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Introduction

This note is intended to be a supplement to [2], and we consider here the
following problem: Let X be a smooth 3-fold in P? not contained in any
hyperplane. Then, for what X we have Sec(X)=P", or equivalently, X can be
projected isomorphically onto P*®?

As was suspected in [2], we have the following answer in char(k)=0: X
is isomorvphic to (a projection of) ome of the following Del Pezzo 3-folds.

(1) Veromese 3-fold X=P* embedded by (2). deg X=8 in this case.

(2) X is the blowing-up of P? at a point p, embedded by the linear system
of proper transforms of quadrics passing through p. deg X=7.

(3) X is a hyperplane section of the Segre variety P*XP? in P¥ deg X=6.

The problem was already studied by Scorza and our answer seems to follow
from his results [4]. However, unfortunately, his argument is not easy of access
to many mathematicians today because of some language harriers, mathematical
and non-mathematical. So we present our own proof, which is similar to his
but is different in many aspects. Our method is a variation of the arguments
in [2:; Theorem 2] concerning the 4-dimensional extremal case.

Recently, we were informed from F.L. Zak that he obtained a classification
theory of all the varieties in the (even dimensional) extremal case treated as
in [2]. Combined with his results, we hope, our method will work in the odd
dimensional near-extremal cases where XcP¥, dim Sec(X)=N-—1 and 3dim X
=2N-5. We also hope that the results are valid in positive characteristic cases
too, probably after some slight modifications. See also (3.38) below.
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very much from- the former about projective technmiques, and also. the above
mentioned paper of Scorza. We owe many ideas to Professor F.L. Zak too.
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Notation, Convention and Terminology

Basically we employ the same notation as in [2]. For the sake of simplicity
the ground field % is assumed to be the complex number field C. Varieties are
assumed to be complete unless specifically stated to the contrary. In particular,
subvarieties are closed. Manifold is a smooth (=non-singular) variety. Point
means a C-rational point. Open set means a Zariski open set. But the con-
vergence of a sequence of points is considered with respect to the strong
Hausdorff topology. Vector bundles are confused with the locally free sheaves
of their sections. Tensor products of line bundles are denoted additively, while
the multiplicative notation is used for the intersection products in the Chow
ring. “** is valid for points z,y on X in a general position” means that there
exists an open dense subset U of XXX such that ** is valid for any (=, ) on
U. The word “general” should be understood similarly. Finally we show a
couple of symbols used in the text.

[D]: The line bundle associated with a Cartier divisor D.

BsAd: The intersection of all the members of the linear system .. In parti-
cular, any fixed component of A is a subset of Bs/.

Ly: The pull-back of a line bundle L by a morphism from 7. However, when
there is no danger of confusion, we often write just L instead of L.

{Z}: The homology class of an algebraic cycle Z.

§1. Examples of threefolds with small secant varieties

(1.1) Notation. For any two points p and ¢ on P¥, p*q denotes the line
passing p and g. For any subvarieties V' and W of P¥, V*W denotes the
closure of the union of all the lines »*w with veV, weW and vxw. V*V is
denoted by Sec(V). For a manifold X, Sec(X) is the secant variety of X and
is the union of all the secant lines of X and the tangent lines to X. ix.»
denotes the embedded tangent space of X at zeX.

(1.2) Let X be a submanifold of PV, H=0(1), A be the trivial vector bundle
with fiber H(P¥, H)and let ¢: A—H be the surjective bundle mapping inducing
the identity H°(PY, H)=H(PY, A)~H°(PY,H). Let P, and P. be copies of PV
with fixed isomorphisms ¢;: P;=P¥. The counterparts on P; of objects on P¥
will be indicated by the suffix j. In particular, X; is the submanifold Y (X)
in P i

The isomorphisms ¢; induce an inclusion of X in B=X,xX.. The image 4
will be called the diagonal. Let G be the blowing-up of B with center 4, and
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let E he the exceptional divisor on G lying over 4. Let V be (the pull-back of)
the vector bundle =*H,@®m.*H, where z; is the projection B—X; Let W be
the Plbundle P(Vg) over G and let W, be the section of f:W-+G defined by
the quotient bundle =*H; of V. Set D=f"YE). ¢/s induce an isomorphism
H,=H, on 4, which gives rise to a section C of D=P(Vz)=EXP'-E. Cis a
fiber of the second projection D—P* as well as DN W;, and CN W;=40.

Combining z;*¢; (j=1,2) together with the given isomorphisms A;=A, we
get a bundle mapping @: A~V on B. Unlike p,’s, @ is not surjective. In fact,
Supp(Coker(®))=4. Any way, ¢ induces a mapping A—H%B, V)=HYG, V)=
HYW, L), where L is the tautological line bundle (1) on W=P(Vs). This
defines a linear system 4 on W. By definition of @ we easily see that Bsd=C.
Moreover, if W7 is the blowing-up of W with center C and if £y is the excep-
tional divisor on W’ over C, then the pull-back of 4 on T is of the form
Eg+ 4 for some linear system A’ on W’ with BsA’=0. So, we obtain a mor-
phism p’ : W'—P¥ such that (¢’)*H{=L— Ey, lifting the rational mapping p defined
by 4 on W. Note that p is defined on W; and the restriction is nothing but
the morphism W;—>G—B—X;~X—P¥.

Let D’ be the proper transform of D on W', The D’=D and D=D'+E¢
in Pic(W"). Therefore, by the criterion of Castelnuovo-Moishezon-Nakano, we
infer that D’ can be blown down to a submanifold with respect to the P!-bundle
structure D'=D=ExP'-E over E. Let S be the manifold obtained from W’
by this blowing-down. Then W’'—W-—G is factored through p:S5—G and p
makes S a P'-bundle over G. S is called sometimes the elementary transfor-
mation of W with respect to C. Note also that p’ is factored through a morphism
g S—>P¥,

(1.3) ProrosiTION. For any (x,v) on B—A4=G—E, the image of p~'(x,y)
vie o is the line z*y in P¥. So Im(s)=Sec(X).

Proof. Let YCS be the fiber over (z,v). Clearly o(Y) is a line in P¥ since
FH{Y)=(L—EyY=1. On the other hand, x=p/(¥Y'NW,) and y=p'(Y' N W)
where Y7 is the inverse image of ¥ on W. So z,ved(Y). Hence o(Y)=a*y.
This implies Im(o)=Sec(X) by definition of Sec(X).

Remark. If g is a point on E lying over wxed, then ¢ defines a tangent
direction to X at x. It is easy to verify that o(p~'(¢)) is the line in this direc-
tion. In particular, it is contained in Zx, .

(1.4) DeriNiTION. A line of the form o(p!(g)) for some g¢eG is called a
secant line to- X, It is a secant line in the usual sense or a tangent line to X.
S is called the complete secant bundle of X. For zeSec(X), X,=o{(p (ple7'(2))))
is called the secant cone and Q,=23,NX is called the secant locus. 2, is the
union of all the secant lines passing z.

Although these definitions are apparently different from those in [2], they
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are essentially the same. In particular, they coincide with each other for any
general point z on Sec(X). Thus, @ is the image of ¢~ *(z) via the morphism
S—G—B-»X;=X.

(1.5) Obviously dimS=2r+1 if dim X=7r. So dim Sec(X)=2r+1 if and
only if (¢*H)¥4S}>0. Moreover, if this is the case and if v is the number of
secant lines of X passing a general point z on Sec(X), we have (¢*H)**'{S}=
2v deg(Sec(X)) unless X is a hypersurface in P¥, because of the following

(1.8) TRISECANT LEMMA. If a general secant line of X meets X at more
than two points, then X is a hypersurface in P,

Proof. If r=dim X=1, this fact is well-known. See e.g. {3; pp. 311-313].
If »>1, taking general hyperplane sections we prove the assertion by induction
on 7.

(1.7) ForMURA (due to A. Holme). (¢*H)¥"'=d*— Y50 Corir, ;8,20 X},
where d=deg X=H"{X}, C,,; denotes the binomial coefficient =!/ji{n—j), 2y is
the cotangent bundle of X and s; is the i-th Segre class. The total Segre class
s(V) of any vector bundle ¥ is related to the Chern classes by the formula
s(V)e(V*)=1, where V'* is the dual bundle of V.®

To prove the above formula, we recall the following facts.

(1.8) Let V be a vector bundle of rank » on a manifold M and let P=P(V)
be the associated P*-'-bundle over M. (Note: A fiber of P over gelM is the
set of hyperplanes of the vector space V, passing the origin.) Let L be the
tautological line bundle @p(1). Then L*"'a{P}=s5,V)a{M} for any «¢=0 and
acH*®(M), where n=dim M.

(1.9) Let M’ be the blowing-up of a manifold M with cencer C and let £
be the exceptional divisor on M’ over C. Then (F,[—Eln)=(P(NY), O(1)) where
NV is the conormal bundle of C in M.

(1.10) Proof of (1.7). We use the notation in (1.2). We have (o*H)**}{S}=
(L= Bt W =L+ X Copr i L — Eg) 11, By (1.8) we obtain L¥+! =L+
(W=s (V)G =H"H;"{B}=d* We also have Li(—Eg)"*1"t= — [ — Eg)* H{Es} =
—Ltsgr_;_(NV)C}, where NV is the conormal bundle of C in W. C is a section
of D=P(Vep)z=EXP'—-FE and Vi=Hz@®Hz Therefore C=FE and Le=Hz. Fur-
thermore, we have an exact sequence 0--[—Dlg—N"Y—O¢—0, since the normal
bundle of C in D is trivial. Hence si(NY)=s;([~D])=(~c:([(D]).. Now, using
(1.8) and (1.9), we obtain Lisy,_;_(NV)C}=H{(—~E)~t"YE}=H's, (£,){4}, since
[—D] is the pullback of [—FE] by D—FE and the conormal bundle of 4 in B=

*) In many literatures the Segre class is defined by s(V)c(V)=1. We employ the
present notation in order to avoid signature trouble in the important formula (1.8).
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X1x X, is the cotangent bundle of 4. In particular, the above number is zero
for i>». Combining these calculations we obtain the formula (1.7).

(1.11) Examples.

1) Consider the Veronese 3-fold X=P* embedded by &(2)in P*. By (1.7)
we obtain (¢*H)"{S}=0. Hence dim Sec(X)=6. This fact can be shown by the
following observation too. Let z be a general point on Sec(X) and let z*y be
a general secant line passing z, with zeX3y. Let @ be the image under the
isomorphism P?=X of the line on P°? passing = and y. Then H@=2 and @ is
a plane quadric in P° It is easy to see that z is on the plane @*@ and the
secant cone Y, contains this plane. So dime¢~'(z)z1. Since z is general, this
implies dim Sec(X)<dim S=7.

2) Let X be the blowing-up of P?® at a point ¢ on P? embedded in P*® by
the linear system of the proper transforms of the quadrics passing g. Then
(c*H)"{S}=0 and dim Sec(X)=6. This can be shown either by (1.7) or by the
observation that X is the projection of the Veronese 3-fold =/P® as in 1) from
the point g.

3) Let ¥ be the Segre embedding P*xP* in P*® and let X be a hyperplane
section of Y. Then (¢*H){S}=0 and dim Sec(X)=6. This follows also from
the fact dim Sec(Y)=7 (cf. [FR]).

4) Let X be the Segre variety P'XP'X P! embedded in P?. Then deg X=6
and we get (¢*H){S}=2 by (1.7). Hence Sec(X)=P? and there exists exactly
one secant line of X passing any given general point on P7. Correspondingly,
the generic projection of X has a unique singular point where two smooth
branches intersect normally.

5) In view of the results in [F], the preceding facts may be summarized as
follows: Let (X, H) be a Del Pezzo threefold with deg X=6. Then dim Sec(X)
=6 unless X=P'XP'XP'. (Del Pezzo threefold means a 3-fold whose canonical
bundle is linearly equivalent to —2F. See [1].)

§2. Main result
Our goal is the following

(2.1) TuroreM. Let X be a smooth 3-fold in P" such that dim Sec(X)=6
and that X is not contained in any hyperplane. Then X is o projection of one
of the three Del Pezzo 3-folds as in (1.11; 1, 2 and 3).

QOur proof goes parallel with that of [2; Theorem 2]. The key is the fol-
lowing '
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(2.2) Mamn LemMMA. For any general point z on Sec(X), the secant locus Q.
is a smooth plane curve of degree two (cf. (1.4)).

Compare this with [2; Theorem 3]. This lemma will be proved in the next
section.

(2.3) LemMA. KQ.=—4 for the canonical bundle K of X.

Proof. We denote the canonical bundle of a given manifold ¥ by K7.
Then, under the notation (1.2), we have Kf=K,+K, where K;=r;#K*s, and
we also have K¢=KZ®+(r—1)E (in our particular case r=dim X=3), K¥ =K%~
2L4-det V, KW' =K"+ Eg=KS5+D’, confusing line bundles with their pull-backs
conventionally. Let R=0¢"Y(2) and R'=(o')"'(z). R=p(R)cG is the set of secant
lines passing z, and hence R=P' by the Main Lemma. So KSR=KZfR=-2.
We have D'R’=0, since p/(D)=X. This implies R'=R too. By the remark to
(1.3), we infer that (»*E)R is equal to the number of tangent lines passing z,
and hence 2 by virtue of (2.2). On the other hand we have (¢*H)R=(L—Ex)R’
=0. Thus we obtain 2=FER'=(E¢+D')R'=E;R'=LR'. Hence K"R' =(KS+
D' —EpR'=—4. We have H;R'=2 and K;R'=KQ,, because @, is the image of
R’ via the mapping W—W—-G—oB—~X;=X. So —4=KWVR'=(K,+K,+2E—-2L+
H+H)R' =2KQ,+4. Thus we prove KQ.,=—4.

2.4) Lemma. A4(X, Ox)=0 for k>0.

To prove this, let ¢(Y) denote (¥, ®) for any variety ¥, where ¥ is a
nonsingular model of Y. As we saw above, p'(Es)=Sec(X). Hence gi(Sec(X))
=gl Ee)=aqi(C)=qu(E) =qi{)=gu(X). Applying Theorem 6.4 in [FR] to ¢/, we
obtain gx(Sec(X))=g(W"). Therefore g (X)z=g(W)=q(G)=q(B)=2q:(X) for
£>0. So we conclude gx(X)=0.

(2.5) Lemma. 2(X, K+2H)=1.

For a proof, refer to [2; Lemma 6.1] and use (2.3).

(2.6) CoroLLARY. A%X, K+tH)=0 for t<2.

2.7) LEMMA. AY(X, K+2H)>0.

For a proof, refer to the proof of Lemma 6.5 in [2], and make obvious
adjustments.

(2.8) Lemma. K=—2H.
For a proof, see [2; Lemma 6.6].

Remark (due to J. Roberts). This lemma can be proved without (2.4) too.
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Indeed, considering the Albanese mapping of X, we infer ¢,(X)=0 from (2.2).
We have gi(X)=0 by virtue of (2.6). So y(X,®)=1, while (2.4) gives the
equality. But the inequality is enough for similar arguments as in [2] to prove
2.8).

(2.9) Proof of (2.1). By (2.8), X is a Del Pezzo 3-fold. So (X, H)=1, and
deg X=r"(X, H)—2=6 (cf. [1]). By the classification theory of Del Pezzo mani-
folds in [1] and by (1.11), we complete the proof of Theorem (2.1).

Remark. Theorem 2 in [2] follows from (2.1). Indeed, if ¥ is a 4-fold in
P’ with dim(Sec(Y))=7, then a general hyperplane section X of Y is a 3-fold
such that dim(Sec(X))=6. Of course, however, such a proof is a detour.

§3. Proof of the Main Lemma

Throughout in this section, let X be a threefold as in (2.1) and we use the
notations as in (1.2) and (1.4).

(3.1) Lemma. dim(Sec(X))=6.

Indeed, otherwise, X would be projected isomorphically onto its image in
P%, contradicting Theorem 2.4 in [2].

(3.2) CoroLLARY. dim Q,=1 and dim X,=2 for any general point z on Sec(X).

For a proof, see [2; Lemma 2.2].

(3.3) DeriNiTION. Let X be the singular locus of Sec(X) and let U=Sec(X)
—2%. For any point # on U, let H, denote the hyperplane fseccxy,» tangent to
Sec(X) at w. Let C, be the contact locus of H, to Sec(X), i.e, the closure of
the set {pveU|Hy,=H,}. We set further D,=C,NX.

(3.4) Lemma. C, is a linear subspace in P for any genmeval point w on U.

For a proof, see [2; §3].

(3.5) TERRACINT'S LEMMA. There exists an open dense subset U, of U such
that Hy=ty s%ty.y for any ueU, zeX and yeX with z=y and uwex*y.

For a proof, refer to Lemma 2.1 in [2].
(3.6) CorOLLARY. 2,CCy for any general point u on U. Hence dim C,=2.

Indeed, for any general point » on any secant line passing %, we have
H,=H, by virtue of (3.5). ‘
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(3.7) CoroLLARY. C,=Sec(Dy) for any gewneral point u on U. Moreover,
v Dy, for any gemeral point v on C,.

Proof. C,>Sec(D,) by (3.4). On the other hand, for any general point »
on C,, we have Hy=H,, C,=C, and hence Q,cD,=D,. Moreover, veSec(@,)
Sec(D,), proving the first assertion too.

(3.8) Notation. For any general secant line [ of X, H,=H, for any general
points #,» on /. So this will be denoted by A, Similarly we define C; to be
the contact locus of H, to Sec(X), and D;=C;nX.

(3.9) Since dim @,=dim @, for any general point » on C, we infer from
(3.7) that 1+2dim D,=dim @,+dim C,. Therefore, by virtue of (3.2) and (3.6),
there are only following two possibilities: (1) dim C,=2 and dim D, =1, or (2)
dim C,=4 and dim D,=2.

In case (1), using the Trisecant Lemma (1.6), we easily see that Qu=2D,
and that this is a plane curve of degree two. Similarly as in [2; p. 964], we see
that @, is irreducible. Now (2.2) follows.

Therefore, from now on, we assume that dim C,=4 and dim D,=2 for any
general point # on U. Furthermore, we let F, be the union of components ¥
of -Du such that dim Y=2 and Y*Du,zc’u- BY (37), F‘uﬁFg and hence dim Fu=2.
Moreover C,=Sec(F,).

(3.10) Cy’s form a two-dimensional algebraic family. F,’s form a 2-dimen-
sional algebraic family of divisors on X.

(3.11) Notation. For wu,velU, we denote C,NC, by Cy,. - Similarly /,, stands
for H.NH,, Fup for F,NF,, and Cyw for CuNCyNCy, and so on.

(3.12) LemMA. dim Cuw=2 for u,velU in a general position.

Proof. Let U, be as in (3.5). Then Cy, lies off U, So dim Cyp=dim(C,/Us)
=3. Moreover, if the equality holds for general », C,, cannot move while »
varies. On the other hand, y¢C, for any general point y on Fy, since C,=Sec(l'y)
implies that F, is not contained in any hyperplane in C,. Take a general point
x on X and a general point w on z*y. Then weU, and yeCuw. This contradicts
the preceding observation Cuy=Cus. Thus we prove the lemma.

(3.13) Now we have two possibilities: (1) dim C,»,=2 for u,» on U in a
general position, or (2) dim Cy,=1 for any general #,». In the sequel we first
consider the case (1) and will derive a contradiction. The argument is completed
in (3.23).

(3.14) LemMmA. dim Fuy=1 for any generval u,v on U.

Proof. F,NCyx@ by a dimension argument in C,. This implies Fu,%@.
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So dim Fy,=1 because they are divisoré on the threefold X.
(3.15) LemMA. dim Cume=1 for u,v,w on U in o general position.

Proof. By an argument as in (3.12), we infer that C,, moves when » varies.
So dim Cypw <dim Cyp=2. On the other hand, Cuvw=CuuN Cun>x0 by the assump-
tion (3.13;1). Furthermore, dim(C,*C,)=dim C,+dim C,—dim Cy,=6 and C,*Cy
is a hyperplane in P". Hence CodC,*C, for w is general. But if Cypw were a
point, (3.4) would imply Cu»=Cuw*CowCC,*Co. So dim Cuumw >0, proving the lemma.

(3.16) LemmA.  There exists a line L, in Co=P* such that LwC Cu for any v.

Proof. Take general points s, on U and set L,=Cug, which is a line by
(3.15). Cu*Cy 1s a hyperplane in C,. So Cu» is not contained in this hyper-
plane for any general » on U. If L, Cu, then Cus and Cuy would be different
lines on Cuaz=P? and hence Cuv=Cups*CurCCus*Cus. S0 LuCCus, proving the
lemma.

(3.17) Lu=Cyy for any general »,5,¢# on U. So it is independent of #, and
will be denoted by just L. For any general point w on U we have L*wcC,C
Sec(X). This implies L*Sec(X)=Sec(X). So, Sec(X) is a cone and any point
on L is a vertex of it. If z': P"—>P% is the projection from L, then this implies
dim =(Sec(X))=dim Sec(z(X))=4. Moreover we have the following

(3.18) LeMMA.  dim =(X)=2.

Proof. 1t suffices to show dim(XN(z*L))=1 for any general point z on X.
Take general points y and z on X and take general points # and » on 2*y and
a*z respectively. Then LcCy and L*z=Cy Hence XN (2*L)=DuyDFu and
(3.14) proves the assertion.

(3.19) LemMmA. LcX.

Proof. F. and L are curves in the plane Cuw So LN Fuy0, proving
LNX=x0. We will derive a contradiction assuming that L meets X at only
finitely many points.

The projection = is defined by the linear system .1 of hyperplanes containing
L. Let P; be the blowing-up of P" with center B,=LNX, which is a finite set
by assumption, and let E, be the exceptional divisor on P, over B, L, and X,
be the proper transforms of L and X respectively. The pull-back of 4 on P
is of the form E,+4,, where ., is a linear system on P, such that Bsidi=L,.
If LinX,=0, A, defines a holomorphic mapping X;—P?", lifting . If By=L,n
X,=0, then we let P, be the blowing-up of P, with center B, and let £, be the
exceptional divisor over B, Let L, and X, be the proper transforms of L; and
Xy on P. Then the pullback of the linear system ., on P, is of the form
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E,+ /4, where A, is a linear system on P, with BsA,=L,.  We repeat similar
processes until we reach the situation where L; N X; =40 for some positive integer
k. Let z’: X;y—P?% be the morphism defined by 4 Since By is a finite set, a
prime component ¥ of Ejy is isomorphic to P* and [Exlyr=0(—1). Hence, 4x=
Ap1—E) implies )*@L)r=0v(1). So the image ='(Y)is a plane in P® There-
fore, in view of (3.18), we infer that =z(X) itself is a plane. But this contradicts
dim Sec(z(X))=4.

(8.20) LEmMA. deg(det N)=3—deg X for the normal bundle N of L in X.

Proof. Let X’ be the blowing-up of X with center L, and let £, be the
exceptional divisor on X’ over Z. Then Bs|H—E.|=0 on X', and (H—Er)*=0
by virtue of (3.18). On the other hand, H'=deg X, H?E,=0, HE:*=—1 and
Epf=—¢,(N) by (1.8) and (1.9). Our result follows from this calculation.

(3.21) LEMMA. Huywwe=P? for points u,v, w,t on U in a general position.

Proof. Clearly dim H,,=5. All the hyperplanes containing H,,=P® form
a one-dimensional family. So dim Huww=4 by (3.10). The hyperplanes containing
Hyw=P* form a two-dimensional linear system. Hence, if H;DHuwm for any
general . £, H; is a general member of this linear system. So XNZH, is non-
singular off XN Humw by Bertini’s theorem. On the other hand, Terracini’s
Lemma (3.5) implies that F, is in the singular locus of XNH; Therefore
FiCHym. Fi's sweep a dense open subset of X when ¢ moves on U. So we
conclude X< Hym, a contradiction. Thus we see H;D Hupw, and so dim Hypwe=3.

(3.22) CoroLLARY. Nz=E:(1)@0LQ).

Proof. Let #,v,w and ¢ be as above. Then L=Cyy and any of H,, H,, Hw
and H, are tangent to X at any point ¢ on L. This implies fx,(=Huww. S0 N
is isomorphic to the normal bundle of L in Huw=P?, i.e., 0(1)@OLD).

(3.23) Combining (3.20) and (3.22), we obtain deg X=1. This is absurd.
Now we see that the possibility (3.13; 1) cannot happen. Thus we have

LemMa. dim Cuww=1 for eny u,v on U in a general position.

Next we will show Fu,=0 for any general points #,v on U.

(3.24) LEMMA. Let V be a subvariety of PY and let 'Y be a subvariety of V.
Let z be a point on V*Y and off V. Suppose that V is smooth at any point on
Y and that dim V-+dim Y=N. Then there exists a point v on Y such that zety,,.

This is proved by the same argument as in [2; Lemma 4.1].

(8.25) LEMMA. F,*X=Sec(X) for any general point uw on U.
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Proof. We will show Sec(X)=X*Y for any component Y of F,. By virtue
of Terracini’s Lemma (3.5), we have fy, ,CH, for any point ¥ on ¥. Sec(X)
is an irreducible divisor on P7 not contained in any hyperplane. So H,dSec(X).
Take a point on H, off Sec(X), project things into P*® from this point, and let
the images be indicated by ‘. Then X’ is the isomorphic image of X, and hence
Y=Y’ Assume that X*Y=Sec(X). Then X"*¥"xSec(X")=P¢ On the other
hand, since (X')*(¥”)DX’, this is not contained in the hyperplane H,’. Take a
point on H,/ off (X)*(¥”), project things into P° from this point, and let the
images be indicated by /. Then Y’/ has an open neighborhood in X’ which is
isomorphic to its inverse image in X’. Now we can apply (3.24) to the effect
that for any point 2’/ on P°® there exists a point y’/ on Y’/ such that fx. ,.9z".
However, tx,yCHy imply tx.,.CH,” and hence z'’e¢H,”. This contradiction
completes our proof.

(3.26) CorOLLARY. YNQ,x0 for any general point v on U.

(3.27) CorOLLARY. The scheme theoretical intersection Y NFyis the line Cyy
Jor any general points w,v on U and any component Y of Fu.

Proof. Clearly YNF,CCuw. On the other hand, YNF,=0 by (3.26) and
hence dim(Y'NF,)=1, because they are divisors on the threefold X. Thus we
prove (3.27).

(8.28) CorOLLARY.  Fy is iwrreducible fov any general 1 on U.
Immediate from (3.27).

(8.29) LEMMA. F, is a rational surface for any geneval point w on U.

Proof. Let S, be a non-singular model of F,. S, is ruled by (3.27). If it
is not rational, we have a morphism «:S,~C onto an irrational normal curve
C. We will derive a contradiction from this.

Let I" be the space parametrizing C,/s. By (3.10), I is a two-dimensional
subspace of the Grassmann variety parametrizing P¥s in P%. Let o he the
point on [ corresponding to C,. We may assume that I is smooth at o, since
u is general on U. For any general C,, we see that the proper transform of
Fuw=P' on S, is mapped to a point by a. This gives rise to a rational mapping
¢: ['=>C. Moreover, since C is an irrational normal curve, ¢ can be extended
holomorphically at any smooth point on [, including o.

Let » and v be points on #, in a general position. Take a sequence {y,} of
points on X converging to ¥ in the strong topology, such that y,'s are general.
Then CuNCivy, is a line containing z by the lemma (3.23). Therefore, if ¢; is
the point on I” corresponding to CM]., we have ¢(g;)=alz). On the other hand,
we have ¢(o)=lim ¢(g;) since o=lim g; on I'. Changing the role of x and y and
taking a sequence converging to z, we obtain ¢(0)=a(y) too. Thus a(z)=a(y).



44 Takao Funrta

Since x» and y are general, this implies that @ is a constant mapping, contra-
dicting the hypothesis. QED.

(3.30) CoroLLARY. 2'(X,®)=0.

Proof. Let a: X—Alb(X) be the Albanese mapping. Let x and y be general
points on X. Then, under the notation (3.8), we see that a(F..) is a point
using (3.29). So a(z)=a(y). This implies that ¢ is a constant mapping, because
z and y are in a general position. Hence AIb(X)=0, proving the assertion.

(3.31Yy LEMMA. Fupw=0 for any u, v, on U in a general position.

Proof. Fix a general point # on U and let L, denote the line F,=C, for
the moment. We will derive a contradiction assuming L,N L, =0 for any general
v, .

F, is not contained in any hyperplane by (3.7), and is almost swept out by
L’s. So, Ly L,*L, for any general fon U. On the other hand, we have L, =0
and L;,+0 by assumption. If the intersection points were different, we would
have L;=Ly*L.wC Ly,*L,w, contradicting the above observation. Thus they are
the same point, which must be the intersection point ¢ of L, and L,. Hence
g is contained in L, for any general ¢ on U.

For any general point » on X, by virtue of (3.26), there are s,# on U in a
general position such that xzeC;. Both x and ¢ are on the line FycX. Hence
z*qc X, This implies X*g=X, because z is general on X. So X is a cone
with vertex ¢, which is absurd since X is non-singular and non-linear. QED.

(3.32) F.'s are linearly equivalent to each other as divisors on X by virtue
of (3.30). We let F he the line bundle [F,]}. Then Bs|F|=0 by (3.31). Let =
be the morphism defined by |F|. Then (3.31) implies F?=0 and dim =(X)<3.
On the other hand, F*H=1 by (8.27). Therefore, dim«(X)=2 and 1=F:H=
(ZH)deg T, where T=t¢(X) and Z is a general fiber of r. So ZH=deg T'=1.
This implies that 7' is a plane and Z=P'. Moreover, YH=1 and Y=P! for
any one-dimensional fiber Y of 7, since H is very ample. It is also clear that
all but finite fibers of r are of dimension one. Thus we obtain the following

(3.33) LemmMA. dim|F|=2 and -: X—>P? is a Pl-bundle over P* off a finite
subset of P°.

(3.34) CorOLLARY. F, is @ P'-bundle over P* (hence non-singular) for any
general point 1 on U. ‘

Proof. From (3.10) we infer that 7, is a general member of |F|. So (8.33)
applies.

(3.85) LEMMA. Fo,=POR2YPO1) and the vestriction of H to Fy is the tau-
tological bundle on it
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Proof. (3.34) implies F,=P((a)PO(b)) for some positive integers wz4,
with the restriction of A heing the tautological line bundle. 72°(F., H)=5 since
F is not contained in any hyperplane in C,=P* F, cannot be an isomorphic
image by a projection from P%, since otherwise #, would be a Veronese surface
=P* (cf. [5]). Hence 5=1%F., H)=a+b+2. From this we obtain ¢=2 and b=1.

(3.36) Using (3.7), we see that @, is identical to the secant locus of # to
F.. By (3.35) and by an explicit calculation one easily sees that @, is actually
a smooth plane curve of degree two. Thus we complete the proof of the Main
Lemma.

(3.37) Remark. As a matter of fact, the case (3.9; 2) where dim C,=4 and
dim D, =2, does not happen at all. This fact was pointed out to the author by
J. Roberts. His original proof is different from the one given below.

First, by Terracini’s Lemma, we infer that F, is contained in the singular
locus of AyNX. So this divisor is of the form 2F,+ £, for some effective
divisor E,. (3.35) implies that, for any general point # on U, F, is isomorphic
to the blowing-up of P? with center being a point and that the restriction of
E, to F; is the exceptional curve. Therefore £, is independent of the choice
of #, and will be denoted by £ from now on. FEH=1 by the preceding obser-
vation. So a general hyperplane section of £ is mapped to a line by . Hence
E contains a component Y whose general hyperplane section is the exceptional
curve on some F,. So YH?*=1 and Y is a plane in P7. It is easy to see that
Y can be blown down to a smooth point on another manifold. Moreover, X
must be of type (1.11;2) and Y=£E.

Let /A be the minimal linear system on X containing H,NX=2F,+FE for
any general point # on U. Then 2:%F+FEe. | for any general hyperplane F on
Pt So we infer A=t*2F|+E and dim 1=1°(P% @@2)—1=5. On the other
hand, any member of .1 is a hyperplane section of XC P’ containing Y=P*
Hence dim /=7-3=4. This contradiction proves our assertion.

(8.38) After the first version of this note was completed, F.L. Zak com-
municated to the author that his techniques work not only in even dimensional
extremal cases but also in odd dimensional near-extremal cases. In particular,
starting from the observation (3.25), one can considerably simplify the argument
concerning the case (3.9;2). His method is very different from Scorza’s, whose
approach we follow basically. So we retain the present note as it was, hoping
that Zak’'s theory will appear elsewhere, where possibly higher dimensional
cases also will be considered.

In another letter he communicated the fact (3.37), pointing out an error in
the first version of this note. He found several proofs of (3.37) independently
of J. Roberts and the author.
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