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§0. Introduction

Recently the construction problem of the dynamical systems of classical
statistical mechanics (under equilibrium) has been solved for sufficiently wide -
classes of pair potentials by Sinai [9], Lanford [5], and Presutti et al [6]. But
the equivalence between the time evolutions in their sense and in the sense of
Bogolioubov [1] is still obscure. The latter is described by a system of equations
(BBGKY hierarchy) o

(1) f(x) Af(x>+ZS | (@/(qi—qo), grady, Sz, D)dze+C(z)

for correlation functions f. Here z=(z1, -, 25), xi=(gs pi) € R¢X R? (i=1, ---, N),
A denotes the formal infinitesimal generator of the N-particle Hamiltonian flow
under a given pair potential @, and C is an operator which appears only when
the potential has hard core and is then given as follows:

_ N
(2) Cf(zc)=i§ S gd%dpo(lbi — Do, W) [F (0, 1, -5 B4y 2y &) — F (20, T35 o+, )]

where |u|=2r, (r, being the radius of a particle), gi—qu=1u, 2i=(qr, ), x;=(qu, Pi),
di—qy=—u, pi=psi—(pi—bo, u)-4/(2ro)%, Pi=po—pi+p: and the integral is taken
for (u,po) € {u; |u|=2r)x R¢ such that (p;—po,%)>0, and that g, 21, =, 2, ==, Tx
is a configuration of particles (See also [2], [5]).

We shall deduce the system of equations rigorously and prove that the
correlation function f; of the measure F,-p for some bounded continuous function
F on the configuration space solves the equation, where F,=F%T* and T* is the
dynamical system of infinitely many particles under a Gibbsian measure /.
But the potential considered here is restricted to the pure hard core potential

P(g)=c0 if |gl<7
o) > O
0 otherwise
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and the density is assumed sufficiently low, so that the flow T¢ is locally finite
in the sense that almost every configuration & satisfies the following condition:
for any £>0, any compact subset K of R? and any compact subset L of R?xRY,
there exists a compact subset’ V' of R? such that the configuration at a time
se[—1,1] restricted to the area K, Tk, coincides with T¥(ylv)|x whenever
pNL¢=§&NL. Here TY is the flow obtained by freezing the particles outside of
the vessel V' and making the boundary 2V reflecting wall.

Finally we shall show a result on the stationary solutions of the equation
(1) under a considerably strong assumption, Maxwellian distribution in velocities.

§£1. Preliminary

Let @ be the configuration space of hard core particles with radius >0
over R? (d=1). In other words § is the totality of countable subsets & of
R=R*x R? with the following two properties: (a) FN(KXR?% is a finite set
for each compact set KcR% (b) For any distinct points z;=(gi,2:) € £ (i=1, 2)

!Ql‘@]?szﬁ-
For any integer #z1 and a function ¢n: R— R, let us denote
fn((ﬁ’n): = l;in(«'ﬂla “ery Ta)

where ‘the sum is taken over mutually distinct points z;=(qi, p3), i=1, -, % of
£ Identifying a configuration & with the Radon measure &, one can endow
with the induced vague topology. The topological Borel s-algebra @ coincides
with the g-algebra generated by the o-algebras $Bx, K being compact subsets
of RY, where

Br=0(Ex)

and &y is the restriction of £ to the set K x R

DErFINITION. Let 4« be a probability measure on @ and #z1. If the -t
(factorial) moment measure '

CUAR" > gu- > | wdealen)

exists and is absolutely continuous with respect to the Lebesgue measure in
(R4 R%", then the density plxi, -, zn)=pul@y, -+, 2a) 18 called n-th correlation
Junction of p.

If the n-th moment of p exists, then one can define a s-finite measure M,
on the product space @ X R™ by

Mo(dédzy-day) = (dE)en(dn - day)
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Let Mjv"= be the conditional measure of A, given xy, -, 2. It is defined
for pulzs-z)dzry--de,—a.e. by Rohlin’s theorem. Then one can identify
MiFrTn on QX (&1, -, 2,) With the measure p"v"+», projected to Q.
DeriNiTiON. The measure pf, x=(ay, -, x,) is called Palm measure.
It is easy to see that
/ﬂ'l“""rn =(/“_,:1_..,,1_-77_1)mn

and that p*v~"= is invariant under the permutations of points a, -, 2, When-
ever it is defined. Furthermore, if the (z+m)-th correlation function of . exists,
then the m-~th correlation function of p™%a i3 opm(Zy, =~ Zny +)oals, ) 0.
When all the correlation functions p=ps, =1 exist and satisfy the estimate

(1) on=C"  for some constant C,
then they determine the measure px In fact the following formula due to

Ruelle [8] holds

(2) S/z(d et =143 S diy - dawp(es, - @) || (€50 —1)
. i=1

n=1

for any bounded Borel function ¢ on R with compact support.
We note that, if x is a Gibbsian measure for a potential ¢ (in the sense of
Dobrushin [3] or Ruelle [7,8)), then

(3) o) eI Pe) =\ pasyerie o2
for any bounded Borel function F on ), where

Ul 1->-2(W' ~logz)+ 3 da—g)+] T Ma—q),

i=1 11— i=1{y’,p’)es
*J

and z=(x1, -, @), T=(gsp:;) (=1, N) (f and z being inverse temperature
and activity). The proofs can be found in [10] and are omitted here.

§2. The equations for a bounded domain

Let us consider the motion of finite particles with radius 7,>>0 and centers
in a bounded domain V¥V whose boundary 0¥ is assumed smooth surface in R?
(d=1). The particles move uniformly "according to their velocities till one of
them collides elastically with another or with the wall of the vessel

Vw={geR"; dlg, V)=r}

and then they begin to move uniformly again and so on. Let us introduce the
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transformations C;; and D;. Let N=1 and
Va=lo=(zy, -, tx); 2:=(g:, ) € VX RY, |gi—g;| 2 2n).

For i=1,., N,'=D;z is defined for those g={z, -+, xy) such that ¢;€dV and
(biy ¥lg:) y>»0 where u(g;) is the unit outer normal to 3V at ¢; and the value
a'=(x;, -+, ) is given as follows: aj=zx; for j#i and

( 1 ) (L.éz(qi)j);")v j);. zpiﬁg(piy V(Qi) )‘

For 1=i, jEN, i=#j, 2'=Cyzr is defined for those w=(z, -, xy) such that
lgi—g;1=2r¢ and
(2) (Pi=1s, qi—g5)<0
and the value gz’ is given as follows: wzj=ua; for k=i, j, zi=(q:» 00, z',=(gs D)),
(3) Pi=pi—(2r) X pi—bs ¢i—a1)@i—qy), and

Pi=pi+@roy *(pi—bs ¢i— 1)@ —a1)-

Consequently the formal infinitesimal generator A, of the » particle motion T3
is the operator

N
Uy

E)q;-,

i 0
(4) Angon(ml, s, T = Z o (@, oy ), T =grad q;
i=1 (4]

for C'-functions ¢, such that ¢,=¢,C;; and ¢, =@,.oD; for each 1=i, j=n.
Fixing a finite configuration of particles z=(a,, -, xx) € Vy let us add an
extra particle at 2, and consider the motion of (N-+1)-particles

T[{’i-l(:l"ﬁl ‘2:) = TI{’—H(@'O) Ly vty ‘”Tb)‘

The set
»
W)=V (U D)), D) ={q\d(q, q:)<2r}
i=1

is the area where one can find the additional particle. Let oi(x,) be the A-th
collision time after time 0 (k=1,2,---). The collision may ocur with the wall
of the vessel as well as among the N+1 particles. Now let ¢, be the first
collision time for the N-particle motion T4z after time 0, and <(z,) be the first
collision time of the added particle. In the following we shall assume

70> 0, {z0) >0, and o1(ze)>0.

Levmma 10 If 6,120, then

Viz)=Eo8) U QEM UE() UE'®),
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where
E'(B={zo € V(z); aalmo) =2},
Ey#)={z € V(2); t(x0)>1},
E)={zoe V(z); c(z)=t<o(x,) and the first collision
of the added particle is with the i-th particle}
(i=1, -, N)
and

E(t)={xs € V(z)lc(w)) St<0os(xy) and the first collision
of the added particle is with the wall}.

Proof. Obvious since ai(zo)=1(zs) if oo>t=r(z0).

Let us introduce new cordinates (z, %, ps) in Ey#). For 1=i= N, let r=r{xq)
be the first collision time and = be defined by the relation

(5) Qo+ tho=q;+hs+u, uedD={uc R%; |ul=2r)

if the added particle collides with the i-th particle. Then in term of the new
coordinate (z, %, Do), the condition x, € Fy(f) is equivalent to the following three
conditions: ‘

(a) =t

(b) gi+spj—u—qi—cpi—(z—s)po¢ D  (0=s=x)

(¢) git+spj—u—q—tps—7)pr¢ D (r=s=0)
g5+spi—qi—tpi—(s—7)p; ¢ D (r=s=1)

It is easy to see the existence of a function #(z, p,, #)>>0 such that z, ¢ Ei(f) if
and only if ‘

( 6 ) Témin {t’i(g"’p(u %), z}‘
Finally we note that
(7) dxo=dgodpo=|(Pi—~bo, gi—q0)|drdudps.

Similarly one can introduce a coordinate (z,#,ps) € (0, c0)x0V x R? in the
set. E.(¢) and define #.(z,po, #) for which (6) holds.

LEmMA 2. For any finite configuration x € Vy such that a,>0,

g day=0(t) as t—0.
B (t) .
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Proof. 1t follows from (6) that x, € E'(¢) if and only if
0-Ztile, Po, ) Lot

for some i=1, .-, N, co.  Consequently

L1
11m — S dfl}ozo.
0 e

Lemma 3. Let F(xy, 1, -, x5) be a bounded Bovel function on Vy, which is
CORLINUOUS N Goy 1, -, n. Put

Fyt, v)=F(t, 4, -, JUM)"_‘S . dao(Thi(we, z)), (£20).
Viz
Then

N o —
lim L{F\t, )= o0, Tga)) = 3, Cr. iFla)+ DF(a)
NO i=1

=3

i=1 San(xi)

du | Ao i —bvr @i~ )P Coilzy &) — Flao, 7))

{23 (P~ Pgr €5~ 0) <20}
+S dﬂs dpo( Do, vIF (0, 2)—F(Dolwo, ) )}
v {pg i (po,») >0}

where v=y(z), and du is the surface element of 6V or of dD(z)={q; |¢i—q|=2r}.
Proof. We may assume that ¢,>>0. Then

%{ Fyt, 7)—Fo(0, T4x)}

dxd FXTH (w0, 2) ) — Fwo, Th2)}

20,1, N, 0 SE,;(()

1
+ 3\ R 2))~ Flow Tl
A Er(t)

By Lemma 2, the last term tends to zero as t— 0. For 1=i<N,

Thaalwe, )= (T} X oo- X TECol T3 3 -+ X T )20, 2)
\_,/ V
N+1 N+1

on the set E(#). Consequently

lim "]—" S d$0F(T1<3+1($0v Z’))
t dmn

=0

.1
=lim — S du S
oo £ aD(xy) {3 (Py—Do.qi—qo)< 0}

apol(Di—pu, qi—qo)l
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min {¢, t;(x, pg )}
x S AeF((TE X oo X T Coo T % - X T (9, ) )

0

du S drel(Bi—buy Gi— ) FlCoslo )

Sab(wi) [Py 3 (py— 1o, 45—a,) <0}

and

lim 1 S dxoF 2y, Thz)
Fi(t)
| au| apol(pi—or 01— 0 Fla, 2)
aD(27) {pg 3 (Pi—pg, 43~ q9) <0}
For i=co, the proof is similar and the case i=0 is simpler.

COROLLARY. Let Flzy, -, zx) satisfy the similar assumption as in Lemma 3,
and put

Fultsan o=\ duesedogFTie, o).
VN—n
Then fa, L=En=N satisfy the following integral equation
t n
(8) £t )=£20, Ti) + " 2 Cists, - X 2)ds
0 2=1

if the function F satisfies FeD;=F for each i and if one can interpret T' as its
vight continuouns version.

Remark. The above argument given for the canonical ensemble implies
that the equation (8) remains valid for correlation functions corresponding to
grand canonical ensemble.

§3. Reduction of the equations
Let V be a subset of R? and &r be the set of Borel functions ¢ on the set

GVN such that

N=0

(1) sup |o(z)| =CY
ZEVy

for some constant C. Here ¥/, is a one point set (of empty configuration) and
the value of functions ¢ on V, is always assumed to be one. Let

(2) Lyo(z) =§0§%1T g Vo olzy)d™y

and
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. _ o (_1)n S ‘ .
(3) Ly sﬁ(»’_ﬂ%n:o o V@ngo(.zay)d v.

These operators are introduced by Ruelle [8] and satisfy the following properties
if 7 is a bounded measurable set:

(a) Ly and L;* maps @y into itself.
(b ) LyLi*=L7'Ly=id.
(c) If V=V,UV: is a measurable partition, then, Ly, Ly,=Ly.

Let T be the finite particle motion in ¥V with reflecting boundary obtained
by freezing the particles outside of the set V. Thus, for ze¢ UVy and £¢Q
such that &(V)=0,

THz-8) =(Tf’<53-lﬁ) -£.

Here z-£ is the union of the set & and x considered as a finite subset of R%
It is proved by Sinai [9] that the flow of infinitely many particles

(4) imTEe=T1E, p—a.e.

exists along a suitable increasing sequence of compact sets Vc R? where p is
any limiting Gibbsian measure at sufficiently low density. Furthermore (4)
remains valid if x is replaced by its Palm measures pf, z=(21, -, 2x) (N=1)
since the flow is locally finite in the sense stated in §0.

Now let us introduce operators

(5) ULf =Ly T L7
acting on the space @=0g: for compact subsets V of R? where
Vi=Vimw={ge V;dg, V)zn)
Lemma 1. If fe®, then
(6) o Utf=lim Utf

exists and the comvergence is wumniform on each compact subset of \J(R)x.
Furthermore

(7) Utf(z)= o(z)p=(F-TY)
provided that, for some bounded measurable function F on @,
(8) Sflz)=p(z)p2(F).

Proof. Let oy be the density function of the Gibbsian measure projected to
By with respect to the measure dz on NO Vx which is defined as
=={)
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1 1
Y= dadp:--daxdpy

on each Vy. Assume (8) and then note that

(a) Li'f(z)=0v(z)u(F|Br);
(b)) L(orG)z)=p(z)pX(G) for each nonnegative @y-measurable function

G, and
(c) PG| By))=pG) if z is contained in the set V.

It then follows
Ly T4 Ly f(2) = pla) (e F | Br)e Tt)
=p(@) 2 (u(Fe Tt | Br) ) = pla) p(F Tt

if z is contained in V’. Consequently (7) holds in virtue of (4). Finally 6)
follows from the denseness of functions of form (8) in the space ©.

CorOLLARY. The operators Ut, —oo<t<+oco, form a one parameler group
of operators on the space of the functions f for which (8) holds for some bounded
measurable functions F on the configuvation space Q.

Remark. The above proof remains valid if one adds a smooth potential
with finite range and takes V"* instead of V” for a suitable number 7, greater

than 7.
Let & be the family of bounded continuous functions F on @ such that
(9) Fg)=F¢")

it eny={(gipi);i=1,2} and & Ny*={(gi,p}); i=1,2} for some 5 and the relation
(8) of §2 holds with i=1 and j=2.

LEMMA 2. Let Fe T be @r-measurable for some compact set K and f be
the correlation function of the measuve F-p wheve u is a Gibbsian measure at
low density so that the flow T is locally finite. Then, for a compact set V' such
that K is contained in the set V'={ge V;d(g, VO)z4r}, the following integral
equation holds

(10) #f(»:c)=f(T‘zo)+S:5 UsA(Tnds  (t20)

if the trajectory T'z, 0=s=t, is contained in the set V''X R%.

Proof. Let fy(t, 2)=Ukf(z) and fr,o(t, 2)=Ly TL;' f(zy) for z in V' and y
in V\V’. Then

. 1 AN 44
Folty B)=Lony LwTﬁvLE‘f(a.:)=S Folts D)y
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and
o o
St )= \ F(_TKQ'\'.{U(JE) 3mQ/ Tl (za)dz.

Since A is contained in T7(y) for any F is @p-measurable, thus it follows from
Corollary to Lemma 3

.
(11) Ir. g;(tf, 2)1=fv 40, Tf*'cz{,-lr')“i‘g CV'cy';fl'.y(f'—'S, NI ads
0

o

where Cy is the operator obtained from C by restricting the area of integration
inside of the set 7. If 7%z is contained in V% R? for 0=s=<f, then,

Thge=T"z
and
Craprvalt—=s, ) Tig2)=Clv (i—s, - (T z)

Hence (10) is obtained from (11) by integrating it.

TueoreM. If [ is the correlation function of a measwre F-p with I e F,
then,
12) U@ =A 1)+ SO a-ais.

Proof. The assertion follows from the bounded convergence theorem for
those f which satisfy the assumption of Lemma 2 because

(Ut (@) =]F e olz)

for any compact set V. Let Fe & and fx be the correlation function corre-
sponding to Fr=p(F|Bx). Then (12) follows again from the bounded convergence
theorem by Lemma 1.

§4. Stationary solutions

Let  be a Gibbsian measure.

TurorReM. Let [ be the corvelation function of « probability measure F-y
on @ with Fe G which is Maxwellian in velocities and coniinuously differentiable
in g-vaviables. If f is « stationary solution, i.e., if

(1) Af+Cf=0,

then it is the corvelation function of p itself wp to scalar multiplication. In
other words, F is a constant function.
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Proof. Let gy be the density function of the measure F-p projected to @By.
Then ‘

(2) gr=Ly'f.

Let us denote, for a given function /(z),

iz(g):iz(ql, vy q‘\,)zg...gh(mh o, APy, -y dby
Since f is Maxwellian in velocities, it follows from (1)
(4) gradq, f(g)zg duf(gi+u, g).

Now it is immediate to see from (3) by differentiating (2) that grady, f(g) is a
function of the variables g;’s in V7¢ and of the number of ¢,’s in ¥, but is
independent of the positions of particles in the set 7”. This means that the
measure obtained by normalizing F-p is a limiting canonical Gibbsian measure.
On the other hand, it is a (limiting grandcanonical) Gibbsian measure for the
potential

U(z|§)=—log [Fx-£)[F(&)]

on @ in the sense that the formula (3) of §3 holds. It is not difficult to observe
that any Gibbsian measure cannot be a canonical Gibbsian measure for a
potential @ unless it is a Gibbsian measure for @. Hence F' is constant function
and f is the correlation function of x up to scalar multiplication.

Remark. The proof shows that a Gibbsian measure in the generalized sense
(3) of §3 is a Gibhsian measure for the hard core potential if its correlation
function satisfies the stationary equation (1). This fact can be proved for
general finite range potentials under suitable regularity assumptions.
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