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0. Introduction

The notion of the Fredholm determinant D(z) of a (piecewise) C'-map f of
an interval was introduced in [11), where several important conclusions are
derived from the hypothesis that the Fredholm theory of compact integral
operators could be applicable to the Perron-Frobenius operator .£ of the map f.
The hypothesis is, of course, not purely mathematical. The Perron-Frobenius
operators are never compact by nature, although the compactness is a necessary
requirement for the Fredholm theory (e.g. [9]). In fact, the Perron-Frobenius
operators satisfy the following, rather strange property stated in Theorem 1
in Section 1: each complex number of modulus less than one is an eigenvalue
with infinite degree of multiplicity.

In [11] the Fredholm determinant D(z) is defined as a limit of the Fredholm
determinants of the weighted structure matrices of Markov maps f, which
approximate f and it is proved that IXz), in generic cases, coincides with the
inverse 1/Z(z) of the power series Z(z) that is the Artin-Mazur-Ruelle zeta
function under a special choice of the potential function U, i.e,

@ D@=exs| -3 Z-0un)|-
Here
@ Q=5 U@,

the set Fiz(f™ is the totality of fixed points of the n-fold iterate f" of the map
f (the precise definition of which will be found in Section 4), and the prime
denotes the differentiation with respect to z.

Thus the Fredholm determinant D(2) is an invariant under C'-conjugacy of
maps and the hypothesis of the formal applicability of the Fredholm theory
leads to the conclusions, such as the relation D(1)=0 implies the existence of
an absolutely continuous invariant measure for f, the multiplicity of the zero
z=1 corresponds to the number of absolutely continuous invariant measures,
the location of zeros on the unit circle reflects the degree of mixing properties
of f, etc. , ~



62& [ Yoichiro TAKAHASHI

On the other hand, it seems quite difficult to show that D(z2) is the Fredholm
determinant of the operator £ in some adeqiate sense. There is another reason
besides the noncompactness of .. The strongest and strange conclusion of the
formal applicability of the Fredholm theory in [11] is as follows: let

3) P{H=lim sup;lz—log Qu(f)-

Then, P(f)>0 if and only if there is a stable periodic orbit under f. It is an
exact result proved by the analysis of the map f as a dynamical system but it
means that the minimal nonnegative zero of D(z) can be larger than one, while
the norm of the operator . is one, since [ is an operator on the space L'=
L'(7,dx) defined by the formula

@  relw= T s)Sw)l  deae. vl

where dxz is the Lebesgue measure on the interval J where f is defined. Fur-
thermore, the value of P(f) corresponds to ergodic properties of f, observable
chaos and window phenomenon (Section 5).

1t is then suggested that D(z) cannot be the Fredholm determmant of the
operatm £ on L' but on some other space since the Fredholm determinant
should be det(/—zL) in some sense. We shall restrict ourselves to the case of
unimodal linear maps for which many results are obtained ([4]) and answer to
this problem. In Section 2 we shall show that a subspace A of the space of
functions with bounded total variation is invariant under £ and it turns out
that D(z) is the Fredholm determinant of the operator [ restricted to A in the
sense that, for a suitable neighbourhood U of 0 in C,

(5) {zeU; D(z)=0}={zeU; 1/z is a point spectrum}

in Section 4. The restriction that zeU is necessary because D(z) is of form
(6) D(z)=1~—az—ac,z*—--

and the power series D(z) has natural boundary unless it is rational.
In order to verify (1) the Artin-Mazur-Ruelle’s zeta function is computed

in Section 4. In Section 5, we shall see how the Fredholm determinant D(z)
reflects the dynamical properties of the map f by giving -typical examples of
unimodal linear maps, and in the final Section 6 further examples are glven in
connection with the critical phenomenon in maps of intervals.

~ Finally we should note that these results are very simple for ‘beta trans-
formations and are essentially obtainegi' in [B], [15]. Furthermore, although we
mentioned nothing on the theorem of Sarkovskii explicitly, its generalization in
[16] plays an important role -in the proof of Theorem 4 in Section 4. The
mtuatwn was the same for the beta transformations and.the analogous order to
the Sarkovskii’s takes a simpler form
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As to an other assertion of [11] we shall treat in in [18] and [19].
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§1. Noncompactness of Perron-Frobenius operators

Let f bea p1eceW1<e C‘-map of an mtervalf onto itself and dx the Lebesgue
measure on J.

DeriniTioN 1. The Perron-Frobenius . operator is the following operator on
L'=L], dx):
7 | | 4 L = o) a.e. xef.
@ w= 5 T wel
The well-definedness is obvious since £ is the dual of the f:action (o —> o f
on the spacs C=C(J) of all continuous functions on J. In other words, ‘

@® SJ.,L“gO(m)c,b(m)dms ng-ﬁ(a;)g/)( Fad, pell, peC.

Remark. The operator £ is a nonnegative operator of norm 1, and a nomn-
trivial nonnegative solution of the equation .Lo=¢ gives the density function
of an absolutely continuous invariant measure for /. Consequently, the existance
of an absolutely continuous invariant measure is equivalent to that 1 is an
eigenvalue of .. Furthermore, the mixing properties follow from the study of
the iterates ™ of ., as it has been the method of analysis of number theoretic
transformations, such as continued fraction expansion, beta expansion. For
example, the weak Bernoulli property was proved in [5] by observing the con-
vergence of the iterates L™ in a very strong sense for densely many “good "
functions. o , ‘

Tueorem 1. Assume that f is a piecewise C'-map of an interval | onto
itself which is not monotone. Let teC and |t<1. Then t is an eigenvalue of
L with infinite mudtiplicity.

The following lemmas are necessary for the proof.

LemMA 1. If f is surjective, then there emsts a rzg/zt inverse K of L, i.e.,
LK=I, which is an isometry of L'.
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Proof. Let J, be a Borel subset of J such that f:/,—J is bijective. Put
{ o f)lf(x)]  if xeo

otherwise

Hoplz)=
Then,
S lJCgo(x)Id:0=S Iso(f:v)f’(x)ldx=g lo(w)Idy -
J Jo J

Thus, K : L' L' is an isometry. Now it is easy to see

el W)l

fJC@(x)=yeJoJ i @) =op(x).

Remark. Lemma 1 shows that the operator .£ is surjective.

LemMA 2. Assume that f is not monotone. Then the kernel {p; Lo=0} is
infinite dimensional.

Proof. It follows from the assumptions that there exist two disjoint sub-
intervals J; and J, with the following three properties:

@) f:fi—7, i=1,2, are injective.’
®)  FT)=f(T2).

©) a=f'=c, onJiand —c;2f'z ¢, on [, for some ¢y, c.>0.
Put
ey if wel U’fz

0 otherwise.

00(1’):{

Then f.eL’ and it is clear that _£6,=0. It follows from the definition of .0
that, for any peL' and feL”,

Llpo f.0) (x)=¢(x). L) .

Consequently, ¢-f.8, belongs to the kernel of £ for any ¢el' and so the
dimension of the kernel is infinite.

Proof of Theoremn 1. Take any pel' such that Lp=0 and put
g=2, "X p.
n=0
Since |#]<1 and X is an isometry, thus ¢eL' and

.,£'¢'=Z fn.fJCnﬁl):Z anJ(‘ngD:l‘gﬁ.
nEl n=0 ]
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§2. Invariant subspace under _

We shall restrict ourselves to the unimodal linear maps in the following in
order to obtain an invariant space A and the action of £ on A4 explicitly.

DeriNITION 2. Let @ and b be positive real numbers such that e¢+b=1.
The following map of the unit interval /=[0,1] to itself is called unimodal
linear [4]:

(Fig. 1)

(z+a+b—1)b i 0=zsl-a
) ={

(1-2)/a if l—g=z=<l.

x
e

0 1—a 1

Fig. 1. Unimodal linear map (nondegenerated case)

If @ is larger than or equal to 1, then the map f on J does not depend on
the parameter & and is an injection on 7 into itself. Let us call such f de-
generated. Otherwise, f is surjective. and the inverse of the map f consists
of the following two maps f;*:[(¢+b—1)/b,1]—[0,1—aland f*:[0,1]—[1—a, 1]:

(10) filz)=bz—(a+b-1), fi{z)=1—azx.

We note that the maps f;* and f7* are order preserving and reversing, respec-
tively.
For a given ¢ in J let us define
1 if z=f™
an (@)=l z=f)=
0 otherwise
12) a(t)=—a if f™>1—a; =b otherwise.

Here 1(-) stands for the indicator function of the set indicated by the dot -.
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LEMMA 3. _Lrh=a.) thu+a
, ’Pmof If f"t-;‘—l a, then for, a.e. xe], ;
L@ =b 1 Y Az @b a1
=b-1(f"t<l~a) Uez ) +a- L f't>1~a)
+a-1(f"t>1—a)- LUa= fr'8)
=[- 1=l ~a)—a-1(f"t>1~a)]- Uaz /') +a
=u(l) - grrw)+a .
On the other hand, if f"=1-—a, then, f**'{=1 and so
L) =b-1fezl—a)- 1(1:>(a+b 1)/b)+a Afrezl—a)
=b-Wxe=1)+a

=aull) Yot .

Remark. 1t follows from Lemma 8 by integrat{dniﬁh;“t
(13) 1~ frt=an(t)- [1 f““z‘]+cz (n>0 tef).
Consequently, a real number ¢ admits f expansmn [15]

l.ﬁt;a+a'ao(t)+£z.~fzﬂ(t)-ral(z‘)-‘!—‘_:--

if and only if ao(t)-a,(t)--~éin(t) goes to"(:)\‘é{s 7~ co.

The following sequence @, n=0, corresponqu to the orbit of the point 0+0
is of great importance :

o an;limdn'(t).
In accordance with this, let us define an%im T Then it is easy to see that
o B '

7(@)=1(z>0) and

{l(ng”O) i Goitn s <0
% = o [
1(.’E >fn0) if Qoly* Qpy >0

and that :

 Lynl2)= = agk;;(m) +a for all @ el.

Let .4 be the smallest c-algebra that makes the funct1ons in measurable
and. A°=L\J; 4;dz) be the subspace of L'=L'(/,dzx) consisting of. all .4-
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measurable functions.
LemMA 4. The subspace A° is invariant under L.
Proof. Obvious from Lemma 3.
Let us define a map j: /' — L*=L*(/,dz) by
(14) juzgo Ut U=(Un)nzo€l .

and denote the image of 7 by 4. For geA, put

(15) | llella=inf(lulln ; weie).

LEmmA 5. (i) j:I'— A is a continuous surjection.

(i) If olz) and ¢(x) belong to A, so does the product Ln(:c)gb(m) cmd

lloglla=(l¢llallglla

In other words, (4, |l4) is a Banach algebra with unit.

Proof. (1) is evident by the definition of norms. Let
pi(x)=2] i apa(z)ed (i=1,2),

then,

oi(2) o) = Z, Z’ul atle, mrn('b)xm( v)

n=0 m=0

is absolutely convergent and, therefore, equal to

o
D[t atte 2 (e, nlbe,m U, nt, m) ()

n=q mfmG g

Smce the coefficients of Xn in (14) is summable and the absolute sum is dom1

nated. by

Z 261, Z [22,m] ,

n=0

thus one obtains (ii).

67

Now let us define an operator M of l‘ to 1tse1f as folloWS v="Mu iff u=

(#a), v=(0q),

(16) : Do=a )5ty and  Vp=@psn-i  for mzl.
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LemMmA 6. (1) M:I'— D is a bounded operator such that jM=Lj. ,
(i) The image .LA is contained in A. Moreover, L:A— A is a bounded
operator. ‘

Proof. Since a,=b or —a, thus M is bounded on /! and the norm ||M|{ does
not exceed max{2«¢,a+b}. Let uel'. Then,

i Mau(z)=( g]u - teaYpol) + é st

= Z—o [ @1 (2) + al=_Liu(z),

because yo=1. Hence (i). Now let peA and uej~'¢. Then
Lol a=17Mulla=||Mutl | = || M| - [loe) |

Consequently, [|.Lella=(1M]]-llella-
Let us denote the orbit {f"0;x#=0} of 0 by O.

LemMA 7. (i) If the set O is finite, then j is injective.
(ii) If O is finite, then A is a finite dimensional space.

Proof. It suffices for both (i) and (ii) to prove that
(16) Un= #n=0

n3 fMo=r,a,<0 » 73 fo=x,a,>0
for each ze0 when ju=0. In fact, (i) is then trivial and (ii) follows from the
mutual distinctness of f™0’s when O is infinite.

Now let #el* and ju=0 in L'. Then, ju(x)=0 for each zeJ since ju(z) is
continuous at each point x either from the right or from the left or both. Take
any two points z>y in J. Then, ju(x)—ju(y) is equal to the sum of u,'s in
such » as either 2= f"0>y and a,>0, or z>f"0=y and @,<0. Consequently,
one obtains (17).

CorROLLARY. The norm |lolla of @€A is equal to the total variation of the
Sfunction ¢. In order words, the space (A,|| ||4) is the closed linear hull of the
indicator functions ya, nz0, in the space BV(J]) of all functions with bounded
variation on J.

Proof. Obvious from (16).

§3. Fredholm determinant of £ on 4

Our goal of this section is to show that the power series

(18) DE)=1—3" acaz™, co=1, Cn=aotts s (nZ1)
n=0
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is the Fredholm determinant det(/—zL) in some sense. Here a,’s are as before:
an=0b if f"t=1-—a for any sufficiently small £, and @,=—a otherwise. Let U be
the domain of convergence of the power series (18) and

(19) U°={zeC; sup f: |@m+Cmin-12"| <o} .

m p=m

THEOREM 2. Let A be the _[-invariani Banach algebra constructed in the
previous section and denote the vestriction of . lo A, again, by .L. Assume
that the orbit O of the point O under f is infinite. Then the following siatements
are valid:

(@) The point spectrum of L on A is simple and coincides with the set

{1/z; ze U, D(z)=0}
(b) The resolvent of L in the set {1/z; zeU} coincides with the set
{1/z; ze U°, D(z)=0}.

(©) The rest of the spectrum of L in{l/z; zeU} is the continuous Spectrum.

THEOREM 3. The situation is the same as in Theorem 2 but we assume
that the orbit O is finite. Then the following statements ave verified:

(a) D(z) is a rational function.

(b) A is a finite dimensional space. In particular the Fredholm determinant
det(J—zL) is well-defined.

(¢) If the orbit O of O is periodic with period p, then,

det(I—z.0)=(1—atts-ap-1)-D(2) .
In general, take n* such that f™0 is periodic with period p. Then,

det(.["" Z,f) = (1 — gyt 'ana+p_1zp) . D(Z) N

Remark. The examples for Theorem 2 will be found in the next section
(Examples 4, 5), and the examples for Theorem 3 in case of periodic O will be
found in Examples 1-3 and 7. In Example 6 the point 0 falls into the fixed
point. Furthermore, there are many cases where 0 falls into a periodic orbit.
For example, if ab*=1 and e>1, then, 0< f0=/0<1—a</?0<1 and so the
point O falls into the periodic orbit {f0, f?0} of period 2.

The proof will be given after several lemmas. First of all, let us consider
the formal solution of the equation (/—zM)u=uw:

o
(20) Uo—2Q Y, Un=1Wy, Up—R0nlin1=Wy (#nZ1)
n=0

It follows from (20) with #=1 by induction that
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R B n ' .
21) ‘ Uy =Cp2Z"Uo+ 3, CoZ"Wnfemz™ (1)

m=1

Replacing (20) with =0 by (21) one obtains formally

(22) D(2ye=Y, O, acyz™ 'walenz™.

m=0 n=m
This expression makes sense if the right hand side of (22) is absolutely sum-
mable. In particular, if zeU°, or if zeU and w,=0 except for a finite number
of #’s.

LemMma 8. Let zelU. Then D(z) 0 if and mzly i l/z is an eigenvalue of
M on [\

Proof. Put w=0 in (20). Then one obtains (21) with w=0, which is con-
sistent with (20) for =0 because the both hand sides of (22) vanish and the
summability is assured by ze¢l. Hence (21) with w=0 defines a unique eigen-
vector # corresponding to z. )

LEMMA 9. Let zeU® and D(z)*O Then tlze inverse (I -—zM)*‘ exists and
is a bounded operctor on ['.

Proof. Since zeU?°, thus the right hand side of (22) is absolutely convergent.
Hence (22) defines a continuous functional w—u, on I, because D(z)+0. Then
the well-defined formula (21) gives an bounded operator w—u of I to itself and
# is the unique solution of (20) for .

Lemma 10.  Let zeU and assume that (I—zM)~ exists and is bounded on ['.
Then zeU° and D(z)=0.

Proof. Let w=(w,) have only a finite number of nonzero w,’s. Then (20)-
(22) dre meanmgful Since the solvability of (20) is assumed thus, D(z)+0.
Solving #, from (22), one obtains from (21) that

oD
U=, Z ackz"‘“wm/cmz D(2)
m=0 k=m

(23)
Un=7, CxZ"Wn[enZ"D(2)+ 7, cat" 3, aCiz¥wnfcng™D(z) (nzl).
m=0 ) T ok=m :

m=n+1
In particular, if w,=0 (#=m) and wx=1, then, for n=m,
U= Cp2" [ D(2) .

Consequently, for each m=0,
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Z ICnZ“/FmZ’"lle(?)l leellw=1D(2)- (1= 2D)1]] .

=m

Hence zeU°.
Lemma 11, ’Let M=(M:)i, jor,.. be a matriz. Then,
H det(Iw,%M):éxp{ - fn— tr M" =ifj'(1— z; Rinz™
Jor any z in a neighb;mrhood of 0 in C, where R“:M,:i and

.Rm'—‘-—‘ Z: AJm.lMlzq Mn 12

Moty >

- Proof. The first identity is a version of det exp M=exp tr M. The second
one is proved e.g., in [16] in terms of dynamical systems using the notion of
shifts with orbit basis.

Proof of Theorvem 2.

Since O is infinite, thus, . on A is isomorphic to M on /' by Lemma 7.
Hence, the assertion (a) follows from Lemma 8, (b) from Lemmas 9 and 10, and
(c) follows from the fact that (Isz) -t alwayq has dense domain When zel]
and D(z);&O : .

Proof of Theorem 3.

Let »* be the minimal number » such that f"0 is a periodic point. Then
the coefficients a@c, in D(z) form a periodic sequence from m=n* on. Hence,
(@). The second assertion (b) is already obtained -as Lemma 7 (ii). Let p be
the period of f*0. Then,

Aoip=yn  for nzn*.

Consequently, the operator . on A admits a matrix representation

a @ )
a, O
L a | O o
(24) . Lr_..—- “.‘M“;.,-A.;M; ...........................................................
a O Appery ’
a ‘ * Qperper

a A

Applying Lemma 11, one can easily compute det(J—zL): -
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det(J—zL)=(1— G *Aprip-127)- (1 —@2— Q02  — +++ — Qg+ Aps—1 2™
(25) — Qs A2 — Ay Q2™ TS — )

= —ane+Aparp127)- D(2) .

Remark. The matrix L in (24) is equivalent to the weighted structure
matrix S of the map f in the sense that

(i) S acts on the direct sum of subspaces V and W.

(ii) dim W=1 and SW={0}.

(iii) There is an isomorphism i of ¥ onto €™+? such that iS=Li.

(iv) In particular, det(/—2S)=z-det(/—zL).
In fact, f is a Markov map because f is monotone on each subinterval [x;-, z;]
and maps z;'s to themselves if one take as ;s the orbit z,=0<z:< - <zx=
l—a<--<z,=1 of the point 1—a (n=n*+p+2). The weighted matrix S is
computed according to its definition:

(26) Si;=0 if  flzio, 20 (2jer, 25)=0 and
if f(@i-1, 2:) N (o1, ;)5 0, then,
Si;= the constant value 1/|f’] on (xs-1, 2:).

The space A4 is spanned by the indicator functions of subintervals with end
points z;—i, z; (i#k&,k+1) and xp-1, zx+ and, therefore, it is isomorphic to the
space

V={u=()eC"; up=1r.}
On the other hand, the space
W={u=(2;)eC"; u;=0 (i==k, k+1), thr+tx.,=0}

is contained in the kernel of S and C*=W+ V.

§4. Zeta functions

Let us show that the formula (1) in Introduction is valid in some definite
sense. Let Per(n, f) be the set of connected components of periodic points of
f with period ». Note that there do appear subintervals consisting of periodic
points in some pathological case stated below in Lemma 16. Put

@7 Fix(f™) =7'>|¢ Per(m, f).

DeriNiTION 3. The following power series Z°(z) and Z(z) are called Artm-
Mazur’s and Artin-Mazur-Ruelle’s zeta functions [1], [12]:
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(28) Z@=eny S QN @H= ¥ 1,
n=1 rele( ()
(29) Zo=ep 5 S0 QU= LI,

Remark. Usually, the Artin-Mazur-Ruelle zeta function is defined for an
arbitrary continuous function U in place of 1/|f"(x)]. The special choice of U
is the crusial key to be related to the ergodic theory of maps of intervals.

As is mentioned in Introduction, the inverse 1/Z(z) is expected to be D(z).
The following theorem answers this almost affirmatively, and, in another direc-
tion, makes it possible to compute zeta functions of unimodal linear maps through
the orbit of 0.

THEOREM 4. Let f be a unimodal linear map of the unit intevval and

{ b if fM=l—a for any sufficiently small t>0
An=

a  otherwise

o0
DR)=1-7] aawa,ayz™""!
n=0

() Let f be degenerated. Then
f (1—atz%)- D(2) if a<l
1/Z(z)=1
L (1—at2®)? D(z) if a=1
(ii) Let f be nondegenerated and assume that theve is a number p such that
(30) (an)‘—’dnp“z"":dnpﬂ)—z:b and Aupip-1=—0 .
Then,
(1—@*b*2~22%). D(2) if abP <l
1/Z(z)= .
(1—a?p*P-222P)2. [)(2) if ab?'=1
(iii) If f is nondegenerated and (30) is not satisfied for any p, then (1)
holds, i.e.
1Z(z)=D(z).
THEOREM b. The Artin-Mazur's zeta function Z°(z) satisfies the statements

of Theorem 4 if one takes Z°(z) in place of Z(z), D°(z) in place of D(z) and
sgna, in place of an which appear in D(z) and Z(z).
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Remark. (i) The condition (30) is equivalent to the following (31) and (32)
(31) a(l4+b+ - o7l
(32) abr-1z1

It is also equivalent to the existance of a subinterval J, of J such that the
restriction of 'the iterate f* on J, is a degenerated unimodal linear map.

The case in (ii) where ab?~'=1 and: the case in (i) where a=1 are the
pathological cases due to the linearity of f. (Example 3 in Section 5)

The case in (ii) where ab?"'>1 shows window phenomenon, i.e., it shows
formal chaos (and Li-Yorke chaos) but does not show observable chaos. (Example
5 in Section 5)

(11) In the case (11) em,ept the pathologmal cases. the function 1/Z( ) can be
understood as the Fredholm determinant of the natural extension . of the
operator .L on A to the closed linear hull of the indicator functions y., #z0,
and their point-wise limits as #—co in the space of functions with bounded
variation. ‘The limit functions are indicator functions of one point sets and so
they do not belong to the space L'. They represent the point masses (=measures
supported by one point set). In this sense, the zero of 1/Z(z) are eigenvalues or
veneralized eigenvalues of the Pervon-Frobenius opevatoy L.

The proofs of Theorem 4 and 5 will be'given after several lemmas.

For a while, let us assume that the orbit O of the point 0 is periodic under
fo Put O={z,=0<m < <zp=l—a< - <aypa =1} and Ji=(wi1, 20, i=1,2,,
p—1. Define real numbers M;; by the formula )

’p"'l
(33) L=y, Myt);  on O,

J=1
where ¢; is the indicator function of J;. In other words, the matrix M=(M;y)
is the other form of the weighted structure matrix S of the Markov map f
stated in the final remark in Section 3. It is obvious that the matrix M is a
representation on the operator . on A and so it follows from (25) and Lemma
11 that

(34) det(/—zM)=(1— d(,(zl ety 12P) D(z)

o Z?L ]
=6Xp[-* Z “—7/—[ tr (M'LJ .

n=1

Now we are going to be concerned with what contributes to tr M™.

LemMA 12, Let o, iy, -, b be such that in=iy (md Mznlem, "]\’Iin__lin:f:o-
Then one of the following three. holds : L
(a) There exists a unique fixed point of f” in the open submz‘ewal f% gy

Fu P TN 0 0



Fredholm Determinant of Unimodal Linear Maps 75

(b) There are no fixed points of f* in Jiy.q, , bul one and only one of the
end point of Jiy.s,_, i @ fized point of f* which belongs to O. In particular, p
divides n.

(c) Both end points of Ji,. are fixed under " and belong to O.

-1
Proof. First of all, claim that /™ has a fixed point in the closure of the
open interval /. If M;;+0, then, f~/;N/i=+0. Thus, f/;DJ/; since the end points
of Ji's belong to O. Consequently, f* maps Ji.4,_, onto itself, and so f* has a
fixed point in the closure of Ji, .4, , in virtue of the intermediate value theorem.
Now suppose that (a) does not hold. Since f* is linear on Jiy.4,., thus,
either f™ is the identity map there or one and only one of the end points is
fixed under f™ In either case, the fixed end point belongs to O because the
end points fall into the periodic orbit O under the. iteration of f. As a con-
sequence, p divides . \

Lemma 13, Assume that (¢) in Lemma 12 holds for ie - in-.. Then pis
even and there exists exactly one fized point of f** in the interval [i..,., unless
f is the identity map of J. \

Proof. First claim that Ji,.., ,=Ji,. In fact, if it were not true, then, there
would be a point in that interval which fall into O under some iterate of f, i.e.,
which is a point of O. (Recall that f” is the identity map there.) :

It then follows that f? is the identity map on /f;. Next claim that the
union of f%/;, k=0, is a proper subset of J. In fact, if the union were J,
then the map F* would be the identity on /. :

Since the union of f%/;, has O as its boundary, thus, p must be even. On
the other hand, f** cannot be the identity on /i, In fact, if it were not the
case, then O could not be a single orbit. Consequently, 7 is the order revers-
ing linear homeomorphism of /i, and so it has one fixed point in /i,

Remark. Under the assumptmns of Lemma 13, the set Per(p, f) consists
of half open intervals. '

Now one can correspond to each finite sequence’ (f, ++, fyy) such ‘that
]‘/‘[ioilm]v‘rindiov"ﬁo ‘ : ’

the unique fixed point in /iy, , in case (a) of Lemma u
the fixed end point in case (b) of Lemma 12 or

the fixed point of f?* in Lemma 13 in case of (¢) of Lemma 12. -

Let us denote the fixed point by x(ic, *+, fn-1)-

LEMMA 14. The map (ig, -+, in_s) ——> 2(io, *+, tn-)€Fia(f™) is
(1) injective and
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(ii) surjective if the case (¢) does not happen.
(i) If the case (c) happens, then its image is Fiax(f")ynO°.

Proof. 1t suffices to prove (i) in case (b) since the injectivity is evident in
other cases. Assume that p divides ». Then f™ takes an extremal value at
each point z of O since the critical point 1—a of f belongs to the finite orbit
fixz, 0=i<n. Consequently, the other neighbouring subinterval of form Ji;.q;,_,
having x(Z, -+, i,-1) as an end point in common corresponds to no (@, *+, in-y)
such that M, --Ms, :,%0. Hence, (i). By the way, (iii) is automatically proved
by the same argument. In fact, the subintervals neighbouring to a subinterval
of case (c) cannot be corresponded to (io,--,in—1) that contribute to tr M", and
so the set O is not contained in the image.

Finally, let xeFix(f™) and assume that the case (c) does not happen, or that
xe0° Then it is evident that z is the unique fixed point of f* in some sub-
interval Ji .4, , i.e., 3=a(to, -+, in1) for some (iy, -+, in-1) such that My, M, s,
#0. Hence, one gets (ii) and (iii).

COROLLARY. If z(io, ++, in_1) is defined, then,
(35) Mg Miyig M5y =) (2o, -5 Tn-1))]

Proof. Obvious from the definition of z(i, -+, #,-1) and the fact: f/=|M;j]
on J;.

Lemma 15. (i) If the case (c) does not happen, then,
(36) 1/Z(z)=det(I—zM) .
(i) If (c) takes place, then, G, -aGy-1=1 and

37 1)Z(z)=(1—2%)-det(/—zM) .
Proof. Immediate from Lemma 11 and Lemma 14 together with Corollary.

Finally we need the following consequence of the results in [16], which
enables us to approximate general cases by the cases discussed above.

Lemma 16. For a given non-degenerated unimodal linear map f theve is a
sequence of unimodal linear maps fn with the following three properties:

(@) The orbit of 0 under fn is perviodic. Moreover, the period p, tends to
infinity if the orbit of O under f is not periodic.

(b)  The set Per(k, fus) and Per(k, ) are naturally embedded in Fer(k, fu)
for each k and n. Under this identification,

(38) Per(k, f)=Q \ Per(k, frn).
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(c) The sign of aifz), sgn ai(fa), comverges to sgn ai(f) for each i.

Proof. It is known in [16] (or [8], [13]) that the symbolic structure of
unimodal continuous maps is completely determined by the sequence sgn &,
i=0. (Recall that sgn @; indicates whether f0 is larger or smaller than the
critical point of f.) Consequently, the piecewise linearity (or the Schwarzian
condition) is sufficient to bring back the results in symbolic dynamics to the
results for maps themselves.

Proof of Theorem 4.
First of all, we note that the results from Section 2 on remains valid under
the change of the coefficients @ and b in the operator .£: If one takes

(39) L'e(a)=Vo(fi ) U zz(a+d—Db)+a" ¢(fT'z),

then all Lemmas and Theorems remain valid if one define «,’s from &’ and &'
etc. Let us write new D(z), Z(2), etc. by D(z; f,a',b') Zz; f,a’,b’) etc.

The first assertion (i) of Theorem 4 is trivial. Let us assume that the orbit
0 is periodic. Then the assertions (ii) and (iii) follow from Lemma 15 since
the pathological case (c) in Lemma 12 is exactly the case in the statement (ii)
where ab?'=1. )

Now it follows from Lemma 16 that, if O is not periodic, then, Z(z; fu, @, b)
and D(z;fa a,b) converge to Zz)=Z(z; f,a,b) and D(z)=D(z; f,a,b), respec-
tively, as # goes to co, Since the period p, of the orbit of 0 under f, tends to
infinity, thus the factors of the form 1—const. z?* in Theorem 3 (c) and (37)
vanish as m—co. Consequently, one gets the formula: 1/Z(z)=D(z) when the
orbit O of 0 under f is not periodic.

Proof of Theorem 5.
In virtue of the argument at the beginning of the proof of Theorem 4, the
assertions follow by setting e=b=1 in Theorem 5.

§5. Formal chaos and observable chaos: Examples

Let us exhibit how the Fredholm determinants or the zeta functions work
in the study of one dimensional maps. First of all we shall introduce several
notions on dynamical properties of maps.

DerINrTION 4. A piecewise continuous map of an interval J is called to
show (strong or weak) formal chaos if there is a compact subset C of J such
that the subsystem (C,f) is conjugate with a (strongly or weakly) mixing
Markov shift of finite type [17], [10], [20].

Remark. The following statements are mutually equivalent :
(a) f shows formal chaos.
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(b) The topological entropy of f is positive.
(c) There are two mutually dijoint subintervals J,;, ;=0 such that, for some

b, FPIiDiUJ: 6=1,2).

The notion of formal chaos and Li-Yorke chaos [6] does not fit for the ergodic
theory nor the numerical analysis. It is the reason why the following notion
[11] is introduced.

DeriniTION 5. A piecewise continuous map f of an interval / is called to
show strong or weak observable chaos if the following two conditions are
satisfied :

(a) There exists an invariant Borel probability measure g for f such that

T .
(40) hrn-g > 8piw=p (0 being the unit point mass)
-0 i=0
holds almost everywhere on some open subset of J with respect to the Lebesgue
measure dz on J. ,
(b) The endomorphism (J,p, f) is strongly or weakly mixing, respectively.

Those invariant measures which satisfy the condition (a) are called as-
ymptotic measures for f. From the point of view of numerical experiment,
asymptotic measures are the invariant measures that are “observable”. (Never-
theless, the existance of non-observable formal chaos can be observed as a
transient phenomenon of orbits under the process of numerical experiments.)

The definitions above are naturally extended to the maps on Riemannian
manifolds, where the Riemannian volume plays the role of Lebesgue measure.
But it may be better to use the positivity of Kolmogorov-Sinai entropy in place
of weak mixing property in (b) of Definition 5.

There may happen that there exists an asymptotic measure with entropy 0
as is pointed out by May [7]. It is called window phenomenon.

Lemma 17. If fis a piecewise C'-map of J, then the condition (@) is equiva-

lent to the following:
(@) There is an open subset J' of J such that

(41) w-lim o= (S ga(:v)(lx) o
n-roa J
Jfor any peLXJ, dx) with support in J.
' Proof. Obvious.

It is not difficult to see the following: If z=1 is the unique zero of D(z)
in a neighbourhood of the unit disc and is a simple zero, then the unimodal
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linear map f has a unique absolutely continuous invariant measure p on (/, )
with respect to which f is weak Bernoulli, where . is the smallest s-algebra
which contains 4 and is invariant under the action of #~!. As a consequence,
if the zeros of D(z) in a neighbourhood of the unit disc are the roots of z2?=1
and are simple, then f has¥a unique absolutely continuous invariant measure on
(], A) with respect to which f is weakly mixing and f? is weak Bernoulli.

We do not give a proof of this result since it is a rephrase of the known
result [2] in our formulation. It also follows from the fact that any one dimen-
sional map can be realized by Markov shifts (of infinite order) [14]. In our
formulation the proof is based on the convergence of £ on the space 4 which
implies the uniform convergence of .£" in the uniform norm on a suitable
dense subset. (The idea was used in [5] for beta transformations.)

Now we shall give the examples which are typical cases of unimodal linear
maps. The results obtained by usual method in [4] are stated in A-1), 2) and
the results in our formulation [7] are stated in B-0), 1), 2). The latter give
another proof of the former.

Example 1. Tent map: f0=0, i.e.,, a+b=1.
This is the typical case of observable chaos.
A-1) The asymptotic measure p is unique and is absolutely continuous with
respect to the Lebesgue measure.
2) The support of u is J and (/,p, f) is mixing (a fortiori, Belnoulh)
B-0) =p for any n. U=U°={z;|z|<1/b}
D(z) l—az—abz}|(1—b2)=1—2z
1/2(2)=(1—bz)(1—2)
1) P(f)=0 and z=1 is a simple zero of D(z).
2) There are no other zero in the neighbourhood U of 0.

Example 2. (Fig. 2) Ascending cycle: fP0=0<f0< fAO - < fr10=1 (p=3).
It appears when a(l+b+--+b7*)=1 and ab?~'<1, and it shows observable
chaos.
A-1) The asymptotic measure x is unique and is absolutely continuous.
2) The support of x is J and (/, p, f) is mixing.

B"O) anpzanp.y.l'-—-'"‘:dnp+p_gzb, nprp-1=—0 (7¢20)‘ U=U°= Z Izl<1/(lbﬂ l}
D(2)=(1—abP~'2?)"'Z(z)™*
Z(2)=1—az—abz*—-.. —ab? P!

1) P(f)=1and z=1 is a simple zero of D(z)
2) There are no other zeros of D(z) in the neighbourhood U of 0.

Example 3. (Fig. 2) Pathological case (¢): p=2g=4,6,10,12, ---
FU0=0< fO< O FI0< < < [0 U =1—a< fI0< f20=1

This case appears when: ¢b?'=1 and a1+ -+ <L <a(l+---+Db27).
A-1) The asymptotic measure does not exists.
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Example 2 Example 3
ascending cycle (p=4) pathological case

1 a 1¢ A

/]

SR S —

i
i
{
! 1
: !
0 fi i 1—a 1 0 1
fpﬂgo fﬂ‘LlO ; invariant under f»
Example 4 ; Example 5
Island Window
1r o AO y 1r 29
A !
|

AIRNIN

—

invariant under f» contracting under f?

In these figures, (¢-+b—~1)/b is fixed and ¢ changes.

Fig. 2. Bifurcation: ascending cycle—»window-—pathological case—island.

2) Any absolutely continuous measure is supported by the union of ¢ disjoint
subintervals [/, f2*%0], =0,1,---,g—1.

B-0) @ng=0nge1=""Angrg2=b and @npig1=—a. U=U°={z;|z|<1}.
D(&)=1+29"(1—az—abz®—--ab?"%21"")
1/2(z2)=(1—2*) (1—29) (1—az—abz*—--- — @b?~2z7"")

1) z=1 is not a zero of 1/Z(z).
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2) The minimal nonnegative zero of 1/Z(z) is greater than 1.

Example 4. Island: p=3,4,5 -
0< fPO<fOK P00 O < fP < —a< 220 < f270< f2P0 <1
This is the weak observable chaos and appears when ab?~'<1, e(a+b)bi*z=1
and a(1+d+ -+ <1<l +b+ - +b").
A-1) The asymptotic measure p is unique and is absolutely continuous.

2) p is supported by p disjoint subintervals J7=[f¢%0, ff*~20] and [f*0,
fe+0], i=0, .-, p—3,p—1. The support of consists of p or 2p disjoint subintervals
according as the map f* defined below has or has not odd period 1. The system
(J, p, f) is weakly mixing but not mixing.

B-0) Onp=Cnpe1=""=qppip-s =0, Cpprp1=—0a, Ap—2=D, Gap2a=—0a.
The sequence @np._» corresponds to the map f/ which is obtained by rescaling
the restriction of f? to J'.

D(2)=(1—az—abz—---~—abP 2z~ )D(27 ; f')

1 Z(2)=(1—az—abz*— ---— abP 22?1 Z(2" ; f)

1) P(f)=0 and z=1 is a simple zero of D(z).

2) The zeros of D(z) in a neighbourhood of the unit disc are the roots of
2F=1.

Remark. The factor 1—az—---—ab? 222! is the inverse of zeta function of
f restricted on the set

I Fry.

It indicates that the restiction is “conjugate” with the map with ascending
p-cycle. The conjugacy is, of course, not topological but Borel.

Now let us move the parameters to the direction opposite to Example 4
from the pathological Example 3.

Example 5. (Fig. 2) Window: p=3,4,5, -
0< PO O FPI0C fOL - < FP0< 220 ] —a< P10 f2210< 1
This case is formal chaos but not observable chaos and appears -when ab?~'>1
and a(l+d+-+07 <1<l +b 4 +bP71).
A-1) The asymptotic measure exists, is unique but is net absolutely contmuous
2) The asymptotic measure -is supported by a periodic orbit with period p.
Consequently, it is ergodic but not weakly mixing. ;
B-0) aupri=b (i=0,1,,p—2), Gnprpr=—a. U=U={z;|z|<1/ab?"'}
D)= +abr2°)"'(1—az—abz®— -+ —abPzP"")
A2)=1—ab?2?)(1—az— abz?—---—ab?~*z?"").
1) P(f) is positive and z=exp P(f) is a simple zero of 1/Z(z).
2) The zeros of 1/Z(z) in a neighbourhood of z=exp P(f) are the root of
zP=exp P(f).
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Example 6. Absence of odd period>1: f0= the unique fixed point 1/(1+a)
of f, i.e., ala+b)=1. ,
A-1) The asymptotic measure exists uniquely and is absolutely continuous.
2) It is supported by two intervals [0, 1/(14+a)) and (1/(1+a), 1]. and is weakly
mixing,
B-0) ay=b, an=—a (n=l). U=U°={z;|z|<1]a}
D(z)=1—az—abz*+a*bz*/(1+az)=(1—22)/(1 +az)
Zz)=1/D(z)
1) P(f)=0 and z=1 is a simple zero of D(z)
2)  the zeros in U are 1 and —1.

Example 7. Oscillating cycle: $=3,5, ---(odd)
0<l—a< fP 20 fP0<- < OO 0L < f10=1
This is observable chaos and appears when 1—a=ba—a*+a*—---+aP).
A-1) The asymptotic measure exists uniquely and is absolutely continuous.
2) Tts support is J and is mixing.
B-0) anp=0, @npri=—a (=1, -, p~1).
D(2)=(1—a?bz?) (1 - az—abz® +a’hz* — abz* + -+ — aP~2pzP 1)
1/Z(z)=1—az—abz*+a®bz*— a*bz* + .- — aP~2hzP",
1) P(f)=0 and z=1 is a simple zero of D(z).
2) There are no other zeros in a neighbourhood of the unit disc.

§6. Further examples: Critical cases

Although we did not give the proof, our theory works for general, piece-
wise linear maps of intervals. For example, the PFredholm determinant of a
B-transformation is

(42) D@)=1—3" anp-r-ign+
n=0

where the sequence a, is defined in the same way as before from the orbit of
0+0. [5], [15].

There are interesting maps of intervals, for which certain similarity laws
hold, - The case where a continuous map f has all powers of 2 as its period
and no other integers appear as its period is widely known. The similarity law
is as follows: f has two mutually disjoint subintervals such that f/,=/, and
fl=7\, and f* on each J; is cojugate with f itself.. Let us generalize this ([17]).

Let Npz2 (nz0) and F(N,,#=0) be the set of continuous maps 7 on inter-
vals J defined by the following conditions :

(@) There are N, mutually disjoint nonempty subintervals j}, i=1, -, Ny,
such that f/;=/,@ for some cyclic permutation g of 1,:--, Ni.

(b) Almost all points of J fall into the union of j,s i.e., the union of the
inverse images of the union of /i's under f™s has full Lebesgue measure in /.

(c)- The restriction of F¥0 on each J; belongs to the set F{ Ny, #=0).
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DerFINITION 6. A continuous map f on an interval J is called (Vy)-critical
if it belongs to the set F(N,, n=0). When N,=N for all », let us call f N=-
critical.

In the following let us construct a unimodal piecewise linear continuous
map of the unit interval /=[0.1] which is N*-critical and compute D(z) and
Z(z). 1t is also obtained that the value of P(f) can take any nonpositive real
number including —oco.

1 B

8 J

9 !

7 !

9 |

2 !

3 i i
! : 1
]
[ | & ——
i i //fﬁ a
{ .

1 i !

3 : ;
{ 1

|
i !
| 1
i 1
A !
0 o94b 1 B8—a 2 1

9 3 9 3

Fig. 8. 2=-critical case.

Example 8. 2-critical case. (Fig. 3).
Let &, 7nz0, be real numbers in (0,1). Then there is a piecewise linear
unimodular continuous map f whose zeta function is

43) 22)=1] (1-;5]5;)"1.

m=0

It then follows that P(f)=1lim sup(log &m)/2™e[—o0, 0]. Furthermore, it can be
shown for any 2*-critical f,

(44) - D=1 -+

The construction of f iias follows. For a given «, be(0,1) let g=ga,» be
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the piecewise linear continuous map of [0,2/97U[1/3, 1] to [0, 1] whose end points
of linear parts are given by

21\ 2.1 eny 2.3 2y 2.3 2
!](0)—‘3—, 0(@*)—“3—' 5 (J( g )—3+9, g(9>~3+9+27,

1 2 2 2—a 2 2 1
355 o255 o3 e

Next define go,.o,,.ap oy :

[0, —g-(l+—é—+ et (—é—)’l'l)]u [—%—%{1+%+-~- +(5) )i

inductively on n by

. 2 1
B L taeoglofz]

by =
l Jug.- (92 —2)  otherwise.

Finally, define f for given k&, by

FC)=lim goy.op (@) if 2#= and

)

Then the map f leaves [0, 1/3]U[2/3,1] invariant and any point except the
unique fixed point falls into this union under the iteration of f, Similarly a
look on the level of size 1/9 shows that Per(2, ) consists exactly of two points
and any point except the fixed points of f* fall into the union of the intervals
[24)9, (2i+1)/9], i=0.1,3,4. Consequently, the set Per(2™, f) consists of exactly
2™ points and, for n=+2", Per(n, f)=0. Furthermore, non-periodic points lie in
the basin of the attractor C which is the classical Cantor set.

Now the formula (39) follows from (/*™) =—kn on Per(2™, f).

Next let us compute D(z), which is defined by the orbit of 0+0. A slight
look on. the structure of the graph of f shows that the sequence a,, #=0, is
obtained by the following generating rule:

0) ay=>0, a;=—a. }
(@, azm—|~1~_l)=((lo, oy oy Coy * 07y Qym_gy (l;km-g, Aym_,)

where b*=-—ea and (—a)*=b.
It is not so difficult to obtain from this that

n—-1
—Cp= - Z Cl'i:(-'l)zek(n+l) (7’120) .
i=o
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Here exm)e{0,1) is the k-th coefficient. of binary expansion of m=3 exlm)-2%.
Consequently,

D(2)=1=3" cua™ = Y~ )zt (g,=0,1)

n=0

=(1—2)(1—2%) (1=z*)--- .

as is expected from the form of 1/Z(z). The function D(z) may be interpreted
as Fredholm determinant of the restriction of # on the Cantor set C.
In summary one obtains the following [17].

a-1) The asymptotic measure exists uniquely but it is not absolutely continuous.

2) It is the uniform measure on the Cantor set C, and is ergodic but not
weakly mixing.
b-1) z=1 is a zero of D(z) with infinite multiplicity.

2) P(f)e[—o0,0]

N=3, 2N-1=5
1 S -
]
b
o i1 2z 3 4 1
5 5 5 5

Fig. 4. N>.critical case.

Example 9. N=-critical case (Fig. 4)

The example can be constructed in a similar way as in Example 8. But
one must divide J into 2N-1 intervals [;=[(—1)/(2N-1), i/{(2N—1)] and the
similarity takes place in the subinterval J,y-s. Note that this is consistent since
2N—1=3 and 2N-3=1 for N=2. In this case the generating rule for the
sequence a, is as follows:
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O) ao:"'=a]\?*2=b, aN-—iK:'-a-
1) (a0, @ym_)=un is obtained by

U1 = Ul Ui |

where w*={d;, -+, du_2, &¥_,, dy) if u=(dy, ---,d,) and d* is as before

A similar argument as above shows the following:

a-1) The asymptotic measure exists uniquely but it is not absolutely continuous.
2) It is the uniform measure on the N-ary Cantor set and it is ergodic but

not weakly mixing under f.

b-0) D()=[] Dx(z";1,1) and Zz)=[] Dale™; aw, bw)
m=0

m=0

where Dx(z;a,b) is the inverse zeta function with the coefficients ¢ and b:

Dx(z:a, b)=1—az—abz*—--ab¥-2z¥ -1

1) z=1 is a zero of D(z) with infinite multiplicity.
2) P(f)e[~—o0,00
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