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0. Introduction

-At the present time, if weé want to construct a category theory, we first
construct a certain appropriate set theory and prepare many set-theoretical tools;,
and after that we define category as a model of ABSTRACT CATEGORY
THEORY (in which the scope of quantifiers is one category)*. More precisely,

# The important exceptions are Lawvere's [2] and [3].
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we define the formula CATEGORY (C), for a term (i.e. a set) C.

But this way of construction of a category theory is very unsatisfactory to
categorists who regard categories as fundamental objects of mathematics instead
of sets. In other words, the following DOGMA of Set Theory dominates the
category theory of this type.

The DOGMA of Set Theory

[S1] AIll materials we recognize are sets.

[S2] € is the only atomic predicate symbol other than =.

[S3] All small relations, operations, etc. are constructed set-theoretically.
(by determining their elements)

Taking all these facts into consideration, we propose a new category theory
which has the following DOGMA ; the PAN-CATEGORISM.

The DOGMA of Category Theory~PAN-CATEGORISM

[C1] All materials we recognize are categories.

[C2] <is the only atomic predicate symbol other than =.

[C3] All small relations, operations, etc. are constructed category-theoreti-
cally. (The constructions we can do in set theory can be performed
similarly.)

Here, <] is a predicate symbol where z<|C means “x is a triangle of «a
category C.” ‘

In the present paper, we describe a theory Jo., as a realization of this
PAN-CATEGORISM, in which «ll terms are categories, and which intuitively
includes Bourbaki's set theory.

We proceed as follows.

In Chapter 1, we define egualitavian theory with ordered paiv. We define
category in this very general frame in Chapter 2. At this step, we cannot
define the formula CATEGORY (C) for a term C. In fact, we have no notion
of x being a morphism or an element or a triangle of a term C. Therefore,
we define the formula CATEGORY (¢) for a formula ¢ and a variable z. (2.3)
¢[£] will be written “¢ is a triangle of ¢.” in case ¢, is a category.

In Chapter 3, we describe our category theory Tee. Dcae is an equalitarian
theory with ordered pair which has a new predicate symbol <. We inter-
prete CATEGORY »(2<]C) as “C is a category.” And we require an axiom VC
[CATEGORY .(x <] C)], which is called AXIOM OF PAN-CATEGORISM. Then,
to realize [C3], we state category-theoretical version of axioms and a scheme
which are similar to those in Bourbaki’s set theory. ,

Finally, in Chapter 4, we prove that e iS consistent if Tse (a2 set theory
which is equivalent to Bourbaki's set theory) is consistent.

Remark: 1) We can also prove that Jse. is consistent’ if Jeas is consistent.
2) Our method of realizing PAN-CATEGORISM is applicable to
any other first order theory.
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1. Equalitarian theories with ordered pair
1.1. Equalitarian theories

Throughout this paper we assume the contents of Chapter 1 of {1]. The
notions of signs (logical signs, letters, and specific signs (substantific signs,
relational signs)), assemblies, mathematical theories, terms, relations, implicit
and explicit axioms, schemes, theorems are all due to Chapter 1 of [1].

We use “variable” instead of “letter ”, “operation symbol (function symbol)”
instead of “substantific sign”, “ predicate symbol ” instead of “ relational sign”,
“formula ” instead of “relation”. We write Rlx,, -, x,] instead of R%w,,n-,xng.
Variables are denoted by ,v,2 -, &1, &, -+, etc. Formulas are denoted by

0, ¢, 0,2, etc.

Recall that an equalitarian theory is a theory with a binary predicate symbol
= and with Scheme 1~Scheme 7 below :

1.1.1. ScuemE 1. If ¢ is a formula, (pV o) = ¢ is an axiom.
1.1.2. Scueme 2. If ¢ and ¢ arve formulas, o = (pV ¢) is an axiom.
1.1.3. ScHeME 3. If ¢ and ¢ ave formulas, (pV ¢) = (¢ V @) is an axiom.

1.1.4. ScueEME 4. If ¢, and 0 are formulas,
(o= ) = (v ¢) = (B v ¢)) is an axiom.

1.1.5. ScueME 5. If ¢ is a formule, 1 a term, and x « vaviable,
) ) = (Ax)p is an axiom.

1.1.6. ScHEME 6. Let x be a variable, t and s terms, and ¢(x] a formula.
Then (t=s) = (L] <= ¢[s]) is an axiom.

1.1.7. ScueME 7. Let ¢ and ¢ be formulas and z a variable.
Then (Va)o <= ¢n)) = (tolp)=cul¢)) is an axiom.

1.2. Equalitarian theories with ordered pair

An equalitarian theory with ordered pair is an equalitarian theory in Bourbaki’s
sense, with an additional binary operation symbol O and an additional axiom ;
Axiom 1. ‘

1.2.1. Axiom 1. (V) (V) (V2) (V) (Qzy)=Qzw) = (x=z A y=w)).
Remark: 1f t and s are terms, the notation (¢, s) is used instead of Ofs.

1.2.2. DreriniTION. The formula (J2)(Jy) ¢=(x,v)) is written “¢ is an
(ovdered) pair.” When ¢ is a pair,

TJ‘((E}?/) (t= (J), 2/)))» 72/((3”) (t=(x, :I/)))
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are denoted by pr.f, pr.f, respectively.
The term (z,(y,2)) is also denoted by (x,v,2). The formula (3z)(dy)(I2)
(t=(z, v, 2)) is written “7 is @ friple” When ¢ is a triple,

w((Fy) (F2) ¢ =(=, 9, 2))), v((32) (Fz) ¢ =(w, ¥, 2))), =((32) Fy) (¢=2, v, 2)))
are denoted by pr.f, prif, pryf, respectively.

2. Category

Throughout this chapter, 4 denotes « theory stronger than an equalilarian
theory with ordered pair. In this chapter, we prepare some notions which is
used in next chapter for the description of the theory Jc... They are the
notion that a formula in & is a category, the notions of opposite category, the
category of all units,---, etc. Notice that we define the formula CATEGORY (),
for a formule ¢ and a vaviable z. (2.3) And CATEGORY.(¢) is written “¢ is
a category with rvespect to x.” We cannot define the formula CATEGORY (C)
for @ term C, because we have no means to talk about morphism or element or
triangle of C.

2.1. Composition

2.1.1. DeriniTION. Let ¢[2] be a formula in &, and let y, %, », w, w. be
variables not appearing in ¢. The formula

Vy(elyl=—> v is a triple)
AYuNoY 0, Vsl (e[ (n, v, wi)IA @l (2, 0, w2)]) == wi=wy]

is written COMP.(¢), or “¢, is @ composition,” or “¢ is a composition with
vespect o z.”

2.1.2. DeriniTioON. When COMP,(¢), Juw ¢[(z, v, w)] is written “(»,v) is @
composable paiv of ¢z or “(u,v) is composable in ©p.”
If (u,v) is a composable pair of g., the term zw(¢[(#,v,w)]) is denoted by
u<v v, and is called the composite of v and u by @
x

2.1.3. Example. Let p, g, v be three terms.
1) The formula xz=(p, g, 7) is a composition with respect to z.

2) The formula z=(p,p,p)Va=(tq0)Ve=pPIVe=q4¢q is a
composition with respect to .

2.1.4. DeriNiTION. Let ¢[z] be a formula in §. The formula

el(2, 4, 8)]
AYuV o[ {Fwel (2, £, w)] = twlel(, £, w)])=u}
A{Fwel (¢, v, w)] == culel(t, v, w)])=0}],
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where #,v,w are variables not appearing in ¢, is written 2@ ¢.
x
If COMP.(¢), 1® ¢ is also written “¢ is a unit of ¢z
x

Remark: If COMP,(¢p), L‘C;)(,o is identical with the formula
¢el(4, 1, 0)]
AVu¥o[{(xn, 1) is composable in ¢, => » Zﬁgz‘=u}
A{(n, t) is composable in ¢, ::jz‘zg v=v}].
2.1.5. Example. The composition in 2.1.3. 2) has ¢ as unit, i.e.
9@ (2=, 0, DIV 2=(, 0, D)V 2=(2, 5, /) V 2=(4, ¢, 7))

is a theorem.

2.2. Associative composition

2.2.1. DeriviTiON. Let ¢[x] be a formula in 9. Let ASS,(¢) be the for-
mula

COMP(p)
APV GUrYu3s(el(, g, $)IA ¢l(s, 7, w)])
& Filelg, v, DIN ¢l(p, 2, w)])]
AVPYgVr[(p, g) and (g,#) are composable pairs of ¢y
= Julyl(p Z%f 0% w)] A el(p, qzﬁ; #, #)])],
where p, q,7,s,t, # do not appear in ¢.

ASS.(p) is also written “¢, is an associative composition,” or Yo is an
associative composition with respect to-x.”

2.2.2. DeriNiTION.  When ASS,(¢),
(#,9) and (g,7) are composable pairs of g, = (P'i‘&'Q)Yﬁrf —-P*(Q ﬂ”’)

The term ru(pf(p v,ﬂr a7, w)INe[(p, q 71%, v, u)]) is denoted by b -7{:« q yi‘r r

o P
2.3. Category

Now, we come to the definition of category. We first define the notion
CATEGORY ., (o, ¢).

2.3.1. DEFINITION. Let ¢[x], ¢[y] be two formulas in <, where = does not
appear in ¢ and y does not appear in ¢, and let #,v,w, e be variables which do
not appear in ¢ nor ¢. The formula
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ASS.(0)
AVYVuVoVule[(u, v, w)]
= {Je(gleI A ¢l(e, u, 1)) A Te(gle] A ¢[(u, e, u)])
A de(glel A glle, v, v)])) A Je(gle] A ¢l(v, e, v)]}]
AVelgle] = e ®¢]

is written CATEGORY . (¢, ¢), or “(gu, ¢y) is @ category,” or “(g, $) is a category
with respect to x,y.”

2.3.2. Example. Let ¢[x] be the formula
v=(X, X, X)ye=(Y, ¥, V) Vo=(£, X, )V a=(Y, 1, /),
and let ¢[y] be the formula
y=Xvy=7Y.
Then X= Y=+ f+X = CATEGORY ., (¢, ¢
f
—
5 7
2.3.3. DeriniTION. Let ¢[z] be a formula in . The formula
CATEGORY ., (¢, v C;) @)

is written CATEGORY.(¢p), or “¢. is @ category,’ or “¢ is a category with
vespect to x.”

Remark: This definition makes sense because two formulas: CATEGORY,.,
(¢, y @ ¢) and CATEGORY ;. (¢, ¥'®¢) are identical.

As CATEGORY . (¢, ¢) <= (CATEGORY .(0) AVy[¢ly] < y ® ¢]) is a theo-
rem in &, it does not lose generality to use only the categories of the form
(p, v®¢). So, we use the notation CATEGORY .(¢) mainly. But, sometimes it

X

is essentially convenient to use the notation CATEGORY, (¢, ¢). (c.f. Scheme
8 (3.4)

2.3.4. Example. Let ¢[X,Y,Z E, f, g, %, x] denote the formula in & below :
=X, X, X)vae=(Y, Y, V) va=(Z,Z,Z)ya=(E E, E)

va=(f, ¥, ive=(Z, f, ive=(. X 9)vz=(Y, g0
va=h X, )V e=(Z kL I)vz=(f,qh).

Then VXVYVZVEVfVQVA(X, Y,Z, f,¢,h are pairwise non-equal —> CATE-
GORY . (¢r)) is a theorem.
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Remark: X=Y=Z=f=g+h=—>"1CATEGORY ,(¢).
If CATEGORY .(¢r), ¢- is called “the septet category (7-morphism-category)
made of X, Y, Z,E, f,q,h”

2.3.5. DEFINITION. Let ¢, be a category in . ¢[¢] is written “¢is &
triangle of ©.." ¢[(f,9, k)] is also denoted by the diagram below:

The formula
FoTwel (¢, v, w)] v JuTwe[(x, £ )]y JuIve[(n, v, DIV I@ @

is written t & ¢ or “f is a morphism of ..
X

2.3.6. CRITERION. Let ¢, be a category in . Then
YyVe Ve (e @ ohcs C:) o Nolles, v, MIN e, v, 1)) = er=c.],
VyVd\ Vo[ (d, @ oAds ®¢ A olQu, dy, W)IA e[y, do, 1)) = di=ds];

are theorems.

Proof : Suppose ¢c:@pAce @ o Aglles, v, v)IAgllcn v, )], then
&

Ca
<
. v
t ¥ \Y .
Q M Q.
-~
K

By the associativity of ¢z,

therefore ¢;=c¢| Yrca=c,. This proves the first half of the criterion. The proof
of the second half is similar. 8

2.3.7. DEFINITION. Let ¢, be a category in &, and let y E¢. Then
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Tc(c@¢A¢[(C, y,)]) is denoted by cod,,(v),
a(d ® 0 A¢l(y, d, v)]) is denoted by dom,,(v).

2.3.8. DermiTiON. The formula ¢=cod, (y) Ad=dom,(y) is denoted by
¢ ————d n .
2.3.9. CRITERION. Let ¢, be a category in . Then
VuVo[(u,v) is composable in ¢, &= eod, (u)=dom, ()],
Yyly @ ¢ < y=cod,,(y)=dom, (v)],
VuVoVulel(u, v, w)] = {cod, (w)=cod, () A dom, (w)=dom, (»)}],
are theorems. B
2.3.10. DeriNITION. Let ¢ be a category in &. The formula
\ZETECFION
is written Dise(p), or “ ¢z is discrete.”
2.3.11. CRITERION. Let ¢, be a category in G. Then
Discs(¢) =——> VuVo[(u t‘?i Ao % ¢ Ausv) = (u,v) is not composable in ¢;]
is a theovem.
Proof : Suppose Discz(v), and suppose # r:: oAv ;& ¢. Then u (;) oAv C;) ¢, SO
(%, v) is composable in ¢, = u=u§‘;v=v > u=0.
This proves the criterion. f ’
2.3.12. CRITERION. Let ¢, be a category in . Then
Disc.(p) = Yu¥oVulpl(u, v, w)l = w C;) o Nu=v=w)
is @ theorem. B

2.3.13. CriTERION. Let ¢le] be a formula in I, and let x be a variable
not appearing in ¢. Then (Je(x=(e, e, e) A ¢[e])), is a category, and

Disc.(de(z=(e, e, ) \ ¢[e]))
is a theorem. B

2.3.14. DerNITION. Let vz, ¢z be two categories in &. The formula

Vylely] = DA Va(z @p=2@¢)
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is written p G ¢, or “¢. is @ subcategory of ¢
&

2.3.15. CRITERION. Let ¢, ¢z, 05 be three categories in I, then
o
x
(¢C¢/\9/rC())Z‘.‘>§J’C07
x &£ T
are theorems. B

Now, we shall define the opposite category, the category of all units, the
discretization category, the category of all morphisms from X into Y, the product
category, the category of all composable pairs. And finally, we shall define
functor, the composition of functors.

2.8.16. DerINITION. Let ¢, be a category in &. The formula
x is a triple A¢[(pr.z, priz, prax)]

is a category with respect to z in I and is denoted by ¢3.
oo is called the opposite (dual) category of ¢a.

2.3.17. CriTERION. Let ¢ be a category in I, then
Vylle)sly] & eyl
Disc.(p) = Vylely]l < oyl
Vily @ ¢ = v @ ¢i],
are theorems. B
2.3.18. DErINITION. - Let ¢z be a category in . The formula
de(z=(e,e,e)Ne @ ©)

is a discrete category with respect to z in & (2.3.13), and is denoted by [¢}a.
lelz is called the category of all units in @q.

2.3.19. CrITERION. Let ¢y be a category in I, then
lplce
is a theovem. [
2.3.20. DeriNiTION. Let @, be a category in &. The formula
Je(z=(e,e,e)Ne £ ¢)
&

is a discrete category with respect to z in g (2.3.13), and is denoted by @a.
0z is called the discretization of ¢,.
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2.3.21. CrRITERION. Let ¢, be a category in T, then

Vily B¢ & v E ]

is a theoven. iB

2.3.22. DEFINITION. Let ¢, be a category in &, and let X, Y be units of
vz The formula

Je[z=(e, ¢, ) Adom,,(e)=X Acod,(¢)= Y]

is a discrete category with respect to z in G (2.3.13), and is denoted by (X, Y),
or Hom, (X, Y), etc.

2.3.23. CRITERION. Let ¢, be a category in T, then
ea(X, ¥) C 6w
is a theovem. [
2.3.24. DEFINITION. Let ¢, ¢ be two categories in . The formula
JyAelz=((priy, Priz), (Prey, Prez), (prsy, pruz)) A ¢ly] A ¢z]]

is a category with respect to x in &, and is denoted by ¢X ¢, which is called
the product of ¢ and ¢s. '

2.3.25. CRITERION. Let ¢, ¢n be two categories in I, then
Yyly @ (0 X ) & (priv @ e Apray © ¢)]
is « theovem. @
2.3.26. DeErFINITION. Let ¢, be a category in 9. The formula
Jee o4y v, v, Few, e,
[z=((tes, %), (01, 22), (w1, w) A @ X ¢)[z]
A (o1, ), (91, 03), (w0, wn) are composable pairs of ¢.]
is a category with respect to z in &, and is denoted by go*z'gu.
2.3.27. DEFINITION. Let ¢, ¢, @z be three categories in &. The formula
aC(pXy)
/\Vz(z%go:> 3!w(w&;§¢/\(z, w)%a))

NFYQYRGLLT, 0, 1] = dlla(F), ala), al))
AVele ® 9 = a(e) @ )
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where a(a) denotes (¢, b) £ «), is written,

“ug. IS @ functor from ¢z into ¢z

We also write <p$~g—m+ Oz -
2.3.28. Example. Let ¢, be a category in &. The formula
FuIvIulz= (=, u), (v, ), (w, w)) A [(u, v, w)]]}

is a category with respect to x in &, which is called the diagonal category of
@z Furthermore, it is a functor from ¢, into ¢, The above formula is also

denoted by I,,.
We have Vy[y £ ¢ =—> L (y)=y], so the functor is also called fthe identity

functor on .
: Ba
2.3.29. DeriniTION. Let mr——ai <,/:_T,——/—'1> 0z be true. Then the formula

Aty F245 326530, v, Jv3Te0n Juwy Jevy

(= (21, w1), (s, 202), (243, W3))
A al (w1, v1), (2, v2), (243, 03))]
A A1, 1), (02, w2), (U3, we))]]

is a category with respect to z in 9. And furthermore, it is a functor from

¢ into 0.
This functor is denoted by fQa«, which is called the composite functor of

w« and B.
2.3.30. CriTERION., Let m—(ﬁf’—» ¢z be true. Then
Vily B¢ = (« Q1) W)=a(v)],
Vyly £ = L O a) (=ay)],

are theorems. B

@
2.3.31. DerINITION. Let ga_rf_"_’mg/!m be true. Then the formula
&

VilyE e = (/39“) W=vIAVyly £ ¢=— («Qﬁ) (=]

is written “ ¢, and ¢, are isomorphic with ay and f. as isomorphisms.”

56395
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3. PAN-CATEGORISM~Category theory I cu

Tear 15 an equalitarian theory with ordered pair, with an additional binary
predicate symbol <] and additional axioms and a scheme: Axiom 2~Axiom 6,
Scheme 8.

If ¢, C are terms, the formula <Q#C is denoted by ¢ <]C.

As the symbol < is introduced, we can define the formula which is read
as “C is a category,” for a term C.

Using <], we now state our Axiom of PAN-CATEGORISM.

3.1. Axiom of PAN-CATEGORISM
3.1.1. Axiom 2. (Axiom of PAN-CATEGORISM)
VC[CATEGORY (= </ C)].

Remark: If we read CATEGORY.(z <]C) (which does not contain the
variable z) as “C is @ category,” Axiom 2 says that “all terms arve categories,”
i.e. claims PAN-CATEGORISM. From now on, category also means term.

3.1.2. DerINITION, ¢<|C is written “t is a triangle of C. (f,q, k) <]C is
also denoted by the diagram below : :

-

J/@N in C

e &

V/:

f Lﬁrc g is denoted by f %’L(g or “the composite of ¢ and f in a category C.”
&

f ¥ g+veh is denoted by f+% g v¢ A
240 20 [+ 4
e®@(x<|C) is written e®C or “e is a unit of C”
x
yE(x < C) is written y £ C or “y is a morphism of C.”
codzqc(y) is denoted by codg(y).

domc(y) is denoted by dome(y).
The formula ¢=codg(y) Ad=dom¢(y) is denoted by

Y ,
¢ et (] in C.

Disc,(x <] C) is written Disc(C) or “C is a discrete category.”

3.1.3. DermviTION. The formula z <|{Ccx<]|D, (2.314) which does not

contain the variable z, is written Cc D, or “C is a subcategory of D.”
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3.1.4. PROPOSITION.
YC(Cc C).
VCVDVE[(CcDADcCcE)— Cc F]l

T'he proof is immediate from 2.3.15. B

3.2. Axiom of extentionality
3.2.1. Axiom 3. (Axiom of extentionality)
VCVD[(Cec DADcC)—> C=D1
Remark: This axiom is equivalent to
YCVD[{Va(x is a triangle of C<&= z is a triangle of D)
AVa(z is a unit of C<=p x is a unit of D i
== C=D]

Therefore, the axiom above claims that a term is specified by the category
structure it determines.

3.2.2. CRITERION. Let (¢u, ¢) be a category, and let C be a variable which
do not appear in ¢ nor in . Then the formula

YaVyl(z <{C & olz]) Ay ® C <= ¢ly])]
is single-valued in C.
This is an immediate consequense of Axiom 3. §i
3.2.3. DerINITION. Let (pq, ¢02) be a category. The formula
ACV2Vyl(z < C &= elz]) Ay ® C &= ¢y

is written M-ABLE, (¢, ¢), or “(¢u, ¢y) is materializable,” or “(p, §) is materi-
alizable with respect to x,vy.”
If M-ABLE; (¢, ¢), the term

2(Va¥y[(z <1 C & o) Ay ® C &= ¢lyD)])

is written MTRL..,(¢, ¢), or “the materialization of (pw, ¢y),” or “the materi-
alization of (¢, ¢) with respect to x,y.”
Let ¢, be a category.

M-ABLE,(p) denotes M-ABLE, ,(¢, v ® ¢).
MTRL;(¢) denotes MTRL;, ,(¢, v ® ¢).

3.2.4. ProrosiTION. Obviously,
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YCIC=MTRL.(x <IC)]. H

3.3. Axiom of the existence of category containing arbitrary category as
triangle and unit :

3.3.1. Axiom 4. (Axiom of the existence of category containing arbitrary
category as triangle and unit)

VeVyIL[(x is a triple == 2 <] L)Ay @ L].
3.3.2. DeriniTION. The category
r((x is a triple== s <JL)Ay@® L)
is denoted by ‘E._:y'
3.3.3. PropOSITION. Vaz[x is a triple = IL{x <{ LY]JAVYY[IL{y @ L)]. B

3.4. Bourbaki’s scheme

3.4.1. ScuemMmE 8. (Bourbaki's scheme)

Let ¢lx], ¢{y] be two formulas where x,y are distinct vaviables and x does
not appear in ¢,y does not appear in . Let C,D,z,w be variables distinct from
x,y where C, D,z do not appear in , C,D,w do not appear in ¢.

Then the formula ‘

VaVwaCVaVylle = x <{C)A (g == vy ® C)]
= VD[CATEGORY ., 4(¢", ¢') = M-ABLE,,,(¢’, ¢")]

is an axiom, where ¢ denotes the formula 2z <JDAN¢), and ¢ denotes the
Sormula Julw @ DA ¢

Remark . Intuitively, Bourbaki's scheme asserts the following:

If for each z,w, there exists a category C such that each x satisfying the
formula ¢z, z] is a triangle of C and that each y satisfying the formula ¢y, w]
is a unit of C, then for any category D, all z satisfying ¢z, z] where z is a
triangle of D and all y satisfying ¢{y,w] where w is a unit of D make a
materializable category in case they make a category.

3.5. Applications of Bourbaki’s scheme

3.5.1. CRITERION OF SUBCATEGORIES.
Let K be « term, and let 0{x), Ay] be two formulas where x, y ave distinct
variables which do not appear in K. Then

CATEGORY ;. ,(0[z] Az <LK, AylAy ® K)
== M-ABLE, j((flz]1Ax ] K, AylAy ® K)
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s « theovem.

Proof . Let ¢[x] be the formula #{z]Ax is a triple Az=2z, and ¢[y] be the
formula A[y]Ay=w, where z w are distinct variables which are distinct from
z,y and do not appear in 6, 4, K. By Axiom 4,

VaVyl(gle] = = LAYl =y @ CH1

Let C be a variable distinct from w,y,z,w which does not appear in 4, 2
Then ‘

VaVw3aCVaVyl(elz] = & < C)A (¢ly] = y @ C)1.
So, by Scheme 8,
CATEGORY,, (¢, /) => M-ABLE, ,(¢/, ')

is true, where ¢’ denotes the formula Jz[z <] KA ], and ¢ denotes the formula
Fuwlw @ KA ).
We have ¢’ & & <{KAfz], and ¢' &>y @ KAyl Therefore
CATEGORY . y(x L KA0, y@® KA ) => M-ABLE, ,(x {<KA0, y® KA 1). B

3.5.2. CRITERION OF SUBSTITUTION.
Let K, t,s be three terms, x,v,2,w, be distinct variables wiere z,y do not
appear in K, and z,w do not appear in K nor in t,s. Then

CATEGORY . »(Fz(z=t Az < K), Iy(w=s5 Ay @ K))
—> M-ABLE,, ,(Fx(z=t Az <] K), Jy(w=s Ay @® K))

is a theovem.

Proof: Suppose CATEGORY. ,(Fu(z=tAz < K), Iyw=sAy@® K)). Then
{ is a triple. So, Va(z={—> z <]LC ), YVuwlw=s —=> w@® {C) are true. Therefore

VaVydCVaVul(z=t —> z < C) AN w=s = w @ C)].
S0, by Scheme 8,
CATEGORY ., u(p, ¢) = M-ABLE. (¢, ¢

is true, where ¢ denotes the formula Jz{z=¢Ax <{ K], and ¢ denotes the formula
Jylw=sAy® K]. Therefore

M-ABLE;, (x(z=t Az < K), Iy(w=s Ay ® K)). B

3.5.3. DeriNiTION, Let x be a triangle of D, and ¥ be a unit of D.
Let C;, denote the subcategory
Yy

MTRL.(¢{domy(prys), cod p(praz), codp(priz), v, Priz, prax, praz, 21)
of D.
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This definition makes sense because of the criterion of subcategories.
In paticular, if D=C, <C;7D is denoted by ((;/7.
T,

oY x

3.5.4. THEOREM.

VXVYVZVEVfYgVEh

[CATEGORY ([ X, Y, Z, E, f, 4, , 2]) => M-ABLE(:[ X, Y, Z, E, £, 0, 1, 2 1)),
where ¢, is the septet category defined in 2.3.4.

Proof: Suppose CATEGORY(¢:[X, Y, Z,E, f,0,h,2]). Let #z] denote the
term ry((z=dom (7) Ay=X)v (z=cod () vy=Y)V (z=cod~ (f) vy=2)V (z=y=
IR0 E A GRNE AN E
Ey(@=y=f)V(z=y=¢)V (z=y=F)). Then
X, Y, Z, E, f,q, k] &= 2z <2f :'IC;B E/\ z=({pr.%], {{pr,z], {{prsz))].

Therefore, by the criterion of substitution, M~ABLE(¢[X, ¥, Z, E, f, g, #]). The
theorem is proved., B8

3.5.5. DermviTioN. If CATEGORY (¢:[X, Y, Z, E, £, ¢, 1, 2]), the term
MTRLAMNX, Y, Z,E, 1, 9, &, x]),

i.e. the corresponding materialization, is denoted by

Y.
V x nE
X_..___;,] z"°
1

or C?[X: Y) Z) EJ f) g) h]’ Etc‘

Now, we shall show that various categories defined in 2.3 are materializable
if the original categories are materializable :

3.5.6. CRITERION. Let @z, ¢z be two categories, and let X, Y be units of ¢s.
Then

1) M-ABLE.(¢) = M-ABLE.(¢%

2) M-ABLE.(¢) = M-ABLE(j¢l2)

3) M-ABLE:(¢) —> M-ABLE,(¢)

4) M-ABLE.(y) => M-ABLE.(¢.(X, Y))

5) (M-ABLE.(¢) A M-ABLE.(¢)} => M-ABLE.(y X ¢)

6) M-ABLE.(¢) =—> M-AELE.(¢ % ¢)
are theorems. (2.3.16, 2.3.18, 2.3.20, 2.3.22, 2.3.24, 3.3.26)
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We can write above criterion in the form of theorem:

3.5.7. THEOREM.
1) VCIM-ABLE.((x <] C)®)]
2) VCM-ABLE,(jx <1 C|z)]

3) VOM-ABLE.(» JC)]
&) VCYXVY[X, Y are units of C—> M-ABLE((z <] C)a(X, Y]
5) VCVDIM-ABLE(z <ICx = <I D)]

6) VCIM-ABLE(z <|C% z <|C)]
Proof: 1) Let ¢[z] denote the formula Jz(z <fCA z=(pr.z, priz, prs2)), and

let ¢[y] denote the formula Jw(w ® CAy=w). Then, by the criterion of sub-
stitution, CATEGORY , (¢, ¢) =—> M-ABLE;, (¢, ¢). We have

olz] <> (z is a triple A (praz, priz, praz) <] C) & (z < C)fx]
o v@Cs 2/(;)(:6 &)

Therefore, CATEGORY . ,((z | C)F, y ® (z < OP) = M-ABLE:, ,((z 1O, v® (z

<10P).
By the fact CATEGORY ((x <] C)2"), the theorem is proved.
3) By the criterion of substitution.
M-ABLE,(Je(x=(prse, prse, prse) Ae < C)), i.e.
M-ABLE,(Je(x=(e,e,e) A\e 2 C). This proves the theorem.
5) To prove this theorem, we prove first the lemma below:

Lemma: VXYY NZVENf VoYXV Y VZVEY £V .Y,

{{CATEGORY:D(gb’i[XI, ifl, Zl, El: fly 01y klr x])
ACATEGORY o(¢n[ X, Y, 22, By, £, 02, Ptay 1)}
= M-ABLE.(x {C{ X, Y, Z,, Ey, 1, 01, 1] )JS & < Cil Xy, Yo, Zs, B, [, 02, i)

Proof: The category =z <{CidXy, Y1, 2, E, f, gl,/h])aga: JCi[Xe, Y2, 23, B,

Ffa, 0o, 2] 18 a category with 49 morphisms and 121 triangles. The material-
izability is proved by using Bourbaki’s scheme and Axiom 4.
Using this lemma, we have

YOV DV xVyVaVw
e <|]CAy@CAz<]DAw®D)—>M-ABLE,(p <]J<TC?‘70)?§P Qgﬁ.}l
The materialization with respect to p is denoted by C?; o X Crp.
xz, 2w

Then let  <{C, y®C,
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YpVal{(3ala 1 Cqp A |
p=((pr1a, priz), (pr.a, pr:z), (pra, prsz))) Az <| D) = p < Crp X Crpl
MEbE @ Cr, Ag=(b, w) Aw® D )72 2@ Co X Cryll.
Therefore, YCYDVzVy[(z <{CAy ® C] —>
V2V C'VpVg
[{(Jale T Cr, Ap=((pria, pri2), (prag, praz), (prsc, prsz)) Az <| D) = p | C'}
ME® Cry Ag=0, u)Aw® D )= ¢@C'HIL

So, by Bourbaki's scheme,
VOV DY 2Vy[(z <JCAy ® C) —>
M-ABLE,, ((3z3a(a < gy-, o Nz <A D Ap=((pr.a, pr,z), (praa, Pr:z), (Prsa, prsz))),
Fw3b(b ® C;, Aw® D A g=(b,w)].

Le. YCYDVzVy[(x <{CAy @ C) —> M-ABLE,(p <] C;a X2 < D). The materali-
zation with respect to p is denoted by (CJ X D. Then

VpVq{(3z(z I DA ,
p=((pr:, Prs2), (pro, pro2), (praz, praz)) Aw <€) == p I Cy X D}
AMEuww® DA g=(y,w)Ay®C )= 3@ Cr X D1
Furthermore,
VYCVYDVxVy3C'VpVg
[{32(z QD A p=((pr.z, pr2), (praw, pra2), (praz, prsz)) Az <] C) == p | C'}
AMEww @ DA g=(y,w)Ay®C )= q¢®C'}]

So, by Bourbaki’s scheme,
VCVDIM-ABLE,(p <|C X 4Dy q.e.d

2), 3, G)V are obvious because of the facts
jz <] Cla Cz <G,

S e
(2 101X, ¥) € @ IO
detdegmﬂC%{m(}G
(2.3.19, 2323 8

3.5.8. DEFINITION.
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1) MTRL.((x <{C)%) is written C° or “the opposite (dual) of C.”
2) MTRL.(jz <] Cj,) is written |C| or “the category of all units in C.”

3) MTRLm(m?]‘Ci) is written C or “the discretization of C.’
4) MTRL.((x <] C)(X, Y)) is denoted by C(X, Y) or Hom(X, Y), etc.
5) MTRL.(z {Cxz <|D) is written CX.D or “the product of C and D.”

6) MTRL.(x <{C+¥% = <{C) is denoted by C% C.

3.5.9. DerinrTioN. 1CA{X, Y, Z E, f, 9, k]l is denoted by {X, Y, Z, E}.

3.5.10. ProrosiTION. VYXVYVZVE[Vz(2={X, Y, Z, E} & (e=Xve=YVya
=Zvyz=E))] Hl

3.5.11. DeriNiTION. (X, X, Y, E} is also denoted by {X, Y, E}.
X, X E} is also denoted by {X, E}.
{X, X} is also denoted by {X}.

3.5.12. CRITERION. Let ¢z, ¢z, ay be three categorvies. Then

(g2 —= u AM-ABLE(¢) A M-ABLE,(¢)) = M-ABLE,(a)

is a theorem.

The proof is straightforward by the fact a C (¢ X ¢). B

3.5.13. DeriNiTiON. The formula (z QC}mM (x <] D)x (c.f. 2.327) is

also denoted by
F

C——D,
which is written “F is « funcior from C into D.”

I C ——I-: D—E—> E, the materialization of the composite functor of Fand G
(2.3.29) is denoted by G(QF, which . is also called the composite functor of F

and G.
. The materialization of the identity functor (2.3.28) on (x <] C), is denoted
by Ig which is also called the identity functor on C.

3.5.14. DerinNiTION., Let Ism(C, D) be the formula below :
g \
EIFEG[C:_E:;’D/\ GOF=I,AFOG=Ip],

which is also written “C and D are isomorphic.”

3.5.15. DeriNiTioN. The term rz(ism(Z, C)) is denoted by Type(C).
The discretization of z,(Ism(Z, C)) is denoted by Card(C).
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3.5.16. TueoreMm. The formula Va(lz = X) is functional in X,

Proof : Suppose Va(lz & X)), Va(lz £ X). .
Then Va(lz X)), Yo(lz < X3), Vae(lz @ X)), Vz(Tx ® Xz). Therefore

Valz JXi = 2 I X)AV2(z @ Xi < 2 @ Xa),

so X=X, ILe. the formula Vz(lz & X) is single-valued in X. We have,
MTRL.(X=+X) satisfies the formula. [ '

3.5.17. DEFINITION. ro(Va(lx & X)) is denoted by ¢ or 0.
¢ is written “empty category.”
3.6. Axiom of power category
3.6.1. Axiom 5. (Axiom of power category)
YCADVx(z = D& a Ol

3.6.2. DeriNiTION. The discretization of rp(Va(x = D & 2 < C)) is written
P(C) or “the power category of C.

3.6.3. Example. P(¢)={p},
P{ph={g, {}}.

3.7. Axiom of infinity
3.7.1. Axiom 6. (Axiom of infinity)
AX[Fr(z E XAV EX —> I E X AzrcyAr#y)l

—— [AXIOMS AND SCHEME OF T gu]

3.1.1. Axiom 2. VC[CATEGORY.(x <{C)l.
3.2.1. Axiom 3. VOVD(CcDADcC)— C=D]
3.3.1. Axiom 4. VaVyaLi(x is a triple = 2 JLYAy® L].

3.4.1. ScHEME 8. Let ¢[x], dly] be two formulas where x,y ave distinct
variables and x does not appear in ¢,y does not appear in . Let C,D,z,w
be variables distinct from x,y where C, D,z do not appear in ¢, C,D,w do
not appear in ¢. Then

VzVYw3aCYzVyllo => 2 <{OA (¢ == y ® C)]
== YD[CATEGORY ;, ,(¢’, ¢') => M-ABLE:, ,(¢', ¢")],
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where ¢’ denotes 3z{z { DAl ¢ denotes Jw[w ® DA ), is an axiom.
3.6.1. Axiom 5. VCADVz(z 2D & z < O)l

3.7.1. Axiom 6. IX[Fa(z E X)AVe(zE X = Iy EXAzcyAz+
)

4. Consistency of T, relative to Bourbaki’s set theory

4.1. Preliminaries in Jset

Throughout this chapter, Jse. denotes a set theory, which is an equalitarian
theory with ordered pair, with an additional binary predicate symbol & and
additional axioms and a scheme: Axiom 3’~Axiom 6/, Scheme 8 below.

4.1.1. Axiom 3. VaVy[(zcyAyce) = r=y1.

4.1.2. Axiom 4. VzdL[zeL].

4.1.3. Axiom 5. VX[Colly(Yc X))l

4.1.4. Axiom 6. AX[Ax(zeX)AVz(zeX— IyyesXAxcy Ax=+y))]

4.1.5. ScHEMELS % Let ¢lx)Ebera formule, x,y be distinct variables. Let
X, Y be variables distinct from z,y which do not appear in ¢. Then
VyIXVazlp = 2 X = VY [Coll.Fy(y € Y A )] is an axiom.

Remark: The definition of zcy, Coll.(¢) is those used in [1] Chapter 2.
Tser and Bourbaki’s set theory are equivalent.

4.1.6. DEFINITION IN Tso. We denote by CATEGORY(C), the formula

C is a pair Apr.Ce P(pr,C X pr,C X pr,C) A pr,C=pr, {pr.C>
A CATEGORer(J} (S prZC) A prZC# Aprlrjxpzl(}xprlc

where dixexa={(z, 2, 2)|z€2}.
4.1.7. PROPOSITION 'IN Tser. The formula
(CATEGORY (C) A z=pr.C) y (TCATEGORY(C) Az =4 gr0x0)
is single-valued in z for all C.

Proof: Suppose that

(CATEGORY (C) A 2 =pr:C) v (ICATEGORY(C) A 21 =4 pxc)s
(CATEGORY (C) A z.=pr:C) v (ICATEGORY(C) A 2o = e o 0)-
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Then (CATEGORY(C)Az,=z:=pr.C)V (TCATEGORY(C)A 2\ =2:=4prgxc) 1. €
z1=2. B
4.1.8. DEFINITION IN Tse. The set
22((CATEGORT(C) A & =pr:C) v (ICATEGORY (C) A 2= g 0x0))
is written Tr C, or “the set of all triangles of C.”
4.1.9. PROPOSITION IN Tser
VC(CATEGORY(C) = Tr C=pr.C) A (ICATEGORY(C) =—> Tr C=4.0.0)) B
4.1.10. PROPOSITION IN Tgee. VC[CATEGORY (zE€40.0.0)] B
4.1.11. COROLLARY. VC[CATEGORY;(xETr O)]. B
4.1.12. DEFINITION IN Tee.
Y (;) (xeTr C) is denoted by y[1C.
Fuo[(y, u,v)ETr Cly JuTo[(n, y, v)eTr Cly udv(u, v, y)eTr Clyy [1C
is denoted by yEC.
4.1.13. PROPOSITION IN Tger.
VCYD[Tr C=Tr D = {CATEGORY(C) CATEGORY(D)}].

Proof . Suppose Tr C=Tr D, and suppose CATEGORY(C) ATCATEGORY (D).
Then pr.C=dpp.p, therefore pri{pr.Co>=pr.{dpip.pp, PriC=D. So, pr,C=
dyyenpmorpme.  This contradicts CATEGORY(C), i.e. CATEGORY(C) —> CATE-
GORY(D). Similarly CATEGORY (D) —> CATEGORY(C). B

4.1.14. PROPOSITION IN Tsr. YCVD[Tr C=Tr D = {C=D}].

Proof: Suppose TrC=TrD. First suppose CATEGORY(C). By the pro-
position 4.1.13, CATEGORY (D), therefore pr, C=pr, D, pr;,C=pr, {pr; C>=pr,{pr; D}
=pr; D, so C=D. Next, suppose TCATEGORY(C). By the proposition 4.1.13,
ACATEGORY(D), therefore 4y,0x0=4pwpxn S0 C=D. B

4.1.15. DEFINITION IN Jse. Valz€TrC—= 2€TrDIAVz[z[]C == =[] D]
is denoted by Cg:D.

4.2. Main theorem
We interprete x» <|C in Tow as c€TrC in Jsot

4.2.1. MAIN THEOREM. By the interprelation above, all axioms (zmplzrzt and
explicit) of Tcas become theorems in Teer.



Category Theory 23

Before proving the main theorem above, we prove some lemmas.

Lemma: The formula yv® C is interpreted as y[]C.
The formula y¥=C is interpreted as yEC.

The formula CcD is interpreted as Ccc D.
L

The proof is straightforward.
Proof of main theorem :

I) Explicit axioms.
Axjom 2 is interpreted as YC[CATEGORY ,(x&Tr C)], which is a theorem in

Tser (4.1.11).
Axiom 3 is interpreted as

VOVD[[Va(zeTr C <& z€Tr D)AVYe(z [1C &= =[] D) => C=D].

Equivalently, YCYD[Tr C=Tr D —> C=D], which is a theorem in Js. (4.1.13).
Axiom 4 is interpreted as

VaVy3L{(z is a triple == x<Tr L)Ay ] L].

This is a theorem in T In fact, when z is a triple, we can take as L,
=l X, Y, Z,y, f,0,h,21}, where f=prix,g=prrz, h=prsz, X=c,((f =g AA=(,
MV (f=gNA=(f, ), Y=(f,9), Z=cs((f#Fg AB=(f,h)) v (f=9 A B=(f, ), and
when x is not a triple, we can take as L, {(y, v, )}

Axiom 5 is interpreted as VCIDVz[zED <& zC Cl. It is enough to prove

VCADVx[zeD & a Cc:t Cl, i.e. YC[Collo(x é: C)). This is clearly a theorem.
4l at
Axiom 6 is interpreted as

AX[F2(xEX)AVa(zEX —> Iy(EX A2 Cy Az=y))]
It is enough to prove

AX[Fx(ze X)AVz(zeX — 3?/(yEX/\.;c cy Az=y)l.
Furthermore it is enough to prove

IX[Ax(zeX)AVe(ze X = IyyeXAzcy Az+y)),

which is exactly axiom of infinity in Tse (4.1.4).

II) Implicit axioms.
Implicit axiom provided by Scheme 8 is interpreted as

Y2VwICYzVyl(p => 2€Tr C) A (¢ =—> y [1C)]
= VYD[CATEGORY (¢, ") => IXVaVy((z€Tr X < o) Aly 1 X & ¢))],
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where ¢, ¢ are formulas which are the interpretation of certain formulas in
Tears and ¢’ denotes Fz(zeTrDAg), ¢ denotes Jw(w[ 1D A¢). Suppose that
YzVuwaACVaVy[(p = 2€TrOA (¢ = y[JC)].  Then . Vz3CVazlp == z=Tr (],
Vw3CVy[¢ = y [[1C), therefore, YD[Coll.{¢'')], VD[Coll,(¢'")), where ¢’/ denotes
dz(zeDAg), ¢ denotes JwweDAg). Let Z={xlp’}, W={yl¢'}, then

CATEGORY . (¢, ¢') = AX FzVyl(zeTr X = z€Z) Ay [ 1 X & ye W]
is obviously a theorem. B

Remark: This theorem 4.2.1 claims that Teq. is consistent if Js, is con-
sistent. On the other hand, we can construct a model of Ts in the category
theory ca

References

[1] Bourbaki, N., Theorie des Ensembles, (Hermann) Theory of Sets, (Hermann,
Addison-Wesley).

[2] Lawvere, F.W., An Elementary Theory of the Category of Sets, University of
Chicago, (1966) (mimeographed) Summerized in Proc. Nat. Acad. Sci., U.S. A. 52,
1506-1511 (1964).

[8] Lawvere, F.W., The Category of Categories as a Foundation for Mathematics,
Conference on Categorical Algebre, La Jolla 1965, Springer-Verlag (1966).



