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§0. Introduction

The purpose of the present paper is to develop the spectral and scattering
theory for a class of non-selfajoint operators which is obtained by the perturba-
tions of selfadjoint operators satisfying the conditions (A-1), (A-2) and (A-3) (or
(A-3)) to be specified in §2. Briefly speaking, (A-1) guarantees the existence of
the perturbed operator, and (A-2) and (A-3) (or (A-3)) are the localized version
of the smooth perturbation which was firstly introduced by Kato [4] and later
extended by Lavine [8] in the selfadjoint case. Our results include the so-called
short-range perturbations as well as the small perturbations (see §2). In par-
ticular, we apply our results to —4+g¢(z) in L*R") with a complex valued
potential g(x) which behaves like o(|z|~'-%) at infinity (see §5).

We remark here the following respects. The results of Goldstein [2] include
ours formally, but the conditions in [2] seem to be difficult to prove directly in
concrete cases. We also mention that our results are more general than those
of Mochizuki [9] and [10] as we assume (A-3) (or (A-3)7) instead of the existence
of the boundary values of the resolvents on the (whole) real axis.

The composition of the present paper is as follows. In §1 we investigate
the concept of the (local) smoothness and some important estimates derived from
it. Following Mochizuki {9], [10] and Goldstein [2], we define in §2 the spectral
projections for the perturbed operators and investigate the basic properties of
them. In §3 we develop the stationary (time-independent) scattering theory by
means of the wave operators. §4 is devoted to the time-dependent formulation
of the scattering theory and the study of the invariance principle for the wave
operators. We give some brief applications of our results to partial differential
operators in §5.

* The authors are partly supported by the Fijukai Foundation.
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§1. Preliminaries

In this section we shall review, for the later use, the concept of the smooth
perturbation. Here and hereafter Hilbert spaces $ and & are assumed to be sepa-
rable. The inner products and the norms are distinguished by subscripts as
(), ()¢ and || {lg, Il Jls, respectively, but they will be omitted if there is no risk
of confusions.

C(H, }) is the set of all closed operators T with domain (7)) $ and range
RTICR. ColD, /) and R(H, {) are the subsets of ¢ (H, V) consisting of all T
with ©(7) dense in  and D(T)=$H respectively. We write C(H) for C(D, D),
and CoD) and B(H) are defined similarly. For Te oD, R) the adjoint T*e
C R, D) exists. All Te B(H, &) are bounded and the bound of 7" is denoted by || Tl

For any Te C(9), the resolvent set and the spectrum of 7 are denoted by
o(T) and a(T), respectively. For {ep(T) we write R{)=(T-)"'. For Te (D)
and Cep(T™) we write R¥{)=(T*-{)L

We denote Q.={leC"|Iml=0}. For any pair of Borel sets 4, and ,C R! we
write 4,&4d, if the closure 4, of 4, is the compact subset of the interior A8
of 4. For JcR! and 4>0, we set [TE#(d)={{eC'|Reled, 0 Iml= +0}.

Definition 1.1 (Kato, Lavine). Let 7 be a selfadjoint operator in § and Ae
Col®, 8 with DA)DD(T). Then A is said to be 7-smooth if one of the (com-
mon) values

(1.1)  sup S”’ AR+ is)gl*dA,
e
* 112
(1.2) sup —U&%f—?it, I is an interval, |I|=length of I,

Lilgll=1, peD(4%)

(1.3) — sup [e}[|[ARGxig)g|?
T lpil=1,e%0, 26 R1

and
1 = ) ,

1.4 -——supS |Ae~ 7| [2dt
2% Jei=1 4 —eo

is finite. A is said to be 7-smooth on the Borel set 4c R! if AE(4) is T-smooth,
where F(4) is the spectral measure for 7.

Lemma 1.2 (Lavine). Let T be a selfadjoint operator in © and Ae (9, R)
with D(A)DD(T). Assume that there exists a constant C>0 such that

(1.5) JA(RE) = RENA*|=C  for LeC?, Imi=+0, Rele 4.
Then A is T-smooth on A.

We shall give here the direct proof of Lemma 1.2. ‘A simpler proof can be
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found in Lavine [8].

Proof. We first note that (1.5) implies that F(DR(AT)C Due(d)=F()Duc,
where £, is the absolutely continuous subspace of $ with respect to 7. Put

P(/'.,a)=%(R(Z+z‘5)~]€(2—z‘5)). Then P(2,¢) is non-negative. Let M(Z,:) be
the square root of P(3,¢). Then (1.5) implies AM(2,¢)e B(H, §) and

(1.6) IAMQ, o)||=v22C,  ied,e>0.

(See Kato [4], pp. 273). Let {pa} be an A*-admissible orthonormal basis of & such
that ¢.e D(A™) for all #. Since E{d)A*p,eHu(d) we get for any neE(41)D

(AP, 9t pu)=(P (R, ity A¥n) — (B, A¥pn)

a.e. A6 R
Furthermore by (1.6)

[ AP, o, n) =220 1040, ) Bur( Ay,
1 is a Borel set <4, and as ¢\, 0
M (4, &) Ege(d)u))? — —;%(EM(Z)U, 1)y ae 2 and in LY(4).
Therefore by Vitali's convergence theorem we get
(AP, ) =(P U e, A% ) — o (B, A¥n) in LX),

On the other hand for any we E(1)9
(AR %ie)u, pn)=(R(Atiz)u, A%pn)

= wap)  d .
—SRI p—Qxis) dp (B, Ao,

where ya(p) is the characteristic function of 4cR'. Then the trivial use of the
boundedness of the Hilbert transform in L*(R') shows that

2
[ ARG, gz | |2 @i, A% dy
R Jd §24
=lim Sdl(AP(u, o), on) g
a0

Therefore we get

W We denote E{((—oo, 2)) simply by E(2).
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SRluﬂR(’Ziie)uHﬁ Z S {{AR(Ak i), ou)|2dA

= i th (AP (12, 8)a, @u)|2d pt

n=1 §—0

~lim 3 S (AP (8, ou)2d

i—0 n=1

= lim g AP s, 6)2d s
G0 4
= 2:C* lim g M, )0 Pl =22 Cad].
3—0 Jd

This proves the T-smoothness of 4 on 4. g.ed.

Lemma 1.3. Let A be T-smooth on 4,. Then for any 4d,€4,

€7 sup S ARG+ i) fIFdA=C()).
WAl=1 J 4y

Furthermore AR(A+ie)f have limits in L¥4;; &) as ¢\, 0.
Proof. AR(A+ie)f=ARQ=+ic)E(40)f + AR +i)E(L) S, where 4§=R"\4,. The
first term belongs to the Hardy class A*(@2.) and
(1.8 Sd HARQ+ie) E(4o) FIPdAZCl E(4o) 17,
1

by Lemma 1.2. The second term is analytic in some neighbourhood of 4, and
we see easily that

(1.9) SA AR i) ECO) F|PdA=Cl, 4| ECADS,

where C(4,, 4,) is a constant depending only on 4; and 4,. Combining (1.8) and
(1.9) we get the desired results. g.ed.

§2. Construction of the perturbed spectral measure

Let T, be a selfadjoint operator in  with the corresponding spectral measure
Ey(+), and let A, Be Co(H,8). We introduce the following conditions (A-1) and
(A-2).

(A1) DANDB)>DT). The domain of the closed operator B[Ry (L)A*]®
is equal to the whole space & for some £, Imf=+0, where Ri({)=(T:—-0)"

Remark. By the resolvent equation for R,({), (A-1) implies that B[R,(L)A*]

@ We denote the closure of an operator A by [A]
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is a B(R)-valued holomorphic function in £, Im=0.
We denote
2.1 BIR(DA¥]=RQK), AR(DB*=Q*)=Q0™*

(A-2) There exist a constant >0 and an open set 4, such that 1+Q()
has a bounded inverse (1+Q(L)~* for any Le/l#(4,) and (14+&Q()~* is uniformly
bounded in e 7§#(4dy).

We note that (A-2) implies that 1+@Q*() has the same properties as 1+Q()
and that both (14Q())~* and (1+@Q*())~* are holomorphic in {e/T#(d;). We give
here two types of sufficient conditions for (A-2).

(B-1) (Small perturbation) There exists y,0=y<1 such that ||Q|=r for
CellF(4y).

(B-2) (Compact perturbation) Q) is compact at some { (hence so is Q&)
at any (ell#(4y)) and Q) has a boundary value Q(2iz’0)=li{13 @R(xie) in the

operator norm topology which is continuous in 2ed, and o(1+Q(1£10))$0, 1€ 4.

The first implication; (B-1) — (A-2), is easy and the proof for the second one;
(B-2) — (A-2), is seen in [5]. :

Now under the conditions (A-1) and (A-2) we define the perturbed “ resolvent ”
Ry(Q) as

(2.2) RQ)=R(O-[R(OA*A+QE)BR(C),  LellF(d).

Then following Kato [4] §2.1, we can prove that R.({) is the resolvent of some
closed operator 7. The rest of this paper is devoted to the investigation of the
spectral properties of the operator 7» under the following additional condition

(A-3) A and B are Ti-smooth on 4,
or
(A-3)" there exists a constant C>>0 such that

(2.3) AR (A +ie) ~ Ry(2—1ie)) A*(lg, IIB(R1(2+Z'6)-—Rl(l—iE))B*Hn—f—C
for 2ed,,e>0.

We now introduce the following sesqui-linear forms on Hx .

.9 G, A, 1= 57| (R+i)~Ri=ie))f, el

£€(0,9), A€ 4,.

Lemma 2.1. Let (A-1), (A-2) and (A-3) (or (A-3)") be satisfied. Then for any
Borel set A& dv, Cule, N f,q] is a family of uniformly bounded sesqui-linear forms
in ¢€(0,0):
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(2.5) [€o(s, DS, g1 =CWDIIS s llglle-

Furthermore lijm Cale, DS, 91=Cal S, g1 exists for any f,q9eD and Cu(N)f, gl is ex-
i
pressed as

(2.6) Co(LS, g1=(E(Df, d)ss
by a unique bounded operator Ei(d).

Proof. By the resolvent equation (2.2), Ga(e, 4)[f, g] is expressed as

@1 G dfal= 5y | (R~ RO=i9)S, 0)od2

— 1 g ((+QUAHiNBRIG-+ie)f, AR(A—ie)g)ed

27i

+ "zl;‘ SA((l+Q(3‘i€))"BRx(2-i6)f, AR\(A+ic)g)ed.

The first term is uniformly bounded in ¢ and converges to (E((d)f, )y as ™\, 0.
The second and the third terms are treated as follows. By Lemma 1.2, (A-3)
implies (A-3). (A-3)and Lemma 1.3 then imply that AR(A+ic)f and BRi(24ic)g
converge in L*(4, ®) as ™, 0. Since (1+Q(A4-4e))~! are holomorphic and uniformly
bounded in /7#(4), Fatou’s theorem shows that the integrands in the second and
the third terms converge in LYd4) as ¢, 0. Hence, remembering the estimate
(1.7) and ‘using the Schwarz inequality, we obtain the desired boundedness and
the existence of the limit. £y(4) is then determined uniquely by the Riesz re-
presentation theorem. q.e.d.

Remark. By Fatou's theorem, (14@Q(A+ic))"*BR\(24ic)f converge weakly in
L4, &).

We call the B(9)-valued set function Es(-) on the precompact Borel subset
of 4, the spectral measure of 7. on 4,. The next theorem justifies the name.

Theorem 2.2. Uuder the same conditions as in Lemwma 2.1 the family of
operators {Eld|d€dy, 4 is a Borel set} satisfy

2.8) Eo(4)E(4"y=Ey(d' N d7) A, 47e 4,
and
2.9 Ex(MNTs ToEy(4) de4,.

Proof. The left hand side of (2.8) is expressed in 4 weak form as

@100  (Ed)EMNF, ge= lim -21-—5 dz[lim—l—g (Ro(A+ie) — Ra(a—i2))
clo- 4ml Ja Jan

3lo 271'2

X (Ri+i8)— Ralo—i0) o) |
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By the use of the resolvent equation for R.({) we have

(2.11) (Rao(2+1s) = Ra( A~ 12) ) Rl +i0) — Ry —i6))

246 ) 2i6
R R R
2is . 2z
(p+i6—2)+2* Raliytie) - (“”“',{)";?Rz(v ie)-

We write the L!-limits

im (L+Qy+id) " BRiy£i)f, ARy id)g)e in LX(4")

as F*(y). Then using (2.2), (2.11) and Fubini’s theorem we obtain that
(2.12) (BB, o= (E(d' N AT, 0o
1 g
~lim L — s (P =Py |
tim 57, A, i =
=(d'Nd")f, )

- hngl i afl ﬁ)’-r)—}ﬁ‘ )= F-().

\ ed2
On the other hand, SJ‘ e
ly to the characteristic function y..(y) as ¢, 0. Therefore using the dominated
convergence theorem and (2.7), we easily obtain (2.8).
(2.9) is the direct consequence of the fact that Ry({)T.C TuR.(Z) and the de-
tailed proof is omitted. g.ed.

is uniformly bounded and converges pointwise-

Remark 23. Theorem 2.2 shows that E,()P is a closed subspace of §
which reduces T.. We can show directly that 7, is bounded in E ()9 if 4 is
bounded, which will be proved in the next section by means of the wave
operators.

§3. Wave operators and the similarity

In this section we shall establish the similarity between the parts of T\ and
T by means of the wave operators to be constructed below. First we define two
forms %B.(e, 4) and B.(c, 4) on HXH:

(3.1) W (e, A)f, 0] = —-»—S (Ri(A+is)— Ry ~i))f, g)pd

_ ELS (B(R:(1+iz)— Ry(2—ie)f,

(14+Q*(Azie)) AR (Aic)g)adA,
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1,99, 0<e<s, dedy;

(3.2) 8 ALF, )= | (Rultie)= RiG—ief, 0)sd

+ 57 | (+QUEiO)BRGZiRS,
Tl J4

A(Ry(A+ie)— Ri(A—ie))g)edA,

Lemma 3.1. Let (A-1), (A-2) and (A-3) (or (A-3)) be satisfied. Then W.(e, 4)
[f, 0] and B:(e, 4)f, q] are uniformly bounded (in <) sesqui-linear forms on § for
any fixed 4&d,. Furthermore as ¢\, 0, W.(e, Hf,g] and Bule, DS, g] converge
to the limits (N[, g] and 3.(DLF, 0] W.ADLS, g] and 3.(ILf, 9] ave expressed
as

V(D5 9l=(Wald) S, 0)ey Be(DLS, 91=(Zo(D S, 0o
with some bounded operators W.(4) and Z.(4).

Proof of Lemma 3.1 can be carried out in the same way as the proof of
Lemma 2.1 and is omitted here. We call these operators W.(4) and Z.(4) the
wave operators. The next theorem is the main result of this section. The
theorem states some basic properties of W.(4) and Z.(4) and establishes the
similarity between the parts of 7, and T..

Theorem 3.2. Let the conditions (A-1), (A-2) and (A-3) (or (A-3)") be satisfied.
Let A&, Then the wave operators W.(4) and Z.(4) constructed in Lemma 3.1
satisfy;

3.4 W) E(d)=Eo( D) Wo(d)=W.(4),
(3.5) Zo(DE(D)=Ex(D)Z(D)=Z.(4),

and

3.6) W Z(A)=Ed),  Z()W.(d)=E(D).

Furthermore the wave operators have the iniertwining properties in the sense that
they satisfy

3.7 WoAHTEA(DH =T W.(4)
and
(3.8) Z(NTE(N=T\Z.(4).

In order to prove Theorem 3.2 we prepare the following lemma without
proof. The lemma shows the various relations between the resolvents R,(¢) and
Ry(0).
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Lemma 3.3. Under the same conditions as in Theorem 3.2, we have, in the
case of bounded A and B, that

3.9 1+ RUOA*B)1~ Ro(DA*B)=(1—~ Ro(D)A*B)1+ Ri(0) A*B)=1;
(3.10) 1+ A*BRy(L))(1 ~ A*BRy(Q))=(1—~ A*BR(D)1+ A*BR:({))=1;
(3.11) ROAX*L+QUON 7 =RaOA*:

(3.12) (1+QONTBR(D=BR:(2);

(3.13) Re(0)~ Ro(D) = (1 ~ R A*B) Ri(L) — Ru©))(1 ~ A*BRx(D)) ;
(3.14) Ri(0)—RiQ=(1+ Ri(DA*BYRo(C) — R D)L+ A*BR:(D))-

Furthermore, replacing Ry()A* by [Ri(A*] and making some slight modifications,
we have the same types of identities in the case of geneval unbounded A and B.

Proof of Theorem 3.2®. We first prove a part of (3.4). By (3.1), and
(A'B)) )

(3.15) (W), ool = 1im sup { (B, 0l +| | (Pita, 7, Psda] lglle]
<l B0 lo lolls,

where Py(4,¢)= —2%—2— (Ry(A+ie)~ R (1—ie)). Hence putting f=h—Ei(d)% in (3.15), we
get that W.(DE(d)=W.(4). We shall next prove a part of (3.5). We have
(3.16) (Ze(DELDS, e
= lim Sduw, (1 — A*BR((1+i) Ex(4)f , §)od7
e} 0

= lim S dz[lim S (P2, )(1— A*BRy(1+is))
4 dlo Jd

0
X (R +i0)~ Ry~ i), Ood |

= lim - S dz[lim L S (1 + R F i) A* BY(Ro(A+i2)
el 0 2ni )4 510 27l )4

~ R ie)(Rey +5)~ Raly—id)f od |

Hence, remembering the identity (2.11), we have

3  We use the notations in the case of bounded A and B, but the results still hold
in general by slight modifications of the proof.
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(B.17)  (ZADELDS, 9)s
= lim - \ d/[hm J«S (L4 Ry(AFis) A* B)Sa(2, &, 7, ) g)@(lp],
1 4 -

a0 2mi ) alo 2l

where

Se(d, 2,7, 6)=p(4, &, 7, ) RelA+ie) + p(4, <, 7, 6) Ra(A—ie)
+0(p, 6, , &) Ralzp+10) + p(z, 8, 2, £) Re(n—i0)

2i6
(Atde—p)i4a*
Therefore we get
{3.18) (ZDELDT, 0o
1

1 iz
=(F NS, 0)p+ hnﬁl —stddl o dev m‘

X (B(Ru(y+i0)— Raly— i0)) £, AR\ i2)g)g,

with p(4,¢,7,8)=

where B(Ru(5n+i0)—Ru(y—i0))f denotes the weak limit of B(Ry(y-+i0)— Re(y—id))f
©@10)in L? (4;8). Since AR,(Ai+iz)y have the strong limits AR, (1+i0)g (sym-
bolically) in L2(d4; &) and the last terms of (3.18) are expressed as

13{1;1 “27”‘ (.B(Rn(?]‘!’ ZO) RO(YJ - lO))f, S —“*(;?—75‘:?)* P, 1R1(2 o lE)dl) L2(458)

where the integration is Bochner’s integral, we get the desired result:

(3.19)  (Z.(DEADS, )
=(E)f, 0o+ lim 51 | (BR+i0) = R(G=10)7, ARGt )
=(Z(dD)S, s

We shall now proceed to the proof of (3.6). Using the same procedure as is
used to get (3.19) from (3.16), we obtain

(3.20) (WlDZo(DS 90

= lim ”‘5‘117&[1}}?“2"'8\“1 Ra(2F ie) A* B Ry(A+is) — Ra(i—ic))

X (Ri(p+16)— Ri(p—16))(1 — A* BRu(y+10)) f, G)@dv}dl

1
= lim EISJ[lalﬁl 'ZTSf(l — R4 ie) A*B) o, 6, 2, &) Ruloy+i0)

553, % ORsy— o)L~ ABRy i) 0)sd 42
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= hlr?—zé—g (Ria+ie)— Ri(A—ie)) ], 0)sdi

~ lim 5—8 (BRy(1£i2)f, A(R: (24 12) — Ri(A—ie))0)a A

- 11m—2—— S (B(Ry(A+i¢)— Ru(i—ie)) f, ARF(2 % ie)q)edl2

+ lim 91 g [hm ~—~S (Ra(27Fie) A* B(o(p, 8, 4, ) Ry(5+16)
c]0 2mi 4Ll a0 2

— 57,8, 7 Ruly—i6)) A< BRuly 16) g)@dyy]d}i.

By (3.11), (A-3) (or (A-3)") and Fatou’s theorem

lim Sd(Rz(/??is)A*{B(P(% 8, 2, &) Rily+i0)— o7, 3 & &) Ralp—i8)) A%}
0

X BRa(p+10)f, g)pdA
2ie

=S ((BRy(n+i0)A*— BRy(n—i0)A*) BRo(n = 0)f, ARFR:+ ie)g)e -— o——5 dly,
4 (p—2P+¢*

where BRy(p+i0)f are the weak-L*(4, &) limits of BRy(p=*i6)f and BR(n=+i0)A*
are the nontangential strong limits of uniformly bounded and holomorphic oper-
ator valued functions BRi({)A*, ., Reled,. Therefore

. & . .
lim g { Sdm({BRl(zy-f-zO)A*—BRx(ﬁ-zO)A*}

X BRyyi0)f, AR;“(ZiiE)g)sdﬂ}dz

. & . . *

X BRu(y+i0)fdy, AR;k(zizag)
L4, &
=((BRi(A+i0)A* ~ BR,(1—10) A*) BRyA+10)f, ARFA£10)0) z2caso
=({(1+QUFi0) " (BR.(A+10)A*
— BRy(1—i0)A*)BRy(2:£0) f, AR\(2£i0)g) s2camy

= lifn S (Ry(AFie) A* B(R1(A+1e) — Ri(A—ie)) A* BRo( A de) f, ¢)pdA.
elo Jd

Combining the above calculations we have
(3.21) (WalZ (DS, 0)e

~11lmw2»~8 (1= Ro(ATF ie) A* B)(Ra( - ie)— Ra(A—ie))
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X(1—A*BR.(Axie)) [, g)edi

= h}‘n 7}~S (Ro(A+ie) — Ro(2—1e))f, 9)edR

=(EAD)F, 9)s-

This concludes the proof of the first part of (3.6). The second part is proved in
a similar way and we omit the proof. Next we complete the proof of (3.4) and
(3.5). Using (3.6) we have that

(3.22) Es( W (D= W (DZ (D W)= W (DE(D)=W.(
and in a similar way that
(3.23) E(DZ(Dy=Z.(D.
Finally we shall prove the intertwining properties (3.7) and (3.8). First we show
(38.7). For feEy(d)® and geD(TF), we have
(3.24)  (WldT\f, 08
= 11‘1101 ~2—i7 SJ((l—Rz(F#is)A*B}(RJ(l +ig)— Ri(A—ie))Tof, ¢)edi

= lim 3—1; [S (1= Ruo(2F ie) A* B)(Ry(A+is)— Ru(A—i9))f, 0)pd2

e

S (1—R(25ie) A*B)( Ry (A+is)+ Ri(A—is)) f, a)@dﬂ
= hmz—ls {a((1— R(/H—lc) A*B)(Ri(A+ie)— Ri(2—ie))f, o
clo <l
Fie((Ra(A+1s)+ Ri(A—ie)) f, g)e}d A

On the other hand we have
(3.25) (TeW D), a)e

~ lim '2}{"8 (1= Ro(2Fie) A*B)(Ry(A+is)— Ra(A—ie)) f1, TEq)edA
el

= lim '2'“5 (Ro(i+is) — Ra(i—ie))(1 + A* BRy(A+ i) F, Tq)edi
el T

= lim 2~1~ S A Ro(A+ie) — Ro(A—ie))(1 + A* BRi(A-L o), d)e

+ie((Re(A41e) + Ro(2—ie))(1+ A*BR\(Axis)) [, 0)e}dA

= ll.l‘(nvz-lﬂ-—g {21 — Ro(AF 1) A* BY(Ry(A+ i) — Ri(A—ie)) f, ¢)e}d2
|0

+ lim ~2; S (Ri(A+ie)+ Ro(2—ie)) f, 0)gdA:
)0 T J4
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Comparing (3.24) and (3.25), we get the desired result. (3.8) is proved as follows

(3.26) ZAD T Bl D)= Zo( DT W DZ(4)
=Z (D)W DT E(NZ()
= BN TE(NDZ()=TiZ.(4).

This completes the proof of the theorem. qg.ed.

§4. Scattering theory and the invariance principle

We shall give here the time dependent expressions for Z.(J)and W.(d) con-
structed by the stationary method in §3, and the invariance principle for them.
To state and prove the theorems we prepare some immediate consequences of
the results obtained in the preceding sections. First we note that Theorem 3.2
implies

(4.1 W) RyOE(NZ ()= Ra2) Ex(), Lelli(da)
(.1 ZAPFRADE(DWo(D¥=RHO LD, Lel]F(do)-

Therefore Ry()Ey(d) (or RFEOEN(L*) can be extended to C'\ 4 holomorphically and
o(Telpycns) T (or o(T¥|ycaye) S ).

Let M(d) be the algebra of all bounded Borel measurable functions on 4.
Then for any ¢(2)eM(J) we can define the operator ¢(Th)e B(EN(D)D) (H(TF)e
B(EAD*D)) by

(4.2) @(T2)f,9)= 11}‘5)1 5 (A Ra2+ie) — Ro2—i)) S, 0)dA,

4
FeE(D)D, geEx(1)*9,

(@(97,0)= lim | (@R G+i9 - ReG—ier, o)
ejq
Fe Ex( %, ae.@u)@.)

We consider ¢(Ta)Ex(d) (or ¢(T:)Ex(4)*) as an element of $($). Relations (4.1)
and (4.2) show that

4.3) W:(J)(/XTJ)EJ(J)ZJJ)=(/'3(TJ)EA(J)'
(4.3)* Z(AVGTOE(D) Wald)* = g(TF) Ea(J).
(4.4) (N To) Eo(d))*= (T ) Eo( )%,

The correspondence M(4)3¢ — (Te)e B(E(4)9) induces a homomorphism from the
algebra VU4) to B(EL(DD). If ¢(2) is real-valued (or [¢(2)]|=1), ¢(T3) is a self-
adjoint (or unitary) operator in Fu(d)§ with respect to the inner product (Z.(4)-,
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Z.(d)-). Similar relations hold for ¢(T7¥).
By (4.1), (4.2) and the use of Fourier transform we get that for any Ae¢
Cu®, ) with DA)CDT)

(4.5) + K‘queﬂm~M'E(J)fu2dt=S JARG2 i) B f|dA
i R

o

where (T, R(J), E(4)) stands for any one of (Ty, Ri{L), Ei{d)) (i=1,2,) and (T},
BXO), Eo()*)., Hence if A and B satisfy the conditions (A-1), (A-2) and (A-3)
{or (A-3)) we can conclude that CR(QE(J)S belongs to the Hardy class H*Q.)
and

(4.6) S (CRG+i)E(d)f, DR (A—is)Ei(D)g)d2=0, i,j=1,2,
R
where each one of C and D stands for any one of A and B. Furthermore (4.6)
remains valid even if any one of R(i+ic) (i=1,2) is replaced by RF(i+iz).
We finally remark that by the relation (4.6) and the theory of Fourier trans-
form W.(d) and Z.(J) are represented as
4.7 (WS, )=o)+ "—'~11m\ (BR,(Atie)E(d)f, AR¥(A+is)
‘ K L (Dg)dA
tea
=(f, {l)ig (Be " E(A)f, Aem'T= Ey(d)*q)dt,
et

FeE\(DD, ge Ex(d)*D,

4.8) (Zu)S,0)=(F,0)~ 57 lim | (BROGEEDS, AR G2
% By(d)g)da
=(F,0)F S:m(Be—iw'zEZ(d) , AT B (d)g)dt
| FeEADD, ge Ex(4)D.
We can now state the theorems.

Theorem 4.1. Let the conditions (A-1), (A-2) and (A-3) (or (A-3)) be satisfied.
Then the strong limits in the following formulas exist and

4.9) We(d)=s= Hm e"":Ey(d)e "1 E\(d).
t—wo

@.10) Z.(D)=s— lim o7 F\(de-TeEy(d).
t—oo

Remark 4.2. If 4 is compact as an operator from ®(A) to & we can omit
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£y(d) in the expression of Z.(d) in (4.10).

Theorem 4.3. (Invariance principle). Let the conditions (A-1), (A-2) and (A-3)
(or (A-3)) be satisfied. Let ¢(2) be a real valued Bovel measurable function on
4 such that

w0 2
(4.11) S g f(Re-ite®-i2gal g —> (0 as { —— oo
0 4
Sor any fel*(d). Then the strong limits in the following formulas exist and
4.12) We(d)=s— lim %2 F( A)e~itd T By (4).
(ko0
(4.13) Z(DH=s— lim eI (De-1TD (1),
i -]

Remark 4.4. Some sufficient conditions on ¢(4) which imply (4.11) may be
found in Kato-Kuroda [5].

Proof of Theorem 4.1 is entirely the same as the one of Theorem 3.9 of
Kato [4] (pp. 270) and it is omitted here.

Proof of Theovem 4.3. We shall give here the proof for W,(4). Others are
proved similarly. Since Theorem 3.2 and (4.3) imply

- plta (T yV}(g)z I.V)r(d)eifgﬁﬂ‘l)’
we get
(W (D870 By(4) f, e~ Ey(d)5g) =( W (4) £, )

by (4.4). Hence replacing f,g by e®™TE(4)f and ¢~ Fy(dy*g in (4.7), we
get for any f,ge$

(Wo()f, @)y=(e®2 T2 Ey(d)e~ T E(A)f, g)

+ S (Be~ithe=iss O I3y (A f, Ae=ielsg=154 Te [y A) %4 ).
0

Therefore by Schwarz's inequality
(4.12) [ Wi(d)—e* T2 Ey(d)e~T0 By (A)} f, 9)
) 122 o
= (], gerem-meromapipar) ( aems-mereomaygivan)
0 ) 0

1/2
The second factor of the right hand side of (4.12) is dominated by
: 172
4.13) (sup SRI\|AR*<x+is)e-is¢'<fz*>E2<A>*gtm) =Cllgll,
)

£€(0,4

where C is a constant which depends only on 4 and ¢. Since we have, for any
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feE(DH% and any Borel set I, that
\ BEANS S B{Ry(+10) — Ry(A—i0))fd2,

where the integral in the right hand side is Bochner’s integral and

BUR(3+10) = RG—i0)f =lim BR(3+i5) = Ri=ie))f
in L%d,®), we get easily that
4.14) S:]QBWT!““W'QE,(A) 7l
{7 e B
z\ {[\ e—iﬂ*~fs¢fﬂ$BcR1(z+i0}~R1V—z0))fdz,

On the other hand it is easily seen that (4.10) implies the same  statement for
feL¥d:R). Therefore the first factor of the right hand side of (4.12) converges
to zero as s — oo. Combining the results we get the desired result:

s—1lim e T2 By L)~ ie T [y (A) = W (). g.ed.
s

§5. Applications to partial differential equations

Let § be L*R®) and T; be —d=— Z ‘6(.; with domain D(T\)= WZR?), the
J=1 7
Soholev space of order 2. Let A, B he the closed extensions of the operators
from $ to , the direct sum of eight copies of D, given as

5.1 47 =(an@) (o), Bl ), o)L (o), -+, o)L o),
@@ (@) 0@ (0))
and
(5.2 B = (W@ (@), b)), o) F o)+, i) (2,

r7f

i) 2L (o), o)

-)

for fe®(T1)D(A), D(B), where [a;(x)], |b;(w)] el +[z])=9*27%, e>0,7=1,-,7 and
az), bo(x)e LY R*). Then we have the next lemma.
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Lemma 5.1. Under the above conditions on A and B, we have (A-1), (B-2)
and (A-3Y (hence (A-3)) in §2, where 4 in (B-2) is taken as the complement of
some closed null set.

The proof of this lemma may be found in [5, §7] and [1, Appendix Al

In the case that = is general and T is a general elliptic operator with con-
stant coefficients, we can treat the perturbation by a lower order differential
operator whose coefficients are bounded and behave like o(jx|='~") at infinity (see
[1], [6], [7] and also [12]). We may also apply the recent results of Schechter
[12] for real potentials, where he relaxed among others the conditions on the
local singularity of the potentials.

Finally we remark that using the results of Ikebe-Saito [3], or Saito [11],
we may choose Ty to be —4d+¢(z) in L} R") with ¢(x) a real long-range potential
and A*B to be a complex short-range potential.
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