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0. Introduction

Let P=D;+|Dy|*=i""0/0t—4 be the Schrédinger operator, where D,=(Di,
-+, D) denotes i7(3/dxy, --+, 0/0xzn). We consider the initial value problem:

P-u=0 in RtXng

0.1
%0 =0(x) on RZ.

This has a unique solution FE, in C™(R,:S'(Ry). In fact, E, is given by the

following oscillatory integral:

0.2) Eilt, v)= (Zn)“"Se“‘“m“:)“‘f’z’dé,

where {x,&>=x& + - +x.n. The distribution E, is analytic in ##0. That is,
0.3) B¢, x)=(~/datt) " exp(— |x|*/4ti), t+0,

where Vai=+/|q| ¢!*" 2@ for geR. Now set formally

0.4) E.(t, 2)=1Y)Et, z),

where Y denotes the Heaviside function, and operate P also formally. Then
we obtain

0.5) L PE.=00Et, )i Y(E) (P Eo) (2, 2)=80)d(x).

However, the general theory on the wave front set (see e.g. Hérmander [5])
does not tell us that the product (0.4) can be well defined, since it can be seen

immediately that
WE(Y)={0,z, £2dHeT*R"*\0; zecR", i>0},

and
0,0, —dt)e WE(E,).
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In this paper, employing the quasi-homogeneous wave front set introduced
by Lascar in [8], we show that such a product as in (0.4) becomes well defined
in the space of distributions. In addition to this, using the expression (0.2),
(0.4), we give the precise estimate of the singularities of £.. And more gener-
ally in section 3, combining with a technique of the asymptotic expansion, we
construct micro-parametrices for a class of quasi-homogeneous pseudo-differential
operators with real principal symbols.

During the preparation of this paper, Parenti-Segala [10] also constructed
micro-parametrices and proved the propagation and reflection of singularities for
more general class of operators. See also Ohtsuka [9], who studied the reflec-
tion of singularities for the Schridinger operator. However, our construction
is different in some points and we believe that ours is more natural at least
concerning the Schriidinger operator. - Especially, our construction clarifies some
refined structure of singularities of fundamental solutions for quasi-homogene-
ous differential operators, as an extension of the classical Duhamel’s principal,
Also, the precise estimate of the quasi-homogeneous wave front set obtained
here (Theorem 2.1) seems to be unknown in the literature.

1. Quasi-homogenecous wave front set

Let us fix some notation. x=(xy, -, x,) denotes an element of R”, £=¢,
.-+, &) an element of R, ; the dual space of B*. A multi-weight on R, is a #-
tuple M=(in, -, pta) of real numbers satisfying min{y;}=1. For &=(&, -, &u)€
R\0 and 2>0 we put 2¥&=(1"&,, -+, 4"E,). A subset I'cR,\0 (resp. VCR"X
(RN\0)) is called M-cone, if it is invariant under the transformation: &—2%¢
(resp. (z, &)——(z, 2%&)) for all 2>0. [£ly denotes a corresponding weight func-
tion on R, defined as follows: For a given £'e¢R,\0, we can uniquely take
2>0 and w’eS™!'={EecR,; |£]°=T |5;|*=1} so that £2=2w’. For such A, «® we
define [&°ly=2, and by convention [0]lx=0. From the very definition [£]y has
the weighted homogeneity [A7&],y=2[&]x and satisfies, with a positive constant C,

C Bl =[Elr=C D €119,

S% denotes a class of symbols of M-pseudo-differential operators., That is, by
Pla, £)eSE we mean :

(i) H@,E)eC(R"X Ru).
(ii) For all multi-indices «, 8 the estimate

(0508 plew, $)| = Co, (L +[ELar)m 0
is. valid with some constant C,, ;.

Moreover, we say that p(x, &) belongs to a class of symbols of the classical M-
pseudo-differential operators if p(x, &) has the following asymptotic expansion:

p("l;y "S) -~ pm(ﬂ’f', E)+ E?——-l ij(ﬂf, E)v
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where m—1>m, >m,>--——co and each term pn; has the weighted homogeneity :
pmj(-fc, AME)= ijpmj(l'y &), 1> 0.

This subclass of symbols is denoted by S%.. and in such an expansion the top
term pn is called the principal symbol. The operation P of p(z, £)eSy on ue
S(R™) is defined by:

Pou(z)=p(x, Ds)u(x)
=@\ p(a, ez,
where # is the Fourier transform of #:
wE)= Se""”'“u(y)d'y-

In what follows, we only use operators of the classical type.
We employ the following definition of the quasi-homogeneous wave front
set. It corresponds to Proposition 3.6 of Lascar [8].

DerintTion 1.1, If we@/(R"), then WFy(u) denotes the closed subset in
R"X(R,\0) defined in the following way: For (29, &)eR"xX(R,\0),

(&, ENE W F3(2)

means that there exist a «/)eC;“(R") satisfying ¢(z")#0 and a neighborhood Uc
R,\0 of & such that for every integer N we have, with a suitably chosen
constant Cu,

N
1.1 lpa(AME) <Cna~¥,
for A>0, uniformly in &eU.

Remark 1.2. 1t is clear that WFy(#) is a closed M-cone in R™X(R,\0).
This is a natural extension of the wave front set in C*-category. In fact, when
we take M=(1,---,1) it is reduced to the usual wave front set.

Among basic techniques in pseudo-differential operators we have partitions
of unity in the dual space. Therefore, we present the following lemma though
the proof is routine.

Lemma 1.3, Let (I}, be an arbitrary open M-comic covering of Ri\0.
Then we can construct a corvesponding * pseudo-differential partition of unity”
{¢}ie  Here goeCP(Ry) which is equal to 1 in a neighborhood of the origin, and
$1€SH.a S0 that supp ¢;C 1y, §=1,2, -, N, and they satisfy 2o ¢i=1 on Ry
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Next, we state the micro-local inversion theorem for M-pseudo-differential
operators, which is Proposition 3.3 of Lascar [8].

THEOREM 1.4. Let P=p(x, D;)eSE. . Then for every ue D'(R™) we have
(1.2) WEy(P-u) Wy (1) WEy(P1)U X n(P),
where

Yu(P)={(z, HeR"X(Ru\0); pu(z,£)=0}.

Qutline of Proof. Suppose p(x, &)~pu(x, &)+ T pufx, §). If pu(a’, £)#0, then
we can construct a left microparametrix g(x, £)€Si% such that g(z, Di)-ple, D)=
identity +#(xz, D). Here #(z, &) is of order —oo, in some M-conic neighborhood

of (a2 &").

Now we shall give one of the main results of this paper concerning the
product of two distributions. This is absent from the results of Lascar [8] or

Parenti-Segala [10].
THEOREM 1.5. Let wy, u.€ PQ'(R™). If
(@, 0)&{(w, &' +ENeR" X (Ru\O) 5 (2, §)e WEu(uy), j=1,2},

then, on some neighborhood UCR" of x°, we can natuvelly define the product
i, as « distribution.  Moreover, for every eCy(U) we have

(l 3) WFM(giulug)C VVFM(ul) U T"VFM(%?,) U {(JL‘, 51 +EE) 3
zesupp ¢ and (x, &)e WEy(u;), i=1, 2}.

First, we prove the following elementary inequality.

Lemma 1.6, Let I'y, Iy be closed M-cones in R,\0, satisfving
1.4 O/ +17%.

Then there exists a positive constant C such that for every p=8+8, with &el .
i=1,2 we have

(1.5) [l =2 C(LE 0 +[E ).

Proof. Take w/eS™ ! so that &/=¥w/ with =[]y, j=1,2. Consider
[l /(& 1 + [ ]a) = [ 0" + A 0 Tar /(A1 + 2o).

This becomes homogeneous of degree 0 with respect to (4, 4) and approaches
1 as either of 2, approaches 0, thus can be regarded as a continuous function
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on f}waifX{(Zl,?tz)eRz; 4,0, 2;>0and 2, +4,=1}, where f’}; =1,nS"1, j=1,2.
Therefore, the minimum is attained on this compact set, which, however, cannot
be 0 by the hypothesis (1.4).

Proof of Theorem 1.5. We define the product in the dual space as a con-
volution. Choose a neighborhood Uc R" of x° sufficiently small. Then we can
find closed M-cones 'y, I% in R,\0 satisfying (1.4), such that for every ¢eCi(U),

N VAN
du, resp. ¢u, are rapidly decreasing in the complement of Iy, resp. I'y. Taking

account of the inequality (1.5) we can easily show that g@;*qﬁjz?z(f) has polynomial
growth. The estimate (1.3) follows immediately if one divides the integral by
a pseudo-differential partition of unity. The proof of the theorem is complete.

This result, combined with Theorem 1.4, justifies the product (0.4). We
present another typical example of such a product.

Example 1.8. Consider P=D,+ D2 on R%. If uc 9’(R?) satisfies P-uecC”(R?),

then we have, with M=(2,1),
WEy(u)C R} {(— k% +k)eR.\0; £>0}.
Thus we can define, for every integer /, the /-th power of #:
I
iAoy
w=u-2u- - ucP(R?).
Moreover, we obtain
WFy(u)C REx{(— k%, 0R)eRNO 5 >0, |0]< VT ).
If we consider products with the é-function of one variable, then follows
COROLLARY 1.9. Consider the space R, XRL. Let M=(y, pu,, ptn) be «

corresponding weight on the dual space and put M =, -, '), where pj'=
wilmin{e), 7=1,2, -, n. If ueD'(RiXR}) satisfies

(0,0)% (1,0, -, 0 WFu(x),

then theve exists a weighbovhood U of the origin in R: such that, for every integer
7, the restriction u{=Diu),., is well defined as a distribution on U. And we

have for every ¢eCX(U),
(1.6) WEy (pud)C{(z, £)e R* X (R:\0) ; wesupp ¢ and
0, z, 7, &)e WEu(u) for some z}.

The two following assertions are proved by using pseudo-differential parti-
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tions of unity.

ProrosiTioN 1.10. Under the same notation as in Corollary 1.9, assume
ue D (R X R™ has a proper support in R X R: under the projection Ry X R (t, z)
+—sxeR%:. Then for the integration along fibres

1.7 f(:c):Su(t, @)ite D'(RY),

which is defined by the duality

{Fyepa=Ltt, \Q¢)ea Sfor every peCT(RY),
we have
1.8) WEu{f)c{(x, &) e R*" X (R\D); (¢, x, 0, &)e WFy(x) for some £}.

TuEOREM 1.11. Let e &'(R™), use D'(R"). Then we have for the convolu-
tion uyxis

(1.9) WEy(eou:)C{{x' + 2%, E)e R* X (R\D) ; (27, £)e WEy(u;), j=1,2}.

Remark 1.12. Theorem 1.11 is a special case of the estimate (2.4) in
Parenti-Segala [10].

2. Fundamental solutions for the Schrodinger operator
Now let us return to the study of the Schridinger operator P=D,+|D,|* in
R:xR:. As mentioned in the introduction,

2.1 Eult, x)z(2,5)—7&531(@,@—:1&12)(15

is the unique solution in C=(R.: S’(R%)) of the following :
Pu=0 in R¢><R;l;,

(2.2)

2% t0 =0(x) on RZ.

Then in view of Theorem 1.4, 1.5, the products

(2.3) B 2= Y (2DE, @) (Y': Heaviside function)

are well defined and satisfy

(2.4) P-E.=§ in R/XRX.

We obtain the following description of the singularities of £.. That is, the
quasi-homogeneous wave front set of E. agree with the union of half bicharac-
teristics in the corresponding direction.
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THEOREM 2.1. Let M=(2,1,---,1). We have
(2.5)+ WEu(E.)=1{(0, sk, —k|%, Rye R**' X (Ra+:\0) ;
kGRn\O, is>0} U ({0} X(R’IH—\\O)) .

Proof. We shall show this for £.. Consider
2.6) Bt )= ()" Y(t)se““*”"‘““d&.

Note that £, is analytic in #+0 and apply Theorem 1.4 to (2.4). Then we
obtain
PVFM(E*)C{(O’ €Ty, — lklgs k>eR7z H X(Rm-x\O) ) -’I'TGRn, kERn\O}
U {0} X (Rar\0)).

Next, we show that each element (—|&|% %) in the dual space appears in WFy(E.)
only on the half line {(0,sk)eR™*'; s=0}.

For a given ¢>0, we choose ¢.eC™([0, o)) s0 that ¢.=0 in [0,¢/2] and &.=1
in [e, o), and we set for a fixed k°eR,\0

1(E) =&/ 1E1 =R IR*)e(I£1),
2#E)=1—x(8).

Now we divide the integral in (2.6) into two parts

B\, w)=(r)"i Y(t)[Se"‘“‘”'”"“"‘z’xi(E)dS

+ S ei«m.e)—uelﬂ)zg(g)dé—:l

=(2n)"Y () [+ 1]

Obviously, we have

2.7 WFy(I) (0, 2, — k)%, B)e R X (Rusi\0)
xeR”, |k||k|—F[|R"|| <}

To study the singularities of

(2.8) Ii= gei((m,S)—tislz)Zi(E)d,E’

we need the following lemma:

LemMa 2.2. Assume z°eR™0 satisfies x°/|x°|=kY\E*|. Then for every ¢>0
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there exists a neighborhood UC R™ of x° such that we have
(2.9) IieC(R; x U),
where Ri ={teR; t>0).
Proof of Lemma 2.2. Choose a small neighborhood UcR® of z° so that
we have with some constant C>0
le~28]=C,

for every zelU, Sesupp i, and ¢>0. Then we define the differential operator L
whose formal adjoint is

‘L=|x—218|7% 5%, (w;—21£;)0/08;,
so that

QHCEO=UID b T | piln=1131D)
and substitute this in (2.8). After N-fold integration by parts we obtain
I3t 2)=eren =Ly ) 1 2, 0.

Put Fy(t,z, &)=LV ) (¢, =, &), then Fy satisfies for all multi-indices a, (7, f)
and zeU, >0
(2.10) 1810508 F (2, , )| <CL+ €]y~ 1-Y,
where C is a constant independent of 7,z. Since we can take an integer N
arbitrarily, (2.9) follows from the estimate (2.10).

End of Proof of Theorem 2.1. From the preceding lemma and (2.7) we
can conclude that away from the origin

(2.11) WEy(E.)c{(0, sk, — [k[*, k)e R** ' X (R0 \0) ; ke Ru\0, >0}

Finally, we must show the opposite inclusion.
Assume that for some 2z° the set:

{0, 2%, — |R|*, B)e R™ X (Ras:\0) 5 K[l ="[|2"]}

is not contained in WFuy(E,). Since E, is invariant under the action of the
orthogonal group O(n) on z-variables, it follows that £, is a smooth function in
some neighborhood of {(0, z)e R**'; {x|=|z°}. Choose peCy(R™') which is equal
to 1 on a neighborhood of

sing supp £ N{{¢, z)eR™"; |z] <]z},

and whose support is contained in {(Z, z)e R™'; |z| <|z°|}. Then for ¢E.e&'(R™")



Quasi-Homogeneous Wave Front Set 9
we have, with @eCy(R™),
(2.12) P(oE)=d+®.
We apply Theorem 3.6.1 of Hérmander [2] to (2.12) and obtain
(2.13) sing supp £, ={0}.

This implies hypo-ellipticity of P, which is a contradiction. Now the proof of
the theorem is complete.

Use £, as left parametrices, and apply Theorem 1.11. Then we obtain a
proof of the following result on the propagation of singularities, which is partial
but more natural compared with that of Lascar [8] or Parenti-Segala [10].

CororLARY 2.3. Let P=D,+|D,|* and M=(2,1,---,1). Then for every wue
9D (R X RY), the subset of Xyu(P):

WEy(u)\ WEFy(P-u)
is invaviant under the flow of the vector field in the hyperplane t=constant:
HYt =&, V=31, &50[0;.

3. Construction of micro-parametrices for a class of quasi-homogeneous
pseudo-differential operators

In this section, we construct right parametrices for a operator of the form:
3.1 P=Di+q(t,x,D,) in R,xRE.
Here we assume:

(A-I). geC~(R,: SB(R™) with an integer m>2.
That is, ¢4, z, &) has the asymptotic expansion :

Q(t) &Z, 5)'\"23’;0 Qm~j(t; xr, E)y

where gn-;eC(RXR"X(R,\0) is homogeneous of degree m—; with respect
to &

(A-II) The principal symbol g, of g is real.

We take a corresponding weight M=(m, 1, ---,1) and define the M-Hamiltonian
vector field HY following Lascar [8]:

(3.2) I}'H=Z?=‘1 [(Ogm[0& )8 [02 — (Bqn 0 1)B]0E ;]
Let @, denote the flow of A}, then we put
(3.3) CE={(p, p")eXu(PYXIu(P); p=0p’) for some +s>0}.
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Here C* and C- are the forward and backward characteristic relations. We
obtain a result on the existence of micro-parametrices (c.f. Theorem 6 of Parenti-
Segala [107).

TueoreM 3.1. Let P and M be as above. If p"=(1", 2% <°, §)eXu(P) satisfies
HY(p"#0. Then there exist a M-conic neighborhood VyCR™*'X(Rnii\0) of o
and distribution kernels E.(t, x,s, y)e D (R*' X R"™) such that

(i) supp E.c{( x, s, v)eR*' X R*'; £(t—s)=0},
(i) WFhnEoN(Vex Vic(duCHN (VX V),
() WFyan(P-Es—DN (VX Vi)=&,

where 4 denotes the diagonal set of (R**'X(Rn::\0))? and for E€9'(R™' X R*"),
WFEGe o E) is defined by :

fop(lll[,ﬂl)(E):{(t’ &Ly Ty Er S, Y, —0, —7]) ; (tr T, 8, Y, 7T, 67 7, 7))E VVF(M,M)(E)}'

Outline of Proof. We choose a neighborhood Vy of p° in the form:
Vu=TXUXTy,

where T=[{"—¢, t'-+¢] for some ¢>0, UCR" is a neighborhood of z", and I'yC
R,.,\0 is a M-conic neighborhood of (z*,£%). We put

I"={geR,\0; (z,§)el"y for some <},

which is a conic neighborhood of & in R,\0. As in H&rmander [3] we construct
a phase function ¢(s, z, v, £)eC(TxXUxUxI") so that

(1) ¢ is homogeneous of degree 1 with respect to & and
s, z, y, §)=Ce—y, & +0(le—y[*|ED).
@) Guls, @, Veh)=gm(s, v, €).
We consider the following oscillatory integral:

(34) Eo(t, Z, S, 'y)
:(Z,ﬂ.)—nSei(c‘(sa.T.ZI,:’)-(!-S)Qm(sy?ln‘))a(s’ x, Y, E)df)

with an amplitude function ¢eC”(Rs; S'(R,)), which we define afterwards so
that we have
WEan(P-EQN(VuxVu)=3.

Due to the asymptotic formula, we have
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(35) P'Eo(ty Z, S, 'Z/)
=(2ﬂ)—n§ei(:]r(s..z'.'!h:')——(t—s)qm(s,ll,S))/Z(t’ 2,8, Y, E)dg

Here / is given by:
(3.6) Wty @, 8,9, E)~—qu(s, v, E)als, z, v, &)
+ E It(agq> (Z, (L', FQ,)) fD;(ewza(s’ Z, 1/, E}lz=x]/a ! »

where ¢,=¢(s, 2, y, E)—¢(s, &, ¥, &) —Fad(s, z, ¥, &), z—ax). Now we define the dif-
ferential operator L whose formal adjoint is !L=g(s, z, v, &)+ K(s, v, &, V) so that

(3.7) (t_‘,S)ei(lr"(s.:l?,?/.5)-(t—s)flm(s.y‘5))

=(g(s, 2, v, )+ K(s, 1, &, Vy))et @ smth D=l (8.4,
That is,

g(sy T, Y, $)= IFéQWL(S’ Y, E)|—2<Veqm(3, Y ‘S)) V5¢(3, T, Y, E)>,
K(Sa Y, E’ V5)=i[‘75q,n(s, Y, E)!_2<qu7ﬂ-(sr Y, E), VE>-

Substitute the formal Taylor expansion of /4 with respect to ¢ around s in (3.5).
Then, on account of (3.7) and integration by parts, we obtain formally (3.5)
with /% replaced by A(s, z, ¥, &) with the asymptotic sum:

(3'8) - }l’;(s) Z, Y, ‘E)N'—qﬁb(sy Y, S)a(s, Z,Y, 5)
+ 25« L [(0108q) (s, 2, v, Fp) (Di(e¥2a)|s=a)]/r L}

We shall now choose the amplitude function a(s, z, ¥, &)~ >a.(s, z, ¥, &), where a,
is homogeneous of degree —v, so that a.(s, v, v, &)=1 and in (3.8) the sum of
all terms of order m—1—y with respect to & vanishes. This means, a, solves
a sequence of transport equations:

(3'9) <(qu'm) (S, Z, Vsl))’ D$>ap+(jm—1(s, Y, E)au::yw ”Z$27
(3'9), <(VeQ2) (S, Z, V¢'): -D&'>au+[61(si T, Y, E)+0(5, z, Y, E) (alqﬂ) (S) &y Vﬂb)](lu::ru)
where

qm—l(s: Z,Y, 5)=t]m—1(3s £, V¢)+Z!al=2 (a?QM) (S: Ty V¢’)X (a;(yb) (S, z, Y, 5)/10’! )

7, is determined by @, -, a.-; and independent of 0igm—; for j+(m—1)>v.
Summing up, we shall now define E, by (3.4), then for every integer N
we can write the symbol of P-E, in the following way:

P-E,= (zﬂ)nngeiw—-(t'—s)qm)[b]v -+ CN]dE R

57196



12 Tsutomu SAKURATI

Here
(1) bals, 2,9, HeC™(Rs: S™MUXI)).

(2) cxlt, @, sy, E)eCHTXUXTXUXI"), and satisfies for all multi-indices
e, B, B and (4, 2,5, 9, E)eTXUXTXUXI"

|8505 Btcw(t, 2, 8, 1, €)] < Clt—s V&,
where C is a constant independent of £, z, s, v.

Again with the integration by parts, since N is chosen arbitrarily, we conclude
that
WEyan(P-E)N(VuxVu)=0.

And the condition a.(s, v, v, &)=1 ensures the pseudo-differential operator
(3.10) Ey(s, z, s, 9)=Als, z, Dy), seT

being elliptic on Ux/7", where s is considered as a C®-parameter. Now we
construct A™'(s, z, D;) and set

(3.11) Et, x5 y)=+iY(x(—9) (B AT (¢, 2,5, 7).

Then, by similar arguments as in section 2, we can verify that E. satisfy all
requirements of the theorem.

If P satisfies the assumptions of Theorem 3.1, then its formal asjoint ‘P
has the same properties. Thus we obtain another proof of a part of the results
in Lascar [8] on the propagation of singularities.

COROLLARY 3.2. Let P saﬁsfy (3.1), (A-1, II) and let M=(m,1,---,1) be the
corresponding weight. Then for every ueD'(R. X RY), the subset of Yy(P):

WEs(u\WEy(P-u)
is invariant under the flow of Hj'.
Remark 3.3. If we use « of the asymptotic sum:

CZ(S, Z, Y, S)NE?JD am,,(sv T, Y, g)
with O0=m,>m,>---——oo, then by the same arguments we can construct micro-
parametrices for P with ¢geC>(R;:S™) for every real m>2. Moreover, if the
principal symbol of g is independent of #, it suffices to assume m>1.

Example 3.4. Consider P=D;+D,D, in R.X R}, and set

(3.12) B, m)=(27:)“25ei(“"'”“‘fm’df‘
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Then we obtain two fundamental solutions for P:

(3.13) Et, z)=1iY (£ 0E(2, x).

This situation should be compared with the case that P’=D,D; in R, X R, which
has four distinguished fundamental solutions:

E\t, x)=—0(t) Y(x,) Y(zs),
Ey(t, 2)=0(8) ¥(—2.) Y{x2),
Ext, )= —8(t) V(=) ¥(—x2),
Eu(t, 2)=00) Y(z:) Y(—22).
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