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§1. Introduction

The purpose of this paper is to characterize and determine the structure of
positive operators between AM-spaces which possess the “ Maharam property .
In §2, the definition of Maharam property is recalled and three types of ex-
amples of operators with this property are described. For the sake of simplicity,
we call an operator with Maharam property simply a Maharam operator. In §3,
we give a characterization of Maharam operators and show that any Maharam
operator between separable AM-spaces is the composition of three types of
operators described in §2. For general terminology concerning Banach lattices,
we refer to [3] or [6].

§2. Maharam operators

Let £, F be vector lattices and 7" be a positive linear operator from E to F.
Then 7 is said to have the Maharam property whenever for all 0= fe£ and
for all 0=geF satisfying 0==¢=7Tf there exists an element fy¢% such that 0=
fo=f and Tfo=¢. Maharam property was first introduced by D. Maharam [4)],
[5] in the context of F-integrals under the name of * full-valuedness”. This
property plays an important role in the Radon-Nikodym type theory for positive
operators developed by Luxemburg and Schep [2]. The duality between Maharam
operators and lattice homomorphisms is also known, see e. g., Lotz [1].

The following is an immediate consequence of the definition.

ProrosiTiON 1. Let B, F and G be vector lattices and let T : E—F, S: F—G
be linear operators. Then the following hold.

1) If T is @ Maharam operator, the rvange of T is an ideal of F. Conversely,
if the vange of T is an ideal of F and T is a lattice homomorphism, then T is
a Maharam operator.
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2y If T and S are Maharam operators, then SoT is also a Maharam operator.

In the rest of this paper, only the Maharam operators between AM-spaces
with unit are dealt with. In other words, we study the case T:C(X)—~C(Y)
where X, Y are compact Hausdorff spaces.

Three types of examples of Maharam operators 7" : C(X)—C(Y")

(A) Restriction (or quotient) map

Let ¥ be a closed subspace of X. Then the mapping 7': C(X)—C(Y") which
maps feC(X) to fireC(Y), the restriction of f to Y, is a Maharam operator.
This is immediately proved by Tietze's extension theorem. In the Banach lattice
theoretic view, C(Y) is isomorphic to the quotient C(X)/I, where [:={feC(X);
f=0 on Y}, and if we identify C(¥) with C(X)/I, T is the canonical map C(X)
—C(X)/I and hence a Maharam operator by Proposition 1.

(B) Maharam retraction

Let 7 be a closed sublattice of C(X) containing the constant functions. Then
there exists a compact Hausdorff space Y for which [ is isometrically lattice
isomorphic to C(Y) by the representation theorem of S. Kakutani ([6], p. 104).

A Maharam operator 7" : C(X)—1 satisfying T\;=identity is called a Maharam
retraction of C(X) onto . If i denotes the canonical injection /—C(X), them
P =ioTel(C(X)) (=the set of bounded linear operators on C(X)) is a positive
projection onto /. Moreover, P has the following property ;

(*) [0, PFINI=PI0, ] holds for any 0=;eC(X), where [0,z]: ={veC(X);
0=v=w} for any uecC(X).

Conversely let Pe@(C(X)) be a positive projection with range / and with
the property (*). Then the operator T':C(X)—I defined by Tf=Ff for feC(X)
is a Maharam retraction onto I and P=i-T holds. Thus the Maharam retrac-
tions onto J and positive projections in {(C(X)) whose ranges are / and which
satisfy (*) are in one to one correspondence.

Note that by the assumption that 7/ contains the constant functions, any
positive projection onto [ is of norm 1.

Concrete example of Maharam retraction:

Let E: =C[—1,1]) and I: ={feE; f(—a)=f(z) for any ze[—1,1}}. Define
Pe&(E) by

Pfin): =5 (o) + S (~a)) oel—1, 1]

Then P is a positive projection onto [ satisfying (*). The proof of this fact is
contained in that of Theorem 1.

(C) Lattice isomorphism
A lattice isomorphism I':C(X)—C(Y) is clearly a Maharam operator by
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Proposition 1. The structure of such lattice isomorphisms is well known.
Namely, there exists a function peC(Y) and a homeomorphism ¢: ¥Y—X such
that p(y)>0 for any yeY and

TH=pW)f (W)
holds for any feC(X) and yeY.

Remarvk. The above examples also give typical examples for Maharam
operators hetween general vector lattices. :

§3. Characterization of Maharam operators

To characterize Maharam operators, we introduce the following notion. Let
T:C(X)y~C(Y) be a bounded linear operator, where X and Y are compact
Hausdorff spaces. Let T” he the adjoint of 7 and d, denote the Dirac measure
concentrated on ye€Y. Then, for any weY, define the measure p, on X by
wy=T"3, and let S, be the support of ;. Note that S,=0 if p,=0. Thus for
any bounded linear operator T:C(X)—C(Y) there corresponds a family {Sylyer
of subsets of X indexed by Y. In general, a family {F,},er of subsets of X
indexed by Y is said to be upper semi-continuous if for any net {Z.}ee4, (¥alaca
such that z.¢F,, 2.~z and y,—y for some xzeX and yeY, then xeF, holds.
It is clear that {F}}yer is upper semi-continuous if and only if the set {(x,¥);
xeF,} is closed in Xx¥. Now we have the following

ProrosiTION 2. Let T:C(X)-C(Y) be a positive linear operator, where X
and Y ave compact Housdorff, and let Sy be the support of the measure T'5, for
yeY. Then

1) if T is a Maharam operator, then S,NS,=0 for any dislinct elements
1y of Y,

2) if the family {Sylyer is upper semi-continuwous and SyNSy=0 for any
distinct elements v,y of Y, then T is o Maharam operator.

Proor. proof of 1). If T1(y}=0, where 1eC(X) is the constant one, S,=0
by definition. So there is nothing to be proved in this case. If T 1(y)>0, there
exists a function geC(Y) such that g(y")=0, ¢(y)=T1(y) and 0=¢=T 1. By the
assumption there exists a function feC(X) which satisfies Tf=¢ and 0= /=1,
Since

0=00")= 7 dp,
[tam=r10=00)=(7 4y and 0=7=1,

f=0on S, and f=1 on S,. Hence S,NS,=0.



90 Shizuo MivajmMa

proof of 2). Let 0=7eC(X)and 0=¢eC(Y) satisfy 0=¢=<7Tf. By the upper
semi-continuity of {S,}yr and the compactness of X and ¥, the set X,: =,,\e{, Sy is

closed in X. Put Y,:={y;Tf(y)>0}. Then O: =y\€{, Sy is relatively open in X,
Q
since éilSy is closed. For any zeX, define Z#(x) by
4g Yy

h(x)= 79‘.7(:3) S(x), if zeS, for some ye¥,,

0 s if X E.XO\O-

A(x) is well defined, since for weO there exists a unique ye ¥, such that zeS,.
To show that the function /%:z——sA(2) is continuous on X, let {Zaleesa be 2
net in X, convergent to xeX,. Suppose xeO. Then we may assume that z.cO
for any aeA since O is relatively open in X, For any acA, an element y.¢ Y,
for which z.€S,, is uniquely determined. Also an element yeY, such that zeS,
is uniquely determined. If A(a.)—A(x) does not hold, there exists a subnet
{xstaer Of {Xalega and £>0 for which

) [ g)—h(z)|>e for any feB

holds. By taking a suitable subnet, we may assume that the corresponding
subnet {ysheen Of {Yalaesa is convergent. The upper semi-continuity of {S,}yer
implies that the limit of {ys}ees is y. For these subnets

h(zs)= :ﬂ}'é’qu) Flzd) — -%’-%)—f(x>=h(x)

holds since TA(ys)—Tf(y)>0, and hence contradicts (¥).

Suppose now that zeX,\O. It suffices to show A(x.)—0 in case z,¢O for
any aeA. Since 0=h(z)= f(z) for any zeX,, it also suffices to show that f(z.)
—0." By the assumption ze X,\O, TH(»)=0 holds for the unique element yeY\Y,

such that xeS,. Therefore S fdpy,=0 and hence f(z)=0 since zeS,. This
implies f(z.)—0 by the continuity of f. Thus we have shown that 2eC(Xy)
and 0=A=f on X, It is clear that S/z duy=g(y) holds for any yeY. To obtain
a keC(X) which satisfies 0=k=f and Tk=yg, take any continuous, non-negative
extension %, of % to X and let £ be the infimum of f and %,.//

If X and Y are metrizable, the above proposition can be improved.

ToeOREM 1. Let X and Y be compact metric spaces and T:C(X)—~C(Y) be
@ positive linear operator. Let S, denote the support of the measwre yy:=T'd,
where 0y is the Dirac measure concentrated on yeY. Then the following asser-
tions ave equivalent.

(i) T is a Maharam operator.
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(i) a) {Sylyer is an upper semi-continuous family, and
b) SyNS, =0 for any y,v'eY such that y=+v'.

Proor. The implication (ii)=> (i) is already proved in Proposition 2. To
see that (i) implies (ii), it suffices to show that (i) and b) imply a), since the
implication (i)=b) is proved in Proposition 2. Suppose a) does not hold. Then
there exists a sequence {@.}uen [resP. {¥nlnen] Of points of X [resp. Y] with the
following properties :

Zn€Syys {@ntnenw (TSP, {Yulnen] is convergent to zoe X [resp. yo€ Y], and xSy,

Let d be the metric on ¥. By choosing an appropriate subsequence if
necessary, we may assume that

1
(*%) 0<d(y, yn+1)<~3~d<ya, W)

holds for any neN. Then it is easily proved that there exists a sequence
{fulnew Of continuous functions on ¥ such that

1
0= fu=1, fulva)=1, and suppfuCiy;dy, yn) <§'d('!/0, Y}

holds for any »nelN, where suppf, denotes the support of f,. Then a simple
computation shows that supp fusupp fu=#0if n=m. Put g(y)=§, Jfan(y) for each
n=)

yeY. It is easy to see that this definition is valid and 0=¢(y)=1 for any yeY.
The function ¢ is continuous on Y \{y.} since the sum is locally finite except at
7. On the other hand, there exists a function feC(X) such that 0=f=1,
Sf(zo)=1 and supp fNS,,=0. The last condition implies

Tf(-‘)&o)=gf dpry,=0.
Hence the function
g =1fq,
defined by pointwise multiplication, belongs to C(Y) and satisfies 0=, =7/,

By the assumption (i), there exists a function 2eC(X) such that 0=i=f
and Th=g¢,. Then for odd neN,

0=g1(?/n)=gh dpy,,, hence Alw.)=0. . (1)
On the other hand, if neN is even

Sf Apyy, = TH ) =91 (yn) = S/l Aptyy
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which implies
I(en)=f(zn). 2)
(1) and (2) contradicts the continuity of 7 at xo.//

ReEMARK. Theorem 1 still holds if the assumption of the metrizability of
X and Y is relaxed to the assumption that they satisfy the first axiom of
countability.

In case Y is connected, we have the following

ProrosiTiON 3. Let X, Y be compact metric spaces and suppose that Y is
connected. Let T:C(X)—~CY) be a Maharam operator which is not identically
zevo. Then T is surjeclive.

Proor. It suffices to show that T 1(y)>0 for any yeY, since it implies the
surjectivity by Proposition 1, (1). Put

Yo:={yeY; T1y)>0}.

Then Y, is clearly a non-void open subset of Y. We will see that Y, is also
closed and hence equals Y. In fact, let ,6¥,\Y,. Then there exists a sequence
{#ulnew Of points of ¥, convergent to y,. Choose z,eX such that z.eS,, for
each neN, where S,, is defined as in Theorem 1. (Note that S,,0 since y,€ ¥s.)
By choosing a suitable subsequence if necessary, we may assume that {za}nen
converges to x.eX. Moreover, we may also assume that {w.l.eny satisfies the
condition (**) in the proof of Theorem 1. Then in exactly the same way as in
the proof of Theorem 1, we can construct a function ¢: Y—R such that

0=g(n)=1 for any yel,

9(za)=1, ¢(yen-1)=0 for any neN
and

g is continuous except at .

Since T'1.¢'is continuous on Y and 0=T1.¢9=71, there exists a function
heC(X) such that 0<A=1 and Th=T1.¢g. The same argument as in the proof
of Theorem 1 shows that /(ze)=1 and /(eem_)=0 hold for any neN. This
contradicts the continuity of 7.//

ReMARK. The assumption of metrizability cannot be dropped as the follow-
ing example shows.

ExamprLE. Let E: =Cy(0,1)) (=the set of bounded continuous functions on
(0,1]), and F': =C({0, 1]). E is isometrically lattice isomorphic to C(8(0,1]), where
5(0,1] is the Cech compactification of (0,1], which is not metrizable. Define a
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positive operator T':LE—F by
2fx), i O<z=l

Tfw)= [ )
]. , if &=0

for fefs. Then it is easy to see that 7" is a Maharam operator not identically

zero, although it is not surjective.

As a preparation for the structure theorem for Maharam operators, we
state the following apparently known lemma with a proof.

Lemma. Let X, Y be compact Hausdorff spaces, and let {Sylyer be an upper
semi-continuous family of non-void closed subsets of X which satisfies SyN Sy =0
if v and vy are distinct. Put X,: =\‘{f S, and define an equivalence relation ~

ve

by x~as if and only if yeY[x €S, and x:€S,]. Then Y is homeomorphic to
the quotient space Xof~.

Proor. Let ¢:X;—Y be the mapping which maps xeX to the unique
element yeY such that zeS,. Let r denote the canonical surjection Xy—Xo/~.
Then there exists a unique bijection ¢:Xo/~—Y for which g=¢er holds. It
is easy to see that ¢ is continuous, and hence ¢ is continuous. On the other
hand ¢ is a closed mapping since X,/~ is compact. Hence ¢ is a homeomor-
phism.//

Combining the above results, we have the following

Turorem 2. Let X, Y be compact metvic spaces and let 'Y be connected.
Suppose T': E—~F be a non-zero Mahavam operator where E=C(X) and F=C(Y).
Then there exists a faclovization

YO Gy SN

le

I

of T (.e., T=TyeTyeT) with the following properties:

a) [ is a closed ideal of E and T\ is the canonical survjection. (cf. §2 ex-
ample (A))

b) [ is a closed sublaitice of E|l and T: is a Maharam retraction onto J,
and T, is strictly positive, i.e., Tof =0 and 0= feEll imply f=0. (cf. §2
example (B))

c) Ty is « lattice isomorphism. (cf. §2 example (C))

Moreover, such factorization is unique up to lattice isomorphisn.

Proor. Existence of a factorization. Proposition 3 implies that the function
p:=T1 is everywhere positive and hence S,=0 for any yeY¥. Then by Theo-
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rem 1 and Lemma 1, there exists a homeomorphism
¢ X/~ Y,
where X, ~, ¢ are the same as in the proof of Lemma 1. Let
I'={fekE; T|f|=0}.

Then 7 is a closed ideal of £ and I={f¢E; f|x,=0}. Hence E/I is isometrically
lattice isomorphic to C(Xo). Let T\ be the canonical mapping E—~FE/I. Since
IcKer T, there exists a factorization
7 T N
E— E[l — F, T=T-T,.
Note that 7" is also a Maharam operator and strictly positive. It is easy to see
that the ideal

] ={feC(Xy); fls,=const. for any yeY}

is a closed sublattice of C(X,) containing the constant functions, and is iso-
metrically isomorphic to C(X,/~). The isomorphism =*:C(X,/~)—/] is given by
*(f)=fex where z:X,—X,/~ is the canonical surjection. Now an operator
T.: E/I-] is defined by the composition of the following mappings:

71'*

T i
Ell — F — C(Xy[~) —> ],

where i is the isomorphism defined by ( f)=(% f)ogb for feC(Y). It is clear

that 7. is a Maharam operator and 7|, is the identity. The strict positivity
of T. follows from that of 7. Lastly let Ty:/—F be defined by Ty=i'oz* .
Then T, is a lattice isomorphism and T=7yT:°7, holds. Thus the existence
of a factorization is proved.

Uniqueness of factorizations. To see the uniqueness let
T T _T
E—Ell — ] —F
be another factorization satisfying a), b) and ¢). Then

Ker T'\={f; Tulf1=0)={f; T|f|=0}=Ker T\

holds since 7407, is strictly positive. Hence T=7.. The equality T=TyoTs0
T, =TyofeoT, and the suriectivity of Th=T, imply TseTe=T,T, and hence
To=Ts1oTyoTs. This proves the theorem since Ty~'oT% is a lattice isomorphism
from J onto 7.//

T T. T
The factorization E~—-I+E/I — ] ——8>F described in the first half of the
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proof of Theorem 2 is called the canonical factorization of 7. Then we have
the following

PRrOPOSITION 3. Let X, Y be compact metric spaces and let 'Y be connected.
Suppose
T 1 Tz T.‘!
E— El [ ~—]—F

be the canonical factorization of a nown-zevo Maharam operator T:E—F, where
E=CX) and F=CY). Then

1)y T is strictly positive if and only if T\ equals the identity, and
ii) T is lattice homomorphic if and only if Ty equals the identity.

Proor. Both assertions follow immediately from Theorem 2.//
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