Some Converses of a Theorem of M. Schechter on the Conjugate of a Product of Operators

By Shizuo MIYAJIMA

Department of Mathematics, Faculty of Science, Science University of Tokyo, Shinjuku-ku, Tokyo 162

(Introduced by F. Niiro)

(Received September 6, 1982)

§ 1. Definitions and statement of the results

In this note $\mathfrak{L}_0(X,Y)$ denotes the set of densely defined linear operators from X to Y, where X and Y are Banach spaces. $\mathfrak{L}_0(X,X)$ is abbreviated to $\mathfrak{L}_0(X)$. The domain, kernel, and the range of $T \in \mathfrak{L}_0(X,Y)$ are denoted by $\mathfrak{D}(T), \mathfrak{R}(T)$ and $\mathfrak{R}(T)$, respectively. Let $\theta_-(X,Y)$ be the set of lower semi-Fredholm operators in $\mathfrak{L}_0(X,Y)$, i.e., $T \in \mathfrak{L}_0(X,Y)$ belongs to $\theta_-(X,Y)$ if and only if T is a closed operator with dim $Y/\mathfrak{R}(T) < \infty$. Note that dim $Y/\mathfrak{R}(T) < \infty$ implies the closedness of $\mathfrak{R}(T)$ for closed $T \in \mathfrak{L}_0(X,Y)$ ([1], p 101). The set of bounded linear operators from X to Y is denoted by $\mathfrak{B}(X,Y)$. To be more precise, $T \in \mathfrak{R}(X,Y)$ if and only if $T \in \mathfrak{L}_0(X,Y)$, T is bounded and $\mathfrak{D}(T) = X$. $\mathfrak{B}(X,X)$ is abbreviated to $\mathfrak{B}(X)$.

The conjugate T' of $T \in \mathfrak{D}_0(X, Y)$ is defined as usual: $y' \in \mathfrak{D}(T')$ and T'y' = x' if and only if $y' \in Y'$, $x' \in X'$ and $\langle Tx, y' \rangle = \langle x, x' \rangle$ holds for any $x \in \mathfrak{D}(T)$, where $\langle \cdot, \cdot \rangle$ denotes the canonical bilinear form. Let Z be another Banach space and $S \in \mathfrak{D}_0(Y, Z)$ satisfy $ST \in \mathfrak{D}_0(X, Z)$. Then it is well known that (ST)' is an extension of T'S'. A sufficient condition for (ST)' = T'S' is given by M. Schechter [2]:

THEOREM (M. Schechter)

Suppose X, Y be Banach spaces and $T \in \Phi_{-}(X, Y)$. Then for any Banach space Z and $S \in \mathfrak{L}_0(Y, Z)$, $\mathfrak{D}(ST)$ is dense in X and (ST)' = T'S' holds.

The purpose of this note is to give some converses of the above theorem. Namely we prove the following

Theorem 1. Suppose X and Y are Banach spaces and $T \in \mathfrak{D}_0(X, Y)$. Assume that T has the following property:

For any Banach space Z and $S \in \mathfrak{L}_0(Y, Z)$, $\mathfrak{D}((ST)') \subset \mathfrak{D}(S')$ holds whenever $\mathfrak{D}(ST)$ is dense in X.

Then $\Re(T)$ is closed and dim $Y/\Re(T)<\infty$. If we further assume $\Re(T)$ is closed, then T is closed, and hence $T\in\Phi_-(X,Y)$.

THEOREM 2. Suppose X and Y are Banach spaces and $T \in \mathfrak{B}(X, Y)$ is not identically zero. Assume that T has the following property:

For any Banach space Z and $S \in \mathfrak{L}_0(Y, Z)$, $\mathfrak{D}(ST)$ is dense in X.

Then $T \in \Phi_{-}(X, Y)$.

THEOREM 3. Suppose X and Y are separable Hilbert spaces and let $T \in \mathfrak{L}_0(X, Y)$ be a closed operator which is not identically zero. If $\mathfrak{D}(ST)^- = X$ holds for any closed $S \in \mathfrak{L}_0(Y, Z)$, where Z is an arbitrary separable Hilbert space, then $T \in \Phi_-(X, Y)$.

Note that the assumptions in Theorems 1 to 3 are weaker than the cosequence " $\mathfrak{D}(ST)$ is dense in X and (ST)' = T'S'" of Schechter's theorem.

§ 2. Proof of Theorem 1

a) First we show that $\Re(T)$ is closed. Suppose $\Re(T)^- \neq \Re(T)$. Then there exist subspaces M and N of Y such that

$$M \neq \{0\}, \Re(T) = \Re(T) \oplus M$$
 and $Y = \Re(T) \oplus M \oplus N$,

where \oplus denotes the algebraic direct sum. The last equality shows that there exists a projection S from Y onto M whose kernel is $\mathfrak{R}(T) \oplus N$. S satisfies

$$0 \neq S \in \mathfrak{L}_0(Y)$$
, $\mathfrak{D}(ST) = \mathfrak{D}(T)$ and $ST = 0$.

Therefore $\mathfrak{D}(S')\supset \mathfrak{D}((ST)')=Y'$ by the assumption. This implies the boundedness of S', since it is an everywhere defined closed linear operator, and hence S is bounded. This in turn implies $S(\mathfrak{R}(T)^-)\subset (S\mathfrak{R}(T))^-=\{0\}$, which contradicts $M\neq\{0\}$.

b) Secondly we prove dim $Y/\Re(T)<\infty$. Part a) of this section shows that $Y/\Re(T)$ is a Banach space with respect to the quotient norm. If dim $Y/\Re(T)=\infty$, there exists an everywhere defined unbounded linear operator $S\in\mathfrak{L}_0(Y/\Re(T))$. (Such an operator can be easily constructed by using a Hamel basis of $Y/\Re(T)$.) Let S_0 be the composite of the natural surjection $Y\to Y/\Re(T)$ with S. Then $S_0\in\mathfrak{L}_0(Y,Y/\Re(T))$, $\mathfrak{D}(S_0T)=\mathfrak{D}(T)$ and $S_0T=0$ on $\mathfrak{D}(S_0T)$. Hence

$$\mathfrak{D}(S_0') \supset \mathfrak{D}((S_0T)') = (Y/\mathfrak{R}(T))'$$

by the assumption of the theorem. This implies the boundedness of S_0 , and hence S is bounded by the open mapping theorem, which is a contradiction.

c) Lastly we prove that $\mathfrak{N}(T)^- = \mathfrak{N}(T)$ implies the closedness of T. Preceding arguments show that there exists a finite dimensional subspace Y_1 of Y for which

$$Y = \Re(T) \oplus Y_1$$

holds. Let $S: Y \rightarrow X/\mathfrak{N}(T)$ be defined by

$$Sy = T^{-1}y_1$$
,

where $y \in Y$ and $y_1 \in \Re(T)$ is the unique element such that $y - y_1 \in Y_1$. Then $S \in \mathfrak{Q}_0(Y, X/\Re(T))$ and ST is the canonical surjection $X \to X/\Re(T)$. Hence $\mathfrak{D}(S') \supset \mathfrak{D}((ST)') = (X/\Re(T))'$, and hence S is bounded by the same argument as in b). Consequently there exists a constant M > 0 such that $||[x]|| \leq M||Tx||$ holds for any $x \in \mathfrak{D}(T)$, where [x] denotes the equivalence class of x mod. $\Re(T)$. To see the closedness of T, let $\{x_n\}$ be a sequence in $\mathfrak{D}(T)$ such that $x_n \to x$ and $Tx_n \to y$ for some $x \in X$ and $y \in Y$, respectively. Then there exists an $x' \in \mathfrak{D}(T)$ such that Tx' = y, since $\Re(T)$ is closed. On the other hand the inequality $||[x_n - x']|| \leq M||T(x_n - x')||$ implies $[x_n - x'] \to 0$ as $n \to \infty$. From this it follows that $x - x' \in \Re(T)$ and hence $x \in \mathfrak{D}(T)$ and Tx = y.

§ 3. Proof of Theorem 2

For the proof of theorem 2, we prepare the following

Lemma 1. Let X be a Banach space and let M be a subspace of X. If M is not closed, then there exists a subspace D of M^- such that $D^-=M^-$ and $(D\cap M)^- \subseteq M^-$.

PROOF. Without loss of generality, we may assume $M^-=X$. If $M\neq X$, we can select two unit vectors $x_0\in M$ and $x_1\in X\setminus M$. Furthermore fix an element $f\in X'$ such that

$$||f|| = \langle x_0, f \rangle = 1,$$

where $\langle \cdot, \cdot \rangle$ is the canonical bilinear form on $X \times X'$. Define an operator $V \in \mathfrak{B}(X)$ by

$$Vx := x - \frac{1}{2} \langle x, f \rangle x_1$$

for any $x \in X$ and put D := V(M). Then D meets the requirements of the lemma. To see this note that the conjugate V' of V is given by

$$V'g = g - \frac{1}{2} \langle x_1, g \rangle f$$

for any $g \in X'$. Therefore if $g \in X'$ annihilates $D, g-1/2\langle x_1, g \rangle f = V'g = 0$, which implies

$$||g|| = \frac{1}{2} |\langle x_1, g \rangle| \ ||f|| \le \frac{1}{2} ||g||,$$

hence g=0. On the other hand for any $y \in D \cap M$, there exists an $x \in M$ such that $y=x-1/2\langle x,f\rangle x_1$. This means $1/2\langle x,f\rangle x_1=y-x\in M$. Hence $\langle x,f\rangle=0$ and x=y. Thus $M\cap D\subset \operatorname{Ker} f$, and hence $(M\cap D)^-\subset \operatorname{Ker} f\subsetneq X$.

Now we prove Theorem 2.

a) Proof of $\Re(T)^- = \Re(T)$

Suppose $\Re(T)^- \neq \Re(T)$. Then there exists a subspace $D \subset \Re(T)^-$ such that $D^- = \Re(T)^-$ and $(D \cap \Re(T))^- \subseteq \Re(T)^-$ by Lemma 1. Let M be an algebraic complement of $\Re(T)^-$ in Y, i.e., a subspace of Y such that $Y = \Re(T)^- \oplus M$. Define $S \in \mathfrak{L}_0(Y)$ by

$$\mathfrak{D}(S) = D + M$$
 and $Sy = y$ for $y \in \mathfrak{D}(S)$.

Then $\mathfrak{D}(ST) = T^{-1}(D) = T^{-1}(D \cap \mathfrak{R}(T))$ is not dense in X. In fact if $\mathfrak{D}(ST)^- = X$, then

$$\Re(T) \subset \overline{T(\mathfrak{D}(ST)}) \subset (D \cap \Re(T))^{-1}$$

holds by the continuity of T, which leads to the contradiction $\Re(T)^- \subseteq \Re(T)^-$.

b) The proof that dim $Y/\Re(T) < \infty$

In the sequel, $\lim A$ denotes the subspace generated by $A \subset Y$. Suppose $\dim Y/\Re(T) = \infty$. Then the dimension of an algebraic complement N of $\Re(T)$ in Y is infinite. Since $T \neq 0$, there exists a non-zero $x_0 \in \Re(T)$. Let M be a topological complement of $\lim \{x_0\}$ in $\Re(T)$, i.e., M is a closed subspace of $\Re(T)$ such that $\Re(T) = M \oplus \lim \{x_0\}$. Since N is infinite dimensional, there exists a sequence $\{x_n\}_{n \in N}$ of linearly independent unit vectors of N. Let L be an algebraic complement of $\lim \{x_n : n \in N\}$ in N. Put

$$y_n := x_0 + \frac{1}{n} x_n$$

for $n \in \mathbb{N}$ and define a subspace D by

$$D := \lim \{y_n : n \in \mathbb{N}\} + L + M.$$

Since $\lim y_n = x_0$, $D^- \supset \lim \{x_0\} + \lim \{x_n; n \in N\} + L + M = Y$. Next let $y = \sum \alpha_n y_n + l + m \in D \cap \Re(T)$, where $\alpha_n = 0$ except for finite n's, $l \in L$ and $m \in M$. Then

$$y - (\sum \alpha_n)x_0 - m = \sum \frac{\alpha_n}{n} x_n + l \in \Re(T) \cap N = \{0\}.$$

Hence $\alpha_n=0$ for any $n \in \mathbb{N}$ and l=0. Therefore $y=m \in M$, and hence $(D \cap \Re(T))^{-} \subseteq \Re(T)$. Now define an operator $S \in \mathfrak{L}_0(Y)$ by

$$\mathfrak{D}(S) = D$$
 and $Sy = y$ for $y \in \mathfrak{D}(S)$.

Then $(\mathfrak{D}(ST))^- \subseteq X$ can be proved as in a) of this section, which is a contradiction.

§ 4. Proof of Theorem 3

For the proof, we prepare the following

LEMMA 2. Let X, Y be separable Hilbert spaces and let $T \in \mathfrak{L}_0(X, Y)$ be a closed operator with $\mathfrak{R}(T)^- \neq \mathfrak{R}(T)$. Then there exists an infinite dimensional closed linear subspace M of $R(T)^-$ which satisfies $M \cap \mathfrak{R}(T) = \{0\}$.

PROOF. Let $\mathfrak{G}(T)$ denote the graph space of T, i.e.,

$$\mathfrak{G}(T) := \{(x, y); x \in \mathfrak{D}(T), y = Tx\}.$$

Then the mapping $(x, y) \rightarrow y$ from $\mathfrak{G}(T)$ into Y has the same range as that of T. Hence we may assume $T \in \mathfrak{B}(X, Y)$. We may also assume that $Y = \mathfrak{R}(T)^-$ and $\mathfrak{R}(T) = \{0\}$, by considering suitable restrictions of T.

Let T=UP be the polar decomposition of T. Then $U\in \mathfrak{B}(X,Y)$ is a surjective isometry and P is an injective positive self-adjoint operator defined on X. Thus it suffices to show the lemma in case T=P. Let $P=\int_1^\infty \lambda dE_\lambda$ be the spectral decomposition of P. Then $E_\lambda\neq 0$ for any $\lambda>0$, since $E_\lambda=0$ for some $\lambda>0$ implies the invertibility of P and hence $\mathfrak{R}(P)=\mathfrak{R}(P)^-=X$. On the other hand, $E_0=0$ by the injectivity of P. These imply that there exists a sequence $\{I_n\}_{n\in \mathbb{N}}$ of disjoint intervals of the form $I_n=(a_n,b_n)$ such that $E_{b_n}-E_{a_n}\neq 0$, $0< a_{n+1}< b_{n+1}< a_n$, and $b_n<1/n$ for any $n\in \mathbb{N}$. The projection $E_{b_n}-E_{a_n}$ is denoted by P_n . Let $\phi: \mathbb{N}\times \mathbb{N}\to \mathbb{N}$ be the bijection defined by $\psi(i,j)=2^{i-1}(2j-1)$. Choose a unit vector $x_n\in \mathfrak{R}(P_n)$ for any $n\in \mathbb{N}$ and put $y_{i,j}:=x_{\psi(i,j)}$ for $i,j\in \mathbb{N}$. Then $\{y_{i,j}\}_{i,j}$ is an orthonormal system, and hence

$$z_j := \sum_{i=1}^{\infty} \frac{1}{i} y_{i,j}$$

exists for any $j \in N$ with $||z_j||^2 = \pi^2/6$. Note that $\{z_j\}_j$ is an orthogonal system. Let M be the closed subspace generated by $\{z_j\}_j$. M is clearly infinite dimensional and we claim that $M \cap \Re(P) = \{0\}$. In fact, let $y \in M \cap \Re(P)$. Then there exists a sequence $(\alpha_j)_{j \in N} \in I^2$ such that $y = \sum \alpha_j z_j$. On the other hand there exists an $x \in X$ such that Px = y. Let

$$P_{i,j} := P_{\phi(i,j)}$$

for $i, j \in \mathbb{N}$ and let $x_{i,j} := P_{i,j}x$. Then

$$P_{i,j}Px = P_{i,j}y = \frac{\alpha_j}{i}y_{i,j}.$$

This implies

$$\frac{|\alpha_j|}{i} \leq \frac{||P_{i,j}x||}{\phi(i,j)} \leq \frac{||x||}{\phi(i,j)},$$

since

$$||P_{i,j}Px|| = ||PP_{i,j}x|| \le \frac{||P_{i,j}x||}{\psi(i,j)}$$

holds by the definition of $P_{i,j}$. Therefore

$$|\alpha_j| \le \overline{\lim_{i \to \infty}} \frac{i}{\psi(i,j)} ||x|| = 0$$

for any $j \in \mathbb{N}$, and hence y = 0.

LEMMA 3. Let X, Y and T be as in Lemma 2. Then there exists an invertible operator $V \in \mathfrak{B}(\mathfrak{R}(T)^-)$ for which $D := V(\mathfrak{R}(T))$ satisfies $D^- = \mathfrak{R}(T)^-$ and $D \cap \mathfrak{R}(T) = \{0\}$.

PROOF. Let M be a subspace of Y whose existence is established by Lemma 2: i.e., M is a closed infinite dimensional subspace of $\Re(T)^-$ satisfying $M \cap \Re(T) =$

{0}. Take an orthogonal system $\{f_n\}_{n\in\mathbb{N}}$ in M such that $||f_n||=1/2^n$ for any $n\in\mathbb{N}$. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of $\Re(T)^-$. Then a linear operator $K\in\Re(\Re(T)^-)$ can be defined by putting

$$Ky:=\sum_{n=1}^{\infty}\langle y,e_n\rangle f_n$$

for each $y \in \Re(T)^-$, where $\langle \cdot, \cdot \rangle$ denotes the inner product in Y. It is clear that K is a compact operator.

We claim that the operator V := I - K meets the requirement. First let $y \in \mathfrak{N}(V)$. Then

$$||y||^2 = ||\sum_{n=1}^{\infty} \langle y, e_n \rangle f_n||^2 = \sum_{n=1}^{\infty} |\langle y, e_n \rangle|^2 ||f_n||^2 \le \frac{1}{4} ||y||^2$$

holds, and hence y=0. This implies that V is invertible in $\mathfrak{B}(\mathfrak{R}(T)^{-})$. Therefore

 $D^-=\Re(T)^-$ holds for $D:=V(\Re(T))$.

Next let $y \in D \cap \Re(T)$. Then there exists a $z \in \Re(T)$ such that

$$y = Vz = z - \sum_{n=1}^{\infty} \langle z, e_n \rangle f_n$$
.

This implies

$$z-y=\sum_{n=1}^{\infty}\langle z,e_n\rangle f_n\in M\cap\Re(T)=\{0\}.$$

Hence z=y and $\langle z, e_n \rangle = 0$ for any $n \in \mathbb{N}$, and hence y=0.

Now we prove Theorem 3.

a) Proof of the closedness of $\Re(T)$

Let T_1 be the restriction of T to $\mathfrak{N}(T)^{\perp}$: i.e., $\mathfrak{D}(T_1) = \mathfrak{N}(T)^{\perp} \cap \mathfrak{D}(T)$ and $T_1x = Tx$ for $x \in \mathfrak{D}(T_1)$. It is easy to see that T_1 belongs to $\mathfrak{L}_0(\mathfrak{N}(T)^{\perp}, Y)$ and is an injective closed operator.

Suppose $\Re(T)$ is not closed. Then by Lemma 3 there exists an invertible operator $V \in \Re(\Re(T)^-)$ for which $D := V(\Re(T))$ satisfies $D^- = \Re(T)^-$ and $D \cap \Re(T) = \{0\}$. Since V is invertible, the product $VT_1 \in \Im_0(\Re(T)^+, \Re(T)^-)$ is also closed and injective. Note that $\Re(VT_1) = V(\Re(T)) = D$. Hence we can define an operator $S \in \Im_0(Y, \Re(T)^+)$ as follows: $\Im(S) = D + \Re(T)^+$ and $Sy = (VT_1)^{-1}y_1$, where $y \in \Im(S)$ and $y_1 \in D$ is the unique element for which $y - y_1 \in \Re(T)^+$ holds.

Then it is clear that S is a closed operator and $\mathfrak{D}(ST) = T^{-1}(\mathfrak{R}(T) \cap \mathfrak{D}(S)) = \mathfrak{R}(T)$, which contradicts the assumption of the theorem.

b) Proof of dim $Y/\Re(T) < \infty$

Suppose dim $Y/\Re(T)=\infty$. Further we assume dim $\Re(T)=\infty$, since the proof for the case dim $\Re(T)<\infty$ goes similarly.

Let $\{x_i\}_{i\in\mathbb{N}}$ and $\{x_{i,j}\}_{i,j\in\mathbb{N}}$ be an orthonormal basis of $\Re(T)$ and $\Re(T)^{\perp}$, respectively. Define $U\in\Re(\Re(T)^{\perp},Y)$ by

$$U\!\!\left(\textstyle\sum\limits_{i,j}\!\alpha_{i,\,j}x_{i,\,j}\right)\!:=\!\textstyle\sum\limits_{i,j}\!\frac{\alpha_{i,\,j}}{j}\!\!\left(x_i\!+\!\frac{1}{j}\!-\!x_{i,\,j}\right)\!,$$

where $\sum_{i,j} |\alpha_{i,j}|^2 < \infty$. It is easy to see that U is well defined and

$$||U|| \leq \frac{\pi}{\sqrt{3}}$$
.

Since $jUx_{i,j} \to x_i$ as $j \to \infty$, $\Re(U)^- = Y$. Moreover $\Re(U) \cap \Re(T) = \{0\}$. In fact, let $y = U(\sum_{i,j}\alpha_{i,j}x_{i,j})$ belong to $\Re(T)$, where $\alpha_{i,j}$ satisfy $\sum_{i,j}|\alpha_{i,j}|^2 < \infty$. Then y is orthogonal to $x_{i,j}$ for any $i,j \in \mathbb{N}$. This implies $\alpha_{i,j} = 0$ for any $i,j \in \mathbb{N}$, and hence y = 0. Lastly we note that U is injective.

The preceding arguments show that the operator S defined by

$$\mathfrak{D}(S) := \mathfrak{R}(U), Sy := U^{-1}y \text{ for } y \in \mathfrak{D}(S)$$

belongs to $\mathfrak{L}_0(Y,\mathfrak{R}(T)^\perp)$ and is closed.

In the same way as in a) of this section, we have $\mathfrak{D}(ST) = \mathfrak{R}(T)$, which contradicts the assumption $T \neq 0$.

References

- [1] Goldberg, S., Unbounded Linear Operators: Theory and Applications, McGrow-Hill, New York, 1966.
- [2] Schechter, M., The conjugate of a product of operators, *Journal of Functional Analysis* **6**, 26-28 (1970).