The Plancherel Formula for the Universal Covering Group of SL(2, R)

By Osamu Matsushita

Department of Mathematics, Tokyo University of Mercantile Marine

Etchûjima 2-1-6, Kôtô-ku, Tokyo 135

(Introduced by M. Sugiura) (Received September 17, 1979)

Introduction

Pukanszky proved the Plancherel formula for the universal covering group G of $SL(2, \mathbb{R})$ in [1]. Here we shall prove the formula by a different method.

Let us explain our method in more details. Let $u_{\mu\mu}(g,s)$ be the matrix coefficient of the principal series representations of G (cf. § 1), and f be a C^{∞} -function on G with compact support which satisfies $f(kgk^{-1})=f(g)$ for any $k \in K$, where K is a subgroup of G defined in § 1.

First we calculate the μ -th Fourier transform

$$F(\mu, s) = \int_{G} f(g) u_{\mu\mu}(g, s) dg$$

Since f can be regarded as a function of two variables (θ, t) , the transform $f \rightarrow F$ is composed of the following three transformations: the Fourier transform with respect to θ , and the Abel transform and the Fourier transform with respect to t. The Abel transform of a function on G is defined as follows:

$$\Phi(t) = e^{t/2} \int_{-\infty}^{\infty} f(a_t n_{\xi}) d\xi$$

where $g = k_0 a_t n_{\tilde{\epsilon}}$ is the Iwasawa decomposition of g. $\Phi(t)$ can be expressed by the Tchebycheff function T_{2n} . The key point of our proof is the inverse transform formula (Theorem 2.3.1) of the Abel transform. From the theorem, we obtain the inverse transform $F \rightarrow f$.

In § 3 we shall give two proofs of the Plancherel formula. One is analogous to the proof of R. Takahashi for $SL(2, \mathbb{R})$ in [2]. Another is more elementary and more direct (cf. Proposition 3.1.2).

The author would like to express his sincere gratitude to Prof. T. Shintani for the kind advice and suggestions.

§ 1. Preliminaries.

In this section we describe the universal covering group of $SL(2, \mathbf{R})$ and its representations, and state their properties without proof. The proof can be found in the references [1], [3], [4].

1.1 Description of the universal covering group of $SL(2, \mathbb{R})$.

Let G_0 be the group of SU(1,1) consisting all 2×2 matrices of the form

$$\begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$$
, satisfing $|\alpha|^2 - |\beta|^2 = 1$.

As is well known, G_0 is conjugate to $SL(2, \mathbf{R})$ in $GL(2, \mathbf{C})$. The group G_0 may be parametrized as follows. As in Bargmann [3], put $\beta/\alpha=\gamma$ and $\arg\alpha=\omega\in\mathbf{R}/2\pi\mathbf{Z}$ then

$$G_0 = \{(\gamma, \omega): |\gamma| < 1, \ \omega \in \mathbb{R}/2\pi \mathbb{Z}\}$$

and the map $\begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \mapsto (\gamma, \omega)$ is a diffeomorphism. The group operation in G_0 can be expressed in terms of γ and ω . If $a_0 = (\gamma, \omega)$ and $a_0' = (\gamma', \omega')$ are in G_0 , then for $a_0 a_0' = a_0'' = (\gamma'', \omega'')$ we get

(1.1.1)
$$\gamma'' = (\gamma e^{-2iw'} + \gamma')(1 + \gamma \bar{\gamma}' e^{-2iw'})^{-1}$$

(1.1.2)
$$\omega'' = \omega + \omega' + \frac{1}{2i} \log(1 + \gamma \bar{\gamma}' e^{-2i\omega'}) (1 + \bar{\gamma} \gamma' e^{2i\omega})^{-1}$$

where $\log z$ is defined by its principal value and ω'' is taken mod 2π .

Let G be the universal covering group of G_0 . G can be parametrized by γ and ω as follows:

$$G = \{(\gamma, \omega) : |\gamma| < 1, -\infty < \omega < +\infty\}.$$

The multiplication on G is given by equation (1.1.1) and (1.1.2) except that ω'' is no longer defined mod 2π . The canonical covering map is defined by

(1.1.3)
$$\psi(\gamma, \omega) = (\gamma, \omega(\text{mod } 2\pi))$$

Put $k_{\theta} = (0, \theta/2)$, $\alpha_t = (\operatorname{th} t/2, 0)$ and $n_{\xi} = \left(-\frac{i(\xi/2)}{1 + i\xi/2}, \arg\left(1 + \frac{i\xi}{2}\right)\right)$. The elements k_{θ} , α_t , n_{ξ} are in G.

We use the following subgroups:

$$K = \{k_{\theta} : \theta \in \mathbb{R}\}, A = \{a_{t} : t \in \mathbb{R}\}, \text{ and } N = \{n_{\xi} ; \xi \in \mathbb{R}\}.$$

Each element g in G can be expressed uniquely by $g=k_\theta a_i n_\xi$ (Iwasawa decomposition), where θ , t and ξ are real numbers. And we have another expression $g=k_\theta a_t k_\phi$ (Cartan decomposition) where $\theta \in \mathbf{R}$, $t \ge 0$, $0 \le \phi < 2\pi$. For $g \notin K$ this expression is unique.

1.2 Principal continuous series of representations of G

Let us define an action of G on the unit circle T. For $\alpha = (\gamma, \omega)$ in G, $\alpha \cdot e^{i\theta} = \Phi(\alpha) \cdot e^{i\theta} = \frac{\alpha e^{i\theta} + \beta}{\bar{\beta} e^{i\theta} + \bar{\alpha}}$, where $\Phi(\alpha) = (\gamma, \omega \pmod{2\pi}) = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$.

Put $H_0=L^2(T)$, the Hilbert space of functions on the unit circle which are square integrable with respect to the normalized Haar measure of T.

DEFINITION 1.2.1. For $f \in H_0$, and $a^{-1} = (\gamma, \omega) \in G$, a linear operator $U_h(a, s)$ on H_0 is defined by

$$[U_h(a,s)f](e^{i\theta}) = e^{-2i\omega h} \left(\frac{1+e^{i\theta}\bar{\gamma}}{1+e^{-i\theta}\gamma}\right) |e^{i\theta}\bar{\beta} + \bar{\alpha}|^{-2\delta} f(a^{-1} \cdot e^{i\theta}),$$

where h and s are complex numbers and $\Phi(a^{-1}) = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$.

The following is well known (cf. [4]).

Proposition 1.2.1. Suppose $h \in \mathbb{C}$ and $s \in \mathbb{C}$.

- (1) The map $a \longmapsto U_h(a, s)$ is a continuous representation of G on H_0 .
- (2) This representation is unitary if and only if $Re \ s=1/2$ and $h \in \mathbb{R}$.
- (3) When $Re\ s=1/2$ and $h\in \mathbb{R}$, the representations $a\longmapsto U_h(a,s)$ and $a\longmapsto U_{h+1}(a,s)$ are unitarily equivalent so that each unitary representation is equivalent to one in the range $-1/2 < h \le 1/2$.
- (4) The representation $a \mapsto U_h(a, s)$ of G on H_0 are irreducible for s satisfying $Re \ s=1/2$, and $-1/2 < h \le 1/2$ excluding the case s=1/2 and h=1/2.
 - **1.3** Discrete series of representations of G.

Let D be the unit disk in the complex plane; $D = \{z \in C : |z| < 1\}$. For h > 1/2, we define a Hilbert space $H_h(D)$ of holomorphic functions on D with the inner product

$$(1.3.1) (f,g)_h = \frac{2h-1}{\pi} \int_D f(z)\overline{g(z)} (1-|z|^2)^{2h-2} dx dy.$$

The functions

(1.3.2)
$$\phi_{n,h}(z) = \left[\frac{\Gamma(2h+n)}{\Gamma(2h)\Gamma(n+1)}\right]^{1/2} z^n, \ (n \in \mathbb{Z} \ n \ge 0)$$

form an orthonormal basis in $H_h(D)$. When h=1/2, the space $H_h(D)$ can be defined by the inner product

$$(1.3.3) (f,g)_{1/2} = \lim_{h \to 1/2 + 0} \left(\frac{2h - 1}{\pi} \int_{D} f(z) \overline{g(z)} (1 - |z|^{2})^{2h - 2} dx dy \right)$$

The functions

(1.3.4)
$$\phi_{n,1/2}(z) = z^n \quad (n \in \mathbb{Z}, n \ge 0)$$

form an orthonormal basis in $H_{1/2}(D)$. Now take $h \le -1/2$. The Hilbert space $H_h(D)$ is made up of the complex conjugates of the functions in $H_{-h}(D)$ and the inner products are defined as in (1.3.1) and (1.3.3) with |h| in place of h. The orthonormal basis in this case is given by

(1.3.5)
$$\phi_{n,h}(z) = \left[\frac{\Gamma(2|h|+n)}{\Gamma(2|h|)\Gamma(1+n)}\right]^{1/2}(\bar{z}), \ n \in \mathbb{Z}, \ n \ge 0.$$

We now define a representation $a \mapsto U^+(a, h)$ of G on $H_h(D)$, $h \ge 1/2$ by

$$(1.3.6) \qquad \qquad [U^+(\alpha,h)f](z) = e^{2i\omega h}(1-|\gamma|^2)^h(1+\bar{\gamma}z)^{-2h}f\bigg(\frac{\alpha z+\beta}{\bar{\beta}z+\bar{\alpha}}\bigg),$$

where
$$a^{-1} = (\gamma, \omega)$$
 and $\Phi(a^{-1}) = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$.

PROPOSITION 1.3.1. For $h \ge 1/2$, the representations $a \longmapsto U^+(a, h)$ of G on $H_h(D)$ are unitary and irreducible.

We shall call the representations $a \mapsto U^+(a, h)$, $(h \in \mathbb{R}, h \ge 1/2)$ the positive discrete series of representations of G.

The discrete series $a \mapsto U^-(a, h)$, $h \le -1/2$ are defined similarly. The representation spaces are the spaces $H_h(D)$, $h \le -1/2$. For $h \le -1/2$, we define

$$[U^{-}(a,h)f](z) = e^{2iwh}(1-|\gamma|^{2})^{-h}(1+\bar{\gamma}z)^{2h}f\left(\frac{\alpha z+\beta}{\bar{\beta}z+\bar{\alpha}}\right),$$

where $a^{-1} = (\gamma, \omega)$.

The following proposition is known also (cf. [4]).

PROPOSITION 1.3.2. For $h \le -1/2$, the representations $a \longmapsto U^-(a, h)$ of G on $H_b(D)$ are irreducible and unitary.

We shall call the representations $a \longrightarrow U^{-}(a, h)$, $(h \in \mathbb{R}, h \le -1/2)$ the negative discrete series of representations of G.

Remark. For -1/2 < h < 1/2, the representation $U^{\pm}(a,h)$ can be defined. However we shall not use these representations. So we omit the description of them which can be found in Sally [4].

1.4. Matrix coefficients of the irreducible representations of G.

For $f, g \in L^2(T)$, put $(f, g) = \int_T f(z) \overline{g(z)} dz$. The functions $\psi_n(z) = z^n (|z| = 1, n \in \mathbb{Z})$ form an orthonormal basis in $L^2(T)$.

We now define the matrix coefficients u_{m-h} $_{n-h}(g,s)$ of the operator $U_h(g,s)$

by the following equality.

$$(1.4.1) u_{m-h} u_{n-h}(g,s) = (U_h(g,s)\phi_n,\phi_m),$$

where $-1/2 < h \le 1/2$ and $s \in \mathbb{C}$. We get the following lemma from the equations;

$$[U_h(k_\theta, s)\phi_n](z) = e^{-i(n-h)\theta}\phi_n(z).$$

LEMMA 1.4.1. We have $u_{\mu\nu}(k_{\theta}gk_{\phi}) = \overline{\chi_{\mu}(k_{\theta})}u_{\mu\nu}(g,s)\overline{\chi_{\nu}(k_{\phi})}$, where $\chi_{\mu}(\mu \in \mathbf{R})$ are the characters of K defined by $\chi_{\mu}(k_{\theta}) = e^{i\mu\theta}$.

The properties of $u_{\mu\nu}$ will be summarized in the following lemma.

Lemma 1.4.2. We have the following equalities.

(1)
$$u_{\mu\mu}(\alpha_t, s) = (1 - \lambda^2)^s F(s + \mu, s - \mu; 1; \lambda^2),$$

where F is the hypergeometric function and $\lambda = th t/2$.

(2)
$$u_{\mu\mu}(g, s) = u_{\mu\mu}(g, 1-s).$$

Proof. The proof of (1) can be found in Sally [4]. So we give the proof of (2).

From the formula $F(a, b; c; x) = (1-x)^{c-a-b}F(c-a, c-b; c; x)$ (cf. [6]) and (1), we get $u_{\mu\mu}(a_t, s) = u_{\mu\mu}(a_t, 1-s)$. Since G = KAK, Lemma 1.4.1 asserts that for any g of G we obtain $u_{\mu\mu}(g, s) = u_{\mu\mu}(g, 1-s)$. Q. E. D.

Put $v_{mn}^{\pm}(g,l) = (U^{\pm}(g,l)\phi_{n,l}^{\pm}(z),\phi_{m,l}^{\pm}(z))_l$. Namely $v_{mn}^{\pm}(g,l)$ are the matrix coefficients of the discrete series representations of G.

The proof of the following lemma can be found in Sally [4].

Lemma 1.4.3. We have $v_{mm}^{\pm}(a_{l}, l) = (l - \lambda^{2})^{|l|} F(m+2|l|, -m; 1; \lambda^{2})$ where $\lambda = th t/2$.

From Lemma 1.4.2 and Lemma 1.4.3, we have

$$u_{m+l-m+l}(\alpha_t, l) = v_{mm}^+(g, l).$$

Since $v_{mm}^+(k_\theta g k_\phi, l) = e^{-i(m+l)\theta} v_{mm}^+(g, l) e^{-i(m+l)\phi}$, we get (1) in the following lemma.

LEMMA 1.4.3. Let m be a positive integer, then we have

- (1) for $l \ge 1/2$, $u_{m+l-m+l}(q, l) = v_{mm}^+(q, l)$
- (2) for $l \leq -1/2$, $u_{-m+l} = -m+l(g, -l) = v_{mm}(g, l)$.

The proof of (2) is similar to the proof of (1).

$\S 2$. The Fourier transform on G.

2.1 The family of functions $D_0(G)$.

We denote by D(G) the set of all C-valued indefinitely differentiable functions on G with compact support.

LEMMA 2.1.1. For any f in D(G),

$$f(g) = \sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} f(k_{\theta} g k_{\theta}^{-1}) \overline{\lambda_n(k_{\theta})} d\theta$$

Proof. Put $F(\phi) = f(k_{\phi}gk_{\phi}^{-1})$, then F is a periodic function of period 2π . In fact since $k_{2\pi}$ is an element of the center of G,

$$F(\phi + 2\pi) = f(k_{\phi + 2\pi}gk_{\phi + 2\pi}^{-1})$$

$$= f(k_{\phi}gk_{\phi}^{-1})$$

$$= F(\phi).$$

So by the Fourier expansion,

$$F(\phi) = \sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_{0}^{2\pi} F(\theta) e^{-in\theta} d\theta e^{in\phi}.$$

Put $\phi = 0$, then we get

$$f(g) = \sum_{n \in \mathbb{Z}} \frac{1}{2\pi} \int_0^{2\pi} f(k_{\theta} g k_{\theta}^{-1}) \overline{\lambda_n(k_{\theta})} d\theta. \quad Q. \text{ E. D.}$$

LEMMA 2.1.2 Put

$$f_n(g) = \frac{1}{2\pi} \int_0^{2\pi} f(k_{\theta}gk_{\theta}^{-1}) \overline{\chi_n(k_{\theta})} d\theta.$$

Then $f_n(gk) = \overline{\chi_n(k)} f_n(kg)$ for any $k \in K$. The proof is easy.

Definition 2.1.1 Put
$$D_n(G) = \{ f \in D(G) : f(gk) = \overline{\chi_n(k)} f(kg) \}$$

LEMMA 2.1.3. If f belongs to $D_n(G)$ and $n \neq \mu - \nu$, then $\int_G f(g)u_{\mu\nu}(g,s)dg = 0$ where dg is the Haar measure of G.

Proof. Put
$$I = \int_G f(g) u_{\mu\nu}(g, s) dg$$
. Since G is unimodular,
$$I = \int_G f(k_\theta g k_\theta^{-1}) u_{\mu\nu}(k_\theta g k_\theta^{-1}, s) dg$$
$$= e^{i((\mu - \nu) - n)\theta} \int_G f(g) u_{\mu\nu}(g, s) dg$$

$$=e^{i((\mu-\nu)-n)\theta}I.$$

By the assumption $e^{i(\mu-\nu)-n\theta}-1$ is not identically zero, so we have I=0. Q. E. D.

REMARK 1. If n is not equal to zero, then $f_n(e)=0$ where e is the identity element. Hence for any f in D(G), we have

$$f(e) = f_0(e)$$
.

Remark 2. It is easy to verify that $D_0(G)$ is a commutative algebra with respect to the convolution product.

2.2. Spherical functions on *G* Let us start with the following definition.

Definition 2.2.1. For $\nu \in \mathbb{R}$, $s \in \mathbb{C}$ we set

(2.2.1)
$$\alpha_{\nu,s}(g) = \overline{\chi_{\nu}(k_{\theta})} e^{-st}$$
 where $g = k_{\theta} \alpha_{t} n_{\xi}$

(2.2.2)
$$\zeta_{\nu,s}(g) = \frac{1}{2\pi} \int_0^{2\pi} \alpha_{\nu,s}(k_{\theta}^{-1}gk_{\theta})d\theta$$

LEMMA 2.2.1 The following equality holds:

- (1) $\zeta_{\nu,s}(k_{\theta}gk_{\phi}) = \overline{\chi_{\nu}(k_{\theta+\phi})}\zeta_{\nu,s}(g)$
- (2) If Ω is the Casimir operator of G, then

$$\Omega \zeta_{\nu,s} = s(1-s)\zeta_{\nu,s}$$

Proof. From the definition, $\alpha_{\nu,s}(k_{\theta}g) = \overline{\chi_{\nu}(k_{\theta})}\alpha_{\nu,s}(g)$. Hence

$$\begin{split} \zeta_{\nu,\,s}(k_{\theta}gk_{\phi}) &= \frac{1}{2\pi} \int_{0}^{2\pi} \alpha_{\nu,\,s}(k_{\phi}^{-1}k_{\theta}gk_{\phi}k_{\phi})d\phi \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \alpha_{\nu,\,s}(k_{\theta+\phi}k_{\phi+\phi}^{-1}gk_{\phi+\phi})d\phi \\ &= \mathcal{X}_{\nu}(k_{\theta+\phi}) \frac{1}{2\pi} \int_{0}^{2\pi} \alpha_{\nu,\,s}(k_{\phi}^{-1}gk_{\phi})d\phi \\ &= \mathcal{X}_{\nu}(k_{\theta+\phi})\mathcal{Z}_{\nu,\,s}(g). \end{split}$$

We used the fact $k_{2\pi}$ is in the center of G. This shows (1). For any g in G, $g = k_{\theta}a_{t}n_{\xi}$. In terms of this coordinate system (θ, t, ξ)

$$\Omega = -\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + 2e^{-t} \frac{\partial^2}{\partial \xi \partial \theta} - e^{-2t} \frac{\partial}{\partial \xi^2}, \quad \text{(cf. [2])}$$

So we get

$$\Omega \alpha_{\nu,s} = s(1-s)\alpha_{\nu,s}$$
.

Hence $\Omega \zeta_{\nu,s} = s(1-s)\zeta_{\nu,s}$. Q. E. D.

LEMMA 2.2.2 The following equality holds:

$$\zeta_{\nu,s}(a_t) = \cosh^{-2s} \frac{t}{2} F(s+\nu, s-\nu; 1; th^2 \frac{t}{2})$$

Proof. For any $g \in G$, $g = k_{\theta}a_{t}k_{\phi}$, $\theta \in \mathbb{R}$, t > 0, $0 \le \phi \le 2\pi$. In terms of this coordinate system (cf. [2]),

$$\mathcal{Q}\!=\!-\frac{1}{\operatorname{sh}^2t}\!\left(\!\!\begin{array}{cc}\!\!\partial^2\\\!\!\partial\theta^2\end{array}\!\!+\!\frac{\partial^2}{\partial\phi^2}\right)\!+\!2\frac{\operatorname{ch}t}{\operatorname{sh}^2t}\!\!\begin{array}{cc}\!\!\partial^2\\\!\!\partial\theta\partial\phi\end{array}\!\!-\!\frac{\operatorname{ch}t}{\operatorname{ch}t}\!\!\begin{array}{cc}\!\!\partial\\\!\!\partial t\end{array}\!\!-\!\frac{\partial^2}{\partial t^2}.$$

From the equality and Lemma 2.2.1, easy computation shows

$$\left[\frac{d^2}{dt^2} + \frac{\cosh t}{\cosh t} \frac{d}{dt} + \left(s(1-s) + \frac{2\nu^2}{\sinh^2 t} (\cosh t - 1) \right) \right] \zeta_{\nu,s}(a_t) = 0$$

We put $X=\operatorname{th}^2\frac{t}{2}$ and define Z(X) by the equation:

$$(1-X)^{s}Z(X) = \zeta_{v,s}(\alpha_t).$$

Then Z(X) satisfies

$$X(1-X)Z''(X) + (1-(2s+1)X)Z'(X) + (\nu^2 - s^2)Z(X) = 0.$$

Since Z(X) is analytic around X=0 and $Z(0)=\zeta_{\nu,s}(e)=1$, we get

$$Z(X) = F(s + \nu, s - \nu : 1 : X)$$

Hence we obtain the lemma. Q.E.D.

LEMMA 2.2.3. The following relations hold:

(1)
$$\zeta_{\mu,s}(g) = u_{\mu\mu}(g,s)$$
 (2) $\zeta_{m+l,l}(g) = v_{mm}^+(g,l)$ (3) $\zeta_{-m+l,-l}(g,l) = v_{mm}^-(g,l)$

Proof. Lemma 1.4.1, Lemma 1.4.2, Lemma 1.4.3, Lemma 2.2.1 and Lemma 2.2.2 show (1), (2) and (3) immediately.

2.3. The Fourier transform on G and its inverse transform.

The purpose of this section is to find an explicit formula of the integral transform of the functions $f \in D_0(G)$.

The transform $\zeta_{\nu,s}(f)$ is expressed as follows:

$$\begin{aligned} \zeta_{\nu,s}(f) &= \int_G f(g) \zeta_{\nu,s}(g) dg \\ &= \frac{1}{2\pi} \int_G f(g) \int_0^{2\pi} \alpha_{\nu,s}(k_{\theta} g k_{\theta}^{-1}) dg d\theta \end{aligned}$$

$$\begin{split} &= \frac{1}{2\pi} \int_{G} \int_{0}^{2\pi} f(k_{\theta}^{-1} g k_{\theta}) \alpha_{\nu, s}(g) d\theta dg \\ &= \int_{G} f(g) \alpha_{\nu, s}(g) dg \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(k_{\theta} a_{t} n_{z}) \overline{\lambda_{\nu}(k_{\theta})} e^{-st} e^{t} d\theta dt d\xi \end{split}$$

because $dg = e^t d\theta dt d\xi$ for $g = k_\theta a_t n_\xi$. Here, we put

$$F_f(\nu,t) = e^{t/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(k_{\theta} \alpha_t n_{\xi}) \overline{\chi_{\nu}(k_{\theta})} d\theta d\xi$$

Then

(2.3.1)
$$\zeta_{\nu,s}(f) = \int_{-\infty}^{\infty} F_f(\nu,t) e^{(1/2-s)t} dt$$

If $a_t n_{\xi} = k_{\phi'} a_{t'} k_{\phi'}$, then

(2.3.2)
$$\operatorname{ch} t' = \operatorname{ch} t + e^{t} \frac{\xi^{2}}{2}$$
, (2.3.3) $e^{t^{\frac{t'+\phi'}{2}}} = \frac{\operatorname{ch}^{2} \frac{t}{2} + i \frac{\xi}{2} e^{t/2}}{\sqrt{\operatorname{ch}^{2} \frac{t}{2} + e^{t} \frac{\xi^{2}}{4}}}$ (cf. [2])

$$\begin{split} F_f(\nu, t) &= e^{t/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(k_{\theta} k_{\phi}. \alpha_{t'} k_{\phi'}) \overline{\chi_{\nu}(k_{\theta})} d\theta d\xi \\ &= e^{t/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(k_{\theta} \alpha_{t'}) e^{-i\nu(\theta - \phi' - \phi')} d\theta d\xi \end{split}$$

Put $f(h_{\theta}a_t) = f(\theta, t)$, then $f(\theta, t) = f(\theta, -t)$. In fact since f belongs to $D_0(G)$,

$$f(k_{\theta}a_{t}) = f(k_{\theta}k_{\pi}a_{t}k_{-\pi}) = f(k_{\theta}a_{-t})$$

Therefore as in R. Takahashi [2], we can write

$$f(\theta, t) = f[\theta, \operatorname{ch} t],$$

where $f[\theta, x]$ is an indefinitely differentiable function on $\mathbb{R} \times [1, \infty)$ (cf. [8] pp. 350). So by (2.3.2) and (2.3.3),

$$F_f(\nu,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left[\theta, \, \operatorname{ch} t + \frac{\xi^2}{2}\right] T_{2\nu} \left(\frac{\operatorname{ch}^2 \frac{t}{2}}{\sqrt{\operatorname{ch}^2 \frac{t}{2} + \frac{\xi^2}{4}}}\right) e^{-i\nu\theta} d\theta d\xi$$

where T_{α} is the Tchebycheff function of the first kind defined by $T_{\alpha}(z)$

 $F\left(\alpha, -\alpha; \frac{1}{2}; \frac{1-z}{2}\right)$. In case of $\alpha \in \mathbb{Z}$, $\alpha \ge 0$, T_{α} is a Tchebycheff polynomial. In the same way as Tchebycheff polynomial, T_{α} satisfies

$$T_{\alpha}(\cos \theta) = \cos \alpha \theta$$
 and $T_{\alpha}(\cosh t) = \cosh \alpha t$. (cf. [7]).

Now from the explicit formula (2.3.4), $F_f(\nu, t) = F_f(\nu, -t)$. So we can put

$$F_t(\nu, t) = F_t[\nu, \operatorname{ch} t] = F_t[\nu, x].$$

Summing up these calculations, we get the following proposition.

Proposition 2.3.1. If f belongs to $D_0(G)$, then

$$\zeta_{\nu,s}(f) = \int_{-\infty}^{\infty} F_f[\nu, \operatorname{ch} t] e^{(1/2-s)t} dt$$

where

$$F_f[\nu, \operatorname{ch} t] = 2 \int_{-\infty}^{\infty} \int_{0}^{\infty} f \left[\theta, \operatorname{ch} t + \frac{\xi^2}{2} \right] T_{2\nu} \left(\sqrt{\frac{\operatorname{ch} t + 1}{\operatorname{ch} t + \xi^2/2 + 1}} \right) e^{-i\nu\theta} d\theta d\xi.$$

Theorem 2.3.1. Let f and g be C^{∞} -functions on $[1, \infty)$ with compact supports. Put

(2.3.5)
$${}^{*}f[x] = 2 \int_{0}^{\infty} f\left[x + \frac{\xi^{2}}{2}\right] T_{2\nu}\left(\sqrt{\frac{x+1}{x+1+\xi^{2}/2}}\right) d\xi$$

(2.3.6)
$${}^{1}g[x] = -\frac{1}{\pi} \int_{0}^{\infty} g' \left[x + \frac{\eta^{2}}{2} \right] T_{2\nu} \left(\sqrt{\frac{x+1+\eta^{2}/2}{x+1}} \right) d\eta$$

Then $\mathfrak{q}(f)=f$ and $\mathfrak{q}(g)=g$.

Proof. It is easy to verify that *f and "g are C^{∞} -functions with compact supports because T_{α} is a real analytic function on $(-1, \infty)$. We prove that f(g)=g. The equality f(f)=f can be proved in a similar way. In (2.3.5) put $x+\xi^2/2=y$, then

$$f[x] = \sqrt{2} \int_{x}^{\infty} f[y] T_{2\nu} \left(\sqrt{\frac{y+1}{x+1}} \right) \frac{dy}{\sqrt{y-x}}$$

In (2.3.6) put $x + \eta^2/2 = y$, then

$$g[x] = -\frac{1}{\pi} \int_{x}^{\infty} g'[y] T_{2\nu} \left(\sqrt{\frac{y+1}{x+1}} \right) \frac{dy}{\sqrt{2(y-x)}}$$

Put $\tilde{g} = {}^{*}({}^{\mathsf{h}}g)$, G[x] = g[x-1], ${}^{\mathsf{h}}G[X] = {}^{\mathsf{h}}g[x-1]$ and $\tilde{G}[x] = \tilde{g}[x-1]$. Then

(2.3.7)
$${}^{\natural}G[x] = -\frac{1}{\sqrt{2}\pi} \int_{x}^{\infty} G'[y] T_{2\nu} \left(\sqrt{\frac{y}{x}}\right) \frac{dy}{\sqrt{y-x}}$$

(2.3.8)
$$\widetilde{G}[x] = \sqrt{2} \int_{x}^{\infty} {}^{\mathrm{H}}G[y] T_{2\nu} \left(\sqrt{\frac{x}{y}} \right) \frac{dy}{\sqrt{y-x}}$$

Now we extend the derivative G'[x] to a continuous and bounded function on $[1,\infty)$, and we extend ${}^{\text{l}}G[x]$ to a continuous function on $(0,\infty)$ defined by (2.3.7) and also extend $\widetilde{G}[x]$ to a continuous function on $(0,\infty)$ defined by (2.3.8). Let us consider the Mellin transform of $\widetilde{G}[x]$.

$$\begin{split} \widetilde{\mathcal{G}}(s) &= \int_0^\infty \widetilde{G}[x] x^{s-1} dx \\ &= \int_0^\infty \sqrt{2} \int_x^{\infty_{\parallel}} G[y] T_{2\nu} \left(\sqrt{\frac{x}{y}} \right) \frac{dy}{\sqrt{y-x}} x^{s-1} dx \\ &= \sqrt{2} \int_0^{\infty_{\parallel}} G[y] dy \int_0^y T_{2\nu} \left(\sqrt{\frac{x}{y}} \right) \frac{x^{s-1}}{\sqrt{y-x}} dx \\ &= \sqrt{2} \int_0^{\infty_{\parallel}} G[y] dy \int_0^1 T_{2\nu} (\sqrt{t}) \frac{y^{s-1} t^{s-1} y}{\sqrt{y(1-t)}} dt \\ &= \sqrt{2} \int_0^{\infty_{\parallel}} G[y] y^{s-1/2} dy \int_0^1 T_{2\nu} (\sqrt{t}) \frac{t^{s-1}}{\sqrt{1-t}} dt \\ &= 2C_1^{\ln} \mathcal{G}\left(s + \frac{1}{2}\right) \end{split}$$

where

$$C_{1} = \int_{0}^{1} T_{2\nu}(\sqrt{t}) \frac{t^{s-1}}{\sqrt{1-t}} dt \text{ and } {}^{\natural} \mathcal{G} \text{ is the Mellin transform of } {}^{\natural} G.$$

$${}^{\natural} \mathcal{G}\left(s + \frac{1}{2}\right) = \int_{0}^{\infty} {}^{\natural} G[y] y^{(s+1/2)-1} dy$$

$$= -\frac{1}{\sqrt{2}\pi} \int_{0}^{\infty} \int_{0}^{\infty} G'[z] T_{2\nu} \left(\sqrt{\frac{z}{y}}\right) \frac{dz}{\sqrt{z-y}} y^{s-1/2} dy$$

$$= -\frac{1}{\sqrt{2}\pi} \int_{0}^{\infty} G'[z] dz \int_{0}^{z} T_{2\nu} \left(\sqrt{\frac{z}{y}}\right) \frac{y^{s-1/2}}{\sqrt{z-y}} dy$$

$$= \frac{s}{\sqrt{2}\pi} \int_{0}^{\infty} G[z] z^{s-1} dz \int_{0}^{1} T_{2\nu} \left(\sqrt{\frac{1}{t}}\right) \frac{t^{s-1/2}}{\sqrt{1-t}} dt$$

$$= \frac{s}{\sqrt{2}\pi} \mathcal{G}(s) C_{2}$$

where

$$C_2 = \int_0^1 T_2 \left(\sqrt{\frac{1}{t}} \right) \frac{t^{s-1/2}}{\sqrt{1-t}} dt$$
 and \mathcal{Q} is the Mellin transform of $G[x]$.

So we get

$$\widetilde{\mathcal{G}}(s) = \frac{s}{\pi} \mathcal{G}(s) C_1 C_2.$$

Putting $\sqrt{t} = \cos \theta$ (cf. [6] pp. 9),

$$C_1 = 2 \int_0^{\pi/2} \cos 2\nu \theta \cos^{2s-1}\theta d\theta = 2^{1-2s} \frac{\pi \Gamma(s)}{\Gamma(s + \frac{1+2\nu}{2})\Gamma(s + \frac{1-2\nu}{2})}$$

Putting $\frac{1}{\sqrt{t}} = \operatorname{ch} x$ (cf. [6] pp. 10)

$$C_2 = 2 \int_0^\infty \operatorname{ch} 2\nu x \operatorname{ch}^{-1-2s} x dx = 2^{2s-1} \frac{\Gamma\left(s + \frac{2\nu + 1}{2}\right) \Gamma\left(s + \frac{1 - 2\nu}{2}\right)}{s\Gamma(2s)}$$

Therefore $C_1C_2=\pi/s$. It follows $\widetilde{\mathcal{G}}(s)=\mathcal{G}(s)$. So by the inverse Mellin transform, we get

$$\tilde{G}[x] = G[x]$$
. Q. E. D.

Remark. In case of $\nu=0$, the theorem is well known (cf. [9]). In case of $\nu=n\in \mathbb{Z}$, the theorem is proved by T. Shintani (unpublished).

The proof of the Plancherel formula is based on the following proposition.

Proposition 2.3.2. If $f \in D_0(G)$, then

$$f(e) = -\frac{1}{2\pi^2} \int_{-\infty}^{\infty} \! \int_0^{\infty} \frac{\partial}{\partial x} F_f \bigg[\nu, \, x + \frac{\eta^2}{2} \bigg]_{x=1} T_{2\nu} \bigg(\sqrt{1 + \frac{\eta^2}{4}} \bigg) d\eta d\nu$$

Proof. By Proposition 2.3.1

$$F_{f}[\nu, x] = 2 \int_{-\infty}^{\infty} \int_{0}^{\infty} f \left[\theta, x + \frac{\xi^{2}}{2}\right] T_{2\nu} \left(\sqrt{\frac{x+1}{x+1+\xi^{2}/2}}\right) d\xi e^{-i\nu\theta} d\theta$$

So by Theorem 2.3.1 and the Fourier inverse transform,

$$f[\theta,\,x]\!=\!-\frac{1}{2\pi^2}\int_{-\infty}^{\infty}\!\!\int_0^{\infty}\frac{\partial}{\partial x}F_f\!\!\left[\nu,\,x\!+\!\frac{\eta^2}{2}\right]\!T_{2\nu}\!\!\left(\sqrt{\frac{x\!+\!\eta^2/2\!+\!1}{x\!+\!1}}\right)\!d\eta e^{i\nu\theta}d\nu$$

Putting $\theta=0$ and x=1, we get the above proposition.

$\S 3$. The Plancherel formula for G.

3.1. The Plancherel formula in $D_0(G)$. We start with the following lemma.

LEMMA 3.1.1

Put
$$Z(s; \nu, f) = \left(s - \frac{1}{2}\right) \frac{\sin \pi (s - \nu - 1/2)}{\cos \pi (s - \nu - 1/2)} \zeta_{\nu, s}(f),$$

where $f \in D_0(G)$ and $\nu \in \mathbb{R}$. Then $Z(s; \nu, f)$ is a meromorphic function on the complex s-plane and if a < b,

$$\lim_{|I| \text{m s} \to \infty} Z(s; \nu, f) = 0$$

The convergence is uniform on the strip $a \leq \text{Re } s \leq b$

The proof of this lemma can be given by the similar method as in Lemma 7 of [2]. So we omit the proof.

LEMMA 3.1.2 We have the following relation:

$$\begin{split} -i \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu,\nu+1/2+i\mu}(f) & \text{th } \pi \mu d\mu \\ = & \int_{-\infty}^{\infty} \zeta_{\nu,1/2+i\mu}(f) \nu \text{ Re th } \pi(\nu + i\mu) d\mu + 2 \sum_{\substack{1/2 \le p \le |\nu| \\ \nu = p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu,p}(f). \end{split}$$

Proof. We may assume $\nu>0$ since $\zeta_{\nu,s}(g)=\zeta_{-\nu,s}(g)$. In case of $\nu-[\nu]=1/2$, where $[\]$ is the Gauss symbol, we integrate $Z(s;\nu,f)$ along the rectangle Γ_{ν} having vertices $\pm iT$, $\nu+1/2\pm iT$ counterclockwise. We have

$$\begin{split} & \int_{T}^{-T} \!\! Z\!\! \left(\frac{1}{2} \! + \! i \mu \, ; \nu, \, f \right) \! i d\mu + \! \int_{1/2}^{1/2 + \nu} \!\! Z\!\! \left(\sigma \! - \! i T \, ; \nu, \, f \right) \! d\sigma \! + \! \int_{-T}^{T} \!\! Z\!\! \left(\nu \! + \! \frac{1}{2} \! + \! i \mu \, ; \nu, \, f \right) \! i d\mu \\ & + \! \int_{\nu + 1/2}^{1/2} \!\! Z\!\! \left(\sigma \! + \! i T \, ; \nu, \, f \right) \! d\sigma \! = \! 2 \pi i \! \sum_{\substack{1/2 \leq p \leq \nu \\ \nu - p \in Z}} \!\! \left(- \frac{1}{\pi} \left(p \! - \! \frac{1}{2} \right) \right) \! \! \zeta_{\nu, \, p} \! (f). \end{split}$$

Letting $T\rightarrow\infty$, by Lemma 3.1.1, we get

$$-\int_{-\infty}^{\infty} Z\left(\frac{1}{2}+i\mu;\nu,f\right) id\mu + \int_{-\infty}^{\infty} Z\left(\nu+\frac{1}{2}+i\mu;\nu,f\right) id\mu = -2i\sum_{\substack{1/2 \leq p \leq \nu \\ \nu-p \in Z}} \left(p-\frac{1}{2}\right) \zeta_{\nu,p}(f).$$

Therefore,

$$\begin{split} & \int_{-\infty}^{\infty} \mu \zeta_{\nu, \, 1/2 + i\mu}(f) \frac{\sin \pi(-\nu + i\mu)}{\cos \pi(-\nu + i\mu)} \, d\mu - \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu, \, \nu + 1/2 + i\mu}(f) \, \text{th} \, \pi \mu d\mu \\ & = -2i \sum_{\substack{1/2 \le p \le \nu \\ \nu - p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, \, p}(f). \end{split}$$

Put

$$I = \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \mu \frac{\sin \pi(-\nu + i\mu)}{\cos \pi(-\nu + i\mu)} d\mu.$$

Then

$$I = i \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \operatorname{th} \pi(\mu + i\nu) \mu d\mu.$$

Since $\zeta_{\nu, 1-s}(f) = \zeta_{\nu, s}(f)$, we have also

$$I = i \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \operatorname{th} \pi(\mu - i\nu) \mu d\mu.$$

Hence

$$I = i \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \operatorname{Re} \operatorname{th} \pi(\mu + i\nu) \mu d\mu.$$

Consequently we obtain

(3.1.1)
$$-i \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu, 1/2 + \nu + i\mu}(f) \operatorname{th} \pi \mu d\mu$$

$$= \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \mu \operatorname{Re} \operatorname{th} \pi(\mu + i\nu) d\mu + 2 \sum_{\substack{1/2 \le p \le \nu \\ \nu \to p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f).$$

In case of $\nu - [\nu] = 1/2$, by slight modification of the path of integral as in [2], we get

$$-i \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu, 1/2 + \nu + i\mu}(f) \operatorname{th} \pi \mu d\mu$$

$$= \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \mu \operatorname{coth} \pi \mu d\mu + 2 \sum_{\substack{1/2 \le p \le \nu \\ \nu - p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f).$$

But this equality is no other than the equality which is obtained by putting $\nu=1/2+n$ $(n=0,1,2,\cdots)$ in (3.1.1). So we complete the proof.

Lemma 3.1.3. If f is a C^{∞} -function with compact support such that f(0)=0, then

$$\int_{-\infty}^{\infty} f(t) \frac{dt}{\sinh \frac{t}{2}} = i \int_{-\infty}^{\infty} \hat{f}(\tau) \, th \, \pi \tau d\tau$$

where
$$\hat{f}(\tau) = \int_{-\infty}^{\infty} f(t)e^{-it\tau}dt$$

The proof can be found in [8] (pp. 341).

LEMMA 3.1.4. If $f \in D_0(G)$, then

$$f(e) = \frac{-i}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu,\nu+1/2+i\mu}(f) \operatorname{th} \pi \mu d\mu d\nu.$$

Proof. Put

$$I = -\frac{i}{4\pi} \int_{-\infty}^{\infty} (\nu + i\mu) \xi_{\nu,\nu+1/2+i\mu}(f) \, \text{th } \pi \mu d\mu.$$

Then

$$I = -\frac{i}{4\pi} \int_{-\infty}^{\infty} \operatorname{th} \pi \mu d\mu \int_{-\infty}^{\infty} F_{f}(\nu, t) (\nu + i\mu) e^{-(\nu + i\mu)t} dt$$

$$= -\frac{i}{4\pi} \int_{-\infty}^{\infty} \operatorname{th} \pi \mu d\mu \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial t} F_{f}(\nu, t)\right) \operatorname{ch} \nu t e^{-i\mu t} dt$$

$$= -\frac{1}{4\pi} \int \left(\frac{\partial}{\partial t} F_{f}(\nu, t)\right) \frac{\operatorname{ch} \nu t}{\operatorname{sh} \frac{t}{2}} dt \qquad \text{(Lemma 3.1.3)}$$

$$= -\frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\partial}{\partial x} F_{f}[\nu, \operatorname{ch} t] 2 \operatorname{ch} \frac{t}{2} \operatorname{ch} \nu t dt, \quad (x = \operatorname{ch} t).$$

Put $\xi = 2 \operatorname{sh} \frac{t}{2}$. Then we have $1 + (\xi^2/2) = \operatorname{ch} t = x$ and

$$I = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\partial}{\partial x} F_f \left[\nu, 1 + \frac{\xi^2}{2} \right] T_{2\nu} \left(\sqrt{1 + \frac{\xi^2}{2}} \right) d\xi.$$

By Proposition 2.3.2, we get

$$f(e) = \frac{-i}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\nu + i\mu) \zeta_{\nu,\nu+1/2+i\mu}(f) \operatorname{th} \pi \mu d\mu d\nu. \qquad Q. \text{ E. D.}$$

Lemma 3.1.2 and Lemma 3.1.4 prove the following proposition.

PROPOSITION 3.1.1. For any function f in $D_0(G)$, we have

$$\begin{split} f(e) &= \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \mu \operatorname{Re} \operatorname{th} \pi(\mu + i\nu) d\mu d\nu \\ &+ \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \sum_{\substack{1/2 \le p \le |\nu| \\ \nu - p \in Z}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f) d\nu. \end{split}$$

We shall give a more direct proof of Proposition 3.1.1. First let us prove the following proposition.

Proposition 3.1.2. If g is a C^{∞} -function on $[1,\infty)$ with compact support, then

(3.1.2)
$$-\frac{1}{\pi} \int_{0}^{\infty} g' \left[x + \frac{\eta^{2}}{2} \right] T_{2\nu} \left(\sqrt{\frac{x+1+\eta^{2}/2}{x+1}} \right) d\eta$$

$$= \frac{1}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] e^{-i\mu t} \mu \operatorname{Re} \operatorname{th} \pi(\mu + i\nu) dt d\mu$$

$$+ \frac{1}{\pi\sqrt{2(x+1)}} \sum_{1/2 \leq p \leq |\nu|} \left(p - \frac{1}{2} \right) \int_{-\infty}^{\infty} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] e^{(1/2-p)t} dt.$$

Proof. We may assume $\nu > 0$, since $T_{\alpha}(z) = T_{-\alpha}(z)$ and Re th $\pi(\mu + i\nu) = \operatorname{Re} \operatorname{th} \pi(\mu - i\nu)$. Put $\sqrt{\frac{x+1+\eta^2/2}{x+1}} = \operatorname{ch} \frac{t}{2}$ and let p_0 be the real number satisfying $-\frac{1}{2} \leq p_0 < \frac{1}{2}$ and $\nu - p_0 \in \mathbf{Z}$. Then

$$-\frac{1}{\pi} \int_{0}^{\infty} g' \left[x + \frac{\eta^{2}}{2} \right] T_{2\nu} \left(\sqrt{\frac{x+1+\eta^{2}/2}{x+1}} \right) d\eta$$

$$= -\sqrt{\frac{x+1}{2}} \int_{0}^{\infty} g' \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] \cosh \nu t \cosh \frac{t}{2} dt$$

$$= -\frac{1}{\pi} \frac{1}{2\sqrt{2(x+1)}} \int_{0}^{\infty} \frac{\partial}{\partial t} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] \frac{\cosh \nu t}{\sinh \frac{t}{2}} dt$$

$$= -\frac{1}{\pi} \frac{1}{2\sqrt{2(x+1)}} \int_{0}^{\infty} \frac{\partial}{\partial t} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] \frac{e^{\nu t}}{\sinh \frac{t}{2}} dt$$

$$= -\frac{1}{2\pi\sqrt{2(x+1)}} \int_{0}^{\infty} \frac{\partial}{\partial t} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] \frac{e^{\nu t}}{\sinh \frac{t}{2}} dt$$

$$-\frac{1}{2\pi\sqrt{2(x+1)}} \int_{0}^{\infty} \frac{\partial}{\partial t} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] \frac{e^{\nu t} - e^{\nu_{0} t}}{\sinh \frac{t}{2}} dt.$$

Let us denote the first term by I_1 and the second term by I_2 . Then by Lemma 3.1.3,

$$I_1 = -\frac{i}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} g \left[(x+1) \cosh^2 \frac{t}{2} - 1 \right] e^{p_0 t} e^{-t\mu_t} \operatorname{th} \pi \mu dt d\mu$$

Since $\frac{\partial}{\partial t} g \left[(x+1) \cosh^2 \frac{t}{2} - 1 \right]$ is a C^{∞} -function with compact support, its Fourier transform is a rapidly decreasing entire function. We denote it by F(z). Then

$$I_1 = -\frac{i}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} F(\mu - ip_0) \operatorname{th} \pi \mu d\mu$$

Since $-\frac{1}{2} \le p < \frac{1}{2} < \frac{\pi}{2}$ and F is rapidly decreasing,

$$I_1 = -\frac{i}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} F(\mu) \operatorname{th} \pi(\mu + ip_0) d\mu.$$

Hence

$$I_{1} = \frac{1}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g \left[(x+1) \cosh^{2} \frac{t}{2} - 1 \right] e^{-i\mu t} \mu \operatorname{th} \pi(\mu + ip_{0}) dt d\mu$$

By (3.1.3), p_0 can be replaced by $-p_0$, hence we have

$$I_1 = \frac{1}{2\pi\sqrt{2(x+1)}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g \left[(x+1) \operatorname{ch}^2 \frac{t}{2} - 1 \right] e^{-i\mu t} \mu \operatorname{Re} \operatorname{th} \pi(\mu + ip_0) dt d\mu$$

We have Re th $\pi(\mu+i\nu)$ =Re th $\pi(\mu+ip_0)$, because there exists an integer n such that $p_0+n=\nu$. So I_1 is equal to the first term in the right isde of (3.1.2).

$$\begin{split} I_2 &= -\frac{1}{\pi \sqrt{2(x+1)}} \int \frac{\partial}{\partial t} g \bigg[(x+1) \operatorname{ch}^2 \frac{t}{2} - 1 \bigg] \frac{e^{\nu t} - e^{\mathcal{D}_0 t}}{e^{t/2} - e^{-t/2}} dt \\ &= -\frac{1}{\pi \sqrt{2(x+1)}} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} g \bigg[(x+1) \operatorname{ch}^2 \frac{t}{2} - 1 \bigg] \sum_{\substack{1/2 \le p \le \nu \\ \nu - p \in \mathbb{Z}}} e^{(p-1/2)t} dt \\ &= \frac{1}{\pi \sqrt{2(x+1)}} \sum_{1/2 \le p \le \nu} \bigg(p - \frac{1}{2} \bigg) \int_{-\infty}^{\infty} g \bigg[(x+1) \operatorname{ch}^2 \frac{t}{2} - 1 \bigg] e^{(1/2 - p)t} dt \;. \end{split}$$

This completes the proof.

Now we give another proof of Proposition 3.1.1. Substituting $F_f[\nu, x]$ for g[x] in (3.1.2) and putting x=1 we get

$$\begin{split} &-\frac{1}{\pi} \int_{0}^{\infty} \frac{\partial}{\partial x} F_{f} \left[\nu, x + \frac{\eta^{2}}{2} \right]_{x=1} T_{2\nu} \left(\sqrt{1 + \frac{\eta^{2}}{4}} \right) d\eta \\ &= \frac{1}{4\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{f} \left[\nu, \operatorname{ch} t \right] e^{-i\mu t} \mu \operatorname{Re} \operatorname{th} \pi(\mu + i\nu) dt d\mu \\ &+ \frac{1}{2\pi} \sum_{\substack{1/2 \le \eta \le \nu \\ \nu = \eta \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \int_{-\infty}^{\infty} F_{f} \left[\nu, \operatorname{ch} t \right] e^{(1/2 - \eta) t} dt \end{split}$$

Note that $\zeta_{\nu,s}(a_t) = \int_{-\infty}^{\infty} F_f[\nu, \operatorname{ch} t] e^{(1/2-s)t} dt$. By Proposition 2.3.2, we get

$$f(e) = \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \zeta_{\nu, 1/2 + i\mu}(f) \mu \operatorname{Re} \, \operatorname{th} \pi(\mu + i\nu) dt d\mu$$

$$+\frac{1}{4\pi^2}\int_{-\infty}^{\infty}\sum_{\stackrel{1/2\leq p\leq \nu}{\nu-p\in Z}}\left(p-\frac{1}{2}\right)\zeta_{\nu,\,p}(f)d\nu$$

This shows Proposition 3.1.1.

3.2. The Plancherel formula for G.

We first note that $\zeta_{\nu,s}(f) = \zeta_{\nu,s}(f_0)$ and $f(e) = f_0(e)$ for $f \in D(G)$. So Proposition 3.1.1 holds for any function in D(G).

We put

$$U_h(f,s) = \int_G U_h(g,s)f(g)dg$$
 and $U^{\pm}(f,l) = \int_G U^{\pm}(g,l)f(g)dg$

where f is a C^{∞} -function on G with compact support. Then $U_h(f,s)$ and $U^{\pm}(f,l)$ are, as is well known, of trace class. We have

$$\operatorname{Tr}(U_h(f,s)) = \sum_{n=-\infty} \zeta_{n-h,s}(f), \quad \operatorname{Tr}(U^+(f,l)) = \sum_{m=0}^{\infty} \zeta_{m+l,l}(f) \text{ and}$$

$$\operatorname{Tr}(U^{-}(f, l)) = \sum_{m=0}^{\infty} \zeta_{-m+l, -l}(f).$$

Hence

$$\frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \zeta_{\nu,1/2+i\mu}(f) \mu \operatorname{Re} \operatorname{th} \pi(\mu+i\nu) d\mu d\nu$$

$$= \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-1/2}^{1/2} \sum_{n=-\infty}^{\infty} \zeta_{n-h,1/2+i\mu}(f) \operatorname{Re} \operatorname{th} \pi(\mu+ih) dh d\mu$$

$$= \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{\substack{1/2 \le p \le |\nu| \\ |\nu| - p \in Z}} \operatorname{Tr} \left(U_h \left(f, \frac{1}{2} + i\mu \right) \right) \operatorname{Re} \operatorname{th} \pi(\mu+ih) dh d\mu$$

And

$$\begin{split} &\frac{1}{4\pi^{2}} \int_{-\infty}^{\infty} \sum_{\substack{1/2 \le p \le |\nu| \\ |\nu| - p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f) d\nu \\ &= \frac{1}{4\pi^{2}} \left[\int_{0}^{\infty} \sum_{\substack{1/2 \le p \le \nu \\ \nu - p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f) d\nu + \int_{-\infty}^{\infty} \sum_{\substack{1/2 \le p \le -\nu \\ \nu + p \in \mathbb{Z}}} \left(p - \frac{1}{2} \right) \zeta_{\nu, p}(f) d\nu \right] \\ &= \frac{1}{4\pi^{2}} \left[\int_{1/2}^{\infty} \sum_{n=0}^{\infty} \left(p - \frac{1}{2} \right) \zeta_{n+p, p}(f) dp + \int_{1/2}^{\infty} \sum_{n=0}^{\infty} \left(p - \frac{1}{2} \right) \zeta_{-n-p, p}(f) dp \right] \\ &= \frac{1}{4\pi^{2}} \int_{1/2}^{\infty} \left(p - \frac{1}{2} \right) \mathrm{Tr}(U^{+}(f, p) - U^{-}(f, -p)) dp. \end{split}$$

Hence we get the following theorem (the Plancherel formula for G).

Theorem 3.2.1. If $f \in D(G)$, then

$$\begin{split} f(e) &= \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-1/2}^{1/2} \mathrm{Tr} \Big(U_h \Big(f, \frac{1}{2} + i \mu \Big) \Big) \mathrm{Re} \ \mathrm{th} \, \pi(\mu + ih) dh d\mu \\ &+ \frac{1}{4\pi^2} \int_{1/2}^{\infty} \Big(p - \frac{1}{2} \Big) \mathrm{Tr} (U^+(f, p) + U^-(f, -p)) dp. \end{split}$$

References

- L. Pukanszky, The Plancherel formula for the universal covering group of SL(R, 2), Math. Ann., 156 (1964), 96-143.
- [2] R. Takahashi, Sur les fonctions shériques et la formule de Plancherel dans le groupe hyperbolique, Jap. J. Math., **31** (1961) 55-90.
- [3] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math., 48 (1942) 568-640.
- [4] P. J. Sally, Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R), Memor. of Amer. Math. Soc., No. 69.
- [5] Erdélyi, Magnus, Oberhettinger, Tricomi, Higher transcendental functions, 1 McGraw-Hill.
- [6] Magnus, Oberhettinger, Soni, Special functions of mathematical physics, 3rd Ed, Springer.
- [7] T. Inui, Special functions (Tokushu kansu), Iwanami shoten, Tokyo, 1962 (in Japanese).
- [8] M. Sugiura, Unitary representations and harmonic analysis, Kodansha, Tokyo.
- [9] R. Godement, Introduction aux travaux de A. Selberg, Séminaire Bourbaki, 144 (1957) Paris.