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Introduction

In this note we consider the problem of finding all finite groups G in which
a Sylow 2-subgroup S contains precisely two maximal elementary abelian 2-
subgroups, A and B, and S=AB. One possible approach to this problem is the
application of Gilman and Gorenstein’s theorem [4], as the nilpotency class of
S is two. Indeed, the structure of such a group G is easily determined by the
use of their theorem, provided that 0. (G)=0(G). The purpose of this note,
however, is not to show that, but to give an almost fusion theoretical proof
of the following result:

TurorREM. Lef G be a finite group in which « Sylow 2-subgroup S contains
precisely two maximal elementary abelian 2-subgroups, A and B, and S=ADB.
Then one of the following holds :

(i) |S:A|=|S:B|=2;
(ii) AeSyl: (CA%);
(i) BeSyls ((B%);

(iv) OY(G)OWO¥(GY)=KxL (central product), K is a group with elementary
abelian Sylow 2-subgroups, and L is a perfect central extension of
PSLy(g) or PSpuq), where q=|S: Al=|S: B|.

The main tool used in the proof is Goldschmidt's “2-fusion theorem™ [6].
This theorem together with certain side techniques, also ‘due to Goldschmidt,
enables one to reduce the problem to the case where the 2-local structure of
G looks like that of PSLy(2%) or PSp.(2"), 2=n. In this situation there is a
variety of method to identify G. Probably, the best method is a geometrical
method as used in the proof of Theorem 2 of Aschbacher [2]. In this note,
however, we shall simply use a result that classifies groups of characteristic 2
type having a Sylow 2-subgroup of nilpotency class two [7,8]. Therefore, the
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proof of the theorem is independent of Gilman and Gorenstein’s theorem. Such
a proof has the effect of making certain papers on standard component problems,
e.g. [9], free from Gilman and Gorenstein’s paper and, in fact, this was the
main motivation for the present work.

1. Fusion Lemmas

In this section we collect some hasic results on fusion of p-elements that
we shall need for the proof of the theorem.

2-FusioNn THEOREM [6). Let G be a finite group, S be a Sylow 2-subgroup
of G, and A be an elementary abelian subgroup of S. If A is strongly closed in
S with respect to G, then {ASY|O(ASY) is a central product of an elementary
abelian 2-group and Goldschmidt groups. Furthermore, if AS TeSyl(KAS)) then
A=0:T).

Here, we mean by “Goldschmidt groups” the quasisimple groups which
Goldschmidt called groups of type I and IL

GorLpscuMmInT’'s LEMMA. Let G be a finite group, S be a Sylow 2-subgroup
of G, and A be an elementary abelian subgroup of S. Suppose A is weakly
closed in S with respect to G and an element aeS—A is conjugate to an element
of A. Choose a conjugate A, of A so that

(1) aecA, and
(2) JANA:| is maximal subject to (1),

and set Xi=ANA,, Xo=N,s(Xs,ad). Furthermore, let X=Cala) and Xo=[A, .
Then the following holds :

(i) X XCXCX, and if Af=A, geG, then ANX"'=X," and X, A;
(ii) |A/X]=|X| | X/X] and | XN X =]Xa/X];
(i) we miay choose an elemeni geG so that A=A and Ns({(Xi, a))'ES.

This result is implicit in the proof of Corollary 4 of Goldschmidt [6]. A
proof is given in an author’s paper [9, 1G)]

BurnsipE's LEMMA. Let G be a finite group, S be a Sylow p-subgroup of
G, and W be a weakly closed subgrowp of S with respect to G. If A, B are
subsets of S that are conjugate in G and normalized by W, then A, B are con-
jugate in Ng(W).

This is a well-known fact and an easy consequence of Sylow’s theorom.

GLAUBERMAN's LemMa. Let G be a finite group, S be a Sylow p-subgroup
of G, and A be an abelian subgroup of S. If A is strongly closed in S with
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respect to G, then Ng(A) controls fusion of elements of S.

This result was first proved by Glauberman [5]. There is an alternative
proof based on Alperin’s fusion theorem [1,11].

2. Preliminary Lemmas

In this section G is a finite group satisfying the hypothesis of the theorem
and S is a Sylow 2-subgroup of G. For any 2-group X, &*(X) will denote
the set of maximal elementary abelian subgroups of X. Thus the basic hypo-
thesis of this section may be written as follows.

Hyrotuesis 1. &*(S)={A, B}, A#B, and S=AB.
Under this hypothesis we first prove the following two lemmas.
LemMa 1. A and B are weakly closed in S with vespect to G.

PrOOF. Ng(S) acts, by conjugation, on &£*S)={4, B}. In particular, B
normalizes A and, as S=AB, S normalizes A. Thus #=|Ng(S): Ne(4A)N NgS)| is
odd, while #=|&*(S)|=2. Therefore, Na(S)S Ne(A) and by symmetry Ng(S)ES
Ng(B). Now suppose, say, A+ACSS for some element geG. Then ACHB by
Hypothesis 1. If |A|=]|B|, then A’=8 and so we may take geNgS) by
Burnside’s lemma. Since this is impossible, it follows that |A|<|B]. Then B
is weakly closed by Hypothesis 1 and so we may take geNg(B) again by
Burnside’s lemma. Since this is impossible, A is weakly closed and, by sym-
metry, B is weakly closed as well.

LemMA 2. If A or B is strongly closed in S with respect 1o G, then respec-
tively (ii) or (i) of the theovem holds.

Proof. Suppose A is strongly closed, say, and let T=SN{A¢. Then
(T)=A by the 2-fusion theorem, while &*(T)={4,BNT} and T=ABNT)
by Hypothesis 1. Therefore, T=A and the lemma holds.

Now assume that A is not strongly closed, and suppose an element aeS—A
is conjugate to an element of A. Following Goldschmidt's lemma, we introduce

some notation. Let
X=C4la) and Xy=[A, a]

Choose a conjugate A; of A so that

(1) acA,,
and
(2) |[ANA, is maximal subject to (1),

and let
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Xi=AnNA, and Xo=N4(KXy, ap).
Then XX, € XS X, by Goldschmidt’'s lemma. Furthermore, let
Z=AnNB. |

Now Hypothesis 1 implies that Cs(z)=B for each zeB—A and Csly)=A
for each yeA—B. Therefore,

(3) Z(S)=2.
As ee B—A by Hypothesis 1, we also have
(4) X=Z.

Now we may take geG so that A,Y=A and Ns({X;, 2>)!SS by Goldschmidt’s
lemma. As (X3, a&)SB by Hypothesis 1, we have X,BZ Ns({Xy, ad) and so
(XB)YSS. Thus, the weak closure (Lemma 1) of B yields that

(5) geNa(B).

As X7CS and X."¢ A by Goldschmidt’s lemuna, Hypothesis 1 implies X,/S B.
Thus X;SANB=Z by (5) and as ZS X, by (3), we have

(6) Xo=Z.

Using (4), (6) and Goldschmidt’s lemma, we obtain

(7) IS/Bl=|A/Z| = | Xo| <1 X/ Xl = | X0/ X0 ISTA].
We can now prove the following:

Lumma 3. If |SJA|==|S|B)|, then A or B is strongly closed in S with respect
to G.

Proof. The inequality |S/B|=|S/A] in (7) above was obtained under the
hypothesis that A was not strongly closed. Hence if |S/A|<|S/B| then A is
strongly closed and by symmetry, if |S/B|<|S/A|, B is strongly closed.

In view of Lemmas 2 and 3, we assume the following from now on.

HyPOTHESIS 2. ISJA|=|S]B|=q, 2<g, and A is not strongly closed in S with
respect to G.

As |S/A|=|S|B|=gq, (6) and (7) show
(8) 1Ko =121 %] =q.
Also, |
(9) XnXi=1



A Fusion Theoretical Approach to Groups of Type PSLy(27) and PSp,(27) 5

by (4), (6), and Goldschmidt’s lemma. Now let
R={5,5"" and  @=0"Nz(D)),
so that RE® by (6). We shall consider the structure of Q/B.

LeMmma 4. No(Z)[B is strongly embedded in QB and Nz(Z)|B is strongly
embedded in R|B. Q has a normal subgroup P containing B such that QP=
PSL:(q) and |P|B| is odd.

Proof. As Z(S)=Z+Z"" by (3), (6), and Goldschmidt’s lemma, S is not
conjugate to S in Ng(Z). Thus Ne(Z)#R and Ny(Z)#Q by Sylow’s theorem.
If BcTES, then Z(T)=Z Dby an analogue of (3) and so Ng(T)SNu(Z). This
implies that Ne(Z)/B is strongly embedded in R/B and similary for Ng(Z)/B in
Q/B. As S/B is elementary abelian of order ¢ and 0*(Q)=@, the second asser-
tion follows from Bender’s theorem [3].

We shall next consider the action of Ng(B)/B on B, Let
Ae=Ca(0¥(Ng(4))) and  By=Cp(0*(Na(B))).
As a consequence of Lemma 4 and Bender’s theorem [3], we have
|Q: No(Z)|=|R: Na(Z)|=¢+1,

and so @=Ny(Z)R. Hence if TeSyl,(Q), then T=5" with 2eNy(Z) and yeR
by Sylow's theorem. As RECq(X)), we may deduce as follows:

[T, X,]=[S%, X;1=[S%, X;
C[S% Z) =[S, Z]*' =1.
Therefore,
10) Xi=B,.
Henceforth, we assume the following:

Hyporuesis 3. |S/A|=|S/Bl=gq, 2<q, and neither A nor B is strongly closed
in S with respect to G.

Lemma 5. The conjugates of (Z| Byt under Q|B, form a partition of (B|By).
Ne(Z)NNeg(B) acts transitively on (Z|B)t and hence No(B) acts transitively on
(BIBy)t. Ng(B) is 2-constrained.

Proof. Suppose B,cZnZ* for some element xeNg(B). Then |Z/ZnNZ% <
|Z/X:| by (10). The equation (8) was obtained under the hypothesis that A
was not strongly closed in S with respect to G. Hence A is strongly closed in
S with respect to Ne(ZNZ%), and in particular Z=ANB is normal in Ng(ZNZ%)
NNe(B). As S*S Ne(ZNZ%) 1 Na(B), S*=SY for some element yeNg(Z) by Sylow’s
theorem, Thus Z*=ZY=Z by (3). This implies that Z/B, is a T.1 set in
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Ng(B)|Bs. As |Z]By))=gq and |B/B)=¢* by (8) and (9), and as |@: No(Z)|=q+1
by Lemma 4, the first assertion follows.

An analogue for A’ of Lemma 4 shows that Ng(S'™") acts transitively on
(S°7'JA'Y and hence on (B/Z°7')Y. Thus Ng(Z')N Ng(B) acts transitively on
(BjZ™M. 1t also follows from Lemma 4 and Bender’s theorem [3] that

Ne(Z"™) (1 Na(B)=(Ne(Z) N No(Z77))S"™".

As S7* centralizes B/Z°', Ng(Z)NNgl(Z7') acts transitively on (B/Z¢7') and
hence on (Z] By, as B|By=Z|B,xZ%'|B,. This proves the second assertion.
Now the first assertion shows that Co(B)+#=Q. The structure of @/B (Lemma
4) then forces Co(B)SP, so |Ce(B)/B| is odd and Cg(B) is 2-solvable. Therefore,
Ng(B) is 2-constrained.
The following result permits us to use an inductive argument.

Lemma 6. If WSB, then S[WeSyl(Co(W)IW), &*S|W)={A[W, B/W},
and S|W=(A|W)(B/W).

Proof. Let beB—~A. Then b°e¢Z for some element zeNg(B) by Lemma 5.
As X, =B,SANA*", the choices of a and A, show ANA*'=28, Thus |[4,b]|
=g and [4,b1NBy=1 by analogues of (8) and (9). _

Now let bars denote images in Co(W)/W. Then S is a Sylow 2-subgroup
of Cao(W) and 5=A4B8 Furthermore, if & is an arbitrary element of B—A then
(4, 5]|=q by the above, and so Ca(h)=Z. Thus &*S)={4, B}.

The following three lemmas deal with the fusion of involutions.

LeMMA 7. Let VEZ Then A is not strongly closed in S with respect to
CelV) if and only if VEB,.

Pyoof. If VEB, then QECu(V) and so A is not strongly closed in S with
respect to Ce(V) by Lemma 5. Conversely, if A is not strongly closed in S
with respect to Cg(V), then analogues of (8) and (10) show that there is an
element 2eCg(V) such that

ANAY=Cg(O*(Ne(B)NCa(V)))
and such that
JAN AP =]S]/g"

As B,SCaO*(Ne(BYNCa(V))) and |By|=|9|/¢? it follows that AnA*=5,. Thus
V= Vh__g_Bo.

LeMMA 8. Ewvery involution of G is conjugate to an element of Z.
Proof. This follows from Lemma 5 and its analogue for A.

LemMa 9. Let Zy=AcNBy. Then Z, is strongly closed in S with respect to G.
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Proof. Because of Lemma 1 and Burnside’s lemma, it suffices to show
that (Nz(A), Na(B)>ENa(Z,). Let xeNg(B). Then Zy"=A"NB, and A=
Cy(0¥(Ne(A®))). Choose an element ye® so that S$*=SY. Then A*=AY so
A=A and ZF=A'NBi=(AcNBYW=2'=Z,. Thus Ng(B)SNyZy) and, by
symmetry, Nu(A)E Ne(Zy).

Finally, we prove the following :

LemMa 10. Assume Zy=1. Then either As=DBy=1 or Z=AXB, and in
the laiter case Co(Ay) and Ce(Bo) are 2-constrained.

Proof. As Z,=1,Z% is a disjoint union of the sets Ad, B, and Z—(A.U By).
Moreover, Lemma 1 and Burnside’s lemma show that none of them fuses to
the others in G, as Ng(B)SNe(By) and Ng(A)SNa(Ap). Thus Ng(Z)SNe(Ao)N
Ng(B). Lemma 5 and its analogue for A now show that Ng(Z) acts transitively
on (Z[AW) and on (Z/Byt Therefore, either A;=B;=1 or Z=A,X B,.

Assume Z=A;x B, As BytA, B is strongly closed in S with respect to
Ce(By) by an analogue of Lemma 7. Let bars denote images in Ca(By)]BeO(Ca(By))
a_l’ld let K be the normal closure of B in Cg(B,). Then by the 2-fusion theorem,
K is a central product of a 2-group and Goldschmidt groups, and if T'=SNK
then Oy(K)SB=2,(T). Now Lemma 5 implies that Ng(B) acts transitively on
Bt This action of Ng(B) on B forces O,(K)=1 or B, as Ng(B) acts on K.
Moreover, if O, (K)=1 then K is a simple Goldschmidt group and Ng(B)®
induces a perfect automorphism group of K that normalizes 2,T)=5. How-
ever, this shows that Ny(B)* centralizes K [6, Section 3], so No(B)»S Co( Bl By).
Since this is impossible by Lemmas 4 and 5, we must have O,(K)=B. This
shows that BO(Ce(By)) is normal in Cg(By), so

Co(Bo)=(Na(B) N Ca(B0) YN Cal Br) )

by a Frattini argument. Therefore, Ce(B,) is 2-constrained by Lemma 5. By
symmetry, Ce(Ay) is 2-constirained as well.

2. Proof of the Theorem

In this section we complete the proof of the theorem by induction on |G|.
Let Gy=0%(G). Then SeSyl:(Gy) and G=Ng(S)G, by a Frattini argument. As
No(S)S Ne(A)N Ng(B) by Lemma 1, it follows that (A% =A%) and (B> =B},
Thus if Gy#+G, we can apply the induction hypothesis to Gy, and obtain the
theorem. Therefore, we assume G=0%(G). Also, if O(G)#1 then we can apply
the induction hypothesis to G/O(G). Therefore, we assume O(G)=1. Further-
more, in view of Lemmas 2 and 3, we may operate under Hypothesis 3. For a
while, however, we shall assume only Hypothesis 3 and prove that if Z,=1
then O¥(G)/O(O¥(G))=PSLs(g) or PSp,(g). It suffices to prove that the centralizer
of every non-identity subgroup of Z is 2-constrained and that Ou o(G)=0(G).
For Lemma 8 then shows that the centralizer of every involution of G is 2-
constrained. As SCN;(2) is non-empty, the “balanced group theorem” [10] shows
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that GJ/O(G) is of characteristic 2 type. We can then apply previous results
[7,8]. As S is large enough, the only possibility is that O¥(G)/O(O¥(G))= PSLs(q)
~or PSh(q).

Now let 1#=VEZ and H=Cg(V). We show that if Z;=1 then H is 2~
constrained. As Z;=1, either V& A, or V& By and so, by symmetry, we assume
V<A, Then B is strongly closed in S with respect to H by an analogue of
Lemma 7. If A;=B,=1, then V&5, and so A is also strongly closed in S with
respect to . We can then prove that His 2-solvable of 2-length 1 and hence
2-constrained [9, the fourth paragraph of the proof of (1H)]. We therefore
assume Zy=A,x B, in view of Lemma 10. As Np(B)SNu(B), B, is strongly
closed in S with respect to H by Glauberman’s lemma. An analogue for H of
Lemma 2 shows SN{B¥)=F8 and s0 SNKBTy=BN{BH). As By=2,(SN{BHD)
by the 2-fusion theorem, it follows that ByeSyl: ({(By¥}). Now we distinguish
two cases.

Case 1. Assume VE B, Then AeSyly ((AH)) by symmetry. As A;NB,
=2,=1, it follows that [{A7), {BH>]S O(H) and, in particular, (B> S Cu(A)OH).
As Cu(A,) is 2-constrained by Lemma 10, so also is (B> and hence B,0O(H)
is normal in H by the 2-fusion theorem. Thus H=Nx(B)O(H) by a Frattini
argument and, as Nx(B,) is 2-constrained by Lemma 10, so also is H.

Case 2. Assume VE B, Then QSH and @ centralizes ByeSyl, ({(B/ID).
As (B/Y0(H)/O(H) is a central product of a 2-group and Goldschmidt groups,
we must have [Q~, {(B/H)]SOH) [6, Section 3]. Now Q/B, is perfect by Lemmas
4 and 5. Hence if we set W=ZNQ>, then Z=WB, and W& B, Thus VW&
Ao, By and so Cy(W) is 2-constrained by the discussion in Case 1. As (B/H)S&
Cy(W)HO(H), it follows as in Case 1 that H is 2-constrained.

It remains to prove Q. o(G)=0(G). Let bars denote images in G/O(G). The
structure of §/B shows 0:(G)S B, and by symmetry Oy(G)SA; so O(G)SZ and
then Oy(G)SB, by Lemma 5. By symmetry Oy(G)S A, and, as Z,=1, 0:(G)=1.

Assume now Zy=1 and let K={Z,>. Assume furthermore that O*(G)=G
and O(G)=1. Then by Lemma 9 and the 2-fusion theorem, K is a central
product of a 2-group and Goldschmidt groups and, if T=SNK, then O)(K)S
Q(T)=Z,. Since [S, Z,]=1 and [S, TIETNZ=2,, it follows that S induces inner
automorphisms on E(X) [6, Section 3]. Also, [S, 0,(K)]=1. Therefore, SSKCx(K)
and, as 0¥(G)=G, we conclude that G=KCs(K).

Now Cg(Z;)]Z, satisfies Hypothesis 3 by Lemmas 6 and 7. Furthermore, the
subgroup of Ce(Z,)/Z, corresponding to Z, is the identity group. Therefore, the
preceding discussion shows that Ce(Z))/Z:0(Ce(Z,)) has a normal subgroup of
odd index isomorphic to PSLs(g) or PSpig). In particular, O«(Ce(Zo)/Zs)=1. As
Zy=02,(T) and TeSyl, (K), the structure of K shows O,(KNCs(Zy))=T and so
T2, S0:(Ce(Z0)| Zy). Thus Z,eSyls (K).

Now let L=Cg(Zy)”. Then L induces a perfect automorphism group on K
centralizing Z,€Syls (X). This forces [K, L]=1 [6, Section 3]. Hence L is normal
in KCe(K)=G, as Ce(K)ECa(Zy). As O(G)=1, the structure of Ca(Z:)/Z,0(Cal(Z0))
and the definition of L show that L is a perfect central extension of PSLy(g) or
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PSpy(qg). Also, Z,L has odd index in Co(Zy) and so SCZ,LEKL. As 0¥(G)=G,
it follows that G=KL. Thus, we have proved that G is in Case (iv) of the
theorem, and the proof of the theorem is complete.
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