A Fusion Theoretical Approach to Groups of Type $PSL_3(2^n)$ and $PSp_4(2^n)$

by Kensaku Gomi

Department of Mathematics, College of General Education University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received February 5, 1980)

Introduction

In this note we consider the problem of finding all finite groups G in which a Sylow 2-subgroup S contains precisely two maximal elementary abelian 2-subgroups, A and B, and S=AB. One possible approach to this problem is the application of Gilman and Gorenstein's theorem [4], as the nilpotency class of S is two. Indeed, the structure of such a group G is easily determined by the use of their theorem, provided that $O_{2',2}(G)=O(G)$. The purpose of this note, however, is not to show that, but to give an almost fusion theoretical proof of the following result:

Theorem. Let G be a finite group in which a Sylow 2-subgroup S contains precisely two maximal elementary abelian 2-subgroups, A and B, and S=AB. Then one of the following holds:

- (i) |S:A| = |S:B| = 2;
- (ii) $A \in Syl_2(\langle A^G \rangle)$;
- (iii) $B \in Syl_2(\langle B^G \rangle)$;
- (iv) $O^{2'}(G)/O(O^{2'}(G)) = K*L$ (central product), K is a group with elementary abelian Sylow 2-subgroups, and L is a perfect central extension of $PSL_{3}(q)$ or $PSp_{4}(q)$, where q=|S:A|=|S:B|.

The main tool used in the proof is Goldschmidt's "2-fusion theorem" [6]. This theorem together with certain side techniques, also due to Goldschmidt, enables one to reduce the problem to the case where the 2-local structure of G looks like that of $PSL_8(2^n)$ or $PSp_4(2^n)$, $2 \le n$. In this situation there is a variety of method to identify G. Probably, the best method is a geometrical method as used in the proof of Theorem 2 of Aschbacher [2]. In this note, however, we shall simply use a result that classifies groups of characteristic 2 type having a Sylow 2-subgroup of nilpotency class two [7, 8]. Therefore, the

proof of the theorem is independent of Gilman and Gorenstein's theorem. Such a proof has the effect of making certain papers on standard component problems, e.g. [9], free from Gilman and Gorenstein's paper and, in fact, this was the main motivation for the present work.

1. Fusion Lemmas

In this section we collect some basic results on fusion of p-elements that we shall need for the proof of the theorem.

2-Fusion Theorem [6]. Let G be a finite group, S be a Sylow 2-subgroup of G, and A be an elementary abelian subgroup of S. If A is strongly closed in S with respect to G, then $\langle A^G \rangle | O(\langle A^G \rangle)$ is a central product of an elementary abelian 2-group and Goldschmidt groups. Furthermore, if $A \subseteq T \in Syl_2(\langle A^G \rangle)$ then $A = \Omega_1(T)$.

Here, we mean by "Goldschmidt groups" the quasisimple groups which Goldschmidt called groups of type I and II.

Goldschmidt's Lemma. Let G be a finite group, S be a Sylow 2-subgroup of G, and A be an elementary abelian subgroup of S. Suppose A is weakly closed in S with respect to G and an element $a \in S-A$ is conjugate to an element of A. Choose a conjugate A_1 of A so that

- (1) $a \in A_1$, and
- (2) $|A \cap A_1|$ is maximal subject to (1),

and set $X_1 = A \cap A_1$, $X_2 = N_A(\langle X_1, a \rangle)$. Furthermore, let $X = C_A(a)$ and $X_0 = [A, a]$. Then the following holds:

- (i) $X_0X_1\subseteq X\subseteq X_2$ and if $A_1^g=A$, $g\in G$, then $A\cap X_2^g=X_1^g$ and $X_2^g\nsubseteq A$;
- (ii) $|A/X| = |X_0| \le |X_2/X_1|$ and $|X_0 \cap X_1| = |X_2/X|$;
- (iii) we may choose an element $g \in G$ so that $A_1^g = A$ and $N_S(\langle X_1, a \rangle)^g \subseteq S$.

This result is implicit in the proof of Corollary 4 of Goldschmidt [6]. A proof is given in an author's paper [9, (1G)].

Burnside's Lemma. Let G be a finite group, S be a Sylow p-subgroup of G, and W be a weakly closed subgroup of S with respect to G. If A, B are subsets of S that are conjugate in G and normalized by W, then A, B are conjugate in $N_G(W)$.

This is a well-known fact and an easy consequence of Sylow's theorom.

GLAUBERMAN'S LEMMA. Let G be a finite group, S be a Sylow p-subgroup of G, and A be an abelian subgroup of S. If A is strongly closed in S with

respect to G, then $N_G(A)$ controls fusion of elements of S.

This result was first proved by Glauberman [5]. There is an alternative proof based on Alperin's fusion theorem [1, 11].

2. Preliminary Lemmas

In this section G is a finite group satisfying the hypothesis of the theorem and S is a Sylow 2-subgroup of G. For any 2-group X, $\mathcal{E}^*(X)$ will denote the set of maximal elementary abelian subgroups of X. Thus the basic hypothesis of this section may be written as follows.

Hypothesis 1. $\mathcal{E}^*(S) = \{A, B\}, A \neq B, \text{ and } S = AB.$

Under this hypothesis we first prove the following two lemmas.

LEMMA 1. A and B are weakly closed in S with respect to G.

PROOF. $N_G(S)$ acts, by conjugation, on $\mathcal{E}^*(S) = \{A, B\}$. In particular, B normalizes A and, as S = AB, S normalizes A. Thus $n = |N_G(S): N_G(A) \cap N_G(S)|$ is odd, while $n \leq |\mathcal{E}^*(S)| = 2$. Therefore, $N_G(S) \subseteq N_G(A)$ and by symmetry $N_G(S) \subseteq N_G(B)$. Now suppose, say, $A \neq A^g \subseteq S$ for some element $g \in G$. Then $A^g \subseteq B$ by Hypothesis 1. If |A| = |B|, then $A^g = B$ and so we may take $g \in N_G(S)$ by Burnside's lemma. Since this is impossible, it follows that |A| < |B|. Then B is weakly closed by Hypothesis 1 and so we may take $g \in N_G(B)$ again by Burnside's lemma. Since this is impossible, A is weakly closed and, by symmetry, B is weakly closed as well.

Lemma 2. If A or B is strongly closed in S with respect to G, then respectively (ii) or (iii) of the theorem holds.

Proof. Suppose A is strongly closed, say, and let $T=S\cap\langle A^G\rangle$. Then $\Omega_1(T)=A$ by the 2-fusion theorem, while $\mathcal{E}^*(T)=\{A,B\cap T\}$ and $T=A(B\cap T)$ by Hypothesis 1. Therefore, T=A and the lemma holds.

Now assume that A is not strongly closed, and suppose an element $a \in S - A$ is conjugate to an element of A. Following Goldschmidt's lemma, we introduce some notation. Let

$$X=C_A(\alpha)$$
 and $X_0=[A,\alpha]$.

Choose a conjugate A_1 of A so that

(1) $a \in A_1$

and

(2) $|A \cap A_1|$ is maximal subject to (1),

and let

$$X_1 = A \cap A_1$$
 and $X_2 = N_A(\langle X_1, \alpha \rangle)$.

Then $X_0X_1\subseteq X\subseteq X_2$ by Goldschmidt's lemma. Furthermore, let

$$Z=A\cap B$$
.

Now Hypothesis 1 implies that $C_S(x)=B$ for each $x \in B-A$ and $C_S(y)=A$ for each $y \in A-B$. Therefore,

$$(3) Z(S)=Z.$$

As $a \in B - A$ by Hypothesis 1, we also have

$$(4)$$
 $X=Z$.

Now we may take $g \in G$ so that $A_1^g = A$ and $N_S(\langle X_1, \alpha \rangle)^g \subseteq S$ by Goldschmidt's lemma. As $\langle X_1, \alpha \rangle \subseteq B$ by Hypothesis 1, we have $X_2B \subseteq N_S(\langle X_1, \alpha \rangle)$ and so $(X_2B)^g \subseteq S$. Thus, the weak closure (Lemma 1) of B yields that

$$(5) g \in N_G(B).$$

As $X_2{}^g \subseteq S$ and $X_2{}^g \nsubseteq A$ by Goldschmidt's lemma, Hypothesis 1 implies $X_2{}^g \subseteq B$. Thus $X_2 \subseteq A \cap B = Z$ by (5) and as $Z \subseteq X_2$ by (3), we have

$$(6) X_2 = Z.$$

Using (4), (6) and Goldschmidt's lemma, we obtain

(7)
$$|S/B| = |A/Z| = |X_0| \le |X_2/X_1| = |X_2^q/X_1^q| \le |S/A|$$
.

We can now prove the following:

Lemma 3. If $|S/A| \neq |S/B|$, then A or B is strongly closed in S with respect to G.

Proof. The inequality $|S/B| \le |S/A|$ in (7) above was obtained under the hypothesis that A was not strongly closed. Hence if |S/A| < |S/B| then A is strongly closed and by symmetry, if |S/B| < |S/A|, B is strongly closed.

In view of Lemmas 2 and 3, we assume the following from now on.

Hypothesis 2. |S|A| = |S|B| = q, 2 < q, and A is not strongly closed in S with respect to G.

As
$$|S/A| = |S/B| = q$$
, (6) and (7) show

(8)
$$|X_0| = |Z/X_1| = q.$$

Also,

$$(9) X_0 \cap X_1 = 1$$

by (4), (6), and Goldschmidt's lemma. Now let

$$R = \langle S, S^{g-1} \rangle$$
 and $Q = O^{2'}(N_G(B))$,

so that $R \subseteq Q$ by (5). We shall consider the structure of Q/B.

Lemma 4. $N_Q(Z)/B$ is strongly embedded in Q/B and $N_R(Z)/B$ is strongly embedded in R/B. Q has a normal subgroup P containing B such that $Q/P \cong PSL_2(q)$ and |P/B| is odd.

Proof. As $Z(S)=Z\neq Z^{g-1}$ by (3), (6), and Goldschmidt's lemma, S is not conjugate to S^{g-1} in $N_G(Z)$. Thus $N_R(Z)\neq R$ and $N_Q(Z)\neq Q$ by Sylow's theorem. If $B\subset T\subseteq S$, then Z(T)=Z by an analogue of (3) and so $N_G(T)\subseteq N_G(Z)$. This implies that $N_R(Z)/B$ is strongly embedded in R/B and similarly for $N_Q(Z)/B$ in Q/B. As S/B is elementary abelian of order Q and $Q^{2'}(Q)=Q$, the second assertion follows from Bender's theorem [3].

We shall next consider the action of $N_G(B)/B$ on B. Let

$$A_0 = C_A(O^2(N_G(A)))$$
 and $B_0 = C_B(O^2(N_G(B)))$.

As a consequence of Lemma 4 and Bender's theorem [3], we have

$$|Q:N_Q(Z)|=|R:N_R(Z)|=q+1,$$

and so $Q = N_Q(Z)R$. Hence if $T \in \text{Syl}_2(Q)$, then $T = S^{xy}$ with $x \in N_Q(Z)$ and $y \in R$ by Sylow's theorem. As $R \subseteq C_G(X_1)$, we may deduce as follows:

$$[T, X_1] = [S^{xy}, X_1] = [S^x, X_1]^y$$

 $\subseteq [S^x, Z]^y = [S, Z]^{xy} = 1.$

Therefore,

$$(10) X_1 = B_0.$$

Henceforth, we assume the following:

Hypothesis 3. |S|A| = |S|B| = q, 2 < q, and neither A nor B is strongly closed in S with respect to G.

LEMMA 5. The conjugates of $(Z|B_0)^*$ under $Q|B_0$ form a partition of $(B|B_0)^*$. $N_G(Z) \cap N_G(B)$ acts transitively on $(Z|B_0)^*$ and hence $N_G(B)$ acts transitively on $(B|B_0)^*$. $N_G(B)$ is 2-constrained.

Proof. Suppose $B_0 \subset Z \cap Z^x$ for some element $x \in N_G(B)$. Then $|Z/Z \cap Z^x| < |Z/X_1|$ by (10). The equation (8) was obtained under the hypothesis that A was not strongly closed in S with respect to G. Hence G is strongly closed in G with respect to G is normal in G in G with respect to G is normal in G in G

 $N_G(B)/B_0$. As $|Z/B_0|=q$ and $|B/B_0|=q^2$ by (8) and (9), and as $|Q:N_Q(Z)|=q+1$ by Lemma 4, the first assertion follows.

An analogue for A^{g-1} of Lemma 4 shows that $N_G(S^{g-1})$ acts transitively on $(S^{g-1}/A^{g-1})^\sharp$ and hence on $(B/Z^{g-1})^\sharp$. Thus $N_G(Z^{g-1})\cap N_G(B)$ acts transitively on $(B/Z^{g-1})^\sharp$. It also follows from Lemma 4 and Bender's theorem [3] that

$$N_G(Z^{g-1}) \cap N_G(B) = (N_G(Z) \cap N_G(Z^{g-1}))S^{g-1}.$$

As S^{g-1} centralizes $B|Z^{g-1}$, $N_G(Z) \cap N_G(Z^{g-1})$ acts transitively on $(B|Z^{g-1})^{\sharp}$ and hence on $(Z|B_0)^{\sharp}$, as $B|B_0=Z|B_0\times Z^{g-1}|B_0$. This proves the second assertion.

Now the first assertion shows that $C_Q(B)\neq Q$. The structure of Q/B (Lemma 4) then forces $C_Q(B)\subseteq P$, so $|C_G(B)/B|$ is odd and $C_G(B)$ is 2-solvable. Therefore, $N_G(B)$ is 2-constrained.

The following result permits us to use an inductive argument.

LEMMA 6. If $W \subseteq B_0$, then $S/W \in Syl_2(C_G(W)/W)$, $\mathcal{E}^*(S/W) = \{A/W, B/W\}$, and S/W = (A/W)(B/W).

Proof. Let $b \in B-A$. Then $b^x \in Z$ for some element $x \in N_G(B)$ by Lemma 5. As $X_1 = B_0 \subseteq A \cap A^{x^{-1}}$, the choices of α and A_1 show $A \cap A^{x^{-1}} = B_0$. Thus |[A, b]| = q and $[A, b] \cap B_0 = 1$ by analogues of (8) and (9).

Now let bars denote images in $C_G(W)/W$. Then \bar{S} is a Sylow 2-subgroup of $\overline{C_G(W)}$ and $\bar{S} = \overline{AB}$. Furthermore, if b is an arbitrary element of B-A then $|\bar{A}, \bar{b}|| = q$ by the above, and so $C_{\bar{A}}(\bar{b}) = \bar{Z}$. Thus $\mathcal{E}^*(\bar{S}) = \{\bar{A}, \bar{B}\}$.

The following three lemmas deal with the fusion of involutions.

LEMMA 7. Let $V \subseteq Z$. Then A is not strongly closed in S with respect to $C_G(V)$ if and only if $V \subseteq B_0$.

Proof. If $V \subseteq B_0$, then $Q \subseteq C_G(V)$ and so A is not strongly closed in S with respect to $C_G(V)$ by Lemma 5. Conversely, if A is not strongly closed in S with respect to $C_G(V)$, then analogues of (8) and (10) show that there is an element $h \in C_G(V)$ such that

$$A \cap A^h = C_B(O^2(N_G(B) \cap C_G(V)))$$

and such that

$$|A \cap A^h| = |S|/q^2$$
.

As $B_0 \subseteq C_B(O^2(N_G(B) \cap C_G(V)))$ and $|B_0| = |S|/q^2$, it follows that $A \cap A^h = B_0$. Thus $V = V^h \subseteq B_0$.

Lemma 8. Every involution of G is conjugate to an element of Z.

Proof. This follows from Lemma 5 and its analogue for A.

LEMMA 9. Let $Z_0 = A_0 \cap B_0$. Then Z_0 is strongly closed in S with respect to G.

Proof. Because of Lemma 1 and Burnside's lemma, it suffices to show that $\langle N_G(A), N_G(B) \rangle \subseteq N_G(Z_0)$. Let $x \in N_G(B)$. Then $Z_0^x = A_0^x \cap B_0$ and $A_0^x = C_{A^x}(O^2(N_G(A^x)))$. Choose an element $y \in Q$ so that $S^x = S^y$. Then $A^x = A^y$, so $A_0^x = A_0^y$ and $Z_0^x = A_0^y \cap B_0 = (A_0 \cap B_0)^y = Z_0^y = Z_0$. Thus $N_G(B) \subseteq N_G(Z_0)$ and, by symmetry, $N_G(A) \subseteq N_G(Z_0)$.

Finally, we prove the following:

LEMMA 10. Assume $Z_0=1$. Then either $A_0=B_0=1$ or $Z=A_0\times B_0$, and in the latter case $C_G(A_0)$ and $C_G(B_0)$ are 2-constrained.

Proof. As $Z_0=1$, Z^* is a disjoint union of the sets A_0^* , B_0^* , and $Z-(A_0\cup B_0)$. Moreover, Lemma 1 and Burnside's lemma show that none of them fuses to the others in G, as $N_G(B)\subseteq N_G(B_0)$ and $N_G(A)\subseteq N_G(A_0)$. Thus $N_G(Z)\subseteq N_G(A_0)\cap N_G(B_0)$. Lemma 5 and its analogue for A now show that $N_G(Z)$ acts transitively on $(Z/A_0)^*$ and on $(Z/B_0)^*$. Therefore, either $A_0=B_0=1$ or $Z=A_0\times B_0$.

Assume $Z=A_0\times B_0$. As $B_0\nsubseteq A_0$, B is strongly closed in S with respect to $C_G(B_0)$ by an analogue of Lemma 7. Let bars denote images in $C_G(B_0)/B_0O(C_G(B_0))$ and let K be the normal closure of B in $C_G(B_0)$. Then by the 2-fusion theorem, \overline{K} is a central product of a 2-group and Goldschmidt groups, and if $T=S\cap K$ then $O_2(\overline{K})\subseteq \overline{B}=\mathcal{Q}_1(\overline{T})$. Now Lemma 5 implies that $N_G(B)$ acts transitively on \overline{B}^{\sharp} . This action of $N_G(B)$ on \overline{B} forces $O_2(\overline{K})=1$ or \overline{B} , as $N_G(B)$ acts on \overline{K} . Moreover, if $O_2(\overline{K})=1$ then \overline{K} is a simple Goldschmidt group and $N_G(B)^{\infty}$ induces a perfect automorphism group of \overline{K} that normalizes $\mathcal{Q}_1(\overline{T})=\overline{B}$. However, this shows that $N_G(B)^{\infty}$ centralizes \overline{K} [6, Section 3], so $N_G(B)^{\infty}\subseteq C_G(B|B_0)$. Since this is impossible by Lemmas 4 and 5, we must have $O_2(\overline{K})=\overline{B}$. This shows that $BO(C_G(B_0))$ is normal in $C_G(B_0)$, so

$$C_G(B_0) = (N_G(B) \cap C_G(B_0))O(C_G(B_0))$$

by a Frattini argument. Therefore, $C_G(B_0)$ is 2-constrained by Lemma 5. By symmetry, $C_G(A_0)$ is 2-constrained as well.

2. Proof of the Theorem

In this section we complete the proof of the theorem by induction on |G|. Let $G_0 = O^{2'}(G)$. Then $S \in \operatorname{Syl}_2(G_0)$ and $G = N_G(S)G_0$ by a Frattini argument. As $N_G(S) \subseteq N_G(A) \cap N_G(B)$ by Lemma 1, it follows that $\langle A^G \rangle = \langle A^{G_0} \rangle$ and $\langle B^G \rangle = \langle B^{G_0} \rangle$. Thus if $G_0 \neq G$, we can apply the induction hypothesis to G_0 , and obtain the theorem. Therefore, we assume $G = O^{2'}(G)$. Also, if $O(G) \neq 1$ then we can apply the induction hypothesis to G/O(G). Therefore, we assume O(G) = 1. Furthermore, in view of Lemmas 2 and 3, we may operate under Hypothesis 3. For a while, however, we shall assume only Hypothesis 3 and prove that if $G_0 = 1$ then $O^{2'}(G)/O(O^{2'}(G)) \cong PSL_3(Q)$ or $PSp_3(Q)$. It suffices to prove that the centralizer of every non-identity subgroup of G is 2-constrained and that $G_{2',2}(G) = O(G)$. For Lemma 8 then shows that the centralizer of every involution of G is 2-constrained. As $SCN_3(2)$ is non-empty, the "balanced group theorem" [10] shows

that G/O(G) is of characteristic 2 type. We can then apply previous results [7,8]. As S is large enough, the only possibility is that $O^2'(G)/O(O^2'(G)) \cong PSL_3(q)$ or $PSp_4(q)$.

Now let $1 \neq V \subseteq Z$ and $H = C_G(V)$. We show that if $Z_0 = 1$ then H is 2-constrained. As $Z_0 = 1$, either $V \nsubseteq A_0$ or $V \nsubseteq B_0$ and so, by symmetry, we assume $V \nsubseteq A_0$. Then B is strongly closed in S with respect to H by an analogue of Lemma 7. If $A_0 = B_0 = 1$, then $V \nsubseteq B_0$ and so A is also strongly closed in S with respect to H. We can then prove that H is 2-solvable of 2-length 1 and hence 2-constrained [9, the fourth paragraph of the proof of (1 H)]. We therefore assume $Z_0 = A_0 \times B_0$ in view of Lemma 10. As $N_H(B) \subseteq N_H(B_0)$, B_0 is strongly closed in S with respect to H by Glauberman's lemma. An analogue for H of Lemma 2 shows $S \cap \langle B^H \rangle = B$ and so $S \cap \langle B_0^H \rangle = B \cap \langle B_0^H \rangle$. As $B_0 = \Omega_1(S \cap \langle B_0^H \rangle)$ by the 2-fusion theorem, it follows that $B_0 \in \operatorname{Syl}_2(\langle B_0^H \rangle)$. Now we distinguish two cases.

Case 1. Assume $V \not\subseteq B_0$. Then $A_0 \in \operatorname{Syl}_2(\langle A_0^H \rangle)$ by symmetry. As $A_0 \cap B_0 = Z_0 = 1$, it follows that $[\langle A_0^H \rangle, \langle B_0^H \rangle] \subseteq O(H)$ and, in particular, $\langle B_0^H \rangle \subseteq C_H(A_0)O(H)$. As $C_H(A_0)$ is 2-constrained by Lemma 10, so also is $\langle B_0^H \rangle$ and hence $B_0O(H)$ is normal in H by the 2-fusion theorem. Thus $H = N_H(B_0)O(H)$ by a Frattini argument and, as $N_H(B_0)$ is 2-constrained by Lemma 10, so also is H.

Case 2. Assume $V \subseteq B_0$. Then $Q \subseteq H$ and Q centralizes $B_0 \in \operatorname{Syl}_2(\langle B_0^H \rangle)$. As $\langle B_0^H \rangle O(H)/O(H)$ is a central product of a 2-group and Goldschmidt groups, we must have $[Q^\infty, \langle B_0^H \rangle] \subseteq O(H)$ [6, Section 3]. Now Q/B_0 is perfect by Lemmas 4 and 5. Hence if we set $W = Z \cap Q^\infty$, then $Z = WB_0$ and $W \not\subseteq B_0$. Thus $VW \not\subseteq A_0$, B_0 and so $C_H(W)$ is 2-constrained by the discussion in Case 1. As $\langle B_0^H \rangle \subseteq C_H(W)O(H)$, it follows as in Case 1 that H is 2-constrained.

It remains to prove $O_{2',2}(G) = O(G)$. Let bars denote images in G/O(G). The structure of $\overline{Q}/\overline{B}$ shows $O_2(\overline{G}) \subseteq \overline{B}$, and by symmetry $O_2(\overline{G}) \subseteq \overline{A}$; so $O_2(\overline{G}) \subseteq \overline{Z}$ and then $O_2(\overline{G}) \subseteq \overline{B}_0$ by Lemma 5. By symmetry $O_2(\overline{G}) \subseteq \overline{A}_0$ and, as $\overline{Z}_0 = 1$, $O_2(\overline{G}) = 1$.

Assume now $Z_0 \neq 1$ and let $K = \langle Z_0^G \rangle$. Assume furthermore that $O^{2'}(G) = G$ and O(G) = 1. Then by Lemma 9 and the 2-fusion theorem, K is a central product of a 2-group and Goldschmidt groups and, if $T = S \cap K$, then $O_2(K) \subseteq O_1(T) = Z_0$. Since $[S, Z_0] = 1$ and $[S, T] \subseteq T \cap Z = Z_0$, it follows that S induces inner automorphisms on E(K) [6, Section 3]. Also, $[S, O_2(K)] = 1$. Therefore, $S \subseteq KC_G(K)$ and, as $O^{2'}(G) = G$, we conclude that $G = KC_G(K)$.

Now $C_G(Z_0)/Z_0$ satisfies Hypothesis 3 by Lemmas 6 and 7. Furthermore, the subgroup of $C_G(Z_0)/Z_0$ corresponding to Z_0 is the identity group. Therefore, the preceding discussion shows that $C_G(Z_0)/Z_0O(C_G(Z_0))$ has a normal subgroup of odd index isomorphic to $PSL_3(q)$ or $PSp_4(q)$. In particular, $O_2(C_G(Z_0)/Z_0)=1$. As $Z_0=\Omega_1(T)$ and $T\in Syl_2(K)$, the structure of K shows $O_2(K\cap C_G(Z_0))=T$ and so $T/Z_0\subseteq O_2(C_G(Z_0)/Z_0)$. Thus $Z_0\in Syl_2(K)$.

Now let $L=C_G(Z_0)^{\infty}$. Then L induces a perfect automorphism group on K centralizing $Z_0 \in \operatorname{Syl}_2(K)$. This forces [K, L]=1 [6, Section 3]. Hence L is normal in $KC_G(K)=G$, as $C_G(K)\subseteq C_G(Z_0)$. As O(G)=1, the structure of $C_G(Z_0)/Z_0O(C_G(Z_0))$ and the definition of L show that L is a perfect central extension of $PSL_3(q)$ or

 $PSp_4(q)$. Also, Z_0L has odd index in $C_G(Z_0)$ and so $S\subseteq Z_0L\subseteq KL$. As $O^2(G)=G$, it follows that G=KL. Thus, we have proved that G is in Case (iv) of the theorem, and the proof of the theorem is complete.

References

- [1] Alperin, Sylow intersections and fusion, J. Algebra, 6 (1967), 222-241.
- [2] M. Aschbacher, A pushing up theorem for characteristic 2 type groups, Ill. J. Math. 22 (1978), 108-125.
- [3] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlässt J. Algebra, 17 (1971), 525-554.
- [4] R. Gilman and D. Gorenstein, Finite groups with Sylow 2-subgroups of class two, Trans. Amer. Math. Soc., 207 (1975), 1-126.
- [5] G. Glauberman, A sufficient condition for p-stability, Proc. London Math. Soc., 25 (1972), 253-287.
- [6] D. Goldschmidt, 2-Fusion in finite groups, Ann. of Math., 99 (1974), 70-117.
- [7] K. Gomi, Finite groups all of whose non-2-closed 2-local subgroups have Sylow 2-subgroups of class 2, J. Algebra, 35 (1975), 214-223.
- [8] K. Gomi, Sylow 2-intersections and split BN-pairs of rank two, J. Fac. Sci. Univ. Tokyo, Sect. IA, 23 (1976), 1-22.
- [9] K. Gomi, Finite groups with a standard subgroup isomorphic to Sp(4, 2ⁿ), Japanese J. Math., New Ser. 4 (1978), 1-76.
- [10] D. Gorenstein and J. Walter, Centralizers of involutions in balanced groups, J. Algebra, 20 (1972), 284-319.
- [11] T. Kondo, On Alperin-Goldschmidt's fusion theorem, Sci, Pap. Coll. Gen. Educ. Univ. Tokyo, 28 (1978), 159-166.