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§0. Introduction.

Let X be a weighted projective space (over C) with weight (Dy, + -+, ba), Where
bieZ. ={neZ;n>0} for i=0,--+,n. In other words, X=ProjClz, ---,2,] with
grade (z;)=b; for i=0,-.-,n. X is not necessarily smooth but always normal.

Let D be a divisor on X. Then D can be assumed to be defined by a
weighted homogeneous polynomial f of weight (%, R b{;) deZ..,

Define sheaves
D% kD)=js 2% (X ~X)),

where Y=sing X, j is the inclusion map of X—23 to X, and ¢, ]eyeéi,z{nez; n=>0}
([4]. If k=0, we simply write Q% instead of @%(0D).

Notation. For g, keZ., put
| AKX)=I'CX, BURD)) -
If either k or q_is negative, put
ANX)=0.
For g, keZ, we put

d d d
K py={ - — AN Y)”"""Ah X))

where f/ze d are induced mappings by t/ze e:u‘erzor derivatives on X—2X. Obviously

KoK DK =0,
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Put K= U K, FiK)=K;.

Then we have a filtered complex (K, F').

J. Steenbrink proved that a complex (£, d) gives a resolution of the con-
‘stant sheaf Cy. Thus we have a filtration F* on H¥ K" )=H"X—D; C) for any
p. We shall study the spectral sequence {E)Y K", F), EXK*, F)} and abbreviate
it to {EFY, B2

Denote the affine algebraic set {peC""% f(p)=0} in C*** by V(f). When V(f)
has an isolated singularity at the origin, Steenbrink proved that EM?=EZX" for
any p,q ([4]). His result is a generalization of a theorem by Ph. Griffiths in [1],
which claims the same result when X is the ordmaly projective space. We can
extend the results to

MaIN THEOREM. EP?=FE2"=0 for any p,q, satisfyving 0<p+qg<codimgns
(Sing V{f)—1, and

c, p=0,

PP PP
E E: 0, p=0.

This was proved in [5] when X=P". The proof which we will give here
is almost parallel to that of [5].

§1. G-invariant forms.

Another definition of the weighted projective space X with grade (z;)=0;,
i=0, ---,n is as follows:
Define a subgroup G, whose order is by, --+; by, of PGL(n+1; C) as

-

exp <~]—0~ 2/ — “T)

exp(b 2z — 1)

A

5:=0,1, - bhi—1 ~
Then G acts on P™ and the quotient scheme P"/G is isomorphic to X. Let
o be the natural projection

p: P">P"G=X.
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Put p~YD)y=EcP" Then G acts on ps2%,(kE) and we have the following
LeMMA 1.1, (0u0%,(RE))S=02%kD), where q,keZ..

Proof. It suffices to prove
(¥) (paQB(RE)) =04 (kD)

where ¥ is an open set of C",G is a finite subgroup of GL(»; C), and p is the
natural projection of V onto V/G.
By D. Prill, we have a normal big subgroup G, of G and a diagram
1 ) D2

V—> V/Gn > .V/G
|l n
v A
VTG

where 77 is an open subset of C" G; is small, G/G,=G;CGL(m; C), and pr, ps
are the natural projections such that p=p:op, (see [2]).

Therefore, it suffices to prove (x) when G is small or big.

In the case when G is small, see [4]. :

Next assume that G is big. Denote the discriminant of p by &@. Since G
is generated by rotations around a hyperplane, ¢ is the union of the images of
these hyperplanes.

Take a smooth point o of &, and xe Q;, where ,ejl):tg @ (irreducible decom-
position). There exists an open neighborhood U, of x which doesn't intersect
U D
Jxi

Consider the restriction map

o' =plw 07 (Un)—>Us

and the subgroup H; which fixes a hyperplane o~'(&;N Us).
Then o' can be decomposed into p./cp,”:

o™X Ux)"";’P"l( Ur)/Hi““;’ e N UG,

[4! O

where o/ and g’ are the natural projections such that ¢'=p’ep/. o' is etale
and p,’ can be regarded as the local version of

#: SpecClz, - -+, z,]—>Spec C[z:*, 20, + - +, 2],
where g is induced by the inclusion map of
Clz, 25y -+, 2] into Clzy, -+, 2:], ked.. .

Notice that the holomorphic 1-forms on Spec C[z,%, 2, - - -, 2,] can be regarded
as a free C[z/%, 2o, » - -, 2zo)-module with a basis {z,*~'dz;, dz,, -+ -, dz,). The holo-
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morphic p-forms are the p-th exterior products of holomorphic 1-forms.

Thus we know by the direct computation that our claim holds true for p.’.

On the other hand the singular points of @ is at least codimension two in
C"/G, which proves (1.1) in the light of the extension theorem.

By this lemma, we identify the G-invariant part of Afl=I"(P", QUkE)) with
ARXD, e, (AD¢=ANX), for g, keZ..

§2. The proof of Main Theorem.

Put Q(zy, -+, z)=f(z", -+ -,z »). Then @ is a homogeneous polynomial of
degree d. ‘

Definition 2.1. For i,keZ ., put
Hi={homogeneous rational i-forms w on C"**; Q*w is holomorphic},

where by homogeneous forms we mean the invariant forms under the transform-
ations (Zy, <+, Zp)~——>(Czy, + =+, €2y) for any ceC*.
If either i or k is negative, we define Hi=0.

G acts on Hi, because G can be regarded as a subgroup of GL(n+1; C).
Thus we can define the G-invariant part (Hi)%. '

Let d,; Hi—H":! be the exterior derivative and d7: Hi—H}:} be the mor-
phism defined by

‘
dio= == Aw

d @

for any weH; for i, keZ.
It is easy to see that J; and d7 define

di: (HDS—>(HE)E
and
dy: (Hp)o—(He.
Put
Lim oot iy
"Lip={--- ~‘13(1—1;;.)0 di]‘»(H;::})G—{—'? -},
and

--DL;DLiyD DL ..=0,

DL LD Lyn=0.
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Moreover we put
n+1
L'="U L, WiL)=L;,
n+1

’L'=.U 'Li, WP'L)="L;.

f=—on

Thus we have two filtered complexes (L*, W) and ('L*,’W).
Define the Euler vector field

n1 8

= 121 z; 5z
on €' and a homomorphism
8, >: Hi—>H?
for i, ke Z by the contraction. Then <0, ) induces the restriction
0, >i (HF—(H).
We have another h011101norphi§m |
R (ADe—(Hp

for i, keZ, where = is the pull back by the natural projection: €™ '—{0}—>P™
The following lemma is due to K. Saito:

Lemma 2.2. HY'L;)=0 for g<s, where

T A Y y
s—/zt( PR az,,> =codimn.1 (Sing V(f)).

Proof. TFor any we(HL)E, Q*w is of degree dk and is an element of the free
Cla, - -+, zy"n]-module with a basis {z%'dz, - -, 2,"2"'dz,}. Thus apply Saito’s
generalized de Rham lemma ([31).

This key lemma proves Main Theorem by almost the same methods as in
[5].

CorOLLARY 2.3. Let g be an integer satisfying 0<g<s—1. If peAYX) is
closed, then theve exists e AIZ(X) such that dp=q.

Remark. Let g be a weighted homogeneous polynomial of weight (%, RN
b‘,;;l ) Put flzy, - -+, 22)=9(20, - -, Za-1)~ 224 Let X be a weighted projective space
of weight (bg, - -+, bu-1, 1) and D a divisor defined by {f=0}. Let U be a Zariski

open set of X defined by {z,20}.
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Put X.=X-U, D.=DNX., Di=D—D.. We have an exact sequence
s HYX D)~ HYX — D)o HY( U = Dy)— (X = D.)—>+ - - ,

where the coefficients of the cohomology groups are all 0 So far we have filtra-
tions on H4X—D) and H?"YX.,—D.)). These filtrations can introduce two filtra-
tions on HYU—D,)=H*"YD,) and these give a mixed Hodge structure on H*" (D)
(see [47).

By applying Main Theorem we have

HY{X-D)=0

for ()<q</z[(£~, ~ﬂ(—'f-)=lzt(§q-, s ﬂ"‘q )—lzcodimcn (Sing Dy)—1.

02y > 02, 9z, 02y
Moreover,
H"={X—-D)=0
04 a4 ’ . .
for 0<g— 1</zt(—:“L AR #) =codim g (Sing Dy).
0Zgy 0Zp-1 . g

This shows H%(D,)=0 for 0<g<codim (Sing D), which is known in topology.
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