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0. Introduction

A distinguished property of one-dimensional dynamics is that the existence
of periodic orbits (cycles) of various types determines almost all the dynamical
structure. (cf. [3-6, 9, 13]) For example, the theqrem of Sarkovskii can be
refined as follows.

Turorem 0. There is a partial order -~ among the ivpes of cycles such
that a continuous intevval dynamics (J, f) has a cycle of type ' if it has a cycle
of type © and <7,

Heye the type © of a cycle of a map f, C={z:,< -+ <), is the cyclic permu-
tation of {1, ++-,n} defined by the velation

foi=m.y, . i=l--v,m

In particular, the order \—~ is linear among the types of cycles under unimodal
transformations. ‘

In the present paper we shall employ a traditional machine in ergodic
theory and prove Theorems 1 and 2 on the realization of one-dimensional piece-
wise continuous maps (J, f) in the first section. The results generalize the
theorems for the beta transformations. Using these results and the notion of
(topological) tower, we shall give the proof of Theorem 0 (§1) and the proof of
the following main theorem.

THEOREM 3. Let (J, f) be a continuous interval dynamics. Then the topo-
logical entropy is given by the formula

ent (/, f)=sup {ent (J., f=); v=(C), Cel'(J, f)}

where I'(J, f) denotes the totality of cycles under (], f), and the interval dynamics
(Je, f2), © being a cyclic permutation of 1,---n, is defined as follows: J.=[1,n],

(a) fei=z(i) for i=1l,---,m and
(b) f. is linear on each imterval [i,i+1], i=1,-+,n—L
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As corollaries

(i) ent(/, fH=limsupn-log |l 'w(/, f)| (the increasing order of the number
of cycles of length as » tends to infinity)

(ii) Any continuous interval dynamics (J, ) with positive topological en-
tropy have cycles with periods which are not any powers of 2.

1. Realization of transformations on the interval

In this section we are concerned with a piecewise continuous transformation
f on a bounded closed interval /. This class of dynamical systems (7, f)
contains all the important one-dimensional dynamical systems : continuous dyna-
mical systems of intervals, continuous dynamical systems of circles and, more
generally, of branched one-dimensional manifolds, and number-theoretic trans-
formations.

DeriniTION 1. Closed subintervals I,---, I, are called lap intervals of f if
the following conditions are verified:

(a) LiV---vL;=] and int L, int [;=0 for i=j.
(b) f is monotone on each interval [;, i=1,---, /.

(¢) The number [/ is minimal under the conditions (a) and (b). The
number / is called lap number of f and will be denoted by lap (f).

Remark. The choice of lap intervals is, of course, not unique. It is unique
if the inverse image f~!(x) consists of finite points for each z in J.
Let I, acd, be lap intervals of f and E= Udl, the end-points of the sub-

intervals I, Let us introduce a linear order in the suffix set A by the
relation :

a<lb if Jo lies on the left side of Iy.

We define a map n=zy:J" — AN (N being the set of all natural numbers) by
the relation:

(1) a(z)(n)=a if ffxeintl, (neN, acA)
where J'={xe]; ffxecE® for all neN}

For an element o of the sequence space AY or A% we shall use the following
notations :

o(L)y=(w(#))ner for subsets L of real line R
(ow)(m)=w(n+1) (the shift to the left)
LemmA 1. Let

Walf)={z(@)[0,n); ]’}  (neN).
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Then u=(au," -+, Gn-1) belongs to Wa(f) if and only if
L =:fj:f'i(int I.)+8.
Proof. Obvious.

Let us now introduce a linear order <=<; in the sequence space AN.

Definition 2. Let o, w’€AN. Then w<w’ iff w=0' or there is a number »
such that

w(i)=w'(i) for 0=i<n and o#)<o'(r) when ?ﬁ(w(z’)) is positive
i=0
and w(x)>e’(z) when it is negative,

where ¢(@) is +1 if f is non-decreasing on I, and —1 if f is non-increasing on
I,. In a similar way we define the order <=<, for words (=finite sequences)
u:(aﬂr Y dn—l)-

Remark. (i) The order defined above is “wnon-anticipating: if w#w’, then
the order relation w<w’ is determined by the first # coordinates w(i) and ’(7),
i=n, for some n and is independent of the tails of coordinates w(i) and ’(i),
i>n. It is easy to prove that the “non-anticipating” property of an order <
is equivalent to the fact that the upper (closed) segments {w; w>w,} and the
lower segment {w; o<} are closed with respect to the product topology in
AN (O)QGAN).

(ii) Let » and y be in J°. Then z=y iff =(x)<rx(z).

(ili) The following two statements are equivalent for any # and » in the
set WL(f), neN;

(a) uiv, i.e., u<v and w+o.
(b) The interval I,° lies on the right side of I’
LevmMa 2. Let
Zt=max {u; ue Wai(f), u(0)=a)
zo"=min {#; 1ue Wa(f), u(0)=a}
where max end min ave taken w.wr.t. the ovder L. Then
Wu(f)={ueA"; zim<o"u<Zims, m=1--+, n—1}
where
o™= (u(m), u(m-+1),+ -, u(n—1)) if u=w0),--, un—1))

Proof. The assertion is trivial for z=1. Assume that it is true for # and
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let us prove the relation for n-+1. Take z from the set A", Wy, (f)° such
that guwe Wo(f). Then I% =8 and

fLe(o)nI£u=G~
Thus flaw lies either on the left side or on the right side of the interval fI%.
According to it,

either uigﬁz,} or ui?ﬁ&i ;

Consequently #« does not belong to the set of the right-hand side. The inverse
inclusion is obvious by the definition of 2z%’s.
Now we can prove the following structure theorem of the realization.

TueoreMm 1. Lel
Xr={weAV; {umy<o"0<lum for eack neN),

where

f=lim 2,"

Then .
(1) The closure z(J7) of =(J') is the set X
(il) W) =WnlX))={0l0,n); weX;}
(iii) The set Xy is a shift invariant closed set.

Proof. The assertion (ii) follows immediately from Lemma 2 and it implies
that the set (/") is dense in X, But the set X is closed by the *definition of
the order < (See Remark (ii).) Hence we obtain (i). Finally the shift invari-
antness is obvious by the definition.

Let us construct a “map” p:X;—J. Precisely to say, it is defined as a
set-valued function on Xj:

(2) p(w)= ﬂf‘"[w(m, (UGXj.

First of all we shall show that p(w) is. a non-empty closed interval. If
wen(/"), then the intersection of the sets f~"Idm, #€N, is an interval, which
contains, at least, the point x such that w=n»(z). Hence it follows from (ii) of
of Theorem 1 that the intersection of the sets f"l,m, 0=n<m, is a non-
empty closed interval for each m. Consequently the set plw) is also a non-
empty closed interval.

THEOREM 2. Lel F, be the right continuous version of the inverse function
of the vestriction of f to the interval I,. Then the following properties are true:
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(i) plaw)y=Fulo(w)) and plow)=fo(w)).
(ii)  pla(z))3z.
(iil) The union of all p(w) covers the interval J.

Furthermore there exists a shift invariant subset X;* of Xy with the following
two properties :

(iv) The set X \X,* is at most countable and the set p(w) consists of a
single point for each w in X (The poini will be denoted by p(w), too.)

(v) The map p: X" —] is continuous.

Remark. The set-valued map p: Xy—/7 is continuous in the sense that
plw)Dlim p(wg) if wo=lim w,.

Proof. The assertions (i) and (ii) are obvious by definitions. To show
(iii) take z in J\J’. Let n be the smallest number for which c¢=/"2 belongs
to the set £, and x belong to I,° for some # in W,(f). Take the infimum y
of the intersection of the set I,° and the connected component of f~"{c} con-
taining z. Then,

y—e€e]’ and m(y—e)[0, #) ==(z)[0, 1)
for any sufficiently small positive number e. Put
w=sup n(y—:e).
Then the sequence w belongs to Xy and p(x(y—e))ay—e for small e. Therefore
m—1
the closed interval7 Nf "I, contains the point y for each m. Thus we obtain
n=0
yep(w) and, hence, xep(w).
Now applying the Baire's theorem to (iii), we obtain at most countably
many points ® such that p(w) has an interior point. Since it is an interval,
thus the set p(0) consists of a single point unless it has an interior point.

Consequently we obtain (iv), The continuity (v) follows from the fact that p
is a monotone (set-valued) function of the ordered space (X, <) to (/, =).

Covollary. If the lap number lap (f) is finite, then the topological entropy
ent (J, f) is given by the following formula:

ent (J, f)=lim L log | V()i =ent (X7,0)
Here |\W| is the number of points in the set W.
Remark. | Wa(f)|=lap (/).

Proof. Let p be the invariant measure of the compact dynamics (Xr,o)
with the maximal entropy, i e,
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1,( Xy, o) =ent (X, o).

If the entropy is positive, then the probability measure p is necessarily sup-
ported by the set X,° since X,\X,* is countable. In virtue of the injectivity of
p on X;° we get

ent (J, )zl 1)=h(X;, o) =ent (Xy, o).

When 7,(X;, 0)=0, the above inequality is obvious.
Now let us show

ent (X, o)zent (/, f)
Take any finite open cover qJ of J and let
Ue={UeU ; UNL+0 (acA).
Consider an interval Iu:;:ﬂ: e, (21, w=(ay -, da)e Wa(f)). Since f™,

n-1
m=1,---,m, are monotone on I, thus [, is covered by at most % (|Ua,|+1)
m=0

members of the cover n\;lf“’"cU . Consequently
m=0
n—1
N(V £ )= knWa(f),

where k=max {|U,|+1; aeA}, and we have
1

h(f, U)=lim sup —}i log N(v £y
i}

m=

=limsup % log | Wa(f) =ent (X, o).

Hence
ent (/, f)=sup A(f, U)=ent (X, o).

Remark. In the case when lap (f)=2 the structure of the set X is simpler.
Let us assume that f/=/. We may assume that /=[0,1] and that f(1)=0=(0)
=f(c)=1 for some ¢ in (0,1). Then [,=[0,¢] and Li=[c, 1] are lap intervals.
Under this situation

lo=max X;, ole={i=minX;, ole=0li={,
Consequently
Xr={we{l,2}¥; (<o"w for any neN}
where £={.

In particular, the set of realization spaces X, of lap 2 transformations f is
linearly ordered with respect to the inclusion order.
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2. A formula for topological entropy
Let us begin with a brief summary of the method developped mainly in [1].

DerINITION. A subshift is called p-Markov if there exists a subset W
(structure set) of the product space AP*! such that

(1) X= W(W)={weAT; (on,**, @nip)e W for each un}. (I'=N or Z)

Let X be an arbitrary shift invariant closed subset of A¥. Then X?=
M(Wps1) contains X and the intersection of all X?’s is X. In other words,
every subshift can be approximated from above by Markov subshifts. Moreover

ent (X, o)=lim ent (X7, ¢).
Lemva 1. (1) If (X o) is @ Markov subshift, then,
(2) ent (X, o)=lim sup + log | Tw(X),
where

I'(X)={weX; d"0o=0, ¢"w+o for 1sm<n},

(i) Let (X,0) be a subshift and assume that theve exist Markov subshifts
(X, 0) such that

(3) XicX,c--rcX and ent (X, o)=sup ent (X, o).
Then the equality (2) holds for (X, o).

Proof. The statement (i) is known and found in many literatures but we
give a proof for the self-containedness of the proof. It is sufficient to prove
(i) for p=1 since the general case is reduced to this case by considering A? in
place of A. Define a matrix M=(Mup)a,tes by

Mau=1 if (a,b)eW, =0 if (&,b)¢W.
Then | Wu(X)|=M"'1,1)  where 1=!(1,---1) and so

ent (X, o)=lim % log | Wi(X)| =log 4,

where 1 is the Perron-Frobenius eigenvalue of the nonnegative matrix M.
Note that, for any sufficiently small z in C,

det (E—zM)=exp [Tr log (E—2zM)]
=exp [— f] z—nTr M“:I

Since
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Tr MP= Hue Wn+1(X) i %(0):%(%)}{ =ﬂ§nml[‘m(X)'a

thus,
det (E—zM)=1II(1 —z™)\I'n)l/m

Consequently we obtain, by comparing the radii of convergence of hoth sides,
that

log A=1lim sup L 1

—1; 1
=lim sup mlog | P X))
Using the Markov hull X?= _G(Wp.:(X)), we get
lim sup %L—log |Ia(X)] =inf lim sup %log]Fn(X 7))
» n—eo

=inf ent (X?, 0)=ent (X, o)
b

for an arbitrary subshift (X, ¢). Thus it suffices to show the inverse inequa-
lity under the assumption of (ii). But it is evident. In fact,

Iingﬁswup 712— log|l (X)) = stgp liriiup %; log {I"n(Xp)]

=sup ent (X, o)=ent (X, o).
P

DeriniTiON 2. Let (X,0) be a subshift. A subset B of 9/(X) is called
orbit basis if the following map ¢: B’— X is bijective:

0, )=+, boy by ++)y p=(ee, buy by ),
where

B'={(i,n); neBE i=0,1,---,0(pn—1}  and

0(bo, b1y~ - ) =0 if boe Wa(X).

In other words, a subshift (X, ¢) admits an orbit basis B if and only if it is
conjugate to the tower (B ¢ over the full shift (BZ ¢) with respect to the
ceiling function ¢, where

o’ ) =(GE+1,7) if i4+1<0(y)
0,7 if i+1=0(p.
Remark 1. The orbit basis is not necessarily unique in general.
Remark 2. Let (X, o) be a p~Markov subshift, ey ,(X) and
Xuw)={weX; o'welu] for infinitely many i's}.
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Then the subshift (X{(#),s) admit the orbit basis
Bla)={uwe 9 (X); uvne W (X),
(won)(t, i+p)+u  for 1=sisu—p~1 and nz=2p}

Remark 3. If (X,s) admits an orbit basis B, then exp[—ent (X, s)] is the
smallest positive solution of the equation

(4) 1— 2B W u( X))t =0.

In fact, any word we9),(X) is in one-to-one correspondence to the collec-
tion (4, bo,»++, bx) such that £=0, bieWnwy(X)oB (0=i=k), 0=j=n(0)—1, and
1=n+j—n0)—-- - —nlk—1)=n(k). Thus, for =0, the series

pHLeoly
converges if and only if the left hand side of (4) is positive.

LEmmMma 2. Let f be a continuous transformation of an interval | into itself.
Assume that the vealization (Xj, o) is an ivreducible p-Markov subshift for some
p. Then there exist piecewise linear transformations (Ju, fo) with the following
three properties :

(@) Therve are cycles Co={x"< - <afm} such that
Jazit=fz" for each i, In=[z", 2¥m] and
() fu is linear on each interval [z;", x%,.].
(b Xr,cX;  for each n.
(c) ent (X, o)=supent (X,
Proof. Let us use the notation in Remark 2. Note that
ent (X, o) =max {ent (X(u),0); ueWa(X)}, X=X,

for any ». In fact, the nonwandering set of X is contained in the union of
X(#) and

X'(u)=XnNo"ul,

and so in the union of X(x), X(2)(») and X'(w)’(v) etc. TFinally it is contained
in the union of X(u), uePWan(X).

Next we may assume that ent (X, o)=ent (X(#), ¢) for some u in Y (X)aZS,
where gzp and

Zy={Lan, n+q), Caln, n+q) ; acA, nz0}

In fact, if it is not true, then,
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ent (X, o)=ent (X, N o"ZU [v], 0)

for each q. Since (X,0) is Markov, thus each {, is a periodic sequence or falls
into a periodic sequence under the iteration of ¢. Hence Z, is bounded and

ent (X, o)sgtlogZ,—0 as g — co.
Let us denote
By,={beBu); ZuNWalb)=8 or beWn(X), m=n—1}
Then it follows from #eZ,° that, for nzg,
W alp(Bi-g) )N Zn=0

Now it follows from the irreducible Markov property of (X, o) that there
are periodic sequences w”e¢ Xy, nz1, such that

(6) Wl D Zn.

Furthermore there are cycles C, of (J, /) which are contained in the orbit
of pA{w™. Define the maps f, by the conditions stated in (a) and denote the
natural extension of X by X. It then follows from (4) and (5)

X 122 MW n(X1)nZn) D p(Br-a).

Hence, exp[—ent (Xy,,,,0)] is smaller than the smallest positive solution zn of
the equation

1- Z ’Bnnq/ym(Xf)'llm=0.

Recall that z=exp[—ent (X}, 0)]=exp[—ent (B, ¢%)] is the smallest positive zero
x of the rational function

1= 2 | B ml Xp)E™
Consequently, x, converges to z. Hence (¢).
Lemma 3. If (Xy, 0) is Markov, then,
ent (/, f)=sup {ent (Jo, fo) ; CeI'(], )}

Proof. Obvious from Lemma 2 in virtue of the irreducible decomposition
of .Xf.

Next we shall show that the Markov hull of the realization is the realization
of a Markov transformation.

LeMmMa 4. Let f be a continuous transformation of an interval | and (X, o)
be the realization of (J, ). Then, for each p=0,1,---, there exists a continuous
Markov transformation fp of J such that

Xy, =X?
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where X?= (W (X)) the p-Markov hull of X.

Proof. Let QW (X)={ts, -, tta}, %01+ <tey (B=|Wp(X)]) and define a piece-
wise linear continuous transformation f, by the following two conditions :

() fp is linear on each subinterval Jo.; (j=1,--, &) if au;eTW p.(X)
(b) fp(min louy)=min [,; or max Lu;,
Sfo(max Iy)=max I,; or minly;
according as e(fu;, f)=-+1 or —1, respectively. Then the relations
N D=0 . and  fLINI+0

are mutually equivalent and so are equivalent to the condition: #=(ao," -, @p-1)
and v=(a, -, @p) for some (@, -, @p) €W pr1(x). Hence Xy = X7,
Now we can give the proof of the following.

TuEOREM 3. Let (J, F) be a continuous interval dynamics. Then,
(7) ent (J, f)=sup {#(C); Cel'(J, /)}

where h(C) is the “entvopy” of cycle C given by the formula (5). In particular,
if the lap number of (], f) is finite, then,

(8) ent (J, f)=lim sup = log |Ia(J, )|
Here I'a(J, f) is the totality of n-cycles of (J, f) and
I'(J, N=UI'/, ).
Proof. It follows from Lemmas 3 and 4 that
ent (X", o)=sup {#(C); Cel'(X?, o)}

Since the sets I'(X?, ¢) are nonincreasing in # and their intersection is I'(X, o),
thus,

ent (X, o)=inf ent (X7, ¢)
=inf sup {#(C); Cel(X?, a)}
=sup {#(C); Cel'(X, o)}

The latter assertion follows from (6) and Lemma 1 since Theorem 1 guarantees
the existence of an increasing sequence of subshifts (X 0) of (X, 0) such that

I'(X, 0)=UI'(Xy 0)
if (X, 0) is not Markov, i.e., if the sequences ¢ and {4, @¢€A, are not periodic.

Remafk. The statements of Theorem 3 is also valid for other classes of
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one-dimensional dynamics. In the case of endomorphisms of the circle S! the
degree of map f (or the homotopy type of f) must be prescribed. Then the
formula (6) is valid if we define the function f¢ used in the definition

h(C)=ent (S, fo)

by the condition that f¢ is the piecewise linear continuous transformation which
coincides with f on the set C and is homotopic to f. The definition of fy is
similar for the continuous transformations of branched manifolds.

In the case of number-theoretical transformations or, more generally, piece-
wise continuous transformations of intervals let us call the set

(@, flz—0), flz+0)); ze), flz—0)=f(z+0)}

type of a transformation . Then the transformation fy is define by the con-
ditions:

(a) It is piecewise linear and piecewise continuous.
(b) It coincides with F on the set C.
(c) The type of f¢ is the same as the type of f.

The proof of these assertions is done by such modification of the lemmas
that the type of transformations should be kept unchanged. Since it is so close
to the present one, thus we do not repeat it.
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