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§ 1. Definitions and statement of the results

In this note L(X, Y) denotes the set of densely defined linear operators from
X to Y, where X and Y are Banach spaces. (X, X) is abbreviated to &(X).
The domain, kernel, and the range of Te%(X, Y) are denoted by D(T), R(T) and
R(T), respectively. Let @_(X, Y) be the set of lower semi-Fredholm operators
in &X,Y), ie, Tel(X,Y) belongs to #.(X,Y) if and only if T is a closed
operator with dim Y/R(Z")<co. Note that dim Y/R(7T)<oo implies the closedness
of NT) for closed Tel(X, YY) ([1], p 101). The set of bounded linear op-
erators from X to Y is denoted by B(X, Y). To be more precise, TeB(X, V) if
and only if Te&(X, Y), T is bounded and D(T)=X. B(X, X) is abbreviated to
B(X).

The conjugate 77 of Te&(X, Y) is defined as usual: ¥’ €®D(T”) and Ty’ =z’
if and only if ¥ eY’, 2’eX’ and {Tx,v')=<x,z’> holds for any xe®(T), where
{-,-> denotes the canonical bilinear form. Let Z be another Banach space and
Sely(Y, Z) satisfy STel(X,Z). Then it is well known that (S7")’ is an extension
of 7T"S'. A sufficient condition for (ST) =7"S" is given by M. Schechter [2]:

TuroreM (M. Schechter)
Suppose X, Y be Banach spaces and Te® (X, Y). Then for any Banach
space Z and Sel(Y,Z), D(ST) is dense in X and (ST)Y =T"S" holds.

The purpose of this note is to give some converses of the above theorem.
Namely we prove the following ‘

THEOREM 1. " Suppose X and Y are Banach spaces and Tel(X, Y). Assume
that T has the following property:

For any Banach space Z and Se&y(Y, Z), DUST ) )T D(S") holds whenever D(ST)
is dense in X. :
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Then R(T) is closed and dim Y/R(T)<oo. If we further assume WT) is
closed, then T is closed, and hence Ted_ (X, Y).

Tueorem 2. Suppose X and Y are Banach spaces and TeB(X,Y) is not
identically zero. Assume that T has the following property :

For any Banach space Z and Se8(Y,Z), D(ST) is dense in X.

Then Ted (X, Y).

TueoreM 3. Suppose X and Y ave separable Hilbert spaces and let Te&(X, Y)
be a closed operator which is not identically zevo. If ST =X holds for any
closed Se8(Y, Z), wheve Z is an arbitrary separable Hilbert space, then Te®_ (X, Y).

Note that the assumptions in Theorems 1 to 3 are weaker than the cosequence
“D(ST) is dense in X and (ST)Y =T"S’” of Schechter’s theorem.

§2. Proof of Theorem 1

a) First we show that R(7") is closed. Suppose %(T)‘q&%(’!‘). Then there
exist subspaces M and N of Y such that

M=, Ry =RT)BM and Y=R(T)DM®DN,

where @ denotes the algebraic direct sum. The last equality shows that there
exists a projection S from ¥ onto M whose kernel is W(T)PBN. S satisfies

0£5e8y(Y), DST)=D(T) and ST=0.

Therefore @(S’)i)@((ST)’): Y’ by the assumption. This implies the boundedness
of 5, since it is an everywhere defined closed linear operator, and hence S is
bounded. This in turn implies SGR(T) ) (SR(T))~={0}, which contradicts M=={0}.

b) Secondly we prove dim Y/R(T)<oco. Part a) of this section shows that
YIM(T) is a Banach space with respect to the quotient norm. If dim ¥/R(T)=co,
there exists an everywhere defined unbounded linear operator SeSy(Y/R(T)).
(Such an operator can be easily constructed by using a Hamel basis of Y/R(T).)
Let S, be the composite of the natural surjection Y — Y/R(T) with S. Then
See (Y, YIR(T)), DS T)=D(T) and SyT=0 on D(S,7"). Hence

DSY) DB TY) =(YIR(T)Y

by the assumption of the theorem.  This implies the boundedness of S,, and
hence S is bounded by the open mapping theorem, which is a contradiction.
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c) Lastly we prove that (T)~=W(T) implies the closedness of 7. Preced-
ing arguments show that there exists a finite dimensional subspace Y; of V¥
for which

Y=R(T)PY,
holds. Let S: ¥Y—X/9(T) be defined by
Sy = T‘th

where yeY and 9,eR(T) is the unique element such that y—w,¢¥,. Then
Se&o(Y, XIN(T)) and ST is the canonical surjection X—X/R(7). Hence DS)>
DUSTY)=(X/N(T)Y, and hence S is bounded by the same argument as in b).
Consequently there exists a constant M>0 such that |[[2]j|=<M||Tz|| holds for
any xe€®(T), where [x] denotes the equivalence class of x mod.R(T). To see
the closedness of T, let {,} be a sequence in B(T") such that zx—z and Tz,—y
for some xeX and yeY, respectively. Then there exists an z’e®(T") such that
Tz'=y, since R(T) is closed. On the other hand the inequality ||[zn—az']l|=
M| T(zn— )] implies [z,—z']—~0 as #—co. From this it follows that x—2’eR(T")
and hence ze®(T) and Tz=y.

§3. Proof of Theorem 2

For the proof of theorem 2, we prepare the following

' LemmA 1. Let X be a Banach space and let M be a subspace of X. If M
is not closed, then there exists a subspace D of M~ .such that D~=M" and
DNM) EM-.

Proor. Without loss of generality, we may assume M =X, If M+X, we
can select two unit vectors z,eM and x,e X\M. Furthermore fix an element
feX’ such that

=<0, fr=1,

where (-,-> is the canonical bilinear form on XxX’. Define an operator
VeB(X) by

Va: =x-——i—<m, e,

for any xeX and put D:=V(M). Then D meets the requirements of the
lemma. To see this note that the conjugate ¥V’ of V is given by

1
V’0=9~~§—<m1, »f
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for any geX’. Therefore if geX’ annihilates D, g—1/2¢z,, ¢>f=V"g=0, which
implies

ol =—5-Ken 031 1711=—-llgll,

hence ¢=0. On the other hand for any yeDNM, there exists an zeM such
that y=x—1/2{x, f>x,. This means 1/2{z, fdw,;=y—zeM. Hence {z, f>=0 and
z=y. Thus MnDc Ker f, and hence (MND) < Ker f&X.

Now we prove Theorem 2.

a) Proof of W) =R(T)

Suppose R(T)"=R(T). Then there exists a subspace DcR(T)~ such that
D~=R(T)" and (DNRT)"SR(T)" by Lemma 1. Let M be an algebraic com-
plement of M(7)” in ¥, ie, a subspace of ¥ such that Y=%(7)"@M. Define
Seﬁo(Y) by

DS)=D+M and Sy=y for yeD(S).

Then DEST)=T"YD)y=T"DNR(T)) is not dense in X. In fact if DEST) =X,
then

RTH)CTESST)(DNRTD))~
holds by the continuity of 7, which leads to the contradiction T)"SER(T)".

b) The proof that dim Y/R(T)<oco

In the sequel, lin A denotes the subspace generated by AcY. Suppose
dim Y/R(T)=co. Then the dimension of an algebraic complement N of (7)) in
Y is infinite. Since T=+#0, there exists a non-zero z,eR(7T). Let M be a topol-
ogical complement of lin {z,} in N(T), ie., M is a closed subspace of R(T") such
that W(T)=MP lin {z.}. Since N is infinite dimensional, there exists a sequence
{Zn}nen of linearly independent unit vectors of N. Let L be an algebraic com-
plement of lin {z,;#eN} in N. Put

1
Yn - :$o+‘n_37u

for neN and define a subspace D by
D:=lin{yn;neN}+L+M.

Since im yn=2x, D™D Un {zo}+ lin {xn ;e N}+L+M=Y. Nextlet y= T anyn+I+
meDNR(T), where a,=0 except for finite #’s,/eL and melM. Then
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y—(Zan)xo-—m-:z%‘-x,,Jrzeat(T)nN:{O}.

Hence «,=0 for any ne N and /=0. Therefore y=meM, and hence (DNR{(T))"S
R(T). Now define an operator Se&y(Y) by

DS)=D and Sy=y for yeD(S).

Then (D(ST)) %=X can be proved as in a) of this section, which is a contradiction.

§4. Proof of Theorem 3
For the proof, we prepare the following

Lemma 2. Let X, Y be separable Hilbert spaces and let Tel(X,Y) be a
closed operator with WT) +=R(T). Then there exists an infinite dimensional
closed linear subspace M of R(T)™ which satisfies MN\RT)=1{0}.

Proor. Let &(T") denote the graph space of T, i.e.,
&T): ={(z,9); 2eD(T), y=Tx}.

Then the mapping (z,y)—y from &(T) into ¥ has the same range as that of
T. Hence we may assume 7eB(X, ¥). We may also assume that Y=R(T)"
and N(T)={0}, by considering suitable restrictions of 7.

Let T=UP be the polar decomposition of 7. Then UeB(X, V) is a surjective
isometry and P is an injective positive self-adjoint operator defined on X. Thus it

suffices to show the lemma in case 7'=PF. Let P=SD:‘2(ZE,1 be the spectral decom-

position of P. Then £;#0 for any 4>0, since £;=0 for some 1>0 implies the
invertihility of P and hence JY(P)=R(P)"=X. On the other hand, E,=0 by the
injectivity of P. These imply that there exists a sequence {I,}uew 0Of disjoint
intervals of the form I,=(as, bx) such that £y, —FEa, 0, 0<@nsi <bni1 <@, and
bn<l/n for any neN. The projection £,,—FE,, is denoted by P, Let ¢:Nx
N—N be the bijection defined by ¢(,)=2""(2/—1). Choose a unit vector
2a€R(Py) for any neN and put y:;: =w4a.5 for 7,jeN. Then {y ;}:; is an
orthonormal system, and hence
Zj: =§‘L?!i.f
1= 1

exists for any jeN with [|z;||*==%6. Note that {z;}; is an orthogonal system.
Let M be the closed subspace generated by {z;};, M is clearly infinite dimen-
sional and we claim that MNR(P)={0}. In fact, let yeMNR(P). Then there
exists a sequence (a;)jene/* such that y=3a;z;, On the other hand there exists
an xeX such that Pr=y. Let
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P i =Pya.p
for i,jeN and let zi.;: =F:; ;z. Then

a
Py jPr=P;, J’?J=’z-‘j“?/z. i

This implies

lagl _ 1Puszll _ o)
N Rk

since
2 v = s _“.PL‘J"BII
I|1Ps, jPz||=||PP;, ;|| = 5.
holds by the definition of 7; ;. Therefore
— .
la;| = lim ew) llzi| =0

for any jeN, and hence y=0.

LemMA 3. Let X, Y and T be as in Lemwma 2. Then theve exists an in-
vertible operator VeBR(T)) for which D: =V(WT)) satisfies D"=R(T)" and
DNR(T)={0}. :

Proor. Let M be a subspace of Y whose existence is established by Lemma
2: ie., M is a closed infinite dimensional subspace of W(T)~ satisfying MNR(T)=

{0}. Take an orthogonal system {falmex in M such that ||falj=1/2" for any neN.
Let {en}nen be an orthonormal basis of R(7)~. Then a linear operator KeB(MR(T)™)
can be defined by putting

Ky:= 121@/, eny )

for each yeR(T)~, where <., -> denotes the inner product in ¥. It is clear that
K is a compact operator.

We claim that the operator V:=I/—K meets the requirement. First let
ye( V). Then

=I5, en> il = 5o, endlelfoll? Sl

holds, and hence y=0. This implies that ¥ is invertible in B(W(T)~). Therefore
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D~=0T)" holds for D: =VEYT)).
Next let yeDNRW(T). Then there exists a zeN(T) such that

y=Vz=z~ f}j<z, enfn.
This implies
e=y=Z<z e/ eMANT)=(0}.

Hence z=y and <z, e.>=0 for any nelN, and hence y=0.
Now we prove Theorem 3.

a) Proof of the closedness of R(7T)

Let T\ be the restriction of T to M(T)*:ie., DT=WT)*NT) and Tiz=
T for xe®(T)). It is easy to see that 7, belongs to &L(R(T)H:, ¥) and is an
injective closed operator.

Suppose R(T) is not closed. Then by Lemma 3 there exists an invertible
operator VeBAUT)") for which D:=V((T)) satisfies D~=R(T)" and DNR(T)=
{0}. Since V is invertible, the product VT, e@(R(T)*, W(T)™) is also closed and
injective. Note that N(V7T.)=V(T))=D. Hence we can define an operator
Se&y(Y, T)) as follows : D(S)=D+RNT)* and Sy=(VT,) 'y, where ye®D(S) and
y1€D is the unique element for which y—v,eR(T)* holds.

Then it is clear that S is a closed operator and DST)=T"'(WT)ND(S) =
Ji(T), which contradicts the assumption of the theorem.

b) Proof of dim ¥/R(T)<co

Suppose dim Y/R(T)=co. Further we assume dim R(T)=oco, since the proof
for the case dim f(T")<ce goes similarly.

Let {zibiew and {;. j}i. jew be an orthonormal hasis of R(T") and R(T)*, respec-
tively. Define UeB(R(T)*, Y) by

@y, ; 1
L R e R

where ;. jlai,)*<co. It is easy to see that U is well defined and

Since jUms, ;—a: as j—o0, RU)-=Y. Moreover RUYNR(T)={0}. In fact, let
y=U(Xs, o, j21.5) belong to NT), where a;; satisfy 3 jlas, ;2 <oco. Then y is
orthogonal to w:,; for any i,7e¢N. This implies a; ;=0 for any i, jeN, and hence
y=0. Lastly we note that U is injective.

The preceding arguments show that the operator S defined by
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DS): =R(U), Sy: =U""y for yeD(S)

belongs to (¥, R(T)*) and is closed.
In the same way as in a) of this section, we have ®(ST)=R(T), which
contradicts the assumption 7=0.
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