{V},\hat{E})$. So, by the standard method for defining a rational mapping to $G_{m,r}$, we obtain a desired rational retraction.

(2.8) From now on, in this section, we consider the case in which char (\Re) =0 and D is non-singular.

Proposition. Suppose that D is an abelian variety. Then there exists a rational retraction of V onto D.

Proof. By the desingularization theory we may assume that V is non-singular. Then the Albanese mapping of V gives a desired retraction by (1.5).

Warning. One might think that this method works if D is birationally equivalent to an Abelian variety. But this is not true. The Albanese mapping gives a rational mapping $\rho: V \rightarrow D$, but ρ is not necessarily defined in a neighborhood of D. To construct a counterexample, take an Abelian surface A and a very ample line bundle H on A. Let $V = A \times P^1$, $L = p_1^* H \otimes p_2^* \mathcal{O}_P(1)$ and let D be a general member of |L|. Then L is very ample on V and D is a

blowing-up of A with center being H^2 points. But one easily sees that there is no rational retraction of V onto D.

(2.9) Theorem. Suppose that char $(\Re)=0$, D is non-singular and that $H^1(D, T^D[-tL_D])=0$ for every $t\geq 1$, where T^D is the tangent bundle of D. Then there exists a rational retraction of V onto D.

Proof. By the desingularization theory we may assume that V is non-singular. Let T be the tangent bundle of V. Similarly as in [F3; (1.2)], we infer $H^1(D, T[-tL]_D)=0$ for any $t\geq 2$, which implies that $H^0(\hat{V}, \hat{T}[-\hat{L}]) \to H^0(D, T[-L]_D)$ is surjective. Letting N be the normal bundle of D in V, we infer that the natural matting $H^0(D, T[-L]_D) \to H^0(D, N[-L_D]) \cong H^0(D, \mathcal{O}_D)$ is surjective because $H^1(D, T^D[-L_D])=0$ by assumption. So we have $\theta \in H^0(\hat{V}, \hat{T}[-\hat{L}])$ which is mapped to $1 \in H^0(D, \mathcal{O}_D)$.

Let \mathcal{G} be the ideal of D in V and set $\mathcal{O}_m = \mathcal{O}_V/\mathcal{G}^{m+1}$ for every $m \geq 0$. Then, of course, $\widehat{\mathcal{O}} = \operatorname{proj. lim} \mathcal{O}_m$ is the structure sheaf of \widehat{V} . Note that $\widehat{\mathcal{G}} = \mathcal{G}\widehat{\mathcal{O}}$ is an $\widehat{\mathcal{O}}$ -ideal and $\mathcal{O}_m \cong \widehat{\mathcal{O}}/\widehat{\mathcal{G}}^{m+1}$. Since $\theta \in H^0(\widehat{V},\widehat{T}[-\widehat{L}]) \cong H^0(\widehat{V},\widehat{\mathcal{G}}[\widehat{T}])$, θ can be viewed as a $\widehat{\mathcal{R}}$ -derivation of the sheaf $\widehat{\mathcal{O}}$ of $\widehat{\mathcal{R}}$ -algebras such that $\theta(\widehat{\mathcal{O}}) \subset \widehat{\mathcal{G}}$. So $\theta(\widehat{\mathcal{G}}^k) \subset \widehat{\mathcal{G}}^k$ for every k and θ induces a derivation θ_m of \mathcal{O}_m and an endomorphism θ'_m of $\widehat{\mathcal{G}}^m/\widehat{\mathcal{G}}^{m+1}$ for every $m \geq 1$. We easily check that θ'_m is actually \mathcal{O}_D -linear. Moreover, $\theta'_1 \in \operatorname{End}(\widehat{\mathcal{G}}/\widehat{\mathcal{G}}^2) \cong H^0(D, \mathcal{O}_D)$ is nothing but the image of θ of by the foregoing natural surjective mapping. Hence θ'_1 is an isomorphism. Since char $(\widehat{\mathcal{R}}) = 0$, we also see that θ'_m is an isomorphim for every $m \geq 1$. On the other hand, $\theta'_0 = 0$ is clear.

Now, for any affine open set U in D and any $\phi \in H^0(U, \mathcal{O}_{m-1})$ with $\theta_{m-1}(\phi) = 0$, we claim, there exists one and only one element ϕ_m of $H^0(U, \mathcal{O}_m)$ such that $\theta_m(\phi_m) = 0$ and ϕ_m is mapped to ϕ by the natural homomorphism $\mathcal{O}_m \to \mathcal{O}_{m-1}$. To see this, take $\phi' \in H^0(U, \mathcal{O}_m)$ which is mapped to ϕ . Then $\theta_m(\phi') \in \widehat{\mathcal{J}}^m / \widehat{\mathcal{J}}^{m+1} \subset \mathcal{O}_m$ since $\theta_{m-1}(\phi) = 0$. By the surjectivity of θ'_m we have $\delta \in H^0(U, \widehat{\mathcal{J}}^m / \widehat{\mathcal{J}}^{m+1})$ such that $\theta'_m(\delta) = \theta_m(\phi')$. Then $\phi_m = \phi' - \delta$ has the desired property. The uniqueness of ϕ_m follows from the injectivity of θ'_m .

Given any $\varphi \in H^0(U, \mathcal{O}_D)$, we apply the above claim repeatedly to obtain $\{\varphi_m\}$ $\in H^0(U, \widehat{\mathcal{O}})$ such that $\varphi_0 = \varphi$ and $\theta_m(\varphi_m) = 0$ for every $m \ge 0$. By the uniqueness we infer that this construction gives rise to a homomorphism $\theta^* : \mathcal{O}_D \to \widehat{\mathcal{O}}$ of sheaf of rings.

Take a very ample line bundle H on D. We define $\theta^*H \in \operatorname{Pic}(\hat{V})$ in the obvious way. Moreover, we have a mapping $\theta^* \colon H^0(D,H) \to H^0(\hat{V},\theta^*H)$ such that $\theta^*\zeta_D = \zeta$ for any $\zeta \in H^0(D,H)$. Using (1.6), we take a neighborhood V_0 of D in V and a line bundle \hat{H} on V_0 such that the restriction of \hat{H} to \hat{V} is θ^*H and $H^0(V_0, \hat{H}) \cong H^0(\hat{V}, \theta^*H)$. Take a basis $\zeta_0, \zeta_1, \cdots, \zeta_M$ of $H^0(D,H)$ and let $\zeta_j \in H^0(V_0, \hat{H})$ be the extension of $\theta^*\zeta_j \in H^0(\hat{V}, \theta^*H)$. Then ζ_j 's define a linear system \hat{A} on V_0 such that $\hat{A}_D = |H|$. Moreover, for any relation $R(\zeta_0, \cdots, \zeta_M) = 0$ in $\bigoplus_{t \geq 0} H^0(D, tH)$, we have $R(\theta^*\zeta_0, \cdots, \theta^*\zeta_M) = 0$ on \hat{V} and hence $R(\zeta_0, \cdots, \zeta_M) = 0$ in $\bigoplus_{t \geq 0} H^0(V_0, t\hat{H})$. Therefore \hat{A} gives a rational mapping onto $D \subset \mathbf{P}^M$, which is a desired rational retraction.

- (2.10) Remark. There are various types of polarized manifolds (D, L_D) which satisfy the condition in (2.9) (see [F3]). For example we have:
- a) Abelian varieties of dimension ≥ 2 .

- b) Kummer manifolds of dimension ≥ 3 .
- c) Grassmann varieties $G_{m,r}$ unless r=1, m-r=1 or r=m-r=2.
- d) Non-trivial product $D=D_1\times D_2\times D_3$.
- e) $D=D_1\times D_2$ with dim $D_1\geq \dim D_2\geq 2$.
- f) $D=D_1\times D_2$, the cotangent bundles of both D_1 and D_2 are generated by global sections.
- g) $D=D_1\times D_2$, dim $D_1\geq 2$ and the cotangent bundle of D_1 is generated by global sections.
- h) Fiber bundle $D \rightarrow S$, with fiber satisfying the condition (2.9).
- i) Manifolds which are isogenous to a manifold satisfying the condition (2.9). Here, M and M' are said to be isogenous to each other if they are dominated by a common manifold via étale morphisms.
- j) Blowing-ups of manifolds of dimension ≥ 3 as above with center being finitely many points.
- k) Any small deformation of polarized manifolds (D, L_D) satisfying the condition (2.9).

In particular, (2.9) gives a new proof of (2.8).

- (2.11) Remark. The argument in (2.9) proves also the following: If the natural mapping $H^0(\hat{V}, \hat{T}[-\hat{L}]) \rightarrow H^0(D, N[-L_D]) \cong H^0(D, \mathcal{O}_D)$ is surjective, then there exists a rational retraction of V onto D.
- (2.12) Proposition. Suppose that char $(\Re)=0$, D is non-singular and that the cotangent bundle Ω^D of D is a direct sum of two vector bundles E, F of positive rank which are generated by global sections. Then there exists a rational retraction of V onto D.

Proof. The Albanese mapping $\alpha_D\colon D{\to} {\rm Alb}\,(D)=A$ is étale over the normalization W of the image $\alpha_D(D)$ because $\alpha_D^* \Omega^A \to \Omega^D$ is surjective by assumption. In particular W is smooth and $T^D \cong \alpha_D^* T^W$. To prove the assertion, we may assume that V is non-singular. Then ${\rm Alb}\,(V)\cong A$ by (1.5). Moreover, using (1.4), we infer $\alpha_V(V)=\alpha_D(D)$ by the same method in [S1; Proposition I]. Hence we obtain a morphism $f\colon V{\to}W$ which is an extension of $D{\to}W$. Restricting the homomorphism $f_*\colon T^V{\to} f^*T^W$ to D, we get a splitting of the exact sequence $0{\to}T^D{\to}T^V_D{\to}N{\to}0$, since $T^D\cong T^W_D$. Therefore $F_D\cong N\cong L_D$ for $F={\rm Ker}\,(f_*)$. Since $H^1(D,[F-tL]_D)=0$ for every $t\cong 2$, we infer that $H^0(\hat{V},\hat{F}-\hat{L}){\to}H^0(D,\mathcal{O}_D)$ is surjective. This implies $\hat{F}=\hat{L}$ in ${\rm Pic}\,(\hat{V})$. Now, the inclusion $F{\to}T^V$ gives $\theta\in H^0(\hat{V},\hat{T}[-\hat{L}])$ as in (2.9). So, by (2.11), we obtain the conclusion.

§ 3. Characterization of cones

(3.1) Theorem. Suppose that there exists a rational retraction ρ of V onto D and that $H^1(D, -tL_D)=0$ for every $t \ge 1$. Then the graded algebra $G(V, L)=\bigoplus_{t\ge 0}H^0(V, tL)$ is isomorphic to the polynomial algebra with one variable of degree one over the graded algebra $G(D, L_D)=\bigoplus_{t\ge 0}H^0(D, tL_D)$.

Proof. Replacing V by the normalization of the graph of the rational mapping ρ , we may assume that $\rho: V \to D$ is a morphism. Then we claim $H^1(V, -\rho^*L_D)=0$.

Indeed, by the exact sequence $H^1(V, -\rho^*L_D - tL) \to H^1(V, -\rho^*L_D - (t-1)L) \to H^1(D, -tL_D) = 0$ for $t \ge 1$, we obtain $h^1(V, -\rho^*L_D) \le h^1(V, -\rho^*L_D - tL)$ for every $t \ge 0$. The last term vanishes for $t \gg 0$ by (1.2). So $H^1(V, -\rho^*L_D) = 0$.

This claim implies that $H^0(V, L-\rho^*L_D)\to H^0(D,\mathcal{O}_D)$ is surjective. So we have $\varepsilon \in H^0(V, L-\rho^*L_D)$ such that ε_D induces the isomorphism $L_D\cong (\rho^*L_D)_D$. Now, setting $\Phi_t(\varphi)=\varepsilon^t\otimes \rho^*\varphi$ for $\varphi\in H^0(D,tL_D)$, we obtain a \Re -algebra homomorphism $\Phi:G(D,L_D)\to G(V,L)$. Clearly $r_t\cdot \Phi_t$ is the identity for the restriction mapping $r_t\colon H^0(V,tL)\to H^0(D,tL_D)$. Therefore $H^0(V,tL)\cong \mathrm{Im}\ (\Phi_t)\oplus \mathrm{Ker}\ (r_t)$. Take $\delta\in H^0(V,L)$ such that D is the zero divisor of δ . Then $\mathrm{Ker}\ (r_t)=\delta H^0(V,(t-1)L)$. From these observations we infer that G(V,L) is the polynomial algebra over $\mathrm{Im}\ (\Phi)\cong G(D,L_D)$ generated by δ . Thus we complete the proof.

- (3.2) Corollary. If in addition L is ample on V, then V is isomorphic to the cone obtained by contracting a section of $P = P_D(L_D \oplus \mathcal{O}_D)$ with normal bundle $\cong [-L_D]$ to a normal point. In particular, V is not smooth unless $(D, L_D) \cong (P^{n-1}, \mathcal{O}(1))$.
- (3.3) Corollary. If L is very ample, then V is a projective cone over D. In particular, (D, L_D) is projectively normal since V is normal.

Proof. Let ζ_1, \dots, ζ_M be a basis of $H^0(D, L_D)$ and set $\xi_j = \emptyset(\zeta_j)$ for $j = 1, \dots$, M. Then δ , ξ_1, \dots, ξ_M is a basis of $H^0(V, L)$. For any relation $R(\zeta_1, \dots, \zeta_M) = 0$ in $G(D, L_D)$, we have $R(\xi_1, \dots, \xi_M) = 0$ in G(V, L). Hence V is a cone over D.

- (3.4) By virtue of results in §2, (3.1) applies if (D, L_D) is a polarized manifold of the following types:
- a) \mathbf{P}^{n-1} unless $n = \operatorname{char}(\Re) = 3$.
- b) Grassmann variety $G_{m,r}$ unless r=m-r=2, r=1 or m-r=1.
- c) Product of them.
- d) Those of the types in (2.10) and (2.12), when char $(\Re) = 0$.
- (3.5) Remark. Combining (2.11) and (3.1), we obtain the following result in case $\Re = \mathbb{C}$.

Suppose that D is non-singular, L is ample and that $H^{0}(\hat{V}, \hat{T}[-\hat{L}]) \rightarrow H^{0}(D, \mathcal{O}_{D})$ is surjective. Then V is the cone over D as in (3.2).

This follows also from J. Wahl's result [W; Theorem 2]. Indeed, we have $\theta \in H^0(V, \hat{T}[\hat{L}])$ as in (2.9). Let Θ be the sheaf of \Re -derivations of \mathcal{O}_V . By (1.6), Θ extends to a section $\tilde{\theta}$ of Θ on an open neighborhood U of D in V. V-U is a finite set since D is ample. So $\tilde{\theta}$ extends to a section of Θ on the whole space V because Θ is reflexive and has depth ≥ 2 . Hence J. Wahl's theorem applies.

It is amusing to note that the same phenomenon can be interpreted in different ways.

References

- [B] L. Bădescu; On ample divisors, Nagoya Math. J. 86 (1982), 155-171.
- [F1] T. Fujita; On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan 32 (1980), 153-169.
- [F2] T. Fujita; Vector bundles on ample divisors, J. Math. Soc. Japan 33 (1981), 405-

- 414.
- [F3] T. Fujita; Impossibility criterion of being an ample divisor, J. Math. Soc. Japan **34** (1982), 355-363,
- [F4] T. Fujita; On polarized varieties of small Δ-genera, Tôhoku Math. J. 34 (1982), 319-341.
- [F5] T. Fujita; Semipositive line bundles, preprint.
- [G] A. Grothendieck; Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux (SGA), North-Holland, Amsterdam, 1968.
- [H] R. Hartshorne; Ample subvarieties of algebraic varieties, *Lecture Notes in Math.* **156**, Springer, 1970.
- [R] C.P. Ramanujam; Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. (N.S.) **36** (1972), 41-51.
- [S1] A. J. Sommese; On manifolds that cannot be ample divisors, Math. Ann. 221 (1976), 55-72.
- [S2] A. J. Sommese; Hyperplane sections, Proc. 1st Midwest Algebraic Geometry Conference, Chicago Circle—May 1980, to appear.
- [W] J. M. Wahl; A cohomological characterization of P^n , preprint.