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Introduction

Pukanszky proved the Plancherel formula for the universal covering group
G of SL(2, R) in [1]. Here we shall prove the formula by a different method.

Let us explain our method in more details.. Let #,,(y, s) be the matrix
coefficient of the principal series representations of G (cf, §1), and f be a C*-
function on G with compact support which satisfies flkgk™!)=/(y) for any keK,
where K is a subgroup of G defined in §1.

First we calculate the p-th Fourier transform

Py )=\ Fola, 91

Since f can be regarded as a function of two variables (4, #), the transform
f—F is composed of the following three transformations: the Fourier transform
with respect to #, and the Abel transform and the Fourier transform with
respect to . The Abel transform of a function on G is defined as follows:

¢m=w% Flamds
where g=Fkam; is the Iwasawa decomposition of g. @) can be expressed by
the Tchebycheff function 7. ~The key point of our proof is the inverse
transform formula (Theorem 2.3.1) of the Abel transform. From the theorem,
we obtain the inverse transform F—f.

In §3 we shall give two proofs of the Plancherel formula. One is analo-
gous to the proof of R. Takahashi for SL(2, B) in [2]. Another is more ele-
mentary and more direct (cf. Proposition. 3.1.2).

The author would like to express his sincere gratitude to Prof. T. Shmtam
for the kind advice and suggestions.
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§1. Preliminaries.

In this section we describe the universal covering group of SL(2, R) and
its representations, and state their properties without proof. The proof can be
found in the references [1], [3], [4].

1.1 Description of the universal covering group of SL(2, R).

Let G, be the group of SU(1,1) consisting all 2X2 matrices of the form

a S . o R
(5 a) satisfing |a]*—|3*=1

As is well known, G, is conjugate to SL(2, R) in GL(2,C). The group G, may
be parametrized as follows. As in Bargmann [3], put Sla=y and arga=we
R/|2zZ then

Gu::{(r, w): ];] <1, wGR/Zn‘Z}

and the map a @ o(y, @) is a diffeomorphism. The group operation in Gy
g al

can be expressed in terms of y and . If ay=(y, ») and a’'=(;/, ') are in G,,
then for awa)/=a’' =G, '’) we get

(1‘1.1) T//=(78—2itlv'+7,/)(1+77—,/e—2lm‘)—1
(L1.2) T +% Tog(1+ 77 e~5")(1 4 Fy'eti)-"

where log z is defined by its principal value and '/ is taken mod 2x.
Let G be the universal covering group of Ga. G can be parametrized by
7 and w as follows:

G={(r, w): |rI<], -—oo{u)«( + co}.

The multiplication on G is given by equation (1.1.1) and (1.12) except that o’/
is no longer defined mod 2z. The canonical covering map is defined by

(L13) @(y, 0)=(y, w(mod 27))
Put ky=(0, 0/2), ;=(th ¢/2, 0) and n; = (———Zv('g@L arg(l—l— i >> The elements
e e ’ : 1422 2 /) ,

o, ai, e are in G.
We use the following subgroups:

K=1{ky:0cR}, A={a,:teR}, and N={n;;EecR}.

Each element ¢ in G can be expressed uniquely by g=keam: (Iwasawa
decomposition), where 4, ¢ and & are real numbers. And we have another ex-
pression g=koak, (Cartan decomposition) where 0eR, =0, 0=¢<2z. For ¢g¢K
this expression is unique.
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1.2 Principal continuous series of representations of G
Let us define an action of G on the unit circle 7. For a=(;, ») in G, a-e"
L, e 4p a B
:(])(a)oew="'§m, where @(@)=(y, o(mod 2x))= <ﬁ &)
Put Hy=L*T), the Hilbert space of functions on the unit circle which are
square integrable with respect to the normalized Haar measure of T.

DeriniTION 1.21. For feH, and ¢ '=(, w)eG, a linear operator Un(a,s) on
H, is defined by

1+et 7

[Uila, s)f](eiﬂ):.e—mn( Tk

Vg +al-+1 (e e,

where 4 and s are complex numbers and @(@')= <g £ )

The following is well known (cf. [4]).

ProrosiTioN 1L.2.1. Suppose heC and seC.
(1) The map a—Uila, s) is a continuous representation of G on H,.
(2)  This representation is unitary if and only if Re s=1/2 and heR.

(8) When Re s=1/2 and heR, the vepreseniations a— Unla, s) and a——Uy.1(a, S)
are uniterily equivalen so that each wunitavy vepresentalion is equivalent to one in
the range —1|2<h=1]2.

4) The representation a——Ua, s) of G on H, are irveduc ible for s satisfying
Re s=1/2, and —1/2<h=1]2 excluding the case s=1/2 and h=1/2.

1.8 Discrete series of representations of G.

Let D be the unit disk in the complex plane ; D={ze(C':|z|<1}. For A>1/2,
we define a Hilbert space H,(D) of holomorphic functions on 2 with the inner
product

A—vl] """"
(13.1) o= \ FRIENL— |22 *dandy
The functions
, S r@hm) PR,
(13.2) Q)n.h,(z) L/ (2/1)/ (17'.“_1) Ry (n@z n:o)

form an orthonormal basis in Hp(D). When A=1/2, the space H,(D) can be
defined by the inner product

(133 o= Jim (P2 @i - tapndoa)
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The functions
(1.3.4) puaa(2)=2" (ne,nz0)

form an orthonormal basis in Hi(D). Now take £=<—1/2. The Hilbert space
H(D) is made up of the complex conjugates of the functions in H..(D) and the
inner products are defined as in (1.3.1) and (1.3.3) with |%| in place of Z. The
orthonormal basis in this case is given by

) 172
I (2|;Z‘+n) ] (5)’ %GZ, n=0.

(1.35) &=\ TR 7).

We now define a representation ar—U*(a, h) of G on H(D), hzl/2 b

< + ’1”L — (3 =)~k (¥Z+ﬁ
(1.3.6) [Ut(a, k) fi@) =" (1= p|)(1+72) " f (ﬁz+a>
where ¢ '=(y, ) and d%a*‘):(% 2)

ProrosrtioN 1.3.1. For h=1/2, the represemtations a——U(a, ) of G on
H/(D) are unitary and irreducible.

We shall call the representations a—U*(a, 12), (ke R, =1/2) the positive
discrete series of representations of G.

The discrete series @ -(a, 1), h=—1/2 are defined similarly. The re-
presentation spaces are the spaces Hu(D), h=-1/2. For A= -1/2, we define

(13.7) (U@ By P == )41 47 z)"'f(mw

where a'=(y, ).
The following proposition is known also (cf. [4]).

PrROPOSITION 1.3.2. For h=-—1/2, the representations a— U (a, /1) of G on
(D) are irveducible and unitary.

We shall call the representations e——>U-(a, ), (he R, = ~1/2) the negative
discrete series of representations of G

Remark. For —1/2<h<1/2, the representation U=*(e, #) can be defined.
However we shall not use these representations. So we omit the description
of them which can be found in Sally [4].

1.4. Matrix coefficients of the irreducible representations of G.
For f,gel¥T), put (f, g)=g F(2)g(2)dz. The functions Pu(2)=2"|2| =1, neZ)
JT

form an orthonormal basis in LXT').
We now define the matrix coefficients #m-1n »-r(g, s) of the operator Ux(g, s)
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by the following equality.
(1-41) Wt n—-nl0, S)=(Un((], 3)9!'1:., (/’m):
where —1/2</2=1/2 and seC. We get the following lemma from the equations;

LUn(Fa, $)ghnl(z) =7 043 (2).

Lemma 141 We have u,,(kogky) =7 Ro)itn(y, $)X,(ky), where 2, (e R) are the
characters of K defined by 1,(k;)=ei.

The properties of #, will be summarized in the following lemma.
Lemma 1.4.2. We have the following equalities.

(1 U@y $)=(L—= 22 F (s 4+, s— ;3 1 4,

wheve F is the hypergeometric function and i=th t/2.

) U0, 8)=18,,{g, 1— ).

Proof. ‘The proof of (1) can be found in Sally [4]. So we give the proof

of (2).

From the formula F(a, b;c;x)=1—a)" % F(c—a,c—b;c;x) (cf. [6]) and (1),
we get (@, $)=uula, 1—s). Since G=KAK, Lemma 141 asserts that for any
g of G we obtain #,.(q, $)=#,.g,1—s). Q.E.D.

Put o300, H=(U*(g, s, (2), i (2)). Namely via(g, /) are the matrix coeffi-
cients of the discrete series representations of G.

The proof of the following lemma can be found in Sally [4].

Lemma 1.4.3. We have vgmlay, D={—)""Fim~+2|l, —m;1; ) where 1=
th¢/2.

From Lemma 1.4.2 and Lemma 1.4.3, we have
it mil@o 1) =050, [).
Since vhn(kaghks, [)=e 100 (g, De~in D¢, we get (1) in the following lemma.
Lemma 1.4.3. Let m be a positive integer, then we have
1y Sor 12102, tmar wiidts =03y, D)
@) Sfor 1==1)2, ttemir —w:ilg, —)=05n(g, D).
The proof of (2) is similar to the proof of ().
§2. The Fourier transform on G.

2.1 The family of functions Dy(G).
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We denote by D(G) the set of all C-valued indefinitely differentiable func-
tions on & with compact support.

LemMma 2.1.1. For any f in D(G),

70)=F, 5=\ Pk TR0

nez

Proof. Put F(p)=f(ksgks™), then F is a periodic function of period 2x.
In fact since k., is an element of the center of G,

F(p+2m)=f (Ry+2:0ky3in)
= f(kogks™)
=F(p).

So by the Fourier expansion,

Flg)=Y —2}; S:”F(a)ewczoeiw.

nEZ

Put ¢=0, then we get

=2 —21; S:xf(kagkf‘)xn(ko)dﬁ. Q.E.D.

nezZ

Lemma 2.1.2  Put

1 (e I
fnig):*z"“ S S (Bogko™")An(ko)d0.
T Jo
Then fulok) =2.0k) falky) for any keK. The proof is easy.
DEFINITION 211 Put Du(G)={7eD(G): F(gh)=Talk) f (ko))

Lemma 2.1.3. If f belongs to Du(G) and n¥xp—v, then g F@)1.(q, s)dg=0
JG

where dg is the Haar measure of G.

Proof. Put [=S F(@)u.n(g, s)dg. Since G is unimodular,
G
I= ng (Boglo),(Rogks™, s)dy

__:ei((;‘—v)—m”g F@uuy, $)dg
g ;

¢4

= gilla—n-n0 T,
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By the assumption ei!®=~"¢—1 is not identically zero, so we have /=0. Q.E.D.

Remarx 1. If # is not equal to zero, then fu(¢)=0 where ¢ is the identity
element. Hence for any f in D(G), we have

fle)=1ue).

REMARK 2. It is easy to verify that Dy(G) is a commutative algebra with
respect to the convolution product.

2.2. Spherical functions on G
Let us start with the following definition.

DEeriNiTION 2.2.1. For veR, seC we set

(2.2.1) &, s(0) =X, (ko)e* where g=Fkoam;
1 2r

2:2.2) ) =5 | gk
T Jo

LemMma 2.21  The following equality holds :
@ Loslkoghs)=2ko16)C0.5(9)
(2) If Q is the Casimir operator of G, then
Q6 s=s(1—9)5.s

Proof. From the definition, w, (keg)=1,(ksa.,s(¢). Hence

1 2.4
G hats) = \ e b e )

1 2z
:-—2;:—- S oy, s(km ¢k[,i¢,gk¢.;.¢,)du

[

1 (2=
=XV(k0-l-¢) —2—7; SO “u.x(k;](]k,p)d(ﬁ

=Z.,(ku+¢)cu, s(g).

We used the fact ks, is in the center of G. This shows (1).
For any ¢ in G, g=kwun:. In terms of this coordinate system (#,¢, &)

» P 2 .
O=—a 2 —t —e i
E T T e e (2D

So we get
Lo, s=5(1—9%a,.s.

Hence 2¢,,:=s1—8),s. Q.E.D.



112 Osamu MATSUSHITA

Lemma 222 The following equality holds:
¢ (a:)—-ch'z“iF<5+ s— -1-thﬁf—>
v, S\ — 2 v, ¥y » 2

Proof. TFor any geG, g=kotiky, 0eR, t>0, 0=¢=2x. In terms of this co-
ordinate system (cf. [2]),

(>__~1_..<,@i+_9f’_) che o _chi 3 &
T sh \ar T oyt sh¥% 069y cht ot o

From the equality and Lemma 2.2.1, easy computation shows

d* cht d 27 . _
[‘”dl';g— “i"al"t' TZLT+ <S(1w5)+ < (ch#— 1))](:,,5(0’5)—0

z

We put X=th® 5

and define Z(X) by the equation :

1-X)yZ(X) =L @)
Then Z(X) satisfies
XA-XZ2"X)+(1—-@2s+DX)Z'(X) +(*—sHZ(X)=0.
Since Z(X) is analytic around X=0 and Z(0)={, (e)=1, we get
ZX)=F(s+v,5—v;1; X)
Hence we obtain the lemma. Q.E.D.
LemMa 2.2.3. The following relations hold:
O Lus@)=wule, ) 2) Cns d)=Vimle, 1) B Loman, gy D) =050, 1)
Proof. Lemma 1.4.1, Lemma 14.2, Lemma 1.4.3, Lemma 22.1 and Lemma

2.2.2 show (1), (2) and (3) immediately.

2.3. The Fourier transform on G and its inverse transform.

The purpose of this section is to find an explicit formula of the integral
transform of the functions feD(G).

The transform &, .(f) is expressed as follows:

cv.a<f)=gaf<g>z;.s(g>dg

27
:_21_8 f(g)g . o Eogteo=2)dgd0
T JG J0



The Plancherel Formula for the Universal Covering Group of SL(2, R) 118

10 o=
=50\ Pt ok doyindg

=SGf(g)a'y.s(0)dg

:Sm S” S Fhoame T Tnye"te dodide

a o) —on ) —on

because dg=e'dfdidé for g=Fkeam. Here, we put

Firn, ) =ewgm S oo T d0dE
Then
(2.3.1) ‘:».s(f)=gm Fy(, He2-ot iy

If ame="rhyauky, then

o E

. - e GG rige™
(2.3.2)  ch#'=chi+e=—, (233) &' * =—P 2 (cf. [2])

2 t &

gt

ca

Ff()-’, t):e!l?-g Sw f(kyk¢'al'k¢:)xv(k0)flod5

[=~] (=]
=B"2S S SR ye™ ="~ dp e

06 o) w0

Put flhe)=5(0, 1), then f(8, t); S0, —1). In fact since f belongs to D{G), ,
f (laga;) = f (kakﬁatk_g) = f(hott)
Therefore as in R. Takahashi [2], we can write
F(0,0)=110, cht],

where f{6, ] is an indefinitely differentiable function on R X[1, oo) (cf. [8] pp.
350). So by (2.3.2) and (2.3.3),

zt
oo [ 52 Ch 'é‘
Fil, z):_—g S f[(), chz+—2-]T2, R
s \/kch”—t—-k—e—
5T

where 7T, is the Tchebycheff function of the first kind defined by Ta(z)%
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F(a, —-a;—%;i—g—z) In case of aeZ, a=0, T, is a Tchebycheff polynomial.
In the same way as Tchebycheff polynomial, T, satisfies
T(cos @)=cos af and T.(chf)=chat. (cf. [7]).
Now from the explicit formula (2.3.4), F(y, )=F(y, —£). So we can put
Fy(v, )=Fy[y, cht]=Flv, x].

Summing up these calculations, we get the following proposition.

ProrosiTION 2.3.1. If f belongs to DWG), then
tn=\" P cnpevoar

where

¥

N £ \/ Cchi+1 ) i
Fj[u, Chi]—ZS”mS f[ﬂ Cht"" 2]T2u< mﬂ e dOdE.

THEOREM 2.3.1. Lel f and g be C™-functions on [1, co) with compact supports.
Put

235) ¥la] =2S;° f[r-i—%zl T2,< ;uqfl;-rlg&/ﬁ d
(2.3.6) "glw]=— %—Sjy’[ﬂ—”ﬂ Tm(\/ w%’ﬂgﬁv

Then "(f)=f and *("g)=g.

Proof. 1t is easy to verify that *f and Y are C=-functions with compact
supports because 7, is a real analytic function on (—1,00). We prove that
Hig)=g. The equality "()/)=f can be proved in a similar way. In (2.3.5) put
x+822=y, then

f[x]zx/é“gjf[y3z~2‘“(\/y+1 )«/ydﬁ

In (2.3.6) put z+%*2=y, then

gla]=—— S g'[?J]ﬂ»(\/ﬁ)T/E(—‘Z_*—J:}@“

Put §=*"9), Glz]l=glx—1], "G[X]="g[z—1] and Glz]=g(z—1]. Then

ean e A
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~ ) dy
f — 1! paed
(2.38) G[m]-«/ZS G[y]T2y<\/ ) et
Now we extend the derivative G’[z] to a continuous and hounded function
on [1,00), and we extend "G[z] to a continuous function on (0, co) defined by
(2.3.7) and also extend G[w] to a continuous functlon on (0, co) defined by (2.3.8).
Let us consider the Mellin transform of G[x]

g (s)= Smé[x]xs"lda:
a

S S “G[g/]Tz(«/jf) \/ydyr a8 dxe

ol . 2) e

“ ' v y
=4/ S G[y]dySOTzv(ﬂ/f),\/ = z‘)

ll

H

—»2clng(s+—;~)
where
g TolVE) «/———vdr and "¢ is the Mellin transform of 'G.
" (SJFl) - gm"%w HR =gy
2/ Jo
’ dz 9»11/.1
=55\ {ot ]fzy(\/ ) vy
= S “rrae] sz(\/»j;) —a
- T ts-l/ﬁ
==, ka3 )y
s
=Vzx 6t
where

5172 ‘
CZ:SITz(/\/—]t.—>jl dt and g is the Mellin transform of G[z].
1]
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So we get

~ s

G(s) == G (8)C,Cs.
Putting +/f=cosé (cf. [6] pp. 9),
o z/

cl=2\

JO0

2 =l(s)
C0os 2u0 cOS210d0 = 212"
1+2v 1—2v
F(s+ - )F(s+ - )

Putting —;7]-:[-*=Ch x (cf. [6] pp. 10)

- ]w(s+29; 1)[’(3 + 1 '—ZZV)
-1-2§ 3 e 281
, ch vz ch™'"*pdr=2 ST

Cz:ZS

Therefore C,Co=x=/s. It follows G(s)=g(s). So by the inverse Mellin trans-
form, we get

Gl#1=Glz). Q.E.D.

Remark. In case of v=0, the theorem is well known (cf. [9]). In case of
y=neZ, the theorem is proved by T. Shintani (unpublished).
The proof of the Plancherel formula is based on the following proposition.

ProrosiTioN 2.3.2. If feDy(G), then

S S S U 7 / 77")
fle)= o gmgo " F;[u,x-k 5 Jm:le( 1+T dndv

Proof. By Proposition 2.3.1

- =" \ _§_2_ z+1 > —iull
Fyly, -'LJ“‘ZSﬁmSOf[o, z+ 3 }Tﬁp<4/m dee ™"dl

So by Theorem 2.3.1 and the Fourier inverse transform,
__ L (m(a T \/x+»72/2+1‘>
f[H; .‘13]-—- P S—MSO oz Ff[)"’ &+ P) ]T2y< x_l_“i——" d)?@ dv

Putting =0 and z=1, we get"the above proposition.

§8. The Plancherel formula for G.

3.1. The Plancherel formula in Dy(G).
We start with the following lemma.

LEmma 3.1.1
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1 > sinn(s—v—1/2) £, (F)

Put Z(s;u,f):—*(s—-—Z— m
where feDy(G) and veR. Then Z(s;v, f) is a meromorphic function on the com-
plex s-plane and if a<b,

lim Z(s;v, /)=0

{Tm s} oo
The convergence is uniform on the stvip ¢=Re s=b

The proof of this lemma can be given by the similar method as in Lemma
7 of [2]. So we omit the proof.

LemMa 3.1.2 We have the following velation .

- lg (w4122 F) thrpedpe

- . 1
=" comutrmRe thrbrindars B (5= )enlr)

1/258ps|v
u——]g:p)GZ

Proof. We may assume »>0 since £, 4g)=C(-..5(0). In case of v—[]=1/2,
where [ ] is the Gauss symbol, we integrate Z(s;v, f) along the rectangle I,
having vertices =i7, v+1/24iT counterclockwise. We have

7 1 . . 1/2+v . T 1 ; ]
S Z<-—2—+Z/.C;U, f)Z(ZH"’S Z(O'—ZT;V, f)d0+g Z(XJ—I"Z“}‘Z/I Y, f)ld/t
" 1/2 -r

+Sf1/22(a+iT;u, Fldoe=2mi 3 <—-%<?—%>)Cu.p(f).

5
Letting T-rco, by Lemma 3.1.1, we get

Mgm Z('%"!"i}.l;u, f>7fd/z+§® Z(u-!-%«ﬁ-ipe;u, f>id/4=——2i 7 (p—-,i--)c,,p(f).

1728 pse
v—-pEZL
Therefore,

sin w(~—y+ipy)

cos 7f<_ U"I‘Zﬂ) d#— g (v+2/‘)Cv;u+l/2 Mlﬂ(f) th x/ld#

o -0

[ st

. 1
=2 7 (1= )0l
1/2€p<y
y—pEZ
Put
sina(—v+ipg)

I:-.g_mCu,x/zm,‘(f)#—*—*—————cos o e
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Then

Icz'g Covrrinl ) th (- ivyudpe.

Since £,,1-(f)=L,.s(f), we have also

I:is Coorpzvin(F) th m(pe—iv) pdpe.

Hence

[:iS CosysinF) Re thx(e+iv)udye.

Consequently we obtain

G.L1) ~z‘g_ (84212 ial f) thmpdp

e . 1
_—_S Corpraa(FuRe tha(p+iv)du+2 7 (15——2—>C,‘p(f).
-0 1/25pgy
y—pEZ
In case of v—[v]=1/2, by slight modification of the path of integral as in
[2], we get

- ig w808, 1200r1.() th rpdp

= SC:DC,' 1a4ix(f)pe coth rc/zd/z—l—Zl <1§— é—)(_:y,p(f).

3

12595y
pjéZ

But this equality is no other than the equality which is obtained by putting
v=1/24+n (»=0,1,2,---) in (3.1.1). So we complete the proof.

Lemma 3.1.3. If f is a C*-function with compact support such that f(0)=0,
then ;

Simf(l) dz; =iS°jmf'(T) thezde

Sh'é‘

where f@):S F(Be-ted

The proof can be found in [8] (pp. 341).

Lemma 3.14. If feDy(G), then
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FO=gr\ {7 ot aen) th g
Proof. Put
I= “"%[‘ S:(v +imE, 00 0u(f) thmpdpe.
Then

I:__ZZ;S" th?r#d#g Ff(p’ )(V‘|"l{£)é Ly
i e 2 .
= — S th W[l(l/LS <——67- E,‘(y’ j))ch vie=itdf

T
%‘S( P, z)) hof i (Lemma 3.13)

2

1 =5
= S—m - Fyfy,ch z‘]2ch—-ch ytdf, (z=ch2).

Put £=2 sh-é—. Then we have 1+(&*/2)=ch¢=x and

1 o 52
Im——g Ff[v,1+ ]Tzv 1+ dt.
2r
By Proposition 2.3.2, we get

s@=52 {7 (" it thrudyd. QED.

Lemma 3.1.2 and Lemma 3.14 prove the following proposition.

ProrosITION 3.1.1. For any function f in Dy(G), we have
f(@)=—8'}r'2*8 S &y 1P Re th z(pe-+iv)dpdy

L (= 1
b\ 3 (55 e
4z _wl/f_szg’oeszm 2
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We shall give a more direct proof of Proposition 3.1.1. First let us prove

the following proposition.

ProrosITION 3.1.2. If ¢ is @ C™-function on [1,00) with compact support,

then
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R 7 \/ 50+1+/}2/2>
sy e

1
T Nw+ 1)

1 i
o £ mn 2 (1722t
+7r«/2(x+1) 1/2_522"';52“1(? 2>S- [(:L‘-{-l) ) —le -

Proof. We may assume v>»0, since T, (2)=T7-.(2) and Rethza(p+iv)=

Sm S g[(x+1)Chﬁé—-—l]e"“"/zRe th w(u+iv)didpe

Re tha(p—iv). Put \/3-"«1{—%2—@—& 5 and let p, be the real number satisfying

_%§p0<-;— and v—poeZ. Then

i r 7 [aF1+72
i Sog L:H- 2 ]T< z+1 )dﬂ

- /\/.7:-51 S L(x+1)ch3~—1]chyich—(lf

1 1 S‘” 0
T 2«/2(1‘-{-1)

i 2«/2(];a+1) S: [(’”H)Chq*_l]

[('c—}-l) che L 1]

0

1 o0
T 2n/2(z+1) 80 at

Dyt
[m-i) ch? "“—1] —dt

(3.1.3)
shé-

£t — ghut

SN [(x+1)ch2~—1] ¢
0 J ght.

2
Let us denote the first term by I; and the second term by I.. Then by

Lemma 3.1.3,

1
TNz 1)

h== mglgli [(oc+1)chzm—l]‘fp""”"”"’thTxldfdﬂ

Since %g[(m%—l) ch2~;——-1] is a C=-function with compact support, its Fourier

transform is a rapidly decreasing entire function. We denote it by (). Then

L=~ F(,u-—zpo)th mpdpy

27r«/2(:c+1) S



The Plancherel Formula for the Universal Covering Group of SL(2, R) 121

Since ——~_p< 2 and F is rapidly decreasing,

oo

L= e m \ P tha(utipodp.

Hence

1

ERE=V s ) S_ S* QL(“’H) Chzé"qe”i”ﬂ th{p+2po)didy

By (8.1.3), po can be replaced by —ps, hence¥we have

N S S . 2 ! —ift ;
~2m/2m—3_mg_mg[)(x+l) ch E——l]e “uRe th a(pe+ipo)didp

We have Re thz(y+iv)=Re tha(z-+ip,), because there exists an integer » such
that po+m=v. So I, is equal to the first term in the right isde of (3.1.2).

o+t — pPut

1 b
e sy g [(”D byl |
1 =g T Lt ]

I e T it __..__.1 (?vlv.ﬂ)l,d

~V2(z+1) S-.m ot g[(”l) 3 ‘ﬁ%’; g

-__h__]_"__.___ ”'—]; o o N Zi_ e
v/ 2a+1) 1/A§)Sv<p 2 )S-mgbb bty 1]6 di-

This completes the proof.

Now we give another proof of Proposition 3.1.1. Substituting Fyly, 2] for
gla] in (3.1.2) and putting x=1 we get

10«0 T
g N R S IR O T

:Z%Sm S Fylv, chtle " p Re tha(p+iv)dtdp

-0

+~L 2 (Z’—-}-) Sm Fyly, ch e -Pidy
2 Ui%}égv 2 —o0

Note that Cy,s(m):g Fily, chle®#-94Jt, By Proposition 2.3.2, we get

1 (= (= .
f(p>=“é;;8 S“ Lorri(FeRe the(p4iv)didp
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=7 3 (65 )ane

4:752 ~0 1/28p5y
v—-pEZ
This shows Proposition 3.1.1.

3.2. The Plancherel formula for G.

We first note that &, (F)={..s(fo) and fle)=rfu(e) for feD(G). So Proposition
3.1.1 holds for any function in D(G).

We put

U, s)=SGUh(g, $)7(@)dg and U(f, )= SFU*‘” 07 (6)dg

where f is a C=-function on G with compact support. Then Uu(f,s) and
U*(f,[) are, as is well known, of trace class. We have

n=-—co

Tr(Unlf, sH= 23 Cnons(f), Tr(U(S, l))=;i:0<§mu,z(f ) and

THU(F, )= iocnmﬂwm.

=

Hence

"“"—19 Sm xw Coivzeia(Hpe Re th z(pe+iv)dpdy

—c

@ P12 o
_ L S S 5" Cucveinl ) Re th(u-tih)dhdp:

=1/2 Mmoo

-

S S 8 T1‘(Un(f,~1~-|-i/.z>)Re th e+ il)dhdy:
T e D ?

-0

And

1 (= 1
4r® S_w 11/25%:sm ([J—- -2->C.,,1,(f)dy

v[—pEZ

1 1> 1 oo 1 ..

= ) i‘g Z (p""'>:vz)(f)d”+\ Z (P"‘")C»,y(f)dv ]

47 | Jo 1/eSpss 2 Jmco 17255 2 B
v—-peZ v+pEZ

b B (6w 0

J1/2 n=0

:ZLU 5 (p%—)z,m,p‘p(f)dw

1/2 n=0

| (p=5) IO D= U, .
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Hence we get the following theorem (the Plancherel formula for G).

[1]
23
[3]
[4]
[5]
(6]
[71

[8]
(9]

TrEOREM 3.2.1. If fe D(G), then

i/2

f(e)z»g%rggm S Tr(Un(f,%-l-iﬂ))Re th w(p+ik)dhdp

~1/2

4}1‘5 S <P”%)TY<U D)+ U, —D)dp.

)
1/2

+
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